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1 Verify that
1

n2
− 1

(n + 1)2
= 2n + 1

n2(n + 1)2
. [1]

Let S
N
=

N

∑
r=1

2r + 1

r2(r + 1)2
. Express S

N
in terms of N. [2]

Let S = lim
N→∞ S

N
. Find the least value of N such that S − S

N
< 10−16. [3]

2 Prove by mathematical induction that, for all positive integers n,

dn

dxn ( 1

2x + 3
) = (−1)n n!2n

(2x + 3)n+1
. [6]

3 The equation

x3 + 5x2 − 3x − 15 = 0

has roots α, β , γ . Find the value of α2 + β2 + γ 2. [3]

Hence show that the matrix
 1 α β

α 1 γ

β γ 1

 is singular. [4]

4 A curve has parametric equations

x = 2 sin 2t, y = 3 cos 2t,

for 0 < t < 1
2
π. For the point on the curve where t = 1

3
π, find the value of

(i)
dy

dx
, [3]

(ii)
d2y

dx2
. [4]

5 Use de Moivre’s theorem to express cos4 θ in the form

a cos 4θ + b cos 2θ + c,

where a, b, c are constants to be found. [4]

Hence evaluate

ã
1
4
π

0

cos4 θ dθ,

leaving your answer in terms of π. [3]
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6 Find the general solution of the differential equation

d2x

dt2
+ 4

dx

dt
+ 4x = sin 2t. [6]

Describe the behaviour of x as t → ∞, justifying your answer. [2]

7 Show that
d

dt
(t(1 + t3)n) = (3n + 1)(1 + t3)n − 3n(1 + t3)n−1

. [3]

Let I
n
= ã 1

0

(1 + t3)n
dt. Using the above result, or otherwise, show that

(3n + 1)I
n
= 2n + 3nI

n−1
. [2]

Hence evaluate I
3
. [4]

8 The curve C has polar equation r = 1 + sin θ for −1
2
π ≤ θ ≤ 1

2
π. Draw a sketch of C. [2]

The area of the region enclosed by the initial line, the half-line θ = 1
2
π, and the part of C for which

θ is positive, is denoted by A
1
. The area of the region enclosed by the initial line, and the part of C for

which θ is negative, is denoted by A
2
. Find the ratio A

1
: A

2
, giving your answer correct to 1 decimal

place. [8]

9 Find a cartesian equation of the plane Π containing the lines

r = 3i + k + s(2i + j − k) and r = 3i − 7j + 10k + t(i − 3j + 4k). [4]

The line l passes through the point P with position vector 6i − 2j + k and is parallel to the vector

2i + j − 4k. Find

(i) the position vector of the point where l meets Π , [3]

(ii) the perpendicular distance from P to Π , [3]

(iii) the acute angle between l and Π . [3]

10 A curve C has equation

y = 5(x2 − x − 2)
x2 + 5x + 10

.

Find the coordinates of the points of intersection of C with the axes. [2]

Show that, for all real values of x, −1 ≤ y ≤ 15. [4]

Sketch C, stating the coordinates of any turning points and the equation of the horizontal asymptote.

[7]

[Question 11 is printed on the next page.]
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11 Answer only one of the following two alternatives.

EITHER

The curve C has equation y = 1
3
x

1
2(3 − x), for 0 ≤ x ≤ 3. Find the mean value of y with respect to x

over the interval 0 ≤ x ≤ 3. [4]

Show that

ds

dx
= 1

2
(x−1

2 + x
1
2),

where s denotes arc length, and find the arc length of C. [6]

Find the area of the surface generated when C is rotated through 2π radians about the x-axis. [4]

OR

Find the eigenvalues and corresponding eigenvectors of the matrix A, where

A =  1 1 2

0 2 2

−1 1 3

 . [7]

The linear transformation T : >3 → >3 is defined by x  → Ax. Let e, f be two linearly independent

eigenvectors of A, with corresponding eigenvalues λ and µ respectively, and let Π be the plane,

through the origin, containing e and f. By considering the parametric equation of Π , show that all

points of Π are mapped by T onto points of Π . [3]

Find cartesian equations of three planes, each with the property that all points of the plane are mapped

by T onto points of the same plane. [4]
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