CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the March 2016 series

9701 CHEMISTRY

9701/42

Paper 4 (A Level Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE® and Cambridge International A and AS Level components.

Page 2	Mark Scheme		Paper
	Cambridge International AS/A Level – March 2016	9701	42

Question	Answer	Mark
1 (a)	Increasing ↑ energy 2p ↑↑ ↑ ↑↑↑	2
	2s ↑↓ ↑↓	
	1s ↑↓ ↑↓ ↑↓ carbon atom C⁺ion C⁻ion	
(b) (i)	sp ²	1
(ii)	$x = 60/C_{60}H_{60}$	1
(c) (i)	reaction 1: Cl_2 and UV light; reaction 2: $AlCl_3$, Cl_2 (NOT aqueous);	1
(ii)	(free) radical substitution	1
(iii)	$\begin{array}{c} CCl_3 \\ Cl \\ Cl \\ Cl \end{array}$	1

Page 3	Mark Scheme		Paper
	Cambridge International AS/A Level – March 2016	9701	42

Question	Answer		Mark
2 (a) (i)	$Ca^{2+}(g) + 2Cl^{-}(g) \rightarrow CaCl_{2}(s)$ (state symbols required)		1
(ii)		ΔH _{latt} ^θ	2
(iii)			3
	$\Delta H_{\text{latt}}^{\theta} = -796 - 242 - 178 - 590 - 1150 + (2 \times 349) = -2258 \text{ kJ mol}^{-1}$		
(b)	(higher temperature means that) particles have more energy; entropy (of the gas/system) increases because of an increase in the amount of disorder/randomness;		2
(c) (i)	reaction	sign of ∆S ^e	2
	$CO(g) + O_2(g) \rightarrow CO_2(g)$	negative	
	$Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s)$	negative	
	$CuSO_4(s) + 5H_2O(l) \rightarrow CuSO_4.5H_sO(s)$	negative	
	$NaHCO3(s) + H+(aq) \rightarrow Na+(aq) + CO2(g) + H2O(l)$	positive	
(ii)	there is a reduction in the overall number of gaseous molecules		1
(d)	$\Delta S_{\rm f}^{ \rm e} = 386 - (192 + (3 \times 131))$ = -199 (J K ⁻¹ mol ⁻¹)		2
(e) (i)	$\Delta G^{e} = \Delta H^{e} - T\Delta S^{e}$ = 117 - ((298 × 175) / 1000) = (+) 64.85 (kJ mol ⁻¹)		
(ii)	ΔG° is positive and so the reaction is <u>not spontaneous</u> (at 298)	3K)	1

Page 4	Mark Scheme		Paper
	Cambridge International AS/A Level – March 2016	9701	42

Questicn	A nswer	
3 (a)	Co [Ar] 3d ⁷ 4s ² Co ²⁺ [Ar] 3d ⁷	1
(b)		1
	Energy ——	
	isolated ion tetrahedral complex	
(c) (i)	$[Co(Cl)_3(H_2O)_2]^-$	1
(ii)	$\begin{array}{c c} Cl & Cl \\ Cl & OH_2 \\ H_2O \end{array}$ $\begin{array}{c c} Cl & Cl \\ H_2O \end{array}$ $\begin{array}{c c} Cl \\ Cl & Cl \\ H_2O \end{array}$ $\begin{array}{c c} Cl \\ Cl & Cl \\ Cl \\$	2
(d) (i)	$[Pt(C l)_2(NH_3)_2]$	1
(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1
(iii)	(cis isomer) this can react/bond/bind with DNA; which prevents replication of the strand/prevents cell division;	1
(e) (i)	M1: formula M2: units (ecf from formula) $K_{\text{stab}} = \frac{\left[\text{Cu}(\text{NH}_3)_4(\text{H}_2\text{O})_2^{2^+}\right]}{\left[\text{Cu}(\text{H}_2\text{O})_6^{2^+}\right]\left[\text{NH}_3\right]^4} \text{mol}^{-4} \text{dm}^{12}$	1
(ii)	(large value of K_{stab} shows that) the tetrar mine complex is more stable	1

Page 5	Mark Scheme		Paper
	Cambridge International AS/A Level – March 2016	9701	42

Questicn	A nswer	Mark
4 (a) (i)	1 st order	1
(ii)	1 st order	1
(iii)	rate = k[CF ₃ CHO][OH ⁻]	1
(iv)	mol ⁻¹ dm ³ s ⁻¹ (or per any suitable time unit)	1
(v)	calculation from candidate's answer to (iii) (expected answer = 6)	1
(b) (i)	rate-determining step: step 1 explanation: both reactant species are in step 1/rate-determining step	
(ii)	i) acid/proton donor/acidic behaviour	
(c)	nucleophilic addition	1
(d)	M1: both curly arrows M2: dipole correctly shown	1 1

Page 6	Mark Scheme S		Paper
	Cambridge International AS/A Level – March 2016	9701	42

Question	Answer	Mark	
5 (a) (i)	any metal with an E^e value more negative than -0.41V , e.g. Fe, Mn, Zn, Mg, Cr, A l		
(ii)	M1 : value of E_{cell} correctly calculated (with correct sign) for metal named in (i) M2 : E_{cell}° is positive and so reaction is feasible	1	
(b)	M1: $(Cr_2O_7^{2-} + 14H^+ + 6e^- \rightleftharpoons 2Cr^{3+} + 7H_2O)$ $E^0 = +1.33 \text{ V}$ $(H_2O_2 + 2H^+ + 2e^- \rightleftharpoons 2H_2O)$ $E^0 = +1.77 \text{ V}$ $E^0_{\text{cell}} = 0.44 \text{ (V)}$		
	M2 : E_{cell}^{θ} (0.44 V) is positive (so the reaction is feasible)/ E^{θ} (Cr ₂ O ₇ ²⁻ /Cr ³⁺) is less positive than E^{θ} (H ₂ O ₂ /H ₂ O)		
(c)	M1 : $Cr_2O_7^{2-}$: ox.no Cr = +6 because -2 = 2 × ox.no(Cr) + (7 × -2) CrO_4^{2-} : ox.no Cr = +6 because -2 = ox.no(Cr) + (4 × -2)		
	M2: no change in oxidation number, so reaction is not redox		
(d)	M1 : no. moles Cr deposited = $0.0312/52 = 6.0 \times 10^{-4}$ moles M2 : deduction that 6 moles of e ⁻ needed per mole of Cr/reaction is $\text{Cr}_2\text{O}_7^{2^-} + 14\text{H}^+ + 12\text{e}^- \rightarrow 2\text{Cr} + 7\text{H}_2\text{O}$ M3 : no. moles of e ⁻ = $6 \times 6.0 \times 10^{-4} = (0.125 \times t)/96500$ so t = $(6 \times 6.0 \times 10^{-4} \times 96500)/(0.125 \times 60) = 46.3 \text{min}/0.772 \text{h}/2780 \text{s}$		

Page 7	Mark Scheme		Paper
	Cambridge International AS/A Level – March 2016	9701	42

Question	ı	Answer		Mark
6 (a)		1		3
		identity	or value	
	V	nitrogen or	chlorine	
	x	NO/NO ₂	ClO ₂ /ClO ₃	
	m	2, 3	1,2,3, or 4	
	w	su	lfur	
	Y	SO ₂ o	or SO ₃	
	n	4.	, 3	
(b)	M1: (white precipitate descending the group	e is BaSO ₄) p ΔH _{sol} becomes more ei	ndothermic/positive;	1
		omes more endothermic comes more endothermic	// becomes less exothermic c/becomes less exothermic	2

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	42

Questicn		A nswer				
7 (a)	(i)	 M1: phenol is more acidic than ethanol because the O–H bond in phenol is weakened/the phenoxide anion is stabilised/ethanol has an electron donating group M2: p orbital/lone pair of electrons on O can be delocalised over/overlaps with ring 				
	(ii) reagent conditions Structure				3	
			HNO ₃	dilute, 5°C	OH NO ₂	
			Br ₂	aqueous (I: temperature)	Br Br	
(iii)	electroph	nilic substituti	on		1
(b)	(i)	white precipitate/solid				1
	(ii)	between 0°C and 10°C				1
(iii)	M1: double bond between nitrogen atoms M2: rest of molecule				1 1
(c)	(i)	CH ₃ —C—CH ₃ CH ₂ N H ₂				1
	(ii)	CH ₃ N CH CH CH ₃ either one or both CH ₃ groups circled				1

Page 9	Mark Scheme		Paper
	Cambridge International AS/A Level – March 2016	9701	42

Questicn	A nswer				
8 (a)	P amide Q ketone R secondary alcohol		1 1 1		
	Q = carbonyl and R = alcohol so	cores [1]	1		
(b)	H ₃ C OH H CH ₃				
(c) (i)	see line on diagram in (b)		1		
(ii)	ОН		1		
(d)	reagent	observation	3		
	alkaline iodine solution	yellow ppt. formed			
	universal indicator	blue/purple colcur formed			
	2,4-dinitrophenylhydrazine	yellow/orange ppt formed			
	Tollens' reagent	no reaction			
(e) (i)	LiA <i>l</i> H₄				
(ii)	CH		1		
	(must be skeletal)				
(iii)	CH ₃ OH CH ₃ CH ₃		1		

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	42

Question		Answer			Mark	
9	(a) (i)	polyester : Terylene / polylactic acid (PLA) / polyamide : nylon / Kevlar / Nomex			1	
	(ii)	water <i>or</i> hydrochloric a	acid/hydrogen	chloride		1
	(b) (i)	polymer biodegradable				2
			Α	yes		
			В	yes		
			С	no		
			D	yes		
	(ii)	HOCH ₂ CH ₂ OH and		or equivaler or equivaler	nt 1,4-diacyl chloride nt 1,4-diester	2
	(c) (i)	V: it has two amine/NH ₂ groups (which can be protonated) <i>or</i> it has an amine/NH ₂ group on its side chain/R group			1	
	(ii)	four (TT, TU, UT, UU)			1	
	(iii)	hydrogen bonds; between the O/N atoms or named group (in the polypeptide) and water; or ion-dipole attractions; between NH ₃ ⁺ /CO ₂ ⁻ and water;			2	