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1 Verify that
1

�3r + 1��3r + 4� = 1

3

@
1

3r + 1
− 1

3r + 4

A
. [1]

Let S
N
denote

NÐ
r=1

1

�3r + 1��3r + 4� and let S denote

∞Ð
r=1

1

�3r + 1��3r + 4� . Find the least value of N

such that S − S
N
< 1

10 000
. [5]

2 It is given that a diagonal of a polygon is a line joining two non-adjacent vertices. Prove, by

mathematical induction, that an n-sided polygon has 1
2
n�n − 3� diagonals, where n ≥ 3. [6]

3 Find the two values of the constant k for which the equations

kx + y + z = 2,

x + ky + z = −1,
x + y + kz = −1,

have no unique solution. [4]

Show that, for one of these values of k, the equations have no solution, and solve the equations for the

other value of k. [3]

4 The curve C has equation y = − ln�1 − x2� for −1
2
≤ x ≤ 1

2
. Show that

1 + @
dy

dx

A2 =
P
1 + x2

1 − x2

Q2
. [2]

Show further that
1 + x2

1 − x2
may be expressed in the form

P

1 + x
+ Q

1 − x
+ R, where P, Q and R are

constants to be determined. [2]

Find the exact arc length of C. [4]

5 The curve C has equation y = x + 2

x2 − 9
. Show that

dy

dx
< 0 at all points on C. [3]

State the equations of the asymptotes of C. [2]

Sketch C, showing the coordinates of any points of intersection with the coordinate axes. [3]

6 Let I
n
= Ó 2

0

xn�4 − x2�
1
2 dx, for n ≥ 1. By considering

d

dx

4
xn�4 − x2�

3
2

5
, show that

�n + 3�I
n+1 = 4nI

n−1, where n ≥ 2. [4]

Find the value of I
1
and deduce the exact value of I

3
. [4]
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7 A curve has polar equation r = 1

1 − cos1 , for 0 < 1 < 20. Find, in the form y2 = f�x�, the cartesian
equation of the curve. [3]

Hence sketch the curve, and shade the region whose area is given by 1
2
Ô

3
2
0

1
2
0

1

�1 − cos1�2 d1. [3]

Using the cartesian equation of the curve, find the area of this region. [3]

8 The cubic equation

z3 − z2 − z − 5 = 0

has roots !, " and '. Show that the value of !3 + "3 + '3 is 19. [4]

Find the value of !4 + "4 + '4. [2]

Show that the cubic equation with roots
! − 1! ,

" − 1" and
' − 1' may be found using the substitution

z = 1

1 − x
, and find this equation, giving your answer in the form px3 + qx2 + rx + s = 0, where p, q, r

and s are constants to be determined. [4]

9 Use de Moivre’s theorem to show that cos41 = 1
8
�cos 41 + 4 cos 21 + 3�. [4]

Find the corresponding expression for sin41 in terms of cos 41 and cos 21. [4]

Hence find the exact value of Ó 1
8
0

0

�cos41 + sin41�d1. [3]

10 Given that y is a function of x and that x = eu, show that

x
dy

dx
= dy

du
and x2

d2y

dx2
= d2y

du2
− dy

du
. [3]

Given also that

x2
d2y

dx2
+ 3x

dy

dx
+ 17y = 34 ln x + 21,

deduce that

d2y

du2
+ 2

dy

du
+ 17y = 34u + 21. [1]

Find y in terms of x given that y = 0 and
dy

dx
= −1 when x = 1. [9]

[Question 11 is printed on the next page.]
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11 Answer only one of the following two alternatives.

EITHER

It is given that 1 and 4 are eigenvalues of the matrix A, where

A =
`

1 −3 −3−8 6 −3
8 −2 7

a
.

Find eigenvectors corresponding to each of these eigenvalues. [3]

Given further that

`
0

1−1
a
is an eigenvector of A, find the corresponding eigenvalue. [2]

Write down matrices P and D such that P−1AP = D, where D is a diagonal matrix, and find P−1. [5]

Write down a matrix C such that C2 = D, and deduce a matrix B such that B2 = A. [4]

OR

The position vectors of the points A, B, C, D are

a = 2i + ,j − 3k, b = 6i + 3j − 2k, c = i + 2j − k, d = i + 7j + 4k

respectively. It is given that the shortest distance between the lines AB and CD is 3.

(i) Show that ,2 + , − 20 = 0. [7]

(ii) The planes p
1
and p

2
are the planes through A, B and D corresponding to the two values of ,

satisfying the equation in part (i). Find the acute angle between p
1
and p

2
. [7]
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