MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9700 BIOLOGY

9700/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9700	41

Mark scheme abbreviations:

I alternative answers for the same point

R reject

- A accept (for answers correctly cued by the question, or by extra guidance)
- **AW** alternative wording (where responses vary more than usual)
- **<u>underline</u>** actual word given must be used by candidate (grammatical variants excepted)
- max indicates the maximum number of marks that can be given
- ora or reverse argument
- **mp** marking point (with relevant number)
- ecf error carried forward
- I ignore
- **AVP** Alternative valid point (examples given as guidance)

	Pa	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE AS/A LEVEL – May/June 2011		9700	41
1	(a)	36 ;; allow or allow	v one v wo	e mark for number not rounded up i.e. 35.7 rking of $\frac{X}{7}$ × 100		[2]
	(b)	1. 2. 3. 4. 5. 6.	redu idea loss resu disea	ction in extent of ice sheet ; ction in number of, seals / prey / food or increased con of increased distance to travel to find food ; / destruction, of breeding sites ; It of named human activity ; e.g. mining / drilling / killin ase ;	mpetition for foo g / building / pol	d; lution [3 max]
	(c)	appl. 1. 2. 3. 4. 5. 6. 7.	ies to DNA DNA ribos merr no co size	o <i>U. maritimus but accept ora</i> linear ; a in nucleus or has, nuclear membrane / nucleus ; a, associated with protein / in chromosomes ; some, 22 nm diameter / 80s ; nbrane bound organelles / named organelle ; ell wall ; up to 40μm ;		[3 max] [Total: 8]
2	(a)	(i)	<i>any</i> hot s sulpl geys geot mari volca hot c	one from ; springs hur springs sers hermals ne vent anic area desert		[1]
		(ii)	1. 2. 3. 4.	each bacterium grows at a different temperature (rang (the heap) heats up ; idea of when temperature kills one species of bacteriu or as temperature increases process can continue ; increased oxidation of heap ; more productive / enables increased yield of cold ;	e) ; m others are stil	l active

	Page 4			Mark Scheme: Teachers' version Syllabus			
				GCE AS/A LEVEL – May/June 2011	9700	41	
	(b)	(i)	1. 2. 3. 4.	<i>A. ferrooxidans</i> increases, oxidation of the ore / productive little difference in effect 0–5 days ; greatest effect after 15 days ; comparative figs for with and without <i>A. ferrooxidans</i> of the ore / productive figs for with and without <i>A. ferrooxidans</i> of the ore / productive figs for with and without <i>A. ferrooxidans</i> of the ore / productive figs for with and without <i>A. ferrooxidans</i> of the ore / productive figs for with and without <i>A. ferrooxidans</i> of the ore / productive figs for with and without <i>A. ferrooxidans</i> of the ore / productive figs for with and without <i>A. ferrooxidans</i> of the ore / productive figs for with and without <i>A. ferrooxidans</i> of the ore / productive figs for with and without figs for with an and without figs for with an	ction of Fe ³⁺ ; on a single day ;	[3 max]	
		(ii)	1. 2. 3. 4. 5. 6. 7. 8. 9.	cheaper (than other methods) ; does not require energy input ; does not require other chemicals to be purchased ; does not require specialist equipment ; can be done <i>in situ</i> ; less labour needed ; bacteria are self-replicating / AW ; more environmentally friendly than other methods / no useful for extraction from, low grade ores / waste ;	harmful emissio	ons / AW ; [3 max]	
	(c)	mus D1 D2 D3 E4 E5 E6 E7	st ha both both stra arse mut resis	ve at least one D mark to score 4 marks a strains give similar rate with and without arsenic ions a strains are arsenic-resistant; in 2, more active / higher oxidation rate, (than strain 1) enic acts as a selective, agent / pressure; ation / AW, produces <u>resistant</u> bacteria; stant bacteria survive / ora ; stant <u>allele</u> passed on;	;	[4	
		F8	freq	uency of <u>allele</u> increases (in population);		[4 max]	
						[Total: 14]	
3	(a)	1. 2. 3. 5. 6. 7. 8. 9. 10.	ref. rest ooc deta mixe in s idea emb ref. spe	hormone treatment ; ults in, superovulation / many oocytes / many follicles, r <u>ytes</u> harvested ; ail of harvesting ; ed with sample of sperm ; pecial medium ; a of, waiting for three days / wait until 6–8 cell stage ; pryos placed in uterus ; maintenance of endometrium ; rm / sperm nucleus / sperm DNA, may be injected into	naturing at same	e time ; [4 max]	
	(b)	one moi igno DN acro	e mar re tha ore c A – c oson	k for a ✓ in the correct box an one ✓ in a row = no mark rosses colourless ; ne – colourless ;			
		<i>mitochondria</i> – green ;					
	(c)	1. 2.	(hyc (acr	frolytic) enzymes may damage oocyte ; osome contents) affect development of fertilised oocyte	e;	[1 max]	
						[Total: 8]	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9700	41

4	(a)			
1.	β cells detect glucose levels	or	no detection of blood glucose conc.	;
2.	β cells secrete insulin	or	no insulin released	;
3.	when blood glucose concentration rises	or	when blood glucose concentration rises	;
4.	(insulin causes) muscle cells / adipose tissue / liver cells	or	muscle cells / adipose tissue / liver cells	• •
5.	to increase uptake of glucose from blood / increased membrane permeability to glucose	or	do not take up excess glucose	;
6.	(insulin causes liver cells) to convert glucose to glycogen	or	glucose not converted to glycogen (by liver cells)	;
7.	(insulin causes liver cells) to increase respiration of glucose	or	rate of respiration of glucose does not increase	;
8.	(if no β cells) no control of blood glucose levels / AW	or	no control of blood glucose levels / AW	;
	·		[4	max]

(b) (i) 1. (yes) more people with infection have CFRD than those without infection;
 2. use of 'with CFRD' comparative figs;

either using number of people – 44 / 52 / 96 (no infection) against 106 / 121 / 227 (with infection)
or using FEV₁ values – 71.1 / 53.6 / 124.7 (no infection) against 49.0 / 42.0 / 91.0 (with infection)
or 28.5% males against 35.8% females (no infection)

- or 38.9% males against 50.05% females (with infection)
- 3. AVP ; e.g. we do not know how the sample was chosen (so this may not be a valid conclusion) [2 max]

(ii)
$$\frac{2.2}{71.4} \times 100$$
; = 3.08 / 3.1;
or
 $\frac{2.2}{73.6} \times 100$; = 2.99 / 3.0;

- (iii) 1. more lung damage in females (with CFRD) than in males;
 2. females (with CFRD) have lower FEV₁ than males;
 - use of figures ; e.g. males FEV₁ 49 whereas female FEV₁ 42
 or female FEV₁ 1.16 times lower than male FEV₁
- (c) 1. CFTR protein acts as chloride channel (in cell membranes) ; with CF
 - 2. faulty (CFTR) gene;
 - 3. faulty / non-functional, (CFTR) protein produced ;
 - 4. chloride ions not able to move out (of cell);
 - 5. by active transport;
 - 6. so less water passes out (of cell);
 - 7. down water potential gradient; A by osmosis
 - 8. mucus secreted contains less water;

[4 max]

[2]

[3]

	Page 6			Mark Scheme: Teachers' version Syllabus		Paper
				GCE AS/A LEVEL – May/June 2011	9700	41
5	(a)	1. 2. 3. 4.	 (either feature) reduces water loss by, transpiration / evaporation; reduction in, number of stomata / surface area, (for, transpiration / e rolling leaves traps moist air; idea of reduced, diffusion / water potential, gradient (between leaf all 	oration ; iration / evapora een leaf and trap	tion) ; ped air) ; [3 max]	
	(b)	(i)	cook use (ed protein more digestible than raw protein ; of figures ; <i>accept any named comparison between co</i>	ooked and raw	[2]
		(ii)	cook 1. 2. 3. 4. 5. 6.	<i>ced</i> cooking breaks cross-links (in kaffirin); A bonds ref. to named bond ; e.g. hydrogen / ionic / disulphide tertiary / 3D / quaternary, structure disrupted / AW ; protease can now bind, more / easier, with polypeptide <u>enzyme-substrate complexes</u> can form ; so more protein is digested to amino acids ;	/ covalent es ;	[3 max]
						Tatal: 01
						[lotal: 8]
6	(a)	 a) enzyme ac shape of a AVP; e.g. b) symbols (r parental g offspring g c) 1. insula 2. depola 3. local c 4. saltate 5. speed 6. AVP; 		acts on only one substrate ; active site is complementary to substrate ; g. substrate held by temporary bonds / ES complex		[2 max]
	(b)			(must be of same letter) ; genotypes and gametes ; genotypes and phenotypes linked ;		[3]
	(c)			ates axon (membrane) ; blarisation occurs only at nodes (of Ranvier) / AW ; <u>circuits</u> ; itory conduction / AW ; eds transmission of, action potential / impulse ; ; e.g. speed increases up to 50 times / 100ms ⁻¹		[3 max]
						[lotal: 8]

			GCE AS/A LEV	/EL – May/June 2011	9700	41			
7	(a) act <u>ribo</u> wa hyo hea		[5]						
	(b) (i)	(conve (used	(converted to) glycogen / lipid ; (used in) glycolysis / respiration ;						
	(ii) (iii)	/ stages other	than glycolysis [2 max]						
	()		process	precise location	1				
			glycolysis	cytoplasm / cytoso	l;				
			link reaction	mitochondrial matri	x;				
			Krebs cycle	mitochondrial matri	x;				
		oxida	tive phosphorylation	inner mitochondrial membra	ne / cristae ;				
	(iv) (v)	1. ca 2. to 3. no 4. A	annot pass through ph to big to fit through (glu o specific transport pro VP ; e.g. used up as s n debt :	ospholipid bilayer ; ucose's) protein channel ; otein ; oon as it is made		[4] [2 max] [1]			
	(-)	<u>onjgo</u>	<u></u> ,			["]			
						[1 otal:15]			
8	(a) nor 1. 2. sou 3. 4.	rth islan fewer breed % cha uth islar presed breed	<i>d</i> / less abundant, hedge ing pair figs for either b inge in population over ad nce of hedgehogs cau ing pair figs for either b	ehogs allow increase (in both l bird for 1983 and 2000 or r that time for either bird ; ses decrease (in both lapwing bird for 1983 and 2000 or	apwing and red and redshank)	shank) ; ;			
		% cha	inge in population over	r that time for either bird ;		[3 max]			

Mark Scheme: Teachers' version

Syllabus

Paper

(b) 1. (oystercatchers have) less competition;

Page 7

- 2. hedgehogs mostly eat lapwing and redshank eggs / hedgehogs don't eat oystercatcher eggs ;
- (oystercatcher) eggs are, too large / camouflaged / inaccessible / distasteful or

oystercatchers defend their, nests / eggs ;

Pa	age 8	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE AS/A LEVEL – May/June 2011	9700	41
(c)	1. in 2. r 3. r 4. c 5. g 6. g 7. (8. <u>a</u>	idea of geographical isolation ; no interbreeding / gene flow, between <u>populations</u> ; mutations occur ; different, selection pressures / environmental conditions ; genetic change / AW ; genetic drift ; (eventually) reproductive isolation ; <u>allopatric</u> speciation ;		[4 max] [Total: 9]
9 (a)	endo 1. h 2. c 3. c 4. t 5. r 6. e nervo 7. in 8. a 9. s 10. r 11. r differ 12. s 13. k 14. v 15. <i>A</i>	borrine hormones ; chemical messengers ; A chemicals that transfer informat ductless glands / (released) into blood ; target, organs / cells ; ref. receptors on cell membranes ; example of named hormone and effect ; ous impulses/ action potentials ; R electrical, signals / curren along, axon / neurones / nerve fibres ; R nerves R acro synapse (with target) / neuromuscular junction ; ref. receptor / sensory neurones ; ref. effector / motor neurones ; rences – endocrine slow effect / ora ; long lasting effect / ora ; widespread effect / ora ; AVP ; e.g. extra detail of synapse / hormone changes trigg	ation t ss	[8 max]
(b)	16. I. 17. s 18. r 20. f 21. a 23. ii 24. p 25. a 26. <i>A</i> 27. <i>A</i>	IAA / plant growth regulator ; R plant hormone synthesised in, growing tips / apical buds / meristems ; F moves by diffusion ; moves by active transport ; from cell to cell ; also, mass flow / in phloem ; stimulates cell elongation ; R cell enlargement inhibits, side / lateral, buds / growth ; A inhibits branching plant grows, upwards / taller ; A stem elongates auxin not solely responsible or interaction between auxin and AVP ; e.g. role of ABA and lateral bud inhibition AVP ; e.g. cytokinins antagonistic to IAA / gibberellins enf	t root tip g d other plant growt ance IAA	h regulators ; [7 max]
				[Total: 15]

	Page 9			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE AS/A LEVEL – May/June 2011	9700	41
10	(a)	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. <i>can</i>	phot light prim elect (elec (elec PII h wate phot elect to re proto awai	osystem I (PI) and photosystem II (PII) involved ; harvesting clusters ; absorbed by accessory pigments ; ary pigment is chlorophyll a ; trons, excited / raised to higher energy level ; ctrons) taken up by electron acceptor ; ctrons) pass down electron carrier chain (to produce A has (water splitting) enzyme ; er split into protons, electrons and oxygen ; A equation olysis ; trons from <u>PII</u> pass to PI / electrons from water pass to eplace those lost ; give either in relation to PI or PII ons and electrons combine with NADP (to produce red rd these marking points from a diagram	TP) ; n o PII ; luced NADP) ;	[9 max]
	(b)	 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 	RuB rubis form prod GP / by re from TP u using TP c	P combines with carbon dioxide ; sco ; sunstable 6C compound ; luces <u>two</u> molecules of, GP / PGA ; ' PGA, converted to TP ; educed NADP and ATP ; light dependent stage ; used to regenerate RuBP ; g ATP ; can form, hexose / fatty acids / acetyl CoA		[6 max]
						[Total: 15]