Cambridge International Advanced Level

MARK SCHEME for the May/June 2015 series

9701 CHEMISTRY

9701/42

Paper 4 (Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	42
1 (a)	fluorine: $1s^22s^22p^5$ sulfur: $1s^22s^22p^63s^23p^4$		[1]
(b)	(i) $2HCl \longrightarrow H_2 + Cl_2$		[1]
	(ii) bond energies: HF (562) is stronger than HCl (431) or F_2 (158) is weaker than Cl_2 (244)		[1]
(c)	<i>electronegativity:</i> The attraction by an atom/nucleus/element of the electrons in a bond pair <i>or</i> a molecule <i>bond polarity:</i> is due to atoms/elements of different electronegativities at each end		[2]
(d)	(i) $(\mathbf{F} \to \mathbf{F} \to \mathbf{F} \to \mathbf{F}$		

(ii) Yes, it will have a dipole moment, [3]
 either because it has an uneven distribution of electrons *or* because it contains a lone pair
 or the S–F dipoles don't cancel *or* molecule is not symmetrical *or* diagram of see-saw shape.

(allow an ecf for "no dipole" if their structure in (d)(i) has **no** lone pair)

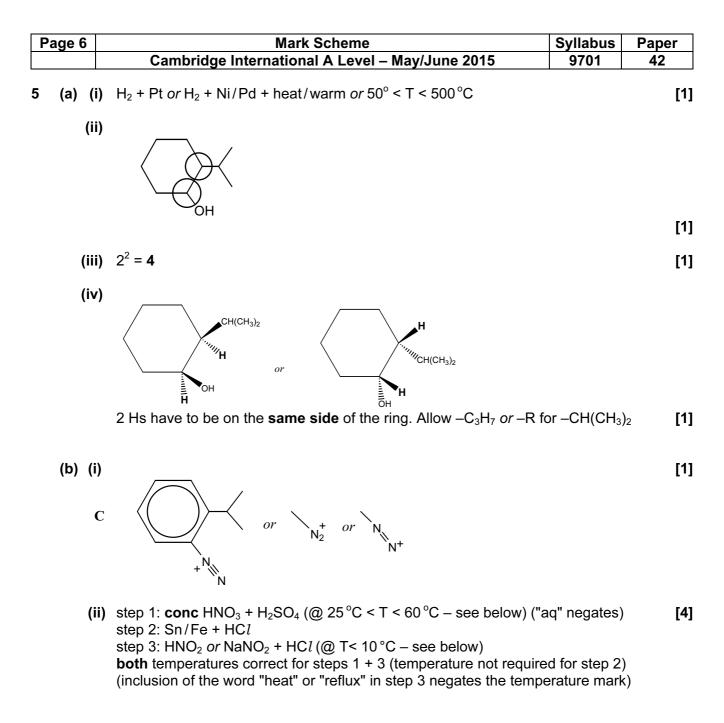
- (e) Sulfur can use its d-orbitals *or* has low-lying/accessible/available d-orbitals *or* can expand its octet.
 (allow reverse argument for oxygen; do NOT allow just "sulfur has d-orbitals")
- (f) (i) Burning of **fossil** fuels *or* coal/oil/petrol/natural gas (NOT methane *or* hydrocarbons) *or* volcanoes *or* roasting/burning sulfide ores
 - (ii) Acid rain

:

[2]

[Total: 11]

Pa	age 3	3	Mark Scheme	Syllabus	Paper
			Cambridge International A Level – May/June 2015	9701	42
2	(a)	A _r	= 204 × 0.019 + 206 × 0.248 + 207 = 207.21 (correct)	ans = [2])	[2]
		The	e last answer written by the candidate needs to be written with 2 d.p.	/	ast mark.
			· · · · · · · · · · · · · · · · · · ·	J	
	(b)	(i)	Tin(II) oxide is more basic than tin(IV) oxide or tin(II) oxide is less acidic than tin (IV) oxide		[1]
		(ii)	e.g. SnO + 2HCl \longrightarrow SnCl ₂ + H2O(or ionic or with H ₂ SO ₄)		[2]
		(")	$SnO_2 + 2NaOH \longrightarrow Na_2SnO_3 + H_2O (or ionic or with KOH et$	c)	[~]
		(iii)	SnO ₂ stays the same (white) or is stable or no reaction		[3]
			PbO ₂ changes colour (from brown/black to yellow/orange/red)		
			$PbO_2 \longrightarrow PbO + \frac{1}{2} O_2$ or $3PbO_2 \longrightarrow Pb_3O_4 + O_2$		


[Total: 8]

Ρ	age 4			Scheme	Syllabus	Paper
		Camb	ridge Internationa	II A Level – May/June 2015	9701	42
3	(a)	³³ P-				[2]
	(b)	Solubility decrea	ases (from Mg to B	a <i>or</i> down the group)		[4]
		Both lattice ener	$rgy/\Delta H_{latt}$ and enthe	alpy change of hydration / ΔH_{hyd} are i	nvolved	
		enthalpy change	e of hydration decr	eases more than lattice energy		
		So enthalpy change of solution $/\Delta H_{sol}$ becomes more endothermic <i>or</i> more positive <i>or</i> less exothermic <i>or</i> less negative (NOT ΔH_{sol} decreases, or increases)				
	(c)			n K _{sp} is exceeded <i>or</i> the following equi ^{⁺(} aq) + SO4 ²⁻ (aq) ⇔ CaSO₄(s)	librium	[2]
	(d)	charge passed	= 1.8 × 40 x 60	(= 4320 C)		[4]
		n(e ⁻)	= 4320/96500	(= 4.477×10^{-2} mol) ecf		
		n(Cr)	= 0.776/52	(= 1.492×10^{-2} mol) ecf		
		n	= 4.477 × 10 ⁻² /1.	492 × 10 ⁻² = 3.00 (= 3)		

[Total: 12]

P	age 5	5	Mark Scheme	Syllabus	Paper
			Cambridge International A Level – May/June 2015	9701	42
4	(a)	(i)	a solution that resists/minimises a change in its pH or helps maint (NOT any of: "maintains pH"; "keeps pH constant"; "no change in pwhen small amounts of acid/ H^+ or base/OH ⁻ are added (both a base are needed)	H")	[2]
		(ii)	$\begin{array}{c} HCO_3^- \text{ reacts with } H^+ \text{ ions as follows:} \\ HCO_3^- + H^+ & \longrightarrow H_2CO_3 \ (\textit{or} \ H_2O + CO_2) \\ \text{and with } OH^- \text{ ions thus:} \\ HCO_3^- + OH^- \longrightarrow CO_3^{2^-} + H_2O \end{array}$		[2]
			(the equation arrows can be equilibrium arrows, as long as HCO_3^- i	is on the left)	1
		(iii)	$(pK_a = -log(K_a) = 7.21)$		[2]
			pH = pK _a + log([base]/[acid] = $7.21 + log(0.5/0.3)$ = 7.43 (7.4)		
	(b)	(i)	$K_{sp} = [Ag^+]^3 [PO_4^{3-}]$ and units: mol ⁴ dm ⁻¹²		[1]
		(ii)	call $[PO_4^{3-}] = x$, then $[Ag^+] = 3x$, and $K_{sp} = 27x^4$		[3]
			$x = (K_{sp}/27)^{1/4} = (1.25 \times 10^{-20}/27)^{1/4} = 4.64 \times 10^{-6} \text{ mol d}$	m^{-3}	
			$[Ag^{+}] = 3x = 1.39 \times 10^{-5} \text{ (mol dm}^{-3}) \text{ (allow } 1.4 \times 10^{-5}\text{)}$		
	(c)		$H_3PO_3 + 2Fe^{3+} + H_2O \longrightarrow H_3PO_4 + 2Fe^{2+} + 2H^+$		[2]
			<i>E</i> _{⊖cell} = 0.77 –(−0.28) = (+) 1.05 ∨		
		or	$3H_3PO_3 + 3H_2O + 2Fe^{3+} \longrightarrow 3H_3PO_4 + 6H^+ + 2Fe$		
			<i>E</i> _{⊖cell} = −0.04 −(−0.28) = (+) 0.24 ∨		
				r	Total [.] 121

[Total: 12]

(c)

HBr	no reaction	Br
Na	Na	ONa
NaOH(aq)	ONa	no reaction

[Total: 14]

[5]

Page 7	Mark Scheme		Paper
	Cambridge International A Level – May/June 2015	9701	42

6 (a) There are three acceptable alternatives – follow each column down vertically:

(i) D is	RCOCl	RCOOCH ₂ CH ₃	$\text{RCO}_2^- \text{NH}_4^+$	
(ii) step 1	$SOCl_2$ (or PCl_3 or PCl_5)	ethanol (e.g.) + conc H ₂ SO ₄	NH ₃	
(ii) step 2	NH ₃ (NaOH negates this mark)		heat	
(ii) step 3	LiA <i>l</i> H ₄ (aq) negates(NOT NaBH ₄ ; Sn + HC <i>l</i> etc.)			

- (b) (i) amine (other groups negate)
 - (ii) phenol and carboxylic acid (both needed)

(iii)

compound	first functional group	second functional group
E	amide	alcohol
F	amine	carboxylic acid
G	amine	ester
Н	amide	phenol

- (iv) Mark this in the following way. For each structure of E, F, G and H:
 - check whether the structure fits the molecular formula C₈H₉NO₂, i.e. that it has: one nitrogen, two oxygens and eight carbons.
 - check that it contains the two groups that the candidate's answers to part (ii) says it contains.

[Total: 13]

[1]

[1]

[4]

[4]

Paper	Syllabus	Mark Scheme	ge 8	Pa
42	9701	Cambridge International A Level – May/June 2015		
[1]	ntain)	– it is the only compound that is an amino acid <i>or</i> can form (NOT <i>con</i> -NH–CO– / amide / peptide linkages / bonds or	_	7
		it contains an N atom/NH ₂ group/CO ₂ H group	-	
[4]		nark both parts of this together – max [4] from the following six points	• •	
		M1 mRNA is complementary to <i>or</i> a copy of (a portion of) DNA		
	n of its	M2 mRNA encodes the sequence of amino acids in proteins or each acidens (base triplets) as dea for any aming acid.	N	
		codons (base triplets) codes for one amino acid		
		 M3 mRNA binds to/associates with the ribosome M4 tRNAs are specific to their amino acids 		
airing or	uah basa n	 <i>I</i>4 tRNAs are specific to their amino acids <i>I</i>5 tRNA contains an anticodon <i>or</i> bonds to the codon/mRNA thro 		
anny or	ndan nase h	translates the RNA code into the amino acid sequence	IV	
		16 tRNA carries the amino acid to the ribosome/mRNA	Ν	
[3]		nax [3] from the following six points.	(c) n	
		1 the pH of that area of the protein would change	• •	
		M2 protein becomes less hydrophilic/soluble <i>or</i> more hydrophobic	Ν	
		A3 fewer hydrogen bonds <i>or</i> more van der Waals' (id–id) forces	Ν	
		A4 fewer ionic bonds form	Ν	
	change	M5 the tertiary structure/folding/(3D) shape (of the protein) would c	N	
	-	the active site would be different/less efficient	N	

[Total: 8]

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	42
8 (a) () The nucleus/proton of a hydrogen atom has spin		[1]
(i) Hydrogen doesn't have enough electrons/electron density		[1]
(ii) S/sulfur – it has the greatest number of electrons <i>or</i> highest electron	on density	[1]
(b) () 12 protons (=9+2+1)		[1]
(i	The group responsible for this peak is –OH (allow NH) The D in D ₂ O exchanges with the H in –OH or H is replaced by D or "–OH → –OD",		[2]
(ii) The adjacent carbon atom has no hydrogen atoms bonded to it		[1]
(iv) Methyl/CH ₃ group		[1]
(\) P is (CH ₃) ₃ C–CH ₂ OH		[1]
(c) () $n = \frac{100 \times (M+1)}{1.1 \times M} = \frac{100 \times 0.5}{1.1 \times 9.3} = 50/10.23$ = 4.89 hence 5 carbons		[1]
(i) (Ratio of ⁷⁹ Br: ⁸¹ Br is 1 : 1), hence ratio of M : M+2 : M+4 is 1 : 2 : 1		[1]
(ii) Molecular formula of \mathbf{R} is $C_5H_{10}Br_2$		[1]
			[Total: 12]

Page 10	Page 10 Mark Scheme		Paper
	Cambridge International A Level – May/June 2015	9701	42

9 (a)

י ע				
	monomer	addition	condensation	both
			~	
	H C=C H	✓		
	н_с=с_н	V		

(b) polythene is non-polar or its bonds are non-polar so not (easily) hydrolysed

(c) (i) [1] $\downarrow 0$ $\downarrow 0$ \downarrow

(Allow displayed, skeletal, part-skeletal, structural etc.)

- (ii) The ester (or –COO–) linkage/bond is hydrolysed *or* reacts with water [1]
- (d) Polythene has (weak) van der Waals' (or id-id) forces[3]PVC has stronger van der Waals' forces or additional dipole forcesNylon has (strong) hydrogen bonding

[Total: 10]

[2]