MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9700 BIOLOGY

9700/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9700	22

Mark scheme abbreviations:

- ; separates marking points
- *I* alternative answers for the same point
- R reject
- A accept (for answers correctly cued by the question, or by extra guidance)
- **AW** alternative wording (where responses vary more than usual)
- **<u>underline</u>** actual word given must be used by candidate (grammatical variants excepted)
- max indicates the maximum number of marks that can be given
- ora or reverse argument
- **mp** marking point (with relevant number)
- ecf error carried forward
- I ignore

Mark Scheme: Teachers' version	Syllabus	Paper
GCE AS/A LEVEL – May/June 2011	9700	22
phase ;		[3]
ntering / at early interphase ; synthesis stage / making proteins ; owing (to, mature/normal, size) <i>or</i> cells not grown to, m		[max 1]
etabolically active / AW ; synthesis ; ption ; ion ; kpression ; semi-conservative, replication ; ion ;	les replicate	[max 2]
role entrole al, remaining ations ations ations	GCE AS/A LEVEL – May/June 2011 maphase ; rophase ; retaphase ; retaphase ; ewly formed / daughter cells (following, telophase / mitos entering / at early interphase ; retaphase ; at synthesis stage / making proteins ; growing (to, mature/normal, size) or cells not grown to, mal, size ; AW R not elongated relevant e.g. netabolically active / AW ; n synthesis ; pription ; ation ; expression ; 's semi-conservative, replication ; ation ; expressing, organelles / named organelle(s) ; e.g. A centrio	GCE AS/A LEVEL – May/June 2011 9700 naphase ; rophase ; retaphase ; ewly formed / daughter cells (following, telophase / mitosis) ; ewly formed / daughter cells (following, telophase / mitosis) ; entering / at early interphase ; at synthesis stage / making proteins ; growing (to, mature/normal, size) or cells not grown to, mature / al, size ; AW R not elongated relevant e.g. netabolically active / AW ; n synthesis ; ription ; ation ; expression ; 'semi-conservative, replication ; ation ; essising, organelles / named organelle(s) ; e.g. A centrioles replicate

[Total: 6]

	Page 4	4 Mark Scheme: Teachers' version		Syllabus	Paper		
			GCE AS/	A LI	EVEL – May/June 2011	9700	22
2	(a) (i)	hab	itat =	в	}-;		
		ecos	system =	Α	_ '		
		abio	tic component =	С	;		
		ecol	logical niche =	F	;		
		pop	ulation =	Е	};		
		com	munity =	D	,		[max 4]

;

(b) seaweed = (primary) producer ; A first (trophic level)

<i>limpet / P. vulgata</i>	<i>crab / C. maenas</i>
primary consumer	secondary consumer
A 1 [°] consumer	A 2° consumer
A second (trophic level)	A third (trophic level)

max 3 for energy losses

energy losses in
respiration ;
heat loss, qualified ; e.g. heat loss, from digestion / movement / metabolism
heat loss in respiration = 1 mark
indigestible parts ; A named, e.g. cellulose
inedible parts ;
excretion ; A named excretory products
egestion ; I waste
death, not eaten ;

[max 4]

[Total: 8]

	Pa	ge 5	6	Mark Scheme: Teachers' version	Syllabus	Paper
				GCE AS/A LEVEL – May/June 2011	9700	22
3	(a)	2 3 4	smal mem no r trans bicol (of o	Il size / 6-8 μm (diameter), to squeeze through capillar Il size / 6-8 μm (diameter), so, haemoglobin (molecule hbrane) / reduces distance for diffusion (in / out of rbc) hucleus / lack of organelles, so more room for ha sported) ; R more room for oxygen ncave shape / diagram drawn, increases surface area oxygen) ; ble / AW (membrane), to squeeze through capillaries	s) near to surfac ; aemoglobin (so for, diffusion / uj	more oxyger
	(b)		no, r no <u>m</u> * A n no, F no m	ymes are proteins, protein synthesis does not occur ; hucleus / DNA / genes, so no, transcription / mRNA ; hRNA, so no, translation / protein synthesis ; o nucleus, so no protein synthesis <i>for one mark</i> RER / ribosomes, site of protein synthesis / AW ; hitochondria, insufficient ATP (for synthesis) ; RER for modification (of protein) ; A Golgi apparatus	*	[max 2]
	(c)	(i)	iron	; A Fe ²⁺ / Fe ³⁺ / ferrous / ferric		[1]
		(ii)	amir	no acids / peptides ;		[1
	(d)	<u>car</u>	<u>bonic</u>	anhydrase;		[1
	(e)	1 2		sion of, carbon dioxide / CO ₂ ; red blood cell from correct source ;		
		3 4		cription of <u>carbonic acid</u> formation followed by H ⁺ producarbonic anhydrase) fast reaction ; A ecf from (d)	uction;	
		5	A ha	moglobin has a higher affinity for hydrogen ions than o aemoglobin releases oxygen more easily in acidic conc apt idea of H^{+} binding to haemoglobin bringing out oxyg	litions	
		6	ref. t relea	to, allosteric effect / change in tertiary structure / AW, ase / AW, of oxygen ;	in (oxy)haemog	
		7 8	ref. ł	ation of <u>haemoglobinic acid</u> ; <i>must refer to, H⁺ binding</i> higher partial pressures / AW, CO ₂ , linked to (oxy)haer		
		9		gen / oxygen more readily ; <i>Bohr shift</i> ation of <u>carbamino-haemoglobin</u> ; R carboxyhaemogl	obin	
		10	e.g.	ride shift, qualified ; as hydrogen carbonate ions move out of cell, chloride troneutrality / a balance of charge / ions ;	ions move in e.	g. to maintain [max 5
						[Total: 13]
						-

	Ра	ge 6		Mark Scheme: Teachers' version	Syllabus	Paper
				GCE AS/A LEVEL – May/June 2011	9700	22
4	(a)	<u>Myc</u>	cobac	cterium, tuberculosis / bovis ;		1
	(b)	(i)	x 30 (ima	arks for correct answer 000 ;; ge length = 60 mm) 60 000μm / 2μm A 59 / 61 mm (2 ark if incorrect answer e.g. not converted correctly, k ect	,	t and method [2]
		(ii)	DNA A no circu DNA (only no d abse <i>if pre</i> caps very	3 relevant e.g. A not surrounded by, nuclear, envelope / membrane ; A b (true) nucleus ular DNA ; A loop A not complexed with histone proteins ; A naked DNA y) 70S / smaller / 18nm, ribosomes ; A ribosomes not bouble membrane-bound organelles; A no, mitochondri ence of named organelle ; e.g. Golgi apparatus, ER / F evious mp not given, A no membrane-bound organelle sule / slime layer ; small diameter / 0.5 to 5.0μm ; wall of, murein / peptidoglycan ;	: attached to mer ia / chloroplasts RER / SER	nbranes
			pili / no 9 flage	mples of other relevant points pilus ; +2 microtubule arrangement ; ellum not covered by cell surface membrane ; ence of plasmids ;		[max 3]
	(c)	(i)	ref. (impr hom earli impr impr cont	1 relevant e.g. (BCG) vaccine / vaccination programme ; rovements in housing conditions / less overcrowding es; R better standards of living <i>unqualified</i> er detection / mass, chest X-ray / screening ; <i>i.e. in pr</i> rovements in diet (leading to better immune system) / . roved awareness of, transmission / AW ; R better educ act tracing / explained ; testing / treating, cattle / milk ;	reventing spread AW ;	
		(ii)	deve R in ref. i high incre redu (dete ref. t ref. t	3 relevant e.g. elopment of antibiotic resistance (by organism); A dru nmunity impact of HIV infection ; er rate of immigration from countries with high incidence ease in tourism to countries with high incidence ; iced surveillance leading to undetected cases (and her ected cases, MDR) unwillingness / AW, to maintain dru to vaccination programmes no longer taking place ; to poor / overcrowded, housing (in cities) / AW ; mu ntries	ce / AW ; nce spread) ; ug regimen / AW	

	Page 7		,	Mark Scheme: Teachers' version	Syllabus	Paper
				GCE AS/A LEVEL – May/June 2011	9700	22
	(d)	(i)	(so) pept mRN inhib ribos	ing of tRNA prevented ; no anticodon-codon binding ; ide bond formation prevented ; NA attachment prevented ; bition of enzymes involved in translation ; some movement along mRNA, hindered / prevented ; bits association of large and small subunits / AW ;		[max 2]
		(ii)	cell s degr brok	nmalian cell surface membrane impermeable ; raded, before entry into / within, the cell ; en down by enzymes ;		
			euka	aryotic / 80S (22nm) / larger / different, ribosomes / ribo	some structure;	[max 1]
						[Total: 13]
5	(a)	B =		erol ; r bond ; I covalent acid <i>or</i> hydrocarbon, chain / tail ;		[3]
	(b)	(i)	(thirc	tty acid / hydrocarbon, chain / tails ; d fatty acid replaced by a) phosphate group ; ; (most) contain, nitrogen / choline (attached to phosp	ohate in, head / po	blar portion) ; [max 2]
		(ii)	link k / ioni idea	form a bilayer ; between, hydrophobic core / AW, and barrier to water- ic of, hydrophilic / phosphate, head, forming H bonds wi acing, water / watery environment / aqueous environme	th water ;	
			furth acids ref.	contribution to fluid nature of membrane ; er detail ; e.g. mainly saturated fatty acids, less fluid s, more fluid to control over membrane protein orientation ; e.g action for 'floating' proteins		

(c) optimum pH *or* pH at which, lipase / enzyme, works best ; [1]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9700	22

- (d) (i) pH, decreases / AW, over time ; steep decrease / high rate, in first 5 minutes ; A faster less steep decrease / levels out, correct time ref ; A slower correct, manipulation of data / comparative data quote (ref. to both axes) ; e.g. pH 8 – 7.3 from 0 – 5 min pH 7.3 – 6.45 from, 50 / 60, min
 - triglyceride / oil, hydrolysed / broken down / digested, to produce (fatty) acids ; increasing, acids / H⁺ / hydrogen ions, decreases / AW, pH ;

accept, triglyceride / lipid, for substrate throughout

steep decrease

ref. enzyme has high initial turnover rate *or* high rate of, collision between enzyme and substrate / ES complex formation ;

(because initially) high concentration of, substrate / triglyceride;

less steep / levelling / plateau,

substrate, being used up / used up / limiting ; active sites available *or* fewer enzyme substrate collisions / fewer ES complexes formed; ref. presence of hydrogen ions, partial denaturation (less steep) / denaturation (plateau); **A** description of denaturation [4]

```
[Total: 15]
```

[2]

- 6 (a) ref. to coronary arteries; in correct context makes platelets sticky, so causing blood to clot; increases risk of thrombosis in, coronary arteries / arteries to heart (muscle); leading to plaque / atheroma / atherosclerosis / AW; increases heart rate; increased blood pressure; damage to, tunica intima / endothelium /endothelial lining / arterial lining; [max 4]
 - (b) any one valid statement for 1 mark

agree

less addicted to smoking cigarettes so fewer smoked ; fewer smoked, so reduced risk of smoking-related diseases ; **A** named disease fewer smoked so reduced risk from, (effects of) tar / carbon monoxide ;

disagree as people may smoke more

may smoke more to, increase their nicotine levels / satisfy need for nicotine / AW ; more smoked, so increased risk of smoking-related diseases ; **A** named disease may smoke more so increased risk from, (effects of) tar / carbon monoxide ;

AVP ; for either agree or disagree e.g. disagree as may still smoke and there are still other carcinogenic chemicals such as tar

[max 1]

[Total: 5]