MARK SCHEME for the May/June 2015 series

9701 CHEMISTRY

9701/21

Paper 2 (Structured Questions AS Core), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9701	21

Questi	on			Mark Scheme			Mark	Total
1 (a)		sub-at	tomic particle	relative mass	relative charge			
		r	neutron	1	0		[1]	
		е	electron	1/1836	-1		[1]	
			proton	1	+1		[1]	[3]
(b)	(i)		relative to 1/1	e mass of the isotope <u>s</u> / 2 the mass of an atom of (exactly) 12 (units)	an atom(s) f ¹² C / on a scale where a	an	[1] [1]	
		isotope	number v	h the same number of pr rith different mass number nucleon number		proton	[1]	[3]
	(ii)	<u>(0.89×</u>	74)+(9.37×70	$(7.63 \times 77) + (23.77 \times 70)$	78)+(49.61×80)+(8.73	×82)	[1]	
		= 79.04	l (2 d.p.) AND	Se			[1]	[2]
(c)	(i)	Те	C1					
		47.4 128	<u>52.6</u> 35.5				[1]	
		$\frac{0.370}{0.370}$	1.48 0.370					
		1	4 s	o EF = TeC <i>l</i> ₄			[1]	
			E	mpirical Formula Mass	= 270 so MF = Te	eCl₄	[1]	[3]
(c)	(ii)	Covale	nt AND simple	e/molecular			[1]	
		low me	Iting point/rea	ction with water			[1]	[2]
((iii)		+ $3H_2O \rightarrow H_2T$ C l_4 + $2H_2O \rightarrow$	eO ₃ + 4HC <i>l</i> TeO ₂ + 4HC <i>l</i>			[1]	[1]
(d)	(i)	White f	/orange flame umes/solid /green gas dis				[1] [1] [1]	[max 2]

Page 3	Mark Scheme Syllab		
	Cambridge International AS/A Level – May/June 2015 970 ⁷	1 21	
Question	Mark Scheme	Mark	Total
(ii)	NaCl giant / lattice AND ionic SiCl ₄ simple / molecular AND covalent	[1] [1]	
	For NaCl large difference in electronegativity (of sodium/Na and chlorine/ Cl/Cl_2) (indicates electron transfer/ions)	[1]	
	For SiC4 smaller difference (indicates sharing/covalency) with (weak) van der Waals'/IM forces (between molecules) ora	[4]	F 41
		[1]	[4] [20]
2 (a) (i)	Straight line drawn horizontally from same intercept	[1]	[1]
(ii)	T_1 because it shows greatest deviation/furthest from ideal	[1]	[1]
(iii)	reducing T (reduces KE of particles) so intermolecular forces of attraction become more significant	[1]	[1]
(iv)	greatest deviation is at high pressure	[1]	
	increasing pressure decreases volume so volume of particles becomes more significant ora	[1]	[2]
(b)	Mass of air= 100×0.00118 = 0.118 gMass of flask= $47.930 - 0.118$ = 47.812 gMass of Y= $47.989 - 47.812$ = 0.177 g	[1] [1]	
	$pV = nRT = \frac{m}{M_r} RT$		
	$M_r = \frac{mRT}{pV} = \frac{0.177 \times 8.31 \times 299}{1 \times 10^5 \times 100 \times 10^{-6}}$	[1]	
	= 44.0 (43.979 to 2 or more sf)	[1]	[4]
(c) (i)	strong <u>triple</u> bond	[1]	[1]
(ii)	high temperature (needed for reaction between N_2 and O_2)	[1]	[1]
(iii)	$\begin{array}{l} 2\text{NO} + 2\text{CO} \rightarrow \text{N}_2 + 2\text{CO}_2 \\ \textbf{OR} \ 2\text{NO} + \text{C} \rightarrow \text{N}_2 + \text{CO}_2 \end{array}$	[1]	[1]
(iv)	$4NO_2 + 2H_2O + O_2 \rightarrow 4HNO_3$	[1]	[1]
(v)	$NO + \frac{1}{2}O_2 \rightarrow NO_2$	[1]	
	$\begin{array}{l} NO_2 + SO_2 \rightarrow NO + SO_3 \\ \mathbf{OR} \ NO_2 + SO_2 + H_2O \rightarrow NO + H2SO_4 \end{array}$	[1]	[2]
			[15]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9701	21

Question		Mark Scheme		Total
3	(a)	Bond breaking = $C=O = 740$ C-H = 410 = 1150 kJ	[1]	
		Bond forming = $\begin{array}{c} C-C &= 350 \\ C-O &= 360 \\ O-H &= 460 \\ \end{array} = 1170 kJ$	[1]	
		Enthalpy change = $1150 - 1170 = -20 \text{ kJ mol}^{-1}$	[1]	[3]
	(b) (i)	Stereoisomerism = (molecules with the same molecular formula and) same structural formula but different spatial arrangements of atoms	[1]	
		Chiral centre = atom with four different atoms/groups attached	[1]	[2]
	(ii)	(Planar) carbonyl so (equal chance of nucleophile) attacking either side	[1]	[1]
3	(c) (i)			
		M1 = lone pair AND curly arrow from lone pair to carbonyl C M2 = partial charges on C=O AND curly arrow from bond (=) to O^{δ^-} M3 = structure of intermediate including charge M4 = lone pair AND two correct curly arrows (from lone pair to H AND from H—C to C)	[1] [1] [1] [1]	
		$M5 = CN^{-}$	[1]	[5]
	(ii)	(CN ⁻ regenerated so) catalyst	[1]	[1]
				[12]

Question Mark Scheme Mark Total 4 (a) $A = 0$ OH $A = 0OH$ $A = 0A = 0$ $A = 0A = 0$ $A = 0A = 0$ $A = 0$ <	Page 5	Mark SchemeSyllabuCambridge International AS/A Level – May/June 20159701	s Pap 21	
(b) (i) but-1-ene/1-butene but-2-ene/2-butene but	Question	Mark Scheme		
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	4 (a)	OH chain OH	[1]	
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$			[1]	
$\begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $		C= OH chain OH	[1] [1] [1]	
(b) (i)but-1-ene/1-butene but-2-ene/2-butene[1] (1][2](ii)but-2-ene AND two different groups on each carbon (of C=C) double bond means no free rotation[1] [1][2](iii) $H_{-} + H_{-} + H_{$		chain OR position		
but-2-ene/2-butene[1][2](ii)but-2-ene AND two different groups on each carbon (of C=C) double bond means no free rotation[1][2](iii)HHHH[1][2](iii)HHHH[1][1](iii)HHHH[1][1](iii)HHHH[1][1](iii)HHHH[1][1](iii)HHHH[1][1](iii)IIII(iii)HHHHII(iii)HHHHII(iii)IIIII(iii)IIIII(iii)IIIII(iii)IIIII(iiii)II<		OH Chain D=		[7]
double bond means no free rotation[1][2](iii) H_{H}	(b) (i)		[1] [1]	[2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(ii)	but-2-ene AND two different groups on each carbon (of C=C) double bond means no free rotation	[1] [1]	[2]
and (either way round) [2]	(iii)		[1+1]	
[13]		and (either way round)		