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1 The roots of the cubic equation 2x3 + x2 − 7 = 0 are !, " and '. Using the substitution y = 1 + 1

x
, or

otherwise, find the cubic equation whose roots are 1 + 1

! , 1 +
1

" and 1 + 1

' , giving your answer in the

form ay3 + by2 + cy + d = 0, where a, b, c and d are constants to be found. [4]

2 Express
4

r�r + 1��r + 2� in partial fractions and hence find

nÐ
r=1

4

r�r + 1��r + 2� . [5]

Deduce the value of

∞Ð
r=1

4

r�r + 1��r + 2� . [1]

3 Prove by mathematical induction that, for all positive integers n, 10n + 3 × 4n+2 + 5 is divisible by 9.

[6]

4 A curve C has polar equation r2 = 8 cosec 21 for 0 < 1 < 1
2
0. Find a cartesian equation of C. [3]

Sketch C. [2]

Determine the exact area of the sector bounded by the arc of C between 1 = 1
6
0 and 1 = 1

3
0, the

half-line 1 = 1
6
0 and the half-line 1 = 1

3
0. [3]

[It is given that Ó cosec x dx = ln
�
tan 1

2
x
� + c.]

5 Let I
n
= Ó

1
2
0

0

cosnx sin2x dx, for n ≥ 0. By differentiating cosn−1x sin3x with respect to x, prove that

�n + 2�I
n
= �n − 1�I

n−2 for n ≥ 2. [5]

Hence find the exact value of I
4
. [4]

6 Use de Moivre’s theorem to express cot 71 in terms of cot1. [4]

Use the equation cot 71 = 0 to show that the roots of the equation

x6 − 21x4 + 35x2 − 7 = 0

are cot
�
1
14
k0� for k = 1, 3, 5, 9, 11, 13, and deduce that

cot2
�
1
14
0� cot2� 3

14
0� cot2� 5

14
0� = 7. [5]
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7 A curve C has equation y = x2

x − 2
. Find the equations of the asymptotes of C. [3]

Show that there are no points on C for which 0 < y < 8. [4]

Sketch C, giving the coordinates of the turning points. [3]

8 Find a cartesian equation of the plane �
1
passing through the points with coordinates �2, −1, 3�,

�4, 2, −5� and �−1, 3, −2�. [4]

The plane �
2
has cartesian equation 3x − y + 2z = 5. Find the acute angle between �

1
and �

2
. [3]

Find a vector equation of the line of intersection of the planes �
1
and �

2
. [4]

9 Find the value of the constant k such that y = kx2e2x is a particular integral of the differential equation

d2y

dx2
− 4

dy

dx
+ 4y = 4e2x. �*� [4]

Hence find the general solution of �*�. [3]

Find the particular solution of �*� such that y = 3 and
dy

dx
= −2 when x = 0. [4]

10 Write down the eigenvalues of the matrix A, where

A =
`−2 1 −1

0 −1 2

0 0 1

a
,

and find corresponding eigenvectors. [4]

Find a matrix P and a diagonal matrix D such that P−1AP = D, and hence find the matrix An, where

n is a positive integer. [8]

[Question 11 is printed on the next page.]
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11 Answer only one of the following two alternatives.

EITHER

A curve C has parametric equations

x = e2t cos 2t, y = e2t sin 2t, for − 1
2
0 ≤ t ≤ 1

2
0.

Find the arc length of C. [6]

Find the area of the surface generated when C is rotated through 20 radians about the x-axis. [8]

OR

The linear transformation T : >4 → >4 is represented by the matrixM, where

M =
�
1 −2 3 −4
2 −4 7 −9
4 −8 14 −18
5 −10 17 −22

�

.

Find the rank ofM. [3]

Obtain a basis for the null space K of T. [3]

Evaluate

M

�
1

−2
2

−1

�

,

and hence show that any solution of

Mx =
�
15

33

66

81

�

�*�

has the form

�
1

−2
2

−1

�

+ ,e
1
+ -e

2
, where , and - are scalars and �e

1
, e

2
� is a basis for K. [2]

Hence obtain a solution x′ of �*� such that the sum of the components of x′ is 6 and the sum of the

squares of the components of x′ is 26. [6]
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