

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
FURTHER MATHEM	ATICS		9231/13
Paper 1			May/June 2017
			3 hours
Candidates answer o	n the Question Paper.		
Additional Materials:	List of Formulae (MF10)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

(1)	By using the substitution $y = \frac{1}{x^2}$, find the cubic equation with roots $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$ and $\frac{1}{\gamma^2}$.	[3
		•••••
(ii)	v	
(11 <i>)</i>	Hence find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$.	[
(11 <i>)</i>	Hence find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$.	
(H <i>)</i>	Hence find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$.	
(n)	Hence find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$.	
(m <i>)</i>	Hence find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$.	
	Hence find the value of $\frac{1}{\alpha^2\beta^2} + \frac{1}{\beta^2\gamma^2} + \frac{1}{\gamma^2\alpha^2}$.	

2

(<u>*</u>)	$2r+1$ $1 \left((2r+1)(2r+3) - (2r-1)(2r+1) \right)$	[2]
(1)	Verify that $\frac{2r+1}{r(r+1)(r+2)} = \frac{1}{2} \left\{ \frac{(2r+1)(2r+3)}{(r+1)(r+2)} - \frac{(2r-1)(2r+1)}{r(r+1)} \right\}.$	[2]
		•••••
		•••••
		•••••
	n	
(22)	Hence show that $\sum_{r=1}^{n} \frac{2r+1}{r(r+1)(r+2)} = \frac{1}{2} \left\{ \frac{(2n+1)(2n+3)}{(n+1)(n+2)} - \frac{3}{2} \right\}.$	[2]
(11)	Hence show that $\sum_{r=0}^{\infty} \frac{1}{r(r+1)(r+2)} = \frac{1}{2} \left\{ \frac{1}{(n+1)(n+2)} - \frac{1}{2} \right\}$.	[2]
	$\frac{1}{r=1}$	
		•••••
		•••••
		•••••
		•••••
		•••••
	Deduce the value of $\sum_{r=1}^{\infty} \frac{2r+1}{r(r+1)(r+2)}.$	
(iii)	Deduce the value of $\sqrt{\frac{2I+1}{I}}$.	[2]
` /	r(r+1)(r+2)	
	<i>r</i> =1	
		•••••
		•••••

y mathema		r=1				
 	 	•••••	•••••	 	•••••	
 	 			 		 •••••
 	 		•••••	 		
 	 			 		 •••••
 	 		•••••	 		

A curve C	Thas equation x^3	$-3xy + y^2 = 4.$	Find the value	e of $\frac{d^2y}{dx^2}$ at the point (0, 2) of <i>C</i> .	[7]
•••••					•••••
•••••					•••••
••••••					••••••
•••••	••••••				
••••••					
••••••					•••••
	••••••				
•••••••••••					•••••
,					•••••

5	A curve	C has	parametric	equations

$$x = \frac{2}{5}t^{\frac{5}{2}} - 2t^{\frac{1}{2}}, \quad y = \frac{4}{3}t^{\frac{3}{2}}, \quad \text{for } 1 \le t \le 4.$$

(i)	Find the exact value of the arc length of C .	[5]
		•••••
		•••••
		•••••
		,

about the <i>x</i> -a	iX1S.						
							•••••
••••••	••••••	••••••	••••••••	••••••	•••••••••	••••••	•••••
							• • • • • • • • • • • • • • • • • • • •
•••••		•••••	•••••••	•••••	••••••	•••••	•••••
• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••	••••••	•••••	•••••
						•••••	•••••
						•••••	
••••••	•••••	***************************************	•	••••••	•	••••••	•••••
•••••	•••••			•••••	•••••••	••••••	•••••
•••••	•••••	•••••	,	•••••	••••••••••	••••••	•••••
•••••		•••••		•••••	••••••	•••••	•••••
•••••	•••••	•••••		•••••	••••••	•••••	•••••

6	Let I_n denote	$\int_{0}^{2} (4 + x^{2})^{-n} dx$
		Jo.

(i)	Find	$\frac{\mathrm{d}}{\mathrm{d}x}$	(x(4+x))	$(x^2)^{-n}$	and	hence	show	that
-----	------	----------------------------------	----------	--------------	-----	-------	------	------

$8nI_{n+1} = (2n-1)I_n + 2 \times 8^{-n}.$	[5]
	•••••••
	••••••

(ii)	Use the result for integrating $\frac{1}{x^2 + a^2}$ with respect to x , in the List of Formulae (MF10), to find the value of I_1 and deduce that
	$I_3 = \frac{3}{1024}\pi + \frac{1}{128}. ag{5}$

	7 ((i)	Use of	de	Mo	ivre's	the	orem	to	prove	tha
--	-----	-----	--------	----	----	--------	-----	------	----	-------	-----

tan 10 -	$\frac{4\tan\theta - 4\tan^3\theta}{1 - 6\tan^2\theta + \tan^4\theta}.$	[5]
$\tan 40 = \frac{1}{1}$	$-6\tan^2\theta + \tan^4\theta$.	[3]
	•••••	
	•••••	

 $t^4 - 4t^3 - 6t^2 + 4t + 1 = 0,$

(ii) Hence find the solutions of the equation

giving your answers in the form $\tan k\pi$, where k is a rational number.	[5]

••••••
••••••••

8 Find the solution of the differential equation	ion
---	-----

	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 6\frac{\mathrm{d}x}{\mathrm{d}t} + 9x$	$= 18t^2 + 6t + 1,$	
given that, when $t = 0$, $x = 3$ and	$d \frac{\mathrm{d}x}{\mathrm{d}t} = 0.$		[10]

i) Find the	cartesian equation of Π_1 .	[4
nlane Π	contains the lines	
_	$\mathbf{r} = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} - \mathbf{k})$ and $\mathbf{r} = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$	$\mathbf{x} + \mu(2\mathbf{i} + 3\mathbf{j} - \mathbf{k}).$
) Find the	cartesian equation of Π_2 .	[4
i) Tilla tile	surcesian equation of 112.	(
•••••		

		•••••
		••••••
		•••••
		•••••
(:::)	Cind the courte angle between II and II	[21
(III)	Find the acute angle between Π_1 and Π_2 .	[3]
		••••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

10	The	matrix	A	is	given	by

$$\mathbf{A} = \begin{pmatrix} 6 & -8 & 7 \\ 7 & -9 & 7 \\ 6 & -6 & 5 \end{pmatrix}.$$

i)	Given that $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ is an eigenvector of A , find the corresponding eigenvalue.	[2
		•••
		•••
i)	Given also that -1 is an eigenvalue of A , find a corresponding eigenvector.	[2
		•••
		•••
		•••
		•••
		•••
		•••
		•••

© UCLES 2017

result to II	nd the thir	u eigenva	iue of A,	and iind	aiso a co	rrespondi	ng eigenv	ector.	
	•••••	•••••	•••••		•••••	•••••			•••••
				•••••					•••••
•••••		•••••			•••••	••••••			•••••
•••••		•••••	•••••	••••••	•••••	•••••		••••••	•••••
•••••	•••••	•••••	•••••	••••••	•••••	•••••			•••••
•••••		•••••				•••••			•••••
•••••	•••••	••••••	•	•••••	•••••	•••••		••••••	•••••
••••••	•••••	••••••	••••••	••••••	•••••	••••••	•••••••••	•••••	•••••
•••••	•••••	••••••	•••••	••••••	•••••	•••••	•••••••	••••••	•••••
	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••
		•••••	•••••	••••••				••••••	•••••
									•••••
									•••••
•••••		•••••		•••••					•••••

find the matrix \mathbf{A}^n in terms of n , where n is a positive integer.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

	11	Answer	only o	ne of the	following	two	alternatives
--	----	--------	--------	-----------	-----------	-----	--------------

EITHER

A curve C has polar equation $r = 2a\cos\left(2\theta + \frac{1}{2}\pi\right)$ for $0 \le \theta < 2\pi$, where a is a positive constant. (i) Show that $r = -2a\sin 2\theta$ and sketch C.

(ii) Deduce that the cartesian equation of C is

 $(x^2 + y^2)^{\frac{3}{2}} = -4axy.$ [2]

•••	 •••••
	 •••••
•••	•••••
•••	 •••••
	 ••••
•••	•••••
•••	 •••••
•••	••••••
•••	
•••	
•••	• • • • • • • • • • • • • • • • • • • •
•••	••••••
•••	 •••••
•••	•••••
•••	 •••••

(iv)	Show that, at the points (other than the pole) at which a tangent to C is parallel to the initial line,						
	2	$\tan\theta = -\tan 2\theta.$	[3]				

OR

The matrix **A**, given by

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 & 2 \\ 3 & -1 & 4 & 0 \\ 5 & -8 & -6 & 19 \\ -2 & 3 & 2 & -7 \end{pmatrix},$$

represents a transformation from \mathbb{R}^4 to \mathbb{R}^4 .

(i)	Find the rank of A and show that $\left\{ \begin{pmatrix} 2\\2\\-1\\0 \end{pmatrix}, \begin{pmatrix} 1\\3\\0\\1 \end{pmatrix} \right\}$ is a basis for the null space of the transformation.
	transformation. [6]

Show that if
Ax = $p \begin{pmatrix} 1 \\ 3 \\ 5 \\ -2 \end{pmatrix} + q \begin{pmatrix} -1 \\ -1 \\ -8 \\ 3 \end{pmatrix}$,
where p and q are given real numbers, then
$\mathbf{x} = \begin{pmatrix} p + 2\lambda + \mu \\ q + 2\lambda + 3\mu \\ -\lambda \\ \mu \end{pmatrix},$
where λ and μ are real numbers. [2]

(ii)

(iii) Find the values of	of p	and	q	such	that
--------------------------	------	-----	---	------	------

	$p\begin{pmatrix} 1\\3\\5\\-2 \end{pmatrix} + q\begin{pmatrix} -1\\-1\\-8\\3 \end{pmatrix} = \begin{pmatrix} 3\\7\\18\\-7 \end{pmatrix}.$	[3]
(iv)	Find the solution of the equation $\mathbf{A}\mathbf{x} = \begin{pmatrix} 3 \\ 7 \\ 18 \\ 7 \end{pmatrix}$ of the form $\mathbf{x} = \begin{pmatrix} 4 \\ 9 \\ \alpha \\ \alpha \end{pmatrix}$, where α and β are positive form α and β a	tive
	integers to be found. $\begin{pmatrix} -7 \\ -7 \end{pmatrix}$	[3]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.