

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/42

Paper 4 A Level Structured Questions

March 2017

MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Question	Answer	Marks
1(a)(i)	$(28 \times 0.922) + (29 \times 0.047) + (30 \times 0.031) = 28.11$	1
1(a)(ii)	$SiCl_4 + 4H_2O \rightarrow Si(OH)_4 + 4HCl$	1
1(a)(iii)	CI SiCI diagram	1
	bond angle = 109.5	1
1(a)(iv)	SiO ₂	1
	SiO ₂ is giant covalent/molecular but SiC l ₄ is simple molecular/covalent	1
1(b)(i)	$2\mathbf{A}(NO_3)_2 \rightarrow 2\mathbf{A}O + 4NO_2 + O_2$ correct formula balanced equation	2 1 1
1(b)(ii)	giant ionic	1

© UCLES 2017 Page 2 of 12

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question		Answer			Marks
2(a)	enthalpy change	positive	negative	either positive or negative	2
	electron affinity			✓	
	enthalpy change of atomisation	✓			
	enthalpy change of ionisation	✓			
	lattice enthalpy		✓		
2(b)(i)	the second electron is removed from a (more) positive	ely charged ion			1
2(b)(ii)	ΔH_6 is lattice (energy/enthalpy) AND ΔH_7 is (energy/	enthalpy of) form	nation		1
2(c)	the electron affinity becomes less exothermic/negative	ve down the Grou	ıp 17		1
	electron affinity depends (mainly) on the electron-nuc	leus distance wh	ich increases dov	vn Group 17	1
2(d)	M1 correct use of $\Delta G = \Delta H - T\Delta S$				1
	M2 Δ S = 26.9 – (32.7 + 102.5) = –108.3 J K ⁻¹ mol ⁻¹ O l	R –0.1083 kJ K ^{–1} ı	mol ⁻¹		1
	M3 Δ G = -602 - (298 × (-0.1083)) = -570				1
	M4 units: kJ mol ⁻¹				1

© UCLES 2017 Page 3 of 12

Question	Answer	Marks
3(a)(i)	$A - H_2$, 1 atm $B - platinum$ $C - 1 mol dm^{-3} H^+/HCl$ etc. $D - salt bridge/KNO_3$ etc. $E - platinum$ $F - 1 mol dm^{-3} Fe^{2+}$ AND 1 mol dm ⁻³ Fe^{3+}	3
3(a)(ii)	positive electrode is (Pt) on RHS AND electrons flow clockwise	1
3(b)	cell potential is 0.77 – 0.34 =(+) 0.43 (V)	1
3(c)(i)	electrode potential would become more negative as equilibrium shifts to left/explanation in terms of the Nernst equation	1
3(c)(ii)	$E = -0.41 + (0.059/1)\log[Cr^{3+}]/[Cr^{2+}]$ = -0.41 + 0.059 log 4.0	1
	=-0.37(V)	1

© UCLES 2017 Page 4 of 12

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question		Answ	er			Marks
4(a)(i)	experiments	s 1 and 2: doubling [ClO ₂] quadruples the rate, so s	second order			1
	experiments	s 2 and 3: doubling [OH ⁻] doubles the rate, so first	order			1
	rate equation	$on = k[ClO_2]^2[OH^-]$				1
4(a)(ii)	from experience $k = 1.15 \times 1$	ment t 2: $9.34 \times 10^{-4} = k(2.50 \times 10^{-2})^2 \times 1.30 \times 10^{-3}$	3			1
	units: mol ⁻²	$dm^6 s^{-1}$				1
4(b)(i)		ous catalysts are in different physical state from the	e reactants AND homo	geneous catalysts are	in the same	1
4(b)(ii)		catalysed reaction	heterogeneous	homogeneous		2
		manufacture of ammonia in the Haber process	✓			
		removal of nitrogen oxides from car exhausts	✓			
		oxidation of sulfur dioxide in the atmosphere		✓		
4(c)(i)		$6H^{+} + 5(CO_{2}H)_{2} \rightarrow 2Mn^{2+} + 10 CO_{2} + 8 H_{2}O$: $(CO_{2}H)_{2}$ ratio				1 1
4(c)(ii)	first section second sec	: flatter tion: steeper, before flattening				1 1
		8799				

Question	Answer	Marks
,4(d)(i)	Campyall products Hamilton coordinate	ß
	diagram catalyst lowers E _a for both the forward and reverse reactions so the process requires less energy/can occur at a lower temperature	1 1 1
4(d)(ii)	$K_p = (pNH_3)^2/(pN_2)(pH_2)^3$ 1.45 × 10 ⁻⁵ = $(pNH_3)^2$ / 20 × 60 × 60 × 60	1
	pNH ₃ = 7.91	1

© UCLES 2017 Page 6 of 12

Question	Answer	Marks
5(a)(i)	$(CH_3)_3C-Cl/(CH_3)_2C = CH_2$	1
	AlCl ₃ + heat	1
5(a)(ii)	(UV) light	1
5(a)(iii)	Cl	1
5(a)(iv)	ammonia/NH ₃	1
	heat in sealed tube/heat under pressure	1
5(b)	$C_{10}H_{13}NH_2 + H_3O^+ \rightleftharpoons C_{10}H_{13}NH_3^+ + H_2O$	1
5(c)	in compound H , the alkyl groups are electron donating/have a positive inductive effect, so it is more basic than NH ₃	1
	in phenylamine, the lone pair (of N) is delocalised over the aryl group/benzene ring, so phenylamine is less basic than NH ₃	1

© UCLES 2017 Page 7 of 12

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
6(a)(i)	****	1
6(a)(ii)	Ni : $[1s^22s^22p^63s^23p^6]$ 3d ⁸ 4s ² Ni ³⁺ : $[1s^22s^22p^63s^23p^6]$ 3d ⁷	1
6(b)(i)	octahedral isolated ion tetrahedral complex	1
6(b)(ii)	energy/photon is absorbed in the visible region/light	1
	electron jumps from the lower to the upper energy level/is excited	1
6(b)(iii)	different frequency/wavelength of light are absorbed by the two complexes OR different size of energy gap	1
6(c)	colour of solution: green	1
	explanation: because the solution absorbs most strongly in the blue AND red regions	1
6(d)(i)	$\begin{bmatrix} CI \\ H_2O_{H_{H_{10}}} \\ H_2O \end{bmatrix} OH_2 $ $\begin{bmatrix} CI \\ H_2O_{H_{10}} \\ H_2O \end{bmatrix} OH_2$ $\begin{bmatrix} CI \\ H_2O_{H_{10}} \\ H_2O \end{bmatrix} OH_2$	2

© UCLES 2017 Page 8 of 12

Question	Answer	Marks
6(d)(ii)	cis-trans/geometrical	1
6(e)(i)	Norman No	2
6(e)(ii)	optical	1
6(f)(i)	$K_{\text{stab}} = [\text{Ni}(\text{NH}_3)_6^{2+}]/([\text{Ni}(\text{H}_2\text{O})_6^{2+}][\text{NH}_3]^6)$	1
6(f)(ii)	$[Ni(en)_3]^{2^+}$ would be formed because it is much more stable $/K_{stab}$ is much greater OR in the presence of both ligands the overall equilibrium $[Ni(NH_3)_6]^{2^+} \rightleftharpoons [Ni(H_2O)_6]^{2^+} \rightleftharpoons [Ni(en)_3]^{2^+}$ would shift right	1
6(f)(iii)	cis-trans isomers identified	1
	two cis isomers identified	1

© UCLES 2017 Page 9 of 12

Question	Answer	Marks
7(a)	RO NH O CH ₃	1
7(b)(i)	H ⁺ (aq) + heat	1
7(b)(ii)	hydrolysis	1
7(b)(iii)	CH₃OH	1
7(c)(i)	white precipitate	1
7(c)(ii)	$C_{14}H_{19}O_6N + 3NaOH \rightarrow C_{14}H_{16}O_6NNa_3 + 3H_2O$	2
7(d)(i)	no change/colour remains orange	1
7(d)(ii)	amide bond displayed two repeat units	1 1
7(e)(i)	seven	1

© UCLES 2017 Page 10 of 12

Question	Answer	Marks
7(e)(ii)	x , any aryl carbon at $\delta = 130$ y at $\delta = 170$	1

Question	Answer	Marks
8(a)	oxidation of –OH/alcohol to C=O/ketone/carbonyl	1
8(b)(i)	dehydration / elimination	1
8(b)(ii)	heat with Al ₂ O ₃ OR heat with H ₃ PO ₄ /H ₂ SO ₄	1
8(b)(iii)	O O O O O O O O O O	2
8(c)	phenol	1
	ketone	1

© UCLES 2017 Page 11 of 12

Question	Answer	Marks
9(a)(i)	$n = 100 \times (M+1)/(1.1 \times M) = 100 \times 3.4/(1.1 \times 33.9) = 9.1$	1
	hence 9 carbons atoms	1
9(a)(ii)	$C_9H_{10}O_2$	1
9(a)(iii)	(150 – 119 = 31), hence fragment is CH ₃ O	1
9(b)	V is C=O AND W is C-O	1
9(c)(i)	δ 3.9 is CH or alkyl/CH $_3$ next to oxygen AND δ 7.2–7.9 is CH/aryl hydrogens	1
9(c)(ii)	alkyl H next to C=O AND alkyl H next to aryl ring	1
9(c)(iii)	none of the functional groups in T contains a labile proton/ T does not contain –OH or –NH groups.	1
9(d)	CH ₃ OCH ₃ CH ₃ O CH ₃	2

© UCLES 2017 Page 12 of 12