

Cambridge International Examinations Cambridge International Advanced Level

FURTHER MATHEMATICS

Paper 1 MARK SCHEME Maximum Mark: 100 9231/12 May/June 2016

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2016	9231	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2016	9231	12

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2016	9231	12

Qu	Solution	Part Marks
1	$y = 1 + \frac{1}{x} \Longrightarrow x = \frac{1}{y - 1}$	M1
	$\frac{2}{(y-1)^3} + \frac{1}{(y-1)^2} - 7 = 0 \Longrightarrow 2 + (y-1) - 7(y-1)^3 = 0$	A1
	$\Rightarrow 7(y^3 - 3y^2 + 3y - 1) - y + 1 - 2 = 0 \Rightarrow 7y^3 - 21y^2 + 20y - 8 = 0$	M1A1 [4]
	ALT METHOD: $\sum \alpha$, $\sum \alpha \beta$, $\alpha \beta \gamma M1$ A1, $\sum (1+1/\alpha)$ etc M1 A1 $\sqrt[n]{}$	
2	$\frac{2}{r} - \frac{4}{r+1} + \frac{2}{r+2}$ (Award B2 if written down by cover up rule.)	M1A1
	$\left(2-2+\frac{2}{3}\right) + \left(1-\frac{4}{3}+\frac{1}{2}\right) + \dots + \left(\frac{2}{n-1}-\frac{4}{n}+\frac{2}{n+1}\right) + \left(\frac{2}{n}-\frac{4}{n+1}+\frac{2}{n+2}\right)$	M1A1
	$= 1 - \frac{2}{n+1} + \frac{2}{n+2} (AEF)$	A1 [5]
	Sum to infinity = 1	B1 √ [∧] [1]
3	For $n = 1$ 10 +192 + 5 = 207=9 × 23 \Rightarrow H ₁ is true.	B1
	Assume H _k is true for some positive integer $k \Rightarrow 10^n + 3.4^{n+2} + 5 = 9\alpha$ Let $f(n) = 10^n + 3.4^{n+2} + 5$	B1
	Hence $f(n+1) - f(n) = 10^{n} (10-1) + 3.4^{n+2} (4-1)$ = 9(10 ⁿ + 4 ⁿ⁺²)	M1
	$ = 9\beta $	A1
	Hence $f(n+1)(=9(\beta + \alpha)) \Rightarrow H_{k+1}$ is true	AI A1
	H_1 is true and $H_k \Rightarrow H_{k+1}$, hence by PMI H_n is true for all positive integers <i>n</i> .	A1
	N.B. Or can show $f(n+1) = 9(10\alpha - 2.4^{n+2} - 5)$ for M1A1A1 . (3 rd , 4 th &5 th	[6]
	marks)	

	Syllabus	Paper
Cambridge International A Level – May/June 2016	9231	12
Solution		Part Marks
Using $x = r \cos \theta$ and $y = r \sin \theta$		B 1
$r^2 = 8 \operatorname{cosec} 2\theta \Longrightarrow r^2 = \frac{4}{\sin \theta \cos \theta}$		M1
$\Rightarrow r \cos \theta . r \sin \theta = 4 \Rightarrow xy = 4$ (in simple form)		A1 [3]
Sketch: Curve in 1st quadrant with correct concavity, asymptotic to both	ı axes.	B1B1 [2]
$\frac{1}{2} \int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} 8 \operatorname{cosec} 2\theta \mathrm{d}\theta = \left[2 \ln \left \tan \theta \right \right]_{\frac{1}{6}\pi}^{\frac{1}{3}\pi}$		M1A1
$= 2\left\{\ln\left \sqrt{3}\right - \ln\left \frac{1}{\sqrt{3}}\right \right\} = 2 \ln 3 \operatorname{orln} 9$		A1 [3]
$\frac{\mathrm{d}}{\mathrm{d}x}\left(\cos^{n-1}x\sin^3x\right) = -(n-1)\cos^{n-2}x\sin^4x + 3\cos^nx\sin^2x$		M1A1
$\Rightarrow \left[\cos^{n-1}x\sin^3x\right]_0^{\frac{1}{2}\pi} = -\int_0^{\frac{1}{2}\pi} (n-1)\cos^{n-2}x\sin^2x(1-\cos^2x)dx + 3I_n$		M1
$\Rightarrow 0 = -(n-1)I_{n-2} + (n-1)I_n + 3I_n$		M1
		A1 [5]
$I_0 = \int_0^{2^n} \sin^2 x dx = \frac{1}{2} \int_0^{2^n} (1 - \cos 2x) dx$		M1
$= \left[\frac{x}{2} - \frac{\sin 2x}{4}\right]_{0}^{\frac{1}{2}\pi} = \frac{\pi}{4}$		A1
$I_2 = \frac{1}{4} \times \frac{\pi}{4} I_4 = \frac{1}{2} \times \frac{1}{4} \times \frac{\pi}{4} = \frac{\pi}{32}$		M1A1 [4]
	Solution Using $x = r \cos \theta$ and $y = r \sin \theta$ $r^2 = 8 \csc 2\theta \Rightarrow r^2 = \frac{4}{\sin \theta \cos \theta}$ $\Rightarrow r \cos \theta r \sin \theta = 4 \Rightarrow xy = 4$ (in simple form) Sketch: Curve in 1st quadrant with correct concavity, asymptotic to both $\frac{1}{2} \frac{1}{9} \int_{1}^{\frac{1}{3}\pi} 8 \csc 2\theta d\theta = \left[2\ln \tan \theta \right]_{\frac{1}{3}\pi}^{\frac{1}{3}\pi}$ $= 2 \left\{ \ln \sqrt{3} - \ln \frac{1}{\sqrt{3}} \right\} = 2 \ln 3 \operatorname{orln} 9$ $\frac{d}{dx} (\cos^{n-1}x \sin^3 x) = -(n-1) \cos^{n-2}x \sin^4 x + 3\cos^n x \sin^2 x$ $\Rightarrow \left[\cos^{n-1}x \sin^3 x \right]_{0}^{\frac{1}{2}\pi} = -\int_{0}^{\frac{1}{2}\pi} (n-1) \cos^{n-2}x \sin^2 x (1 - \cos^2 x) dx + 3I_n$ $\Rightarrow 0 = -(n-1)I_{n-2} + (n-1)I_n + 3I_n$ $\Rightarrow (n+2)I_n = (n-1)I_{n-2} (AG)$ $I_0 = \int_{0}^{\frac{1}{2}\pi} \sin^2 x dx = \frac{1}{2} \int_{0}^{\frac{1}{2}\pi} (1 - \cos 2x) dx$ $= \left[\frac{x}{2} - \frac{\sin 2x}{4} \right]_{0}^{\frac{1}{2}\pi} = \frac{\pi}{4}$	SolutionUsing $x = r \cos\theta$ and $y = r \sin\theta$ $r^2 = 8 \csc 2\theta \Rightarrow r^2 = \frac{4}{\sin\theta\cos\theta}$ $\Rightarrow r \cos\theta.r \sin\theta = 4 \Rightarrow xy = 4$ (in simple form)Sketch: Curve in 1st quadrant with correct concavity, asymptotic to both axes. $\frac{1}{2} \int_{1}^{3\pi} 8 \csc 2\theta d\theta = \left[2 \ln \tan \theta \right]_{1}^{3\pi} \frac{1}{6\pi}$ $= 2 \left\{ \ln \sqrt{3} - \ln \left \frac{1}{\sqrt{3}} \right \right\} = 2 \ln 3 \sigma \ln 9$ $\frac{d}{dx} \left(\cos^{n-1} x \sin^3 x \right) = -(n-1) \cos^{n-2} x \sin^4 x + 3 \cos^n x \sin^2 x$ $\Rightarrow \left[\cos^{n-1} x \sin^3 x \right]_{0}^{2\pi} = - \int_{0}^{2\pi} (n-1) \cos^{n-2} x \sin^2 x (1 - \cos^2 x) dx + 3I_n$ $\Rightarrow 0 = -(n-1)I_{n-2} + (n-1)I_n + 3I_n$ $\Rightarrow (n+2)I_n = (n-1)I_{n-2} (AG)$ $I_0 = \int_{0}^{2\pi} \sin^2 x dx = \frac{1}{2} \int_{0}^{2\pi} (1 - \cos 2x) dx$ $= \left[\frac{x}{2} - \frac{\sin 2x}{4} \right]_{0}^{2\pi} = \frac{\pi}{4}$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2016	9231	12

ľ

Qu	Solution	Part Marks
6	$(c+is)^7 = c^7 + 7c^6(is) + \dots + (is)^7$	M1
	$\frac{\cos 7\theta}{\sin 7\theta} = \frac{c^7 - 21c^5s^2 + 35c^3s^4 - 7cs^6}{7c^6s - 35c^4s^3 + 21c^2s^5 - s^7}$ $\cot 7\theta = \frac{\cot^7\theta - 21\cot^5\theta + 35\cot^3\theta - 7\cot\theta}{7\cot^6\theta - 35\cot^4\theta + 21\cot^2\theta - 1}$	A1 M1 A1
	$\cot^{2}\theta - 35\cot^{2}\theta + 21\cot^{2}\theta - 1$ $\cot 7\theta = 0 \text{ and } \cot \theta \neq 0 \Rightarrow x^{6} - 21x^{4} + 35x^{2} - 7 = 0 \text{ , where } x = \cot \theta$ and $\theta = k \frac{\pi}{14}$ where $k = 1, 3, 5, 9, 11, 13$	[4] M1
	Product of roots $\Rightarrow \cot \frac{\pi}{14} \cot \frac{3\pi}{14} \cot \frac{5\pi}{14} \cot \frac{9\pi}{14} \cot \frac{11\pi}{14} \cot \frac{13\pi}{14} = -7$	M1 A1
	But $\cot\frac{\pi}{14} = -\cot\frac{13\pi}{14}$, $\cot\frac{3\pi}{14} = -\cot\frac{11\pi}{14}$, $\cot\frac{5\pi}{14} = -\cot\frac{9\pi}{14}$	M1
	Hence $\cot^2 \frac{1}{14}\pi \cot^2 \frac{3}{14}\pi \cot^2 \frac{5}{14}\pi = 7.$ (AG)(Penultimate line must be seen.) SC Award B1 if product of roots mentioned, without proper pairing seen.	A1 [5]
7	Vertical asymptote is $x = 2$.	B1
	$y = x + 2 + \frac{4}{x - 2} \Rightarrow$ Oblique asymptote is $y = x + 2$.	M1A1 [3]
	$y = \frac{x^2}{x - 2} \Longrightarrow x^2 - yx + 2y = 0$	B1
	Quadratic has no real roots (i.e. no points on <i>C</i>) if $\Delta < 0 \Rightarrow y^2 - 8y < 0$	M1
	$\Rightarrow y(y-8) < 0 \Rightarrow 0 < y < 8 . (AG) \text{ Correct inequality}$	M1A1 [4] B1√ [™]
	Axes and asymptotes. Each branch, showing (0,0) and (4,8). (Deduct at most 1 mark for poor forms at infinity and/or missing coordinates.)	B1W B1B1 [3]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2016	9231	12

Qu	Solution	Part Marks
8	$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & -8 \\ -3 & 4 & -5 \end{vmatrix} = \begin{pmatrix} 17 \\ 34 \\ 17 \end{pmatrix} \sim \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	M1 A1
	So $x + 2y + z = \text{const} \Rightarrow \text{const} = 2 - 2 + 3 = 3 \text{ (using a point)} \Rightarrow$ x + 2y + z = 3	M1 A1 [4]
	$\sqrt{9+1+4}\sqrt{1+4+1}\cos\theta = \begin{pmatrix} 1\\2\\1 \end{pmatrix} \cdot \begin{pmatrix} 3\\-1\\2 \end{pmatrix} \Rightarrow \cos\theta = \frac{3}{\sqrt{14}\sqrt{6}} = \frac{3}{\sqrt{84}}$	M1 M1
	$\Rightarrow \theta = 70.9^{\circ} \text{ or } 1.24 \text{ radians}$	A1 [3]
	Direction of line of intersection is $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 1 \\ 3 & -1 & 2 \end{vmatrix} = \begin{pmatrix} 5 \\ 1 \\ -7 \end{pmatrix}$	M1A1
	Finds point common to both planes is $(-1,0,4)$ or $(\frac{13}{7},\frac{4}{7},0)$ or $(0,\frac{1}{5},\frac{13}{5})$	M1
	Equation of line of intersection is eg $\mathbf{r} = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix} + t \begin{pmatrix} 5 \\ 1 \\ -7 \end{pmatrix}$.	A1∜ [4]
9	$y' = 2kxe^{2x} + 2kx^2e^{2x}$	B1
	$y'' = 2ke^{2x} + 8kxe^{2x} + 4kx^2e^{2x}$	B1√ [^]
	$2ke^{2x} + 8kxe^{2x} + 4kx^2e^{2x} - 8kxe^{2x} - 8kx^2e^{2x} + 4kx^2e^{2x} = 4e^{2x}$ $\Rightarrow 2k = 4 \Rightarrow k = 2$	M1 A1 [4]
	$m^{2} - 4m + 4 = 0 \Rightarrow (m - 2)^{2} = 0 \Rightarrow m = 2$	M1
	CF: $y = Ae^{2x} + Bxe^{2x}$ $y = Ae^{2x} + Bxe^{2x} + 2x^2e^{2x}$	A1 A1√ [≜]
	$y = 3$ when $x = 0 \Rightarrow A = 3$	[3]
	$y = 3 \text{ when } x = 0 \implies A = 3$ $y' = 2Ae^{2x} + B(e^{2x} + 2xe^{2x}) + (4xe^{2x} + 4x^2e^{2x})$	B1 M1
	$y' = -2$ when $x = 0$ and $A = 3 \Longrightarrow B = -8$	A1
	$\Rightarrow y = 3e^{2x} - 8xe^{2x} + 2x^2e^{2x}$	A1√ [≜] [4]

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2016	9231	12

Qu	Solution	Part Marks
10	Eigenvalues are:-2, -1, 1 Eigenvectors are; $\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}$ (oe)	B1 M1A1 A1 [4]
	$\mathbf{P} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ or equivalent (in correct order)}$	B1√B1√
	$\mathbf{p}^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$	M1A1
	$\begin{pmatrix} \mathbf{P}^{-1}\mathbf{A}\mathbf{P} \end{pmatrix}^{n} = \mathbf{P}^{-1}\mathbf{A}^{n}\mathbf{P} = \mathbf{D}^{n}$ $\Rightarrow \mathbf{A}^{n} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} (-2)^{n} & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{Accept } \mathbf{P}\mathbf{D}^{n}\mathbf{P}^{-1} \text{ here.}$	M1A1
	$\mathbf{A}^{n} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} (-2)^{n} & -(-2)^{n} & (-2)^{n} \\ 0 & (-1)^{n} & (-1)^{n+1} \\ 0 & 0 & 1 \end{pmatrix}$	M1
	$= \begin{pmatrix} (-2)^{n} & -(-2)^{n} + (-1)^{n} & (-2)^{n} + (-1)^{n+1} \\ 0 & (-1)^{n} & (-1)^{n+1} + 1 \\ 0 & 0 & 1 \end{pmatrix}$	A1 [8]

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2016	9231	12

Qu	Solution	Part Marks
11 (e)	$\dot{x} = 2e^{2t}\cos 2t - 2e^{2t}\sin 2t\dot{y} = 2e^{2t}\cos 2t + 2e^{2t}\sin 2t$	B1
	$\dot{x}^{2} + \dot{y}^{2} = 4e^{4t} \left(\cos^{2} 2t - 2\cos 2t \sin 2t + \sin^{2} 2t + \cos^{2} 2t + 2\cos 2t \sin 2t + \sin^{2} 2t\right)$	M1
	$=8e^{4t}$	A1
	$s = \int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} 2\sqrt{2} e^{2t} dt$	M1
	$=\sqrt{2}\left[e^{2t}\right]_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi}=\sqrt{2}\left(e^{\pi}-e^{-\pi}\right) \text{ or } 2\sqrt{2} \sinh \pi \text{ or } 32.7$	M1A1 [6]
	$S = 2\pi \int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} e^{2t} \sin 2t \cdot 2\sqrt{2} e^{2t} dt = 4\sqrt{2}\pi \int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} e^{4t} \sin 2t dt$	M1
	Let $I = \int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} e^{4t} \sin 2t dt = \left[-e^{4t} \frac{\cos 2t}{2} \right]_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} + \int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} 2e^{4t} \cos 2t dt$	M1A1
	$=\left[\frac{e^{2\pi}}{2}\right] - \left[\frac{e^{-2\pi}}{2}\right] + 2\left\{\left[e^{4t}\frac{\sin 2t}{2}\right]_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} - \int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} 2e^{4t}\sin 2t\right\}\right\}$	A1A1
	$=\frac{e^{2\pi}-e^{-2\pi}}{2}+0-4I$	M1
	$\Rightarrow I = \frac{e^{2\pi} - e^{-2\pi}}{10}$	A1
	$\Rightarrow S = 4\sqrt{2\pi} \cdot \frac{e^{2\pi} - e^{-2\pi}}{10} = \frac{2\sqrt{2\pi}}{5} \left(e^{2\pi} - e^{-2\pi}\right) \text{ or } \frac{4\sqrt{2\pi}}{5} \sinh 2\pi \text{ or } 952 \text{ (3sf)}$	A1 [8]

Page 10	Mark Scheme	Syllabus	Paper
<u> </u>	Cambridge International A Level – May/June 2016	9231	12

Qu	Solution	Part Marks
11 (0)	$ \begin{pmatrix} 1 & -2 & 3 & -4 \\ 2 & -4 & 7 & -9 \\ 4 & -8 & 14 - 18 \\ 5 & -1017 & -22 \end{pmatrix} \Rightarrow \dots \Rightarrow \begin{pmatrix} 1 & -2 & 3 - 4 \\ 0 & 0 & 1 - 1 \\ 0 & 0 & 0 & 0 \\ 0 & 00 & 0 \end{pmatrix}. $	M1A1
	r(M) = 4 - 2 = 2	A1 [3]
	$\begin{aligned} x - 2y + 3z - 4t &= 0\\ z - t &= 0 \end{aligned}$	M1
	$t = z = \lambda$ and $y = \mu \Longrightarrow x = 2\mu + \lambda$	M1
	Basis for <i>K</i> is $\begin{cases} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} \end{cases}$	A1 [3]
	$ \begin{pmatrix} 1 & -2 & 3 & -4 \\ 2 & -4 & 7 & -9 \\ 4 & -8 & 14 - 18 \\ 5 & -1017 & -22 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 1+4+6+4 \\ 2+8+14+9 \\ 4+16+28+18 \\ 5+20+34+22 \end{pmatrix} = \begin{pmatrix} 15 \\ 33 \\ 66 \\ 81 \end{pmatrix} $	B1
	$\mathbf{x} = \begin{pmatrix} 1 \\ -2 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} \text{ since } \mathbf{M} \begin{pmatrix} 1 \\ -2 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 15 \\ 33 \\ 66 \\ 81 \end{pmatrix} \text{ and } \mathbf{M} \begin{bmatrix} \lambda \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} \end{bmatrix} = 0.$	B1 √ [^] [2]
	Sum of components = $6 \Rightarrow 3\lambda + 3\mu = 6 (\Rightarrow \mu = 2 - \lambda)$	В1√^
	Sum of squares of components = $26 \Rightarrow 5\mu^2 + 4\lambda\mu + 4\lambda + 3\lambda^2 + 10 = 26$ $\Rightarrow 4\lambda^2 - 8\lambda + 4 = 0 \Rightarrow (\lambda - 1)^2 = 0$	M1A1 M1
	$\Rightarrow \lambda = 1, \mu = 1$	A1
	$\mathbf{x}' = \begin{pmatrix} 4 \\ -1 \\ 3 \\ 0 \end{pmatrix}$	A1 [6]