Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

BIOLOGY

MAXIMUM MARK: 30

Mark scheme abbreviations:

; separates marking points
I alternative answers for the same point
R do not allow
A allow (for answers correctly cued by the question, or guidance for examiners)
AW alternative wording (where responses vary more than usual)
underline actual word given must be used by candidate (grammatical variants excepted)
max maximum number of marks that can be given
ora or reverse argument
Numbers against mark points are for examiner reference only; they do not reflect relative importance of answers or a required sequence of answers.

Extra guidance

(a) (i) independent variable - quantity / percentage of Fucus spiralis; dependent variable - numbers of Littorina littorea / mollusc;

A seaweed / algae
\mathbf{R} 'number of Fucus spiralis'
Ignore in all cases reference to means / climate / same beach / weather. ref. to line / transect parallel to sea ref. to repeat lines / transects at same distance from the sea; ref. to systematic counting / quadrats at fixed intervals along the transect;
ignore ref. to repeating the investigation or repeating the measurements
A descriptions e.g. every metre intervals
ignore weather / climate / tide
(b) (i) answers must relate to specific data in the table samples at 6 / 7 / 15 all have similar percentage of Fucus and have molluscs present percentage of Fucus is high so should have molluscs; does not fit a general correlation / does not follow trend;
(ii) x-axis - mean percentage of Fucus spiralis; y-axis - mean number of Littorina littorea;
(iii) ref. to no relationship (because data is scattered); ref. to there is a slight / partial (positive) correlation;
(c) (i) the data is not normally distributed; data points are independent of each other; the data can be converted to ordinal data;
(ii) $\mathrm{D}=9$ and $\mathrm{D}^{2}=81$;
(iii) correct substitution of values; correct subtraction to give r_{s};
(iv) there is a weak positive correlation between the distribution of the two species;
(d) abiotic factor any one of: temperature;
idea of exposure; allow heat / cold;
light availability;
presence of rocks / rock pools;
distance from sea;
pollution;
biotic factor any one of: predation;
competition other species for food source;
human activities AW;
e.g. desiccation / drying out / wave action
allow named predators e.g. dog whelk / sea birds
e.g. trampling / collecting for food / litter

independent variable:

1. ref. to using same mass of tissue to homogenise;
2. ref to using same volume of osmotic buffer to make suspensions;
3. same volume of each suspension added to each of the test-tubes;
dependent variable:
4. ref. to checking regular intervals until blue disappears;
5. ref. to colour comparison / control without methylene blue added;
control variables: (max 2)
6. ref. to adding known volume methylene blue solution;
7. ref. to equilibrating methylene blue at $20^{\circ} \mathrm{C}$ before using;
8. ref. to a method of keeping the temperature constant;
procedure:
9. ref. to inverting / stirring to mix indicator with extract;
10. ref. to a method of excluding air after adding methylene blue;

safety:

11. ref. to a low risk experiment;
reliability:
12. ref. to 10 replicates for each suspension;

A equilibrate at same temperature as suspensions
8. e.g. water-bath / incubator. A temperature controlled room. Ignore air conditioning
10. e.g. adding oil to surface / filling tubes and closing with a cork. A injecting methylene blue through an oil layer / sealed tube
11. A ref. to possible toxicity of methylene blue and suitable precaution e.g. wearing gloves
（b）（i）any two of：

	time for methylene blue to become colourless s ${ }^{-1}$									
	test 1	$\begin{aligned} & \text { test } \\ & 2 \end{aligned}$	$\begin{gathered} \text { test } \\ 3 \end{gathered}$	$\begin{gathered} \text { test } \\ 4 \end{gathered}$	$\begin{aligned} & \text { test } \\ & 5 \end{aligned}$	$\begin{gathered} \text { test } \\ 6 \end{gathered}$	test 7	$\begin{array}{\|c} \text { test } \\ 8 \end{array}$	$\begin{gathered} \text { test } \\ 9 \end{gathered}$	$\begin{array}{\|c} \text { test } \\ 10 \end{array}$
Tissue A	70	56	59	54	52	56	55	75	59	50
$\begin{gathered} \text { Tissue } \\ \text { B } \end{gathered}$	124	126	136	126	122	125	121	123	124	125

both for one mark；
（ii）idea of difficulty in judging the disappearance of the colour；
（iii）add all the values together excluding anomalous results and divide by the total number of samples；
（iv）use an oxygen probe to measure the fall in oxygen concentration over time；
use a carbon dioxide probe to measure the increase in carbon dioxide； use of pH meter to decrease in pH due to hydrogen ions；
（c）any two of：
tissue \mathbf{A} takes less time than tissue \mathbf{B} to reduce methylene blue／rate of reaction of tissue \mathbf{A} is faster than tissue \mathbf{B} ；
time for tissue \mathbf{A} to reduce methylene blue／rate of reaction of \mathbf{A} is 2.25 times faster than tissue B；
tissue \mathbf{A} has faster rate of respiration than tissue \mathbf{B} ；
results from tissue \mathbf{B} are more reliable than those of tissue \mathbf{A} ora；

