

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/41

Paper 4 A Level Structured Questions

October/November 2016

MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	41

Question	Answer	Mark
1(a)	Cu [Ar] 3d ¹⁰ 4s ¹	1
	Cu ²⁺ [Ar] 3d ⁹ (4s ^o)	1 2
1(b)(i)	ligand exchange/replacement/displacement/substitution	1 1
1(b)(ii)	$[Cu(H_2O)_6]^{2+}$ blue and $[CuCl_4]^{2-}$ yellow OR yellow/green OR green/yellow	1 1
1(b)(iii)	tetrahedral	1 1
1(b)(iv)	$K_{\text{stab}} = [\text{CuC}l_4^{2-}]/[\text{Cu}(\text{H}_2\text{O})_6^{2+}][\text{C}t]^4$	1 1
1(c)(i)	a species that contains two lone pairs	1
	that (each) form a co-ordinate / dative bond OR are donated (to a metal ion / atom)	1 2
1(c)(ii)	equilibrium 2 lies more to the RHS/favours forward reaction more	1 1
1(d)(i)	optical	1 1
1(d)(ii)	3D correct for octahedral	1
	one correct structure with 3D	1
	second correct with 3D	1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	41

Question	Answer	Ма	ırk
			3
1(e)(i)	lone pair receive / accepts a proton / H ⁺	1	2
1(e)(ii)	$H_2NCH_2CH_2NH_2 + 2HCl \rightarrow ClH_3NCH_2CH_2NH_3Cl$		
	OR $H_2NCH_2CH_2NH_2 + 2H^+ \rightarrow H_3N^+CH_2CH_2N^+H_3$	1	1
1(f)(i)	amide bond, displayed or –CONH–	1	
	rest of the molecule with continuation bonds	1	
			2
1(f)(ii)	condensation / addition – elimination	1	1
1(f)(iii)	any named polyalkene/eg polyethene, PVC	1	
	allow Bakelite or Kevlar		1
	Total:		20

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	41

Question	Answer	Mark
2(a)	solid remains	1 1
2(b)	stability increases (down the group) as size/radius of (metal) ion/M²+ increases so polarisation/distortion of anion/carbonate ion decreases	1 1 1 3
2(c)(i)	$ \begin{bmatrix} x & x & x & x & x \\ x$	2
2(c)(ii)	$CaCN_2 + 3H_2O \rightarrow CaCO_3 + 2NH_3$ $CaCO_3$ $correct \ equation$	1 1 2
	Total:	8

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	41

Question	Answer	Ma	ark
3(a)(i)	(entropy) increases/is positive and H ₂ /gas is formed	1	1
3(a)(ii)	(entropy) increases/is positive and (KCl (aq)) solution has (free) moving/mobile ions/aqueous ions	1	1
3(a)(iii)	(entropy) decreases/is negative and decrease in gas	1	
3(b)(i)	$\Delta S^{e} = 26.9 + 214 - 65.7 = (+) 175.2 (J K^{-1} mol^{-1})$	1	
	$\Delta G^{\text{e}} = 117 - (298 \times 175.2/1000) \text{ OR } \Delta G^{\text{e}} = 117000 - (298 \times 175.2)$	1	
	$\Delta G^{\Theta} = +64.8 \text{ (kJ mol}^{-1}\text{)}$	1	;
3(b)(ii)	$T\Delta S$ is more positive than $\Delta H/T\Delta S$ increases/ $-T\Delta S$ more negative		
	and ΔG is negative/decrease/less positive	1	1
3(c)	use of $\Delta G = 0$ or $\overline{T\Delta S} = 1$	1	
	ΔH T=130/(316/1000)= 410/411/412/411.4 (K)	1	2

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	41

Question	Answer	Mark
3(d)	hydration enthalpy and lattice energy both more endothermic/more positive/less exothermic/less negative (down the group) $\Delta H_{\rm hyd} {\rm decreases \; more/faster \; and \; } \Delta H_{\rm sol} {\rm becomes \; (more) \; endothermic/(more) \; positive/less \; exothermic/less}$	1
	negative	2
	Total:	11

Question	Answer	Mark
4(a)	(an element) forming one or more (stable) ions or compounds or oxidation states with partially filled/incomplete d orbitals	1 1
4(b)(i)	A Co(OH) ₂ OR Co(H ₂ O) ₄ (OH) ₂	
	B [CoC1 ₄] ²⁻	
	C $[Co(NH_3)_6]^{2+}$ OR $[Co(NH_3)_6]^{3+}$	
	two correct = 1 mark three correct = 2 marks	2
4(b)(ii)	$[Co(H_2O)_6]^{2+}$ pink	
	solution of B blue	
	solution of C brown/yellow/orange	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	41

Question	Answer	Mark
	two correct = 1 mark three correct = 2 marks	2

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	41

Question		Answer	Mai	rk
4(c)	(emf/potential/ <i>E</i>) of "hydrogen half-cell"	(emf/potential/E) of an electrode OR a half-cell compared to/connected to (S)HE which can be called a "hydrogen half-cell"		
	at concentration of 1	mol dm ⁻³ and pressure of 1 atm (or in Pa) OR 298 K	1	
				2
4(d)(i)	half-cell	electrode		
	Co ²⁺ /Co	Co/cobalt		
	Fe ³⁺ /Fe ²⁺	Pt/carbon/graphite		
			1	1
4(d)(ii)	$Co + 2Fe^{3+} \rightarrow Co^{2+} + 2$	Fe ²⁺	1	1
4(d)(iii)	$E_{\text{cell}}^{\circ} = 0.77 - (-0.28)$	=(+or-)1.05(V)	1	1
4(e)(i)	$E_{\text{electrode}} = -0.28 + (0.0)$	059/2)log[0.05]= -0.32/-0.318 (V)	1	1
4(e)(ii)	more positive		1	1
4(f)	$4Fe^{3+} + V + H_2O \rightarrow VC$	²⁺ +4Fe ²⁺ +2H ⁺		
	VO ²⁺ correct equation		1	

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	41

Question	Answer	Mark
		2
	Total:	14

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	41

00/22.1)×(0.7	100 × 0.7					
	$100/22.1$)×(0.7/1.1) or $\frac{100\times0.7}{22.1\times1.1}$ or 2.87/2.88/2.9 s carbon atoms					
H ₆ O ₃					1	1
bsorption/ m ⁻¹	appearance of the peak	type of bond	functional group			
350	broad and strong	OH or O–H	alcohol/ROH			
680	very broad and strong	OH or O–H	(carboxylic) acid/CO ₂ H			
725	strong	C=O	(carboxylic) acid/CO₂H			
k r	psorption / m ⁻¹ 350	appearance of the peak broad and strong very broad and strong	appearance of the peak type of bond broad and strong OH or O-H very broad and strong OH or O-H	appearance of the peak type of bond functional group broad and strong OH or O-H alcohol/ROH very broad and strong OH or O-H (carboxylic) acid/CO ₂ H	appearance of the peak type of bond functional group broad and strong OH or O-H alcohol/ROH very broad and strong OH or O-H (carboxylic) acid/CO ₂ H	osorption / appearance of the peak type of bond functional group broad and strong OH or O-H alcohol/ROH very broad and strong OH or O-H (carboxylic) acid/CO ₂ H

Page 11	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	41

Question		Answer				
5(c)(i)	δ/ppm	type of proton	relative peak area			
	1.4	-CH ₃ or -CH ₂ or -CH or alkane	3			
	3.9	-OCH or -OCH ₂ or -OCH ₃ or CH or alkyl next to electronegative atom/oxygen	1			
	4.7	-OH or alcohol	1			
	12.9	–OH or –CO₂H or carboxylic acid	1			
				•		4
5(c)(ii)	doublet ar	nd 1/one H/proton on neighbouring OR adjacen	t carbon		1	1
5(c)(iii)	4.7 and 12	2.9 OR –OH and –CO ₂ H			1	1
5(c)(iv)	OH	ОН			1	1
5(d)(i)		both required for 1 n	nark		1	1

Page 12	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	41

Question	Answer			Mark
5(d)(ii)	isomer P Q	number of peaks 4		1
			Total:	2 15

Question	Answer	Mark
6(a)	ibuprofen: carboxylic acid/carboxyl	
	paracetamol: phenol and amide	
	any two = 1 mark all three = 2 marks	2
6(b)(i)	(chiral centre is a) carbon OR atom that has four different groups/atoms/species attached to it	1 1

Page 13	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	41

Question	Answer	Mark
6(b)(ii)	one correct isomer second diagram shows second isomer	1 1
6(c)	with ibuprofen with paracetamol	1 1

Page 14	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	41

Question	Answer	Mar	k
6(d)(i)	(reagent D) Na ₂ CO ₃ / any carbonate (reagent E) Cl ₂ / Br ₂	1	2
6(d)(ii)	ONa (or ionic)	1	1
6(d)(iii)	HN—OH Br	1	1
6(e)(i)	$CH_3COCl + AlCl_3 \rightarrow CH_3CO^+ + AlCl_4^-$	1	1

Page 15	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	41

Question	Answer	Ma	ark
6(e)(ii)	CH ₃ CO ⁺ H ₃ C		
	curly arrow from ring system to CH₃CO ⁺	1	
	correct intermediate	1	
	curly arrow from C–H bond into ring	1	3
6(e)(iii)	electrophilic substitution	1	1
	Total:		16

Page 16	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	41

Question	Answer	Ма	ark
7(a)	moles of thiosulfate = $0.1 \times 20.8 / 1000 = 2.08 \times 10^{-3}$	1	
	moles of ClO^- in 25 cm ³ portion = $2.08 \times 10^{-3}/2 = 1.04 \times 10^{-3}$	1	
	(moles of ClO^- in 250 cm ³ = 1.04 × 10 ⁻²)		
	concentration of $ClO^- = 1.04 \times 10^{-2} / (10/1000) = 1.04 \text{ (mol dm}^{-3})$	1	3
7(b)(i)	starch	1	1
7(b)(ii)	blue OR black to colourless	1	1
7(b)(iii)	towards/close to the end-point of the titration/when the solution goes yellow	1	1
7(c)	moles of $O_2 = 82/24000 = 3.42 \times 10^{-3} = \text{moles C} lO^- \text{ ions}$	1	
	concentration of $ClO^- = 3.42 \times 10^{-3} / (5/1000) = 0.68/0.683/0.684$ (mol dm ⁻³)	1	
			2
7(d)(i)	$K_{c} = \frac{[C_{3}H_{3}N_{3}O_{3}][HClO_{3}]^{3}}{[C_{3}Cl_{3}N_{3}O_{3}][H_{2}0]^{3}}$	1	1
7(d)(ii)	(position of eqm) moves to the right/forward reaction predominates/more HC1O made (as [HC1O] decreases)	1	
	no effect on $\mathcal{K}_{ ext{c}}$	1	2

Page 17	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	41

Question	Answer	Mar	·k
7(d)(iii)	$2HClO \rightarrow 2HCl + O_2$	4	
	OR $2HClO \rightarrow H_2 + Cl_2 + O_2$	1	1
7(e)(i)	addition of acid: $H^+ + HCO_3^- \rightarrow H_2CO_3$	1	
	$\mathbf{OR} \ H^{+} + HCO_{3}^{-} \longrightarrow H_{2}O + CO_{2}$		
	addition of base: $OH^- + H_2CO_3 \rightarrow HCO_3^- + H_2O$	1	
	OR $H^+ + OH^- \rightarrow H_2O$ and position of eqm moves to the right		
	$\mathbf{OR} \ OH^- + HCO_3^- \rightarrow CO_3^{2-} + H_2O$		
			2
7(e)(ii)	$K_{a} = ([H^{+}][HCO_{3}^{-}]/[H_{2}CO_{3}])$		
	$[H^+] = (7.94 \times 10^{-7}) \times 1/9.5 = 8.36 \times 10^{-8}$	1	
	pH = -log[H ⁺] = 7.08	1	2
	Total:		16