MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9231 FURTHER MATHEMATICS

9231/12

Paper 12, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2010	9231	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2010	9231	12

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A LEVEL – May/June 2010	9231	12
1	$1 + 1 + (y')^3 =$	$29 \implies (y')^3 = 27 \implies y' = 3$		B1
	2x + 2yy', +2	$3(y')^2 y'' = 0$		M1A1, A1
		$= 0 \implies y' = \frac{4}{27}$		Al
	2 0 ° 27 y	$0 \Rightarrow y = 27$		
				[5]
2	(i) Sketch of			DI
		nately correct shape and location for $0 \le \theta < 2\pi$ itial line to be tangential to <i>C</i> at the pole		B1 B1
		tic approach to circle $r = a$		B1
				[3]
	(ii) $A = (a^2 / a^2)$	$(2) \int_{\ln^2}^{\ln^4} (1 - 2e^{-\theta} + e^{-2\theta}) d\theta$		M1A1
	$=(a^2/2)$	$[\theta + 2e^{-\theta} - (1/2)e^{-2\theta}]_{\ln 2}^{\ln 4}$		A1
	= = (<i>a</i>	$^{2}/2)(\ln 2 - 13/32)$ (AG)		A1
				[4]
3	$\frac{\mathrm{d}s}{\mathrm{d}t} = \sqrt{t(t^2 + t^2)^2}$	$\overline{(4) + t^2(4-t)} = \sqrt{8t^2} = 2\sqrt{2t}$		B1
	$s = 2\sqrt{2} \int_{-1}^{2} t dt$	$t = \sqrt{2} [t^2]_0^2 = 4\sqrt{2}$ (AG)		M1A1
	J()			[3]
	v = (1/3)(4 - a)	$(2)^{3/2}$		B1
		$2\sqrt{2}t(4-t^2)^{3/2}dt$		M1
	•0	$\left[\frac{\pi}{15}\right](4-t^2)^{5/2}\Big]_0^2$		A1
	$= = [-(4\sqrt{2})]$ = $128\sqrt{2}\pi/15$			A1 A1
	-120 227 / 15			[4]
4		$/64 = 6S_N + (5/4)N^2(N+1)^2 + 3N(N+1)/16$ ation of difference method:		M1A1A1
	A1 for LHS co	orrect: A1 for RHS correct		
		$(1/2)^{6} - (5/24)N^{2}(N+1)^{2} - (1/32)N(N+1) - 1/384$		
	Or $\frac{1}{6} \left\{ (N + \frac{1}{2}) \right\}$	$\binom{6}{2} - \left(\frac{1}{2}\right)^{6} - \frac{5N^{2}(N+1)^{2}}{4} - \frac{3}{16}N(N+1)$		A1
	C	5		[4]
	(i) For $\lambda = 6$	$S_{1} = 1/6$		B2
		~ ~		
	(ii) For $\lambda > 6$	$S_{\infty} = 0$		B1 [3]

	Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A LEVEL – May/June 2010	9231	12
5	$D\left[(x^2/2)(\ln x)^n\right]$	$] = x(\ln x)^{n} + (nx/2)(\ln x)^{n-1}$		M1
	$\Rightarrow [(x^2/2)(\ln x)]$	$(x)^{n}]_{1}^{e} = I_{n} + (n/2)I_{n-1}$		A1
		$(2 - (n/2)I_{n-1} \text{ for } n \ge 2)$		
	$\Rightarrow I_{n+1} = e^2/2$	$-(n+1)2I_{n-1} \text{ for } n \ge 1$		A1 [3]

M1 A1

$$\int_{1}^{e} x(\ln x)^{n} dx = \left[(x^{2}/2)(\ln x)^{n} \right]_{1}^{e} - \int_{1}^{e} (nx/2)(\ln x)^{n-1} dx$$
 M1A1

$$\Rightarrow I_n = e^2 / 2 - (n/2)I_{n-1} \qquad \Rightarrow I_{n+1} = \frac{e^2}{2} - \frac{(n+1)}{2}I_n$$
 A1

$$\begin{aligned} H_k : I_k &= A_k e^2 + B_k, \text{ where } A_k \text{ and } B_k \text{ are rational} \\ H_k &\Rightarrow I_{k+1} = e^2/2 - (k+1)(A_k e^2 + B_k)/2, \\ &= A_{k+1} e^2 + B_{k+1}, \text{ where } A_{k+1} = 1/2 - (k+1)A_k/2, B_{k+1} = -(k+1)B_k/2, \\ &\Rightarrow A_{k+1} \text{ and } B_{k+1} \text{ are rational} \end{aligned}$$

$$I_1 = e^2/4 + 1/4 \Rightarrow A_1 = 1/4, B_1 = 1/4 \Rightarrow H_1 \text{ is true}$$
Completion of induction argument
$$A1$$
[6]

Obtains an equation in y not involving radicals, e.g., $y(y+1)^2 = 1$ $\Rightarrow ... \Rightarrow y^3 + 2y^2 + y - 1 = 0$ (AG) 6

OR

(i)
$$S_2 = -2$$
 B1

$$S_{4} = 4 - 2 = 2$$

$$S_{4} = 4 - 2 = 2$$
[3]

(ii)
$$S_6 = -2S_4 - S_2 + 3 = 1$$
 M1A1

$$\Sigma \alpha^{2} = -2, \ \Sigma \alpha^{2} \beta^{2} = 1, \ \alpha^{2} \beta \gamma^{2} = 1$$

$$S_{6} = (\Sigma \alpha^{2})^{3} - 3\Sigma \alpha^{2} \Sigma \alpha^{2} \beta^{2} + 3\alpha^{2} \beta^{2} \gamma^{2}$$

$$= (-2)^{3} - 3 \times (-2) \times 1 + 3$$

$$= -8 + 6 + 3$$
M1

$$S_8 = -2S_6 - S_4 + S_2 = -6$$
 M1A1 [4]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2010	9231	12

7 (i) Solves any 2 of the equations:

$$4 + 2\lambda = 4 + \mu$$
, $-2 + \lambda = -5 - \mu$, $-4\lambda = 2 - \mu$
to obtain $\lambda = -1$, $\mu = -2$
Checks consistency with the third equation

(ii)
$$P = |(\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}).(5\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) / \sqrt{38}|$$

=7 / $\sqrt{38} = 1.14$ M1A1
[3]

n = -5i - 2j - 3kM1 Plane is 5x + 2y + 3z = 16A1

$$P = \frac{15 - 10 + 18 - 16}{\sqrt{5^2 + 2^2 + 3^2}} = \frac{7}{\sqrt{38}}$$
A1

OR
Plane is
$$5x + 2y + 3z = 16$$
 (as above) M1A1

Sub. general pt on perpendicular
$$\begin{pmatrix} 3+5t\\-5+2t\\6+3t \end{pmatrix} \Rightarrow t = -\frac{7}{38}$$

 $\Rightarrow P = \begin{vmatrix} 5t\\2t\\3t \end{vmatrix} = 1.14$
A1

(iii)
$$(\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) \times (2\mathbf{i} + \mathbf{j} - 4\mathbf{k}) = 6\mathbf{i} + 8\mathbf{j} + 5\mathbf{k}$$

OR $(\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}) \times (2\mathbf{i} + \mathbf{j} - 4\mathbf{k}) = -6\mathbf{i} - 8\mathbf{j} - 5\mathbf{k}$, etc. B1
 $d = |6\mathbf{i} + 8\mathbf{j} + 5\mathbf{k}| / \sqrt{21} = \sqrt{125/21} = 2.44$ M1A1A1

M1A1 A1 [3]

OR

Let Q be the foot of the perpendicular from P to l, and A be the known point on l_1

/

$$AQ = \left| (\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) \cdot \frac{(2\mathbf{i} + \mathbf{j} - 4\mathbf{k})}{\sqrt{21}} \right| = \frac{8}{\sqrt{21}}$$
M1A1

$$AP^{2} = 1^{2} + (-2)^{2} + 2^{2} = 9$$

$$PQ^{2} = 9 - \frac{64}{21} = \frac{125}{21} \implies PQ = \frac{5\sqrt{5}}{21}$$
A1

OR

$$\overrightarrow{PQ} = \begin{pmatrix} 4+2t \\ -2+t \\ -4t \end{pmatrix} - \begin{pmatrix} 3 \\ -5 \\ 6 \end{pmatrix} = \begin{pmatrix} 1+2t \\ 3+t \\ -6-4t \end{pmatrix} \therefore \begin{pmatrix} 1+2t \\ 3+t \\ -6-4t \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ -4 \end{pmatrix} = 0$$
 M1

$$\Rightarrow t = -\frac{29}{21}$$
 A1

$$\overrightarrow{PQ} = \frac{1}{21} \begin{pmatrix} -37\\ 34\\ -10 \end{pmatrix} \Rightarrow \left| \overrightarrow{PQ} \right| = \frac{1}{21} \sqrt{37^2 + 34^2 + 10^2} = 2.44$$
 M1A1

Page 7	Mark Scheme: Teachers' version Syllabus	Paper
	GCE A LEVEL – May/June 2010 9231	12
		M1
\Rightarrow eigenvalue	= 3	A1 [2]
Eigenvector co	prresponding to 4 is $\begin{pmatrix} 1 \\ -4 \\ -4 \end{pmatrix}$	M1A1
		[2]
		B1
$\mathbf{P} = \begin{pmatrix} 1 \\ -4 \\ -1 \end{pmatrix} -$	$ \begin{array}{ccc} 1 & 1 \\ 2 & -4 \\ 1 & -4 \end{array} \right) (f.t.) $	A1
$\mathbf{Q} = \mathbf{P}^{-1}$		B1
$= \begin{pmatrix} -2/3 & -2\\ 2 & -1/3 \end{pmatrix}$	$ \begin{array}{ccc} 1/2 & 1/3 \\ 1/2 & 0 \\ 0 & -1/3 \end{array} \right) \text{ ft on } \mathbf{P} $	M1A2√
M1 for any val	lid method: A2 if completely correct	[6]
(i) $\exp\left(2\pi k i h\right)$	/5), <i>k</i> = 0, 1, 2, 3, 4 (AEF)	M1A1 [2]
• •		M1
		A1 M1A1
	······································	[4]
(iii) $\sum_{k=0}^{4} (w/2)$	$k^{k} = \frac{[1 - (w/2)^{5}]}{[1 - w/2]}$	M1
$=\frac{1-(1/3)}{1-(1/3)}$	$32)(-16-16\sqrt{3}i)$	A1
	L]	A1
(3	$+ \sqrt{5l} (2 - w) (AO)$	[3]
(iv) Deduces t	from diagram in (ii) that minimum of $ 2 - w $ occurs when $w = 2e^{-2\pi i/15}$ or $2e^{\frac{28}{15}}$	M1A1
(IV) Deddees I		[2]
OR Evalu	lates 5 possible values of $ 2 - w $ minimum of $ 2 - w $ correctly	[2] M1 A1
	$\begin{pmatrix} 4 & 1 \\ -4 & -1 \\ 0 & -1 \end{pmatrix}$ $\Rightarrow eigenvalue$ Eigenvector co $\mathbf{D} = \operatorname{diag}(1\ 242)$ $\mathbf{P} = \begin{pmatrix} 1 \\ -4 \\ -1 \\ -1 \end{pmatrix}$ $\mathbf{Q} = \mathbf{P}^{-1}$ $= \begin{pmatrix} -2/3 \\ -1/3 \end{pmatrix}$ M1 for any va A1 if exactly 1 (i) exp ($2\pi ki$) M1 for 1 A1 if exactly 1 (i) exp ($2\pi ki$) M1 for 2 A1 if exactly 1 (ii) $z^5 = 32 \text{ exp}$ Roots equ (iii) $\sum_{k=0}^{4} (w/2)$ $= \frac{1 - (1/3)}{2}$ $= \dots = (3 - 1)$	GCE A LEVEL - May/June 20109231 $\begin{pmatrix} 4 & -1 & -1 \\ -4 & -1 & 4 \\ 0 & -1 & 5 \\ \end{pmatrix} \begin{pmatrix} -1 \\ -2 \\ -1 \\ -3 \\ \end{pmatrix} = diag(1 243 1024)$ Figure 1 (1.1) $\mathbf{P} = \begin{pmatrix} -1 & -1 & -1 \\ -1 & -1 & -4 \\ -1 & -1 & -4 \\ \end{pmatrix} (ft.)$ $\mathbf{P} = \begin{pmatrix} -2/3 & -1/2 & 1/3 \\ -1/3 & 0 & -1/3 \\ 0 & -1/3 \\ \end{pmatrix} (ft.)$ $\mathbf{Q} = \mathbf{P}^{-1}$ $= \begin{pmatrix} -2/3 & -1/2 & 1/3 \\ -1/3 & 0 & -1/3 \\ \end{pmatrix} (ft on \mathbf{P})$ MI for any valid method: A2 if completely correctAl if exactly 1 error: A0 if > 1 errors(i) exp $(2\pi ki/5), k = 0, 1, 2, 3, 4$ (AEF)M1 for 1 correct fifth root of unity A1 for exactly 5 distinct, correct roots(ii) $z^5 = 32 \exp(-2\pi i/15 + 2\pi ki/5)$ Roots equally spaced on circle $ z = 2$; correctly placed(iii) $\sum_{k=0}^{4} (w/2)^k = \frac{[1 - (w/2)^5]}{[1 - w/2]}$ $= \dots = (3 + \sqrt{3}i)/(2 - w)$ (AG)

	Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A LEVEL – May/June 2010	9231	12
10	$\mathbf{A} = \begin{pmatrix} 1 & 4 \\ 2 & a \\ 3 & 12 \end{pmatrix}$			M1A1
	$\Rightarrow r(\mathbf{A}) = 3 \text{ prod}$	ovided $a \neq 18$ and $a \neq 8$		A1
	\Rightarrow unique solu	tion for all values of a except $a = 18$ and $a = 8$		A1 [4]
	OR for first 3 idet $\mathbf{A} = 0 \Rightarrow$	marks: $a^2 - 26a + 144 = 0$		(M1A1)
	$\Rightarrow a = 8 \text{ or } 18$			(A1)
	$a = 18 \Longrightarrow 0z =$	-5 which is impossible for any finite <i>z</i> , or equivalent con	tradiction	M1A1 [2]
	When $a = 8$ sy $x + 4y = 2$ and All solutions the second			M1
	$x = \lambda, y = (2 - \lambda)$	λ)/4, $z = 1/4$ where λ is real etrised in any equivalent way		A1
	• •	number of solutions		A1
	$\lambda + (2 - \lambda)/4 +$	-1/4 = 1		M1
	$\Rightarrow \lambda = 1/3 \Rightarrow x$	x = 1/3, y = 5/12, z = 1/4		A1 [5]
11	EITHER			

11 EITHER

$y' = 3z^{2}z'$ $y'' = 6z(z')^{2} + 3z^{2}z''$ Obtains given y, x DE (AG)	B1 B1 B1 [3]
CF: $y = e^{-x} [A\cos 2x + B\sin 2x]$ PI: $y = x$ GS: $y = e^{-x} [A\cos 2x + B\sin 2x] + x$	M1A1 M1A1 A1
When $x = 0$, $y = 1$, $y' = -2$ (both) Finds A, B : A = 1, B = -1 (both) $z = \left[e^{-x} (\cos 2x - \sin 2x) + x \right]^{1/3}$	B1 M1A1

$z = [e^{-\alpha}(\cos 2x - \sin 2x) + x]^{\alpha \alpha}$	Al
	[9]

OR for previous 4 marks:	
$z = [e^{-x}(A\cos 2x + B\sin 2x) + x]^{1/3}$	(B1)
When $x = 0$, $z = 1$, $z' = -2/3$ (both)	(B1)
Finds $A, B : A = 1, B = -1$ (both)	(M1A1)
For large positive $x : e^{-x} (\cos 2x - \sin 2x) \approx 0$	M1
$\Rightarrow z \approx x^{1/3}$ (AG)	A1
	[2]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2010	9231	12

11 OR

(i)	x = 1	B1
	$y = 1 + O(1/x)$ as $ x \to \infty$	M1
	Second asymptote is $y = 1$	A1
		[3]

(ii)
$$x(x+1)/(x-1)^2 = 1 \Rightarrow x = 1/3, y = 1$$
 M1A1

[2]

[3]

(iii) (a)
$$dy / dx = 0 \Rightarrow [(2x+1)(x-1)^2 - 2x(x-1)(x+1)] / (x-1)^4 = 0$$

 $\Rightarrow x = 1/3, y = -1/8$ M1
M1A1

(b)
$$dy / dx = -(3x + 1) / (x - 1)^3$$

 $\{x : x < -1/3\} \cup \{x : x > 1\}$
M1
A1 $\sqrt{A1}$

(iv) Sketch:

Left-hand branch with approximately correct shape and location and passing through the originB1and (-1, 0).B1Intersection with y = 1 and location of minimum point consistent with results of (ii) and (iii) (cwo)B1Right-hand branch with approximately correct forms at infinityB1