MARK SCHEME for the March 2016 series

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE[®] and Cambridge International A and AS Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	22

Question	Answer	Mark	Total
1 (a) (i)	greater <u>attractive</u> force OR	[1]	
	greater force <u>between nucleus and (outer) electrons</u> proton number/atomic number/nuclear charge increases across period AND electrons occupy same shell/shielding roughly constant	[1]	[2]
(ii)	sulfur's electron removed from full (3p) <u>orbital</u> OR sulfur has two electrons in the same orbital	[1]	[2]
	electron-electron repulsion (reduces energy required)	[1]	
(iii)	sodium has mobile/free electrons/electrons free (to move throughout the structure)	[1]	[0]
	phosphorus is simple/covalent/molecular	[1]	[2]
(iv)	magnesium has <u>two</u> free/delocalised/outer/valence electrons per atom OR <u>more</u> free/delocalised/ <u>outer</u> electrons than sodium	[1]	[1]
(b) (i)		[1] [1] [1] [1]	[4]
(ii)	any Group I carbonate OR ammonium carbonate	[1]	[1]
			[12]
2 (a) (i)	$\frac{27.30}{1000} \times 0.020 = 5.46 \times 10^{-4} (\text{mol})$	[1]	[1]
(ii)	(i) × 6 =3.28 × 10 ⁻³ (mol)	[1]	[1]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	22

Question	Answer	Mark	Total
(iii)	(ii) $\times \frac{250}{25.00} = 3.28 \times 10^{-2} (\text{mol})$	[1]	[1]
(iv)	$M_{\rm r}$ of FeCO ₃ =55.8 + 12.0 + 3(16.0) = 115.8 (iii) × $M_{\rm r}$ (FeCO ₃) = 3.79 g	[1] [1]	[2]
(v)	$\frac{(iv)}{5.00} \times 100\% = 75.9\%$	[1]	[1]
(b) (i)	$2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4+}$ species balancing	[1] [1]	[2]
(ii)	$SnCl_2(aq) + 2HgCl_2(aq) \rightarrow SnCl_4(aq) + Hg_2Cl_2(s)$		
	SnCl ₂ AND 2 state symbols	[1] [1]	[2]
			[10]
3 (a) (i)	three bonding pairs lone pair AND octet shape = (trigonal) pyramidal	[1] [1] [1]	[3]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	22

Question	Answer	N ark	Total
(ii)	sigma(σ) bond OR $Pi(\sigma)$ bond	[1]	[2]
	$pi(\pi)$ bond	[1]	
(b) (i)	forward and backward reactions occurring <u>at san e rate</u> OR <u>the rate of</u> forward and backward reactions are equal	[1]	[1]
(ii)	M1 = decreased yield of products/less products formed / ora M2 = l <u>eft</u> -hand side has fewer moles of gas OR equilibriun shifts to the <u>left</u>	[1] [1]	[2]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	22

Question	Answer	Mark	Total
(c)	<i>E_a</i> with catalyst <i>F_a</i> without catalyst molecular energy		[3]
	M1 = correct Boltzmann curve	[1]	
	 M2, M3 any 2 from: line for both <i>E</i>_a values or statement in text that catalyst lowers E_a (catalyst) increases proportion/number of molecules/particles with energy ≥ activation energy so more frequent successful collisions 	[1] [1]	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	22

Question	Answer	Mark	Total
(d) (i)	nucleophilic addition	[1]	[1]
(ii)	$\begin{array}{c} & & H^{\oplus} \\ & & H^{\oplus} \\$	[1] [1] [1] [1] [1]	[5]
			[17]
4 (a) (i)	$\underline{C}_{4}\underline{H}_{10}$	[1]	[1]
(ii)	$\underline{C_4}H_9$	[1]	[1]
(iii)	- СН	[1]	[1]
(b)	C_8H_{18} + $12\frac{1}{2}O_2 \rightarrow 8CO_2$ + $9H_2O$	[1]	[1]
(c)	sulfur dioxide would be produced on combustion (which contributes to) <u>acid</u> <u>rain</u>	[1] [1]	[2]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	22

Question	Answer	Mark	Total
(d)	M1 = H has more/greater/stronger van der Waals'/intermolecular forces than G / ora M2 = (because) H <u>has more electrons</u> (than G) M3 = J has hydrogen bonding (between molecules) M4 = strong(er)/great(er) forces require AND high/more energy to overcome	[1] [1] [1] [1]	[4]
(e)	NaOH(aq)	[1]	[1]
			[11]
5 (a) (i)		[1] [1]	
	$ \begin{array}{c} \begin{array}{c} O \\ H \\$	[1] [1]	[4]
(ii)	pent-3-en(e)-2-one OR 3-penten-2-one	[1]	[1]
(iii)	red/orange/yellow precipitate/solid	[1]	[1]

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	22

Question	Answer	Mark	Total
(b)	This question was discounted. M1 = decolourises bromine / 1500–1600 cm ⁻¹ = alkene M2 = absorption at 1700 cm ⁻¹ is C=O AND (very) broad absorption at 2500–3000 cm ⁻¹ is O—H = carboxylic acid M3 = no cis-trans so terminal alkene OR chiral so contains a carbon atom with 4 different groups attached M4 = U is	[1] [1] [1]	[4]
			[10]