

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY		9701/22
CENTRE NUMBER	CANDIDATE NUMBER	
CANDIDATE NAME		

Paper 2 AS Level Structured Questions

October/November 2016

1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials:

Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

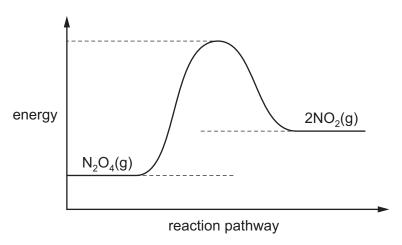
A Data Booklet is provided.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

Answer **all** the questions in the spaces provided.

1


A 0.50 g (an exc	•	dded to 40.0 cm ³ of 1.00 mol dm ⁻³ hydrochloric acid
equatio	M (s) + 2HC <i>l</i> (aq) -	\rightarrow M C l_2 (aq) + H ₂ (g)
(a) Cal	culate the amount, in moles, of hydroc	nloric acid present in 40.0 cm ³ of 1.00 mol dm ⁻³ HC <i>l</i> .
		amount = mol [1]
(b) Wh		ng solution was made up to 100 cm³ in a volumetric
soc	·	volumetric flask required 15.0 cm ³ of 0.050 mol dm ⁻³ for complete neutralisation of the remaining
(i)	Write the equation for the complete re	action of sodium carbonate with hydrochloric acid.
		[1]
(ii)	Calculate the amount, in moles, on hydrochloric acid in the 10.0 cm ³ samples.	of sodium carbonate needed to react with the ole from the volumetric flask.
		amount = mol [1]
(iii)	Calculate the amount, in moles, of hydrogen	drochloric acid in the 10.0 cm³ sample.
		amount = mol [1]
(iv)	Calculate the total amount, in moles shown in equation 1.	, of hydrochloric acid remaining after the reaction
		amount = mol [1]

	·
(v)	Use your answers to (a) and (b)(iv) to calculate the amount, in moles, of hydrochloric acid that reacted with the $0.50\mathrm{g}$ sample of M .
	anaunt - mal [4]
	amount = mol [1]
(vi)	Use your answer to (\mathbf{v}) and equation 1 to calculate the amount, in moles, of \mathbf{M} in the 0.50 g sample.
	amount = mol [1]
(vii)	Calculate the relative atomic mass, $A_{\rm r}$, of M and identify M .
	A_{r} of M =
	identity of M =[2]
	[Total: 9]

2 Dinitrogen tetraoxide, N₂O₄, and nitrogen dioxide, NO₂, exist in dynamic equilibrium with each other.

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$
 $\Delta H = +54 \text{ kJ mol}^{-1}$

The energy profile for this reaction is shown.

- (a) Add labelled arrows to the energy profile to indicate
 - the enthalpy change of the reaction, ΔH ,
 - the activation energy of the forward reaction, E_a.

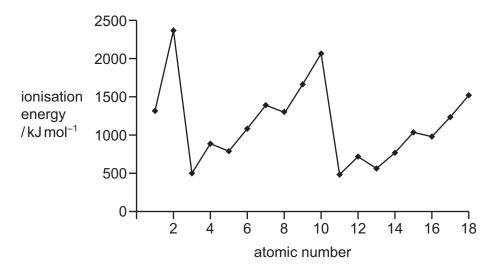
[2]

- (b) $0.0500 \, \text{mol}$ of N_2O_4 was placed in a sealed vessel of volume $1.00 \, \text{dm}^3$, at a temperature of $50 \, ^{\circ}\text{C}$ and a pressure of $1.68 \times 10^5 \, \text{Pa}$. The mass of the resulting equilibrium mixture was $4.606 \, \text{g}$.
 - (i) Calculate the average molecular mass, M_r , of the resulting equilibrium mixture. Give your answer to **three** significant figures.

$$M_{\rm r} = \dots [2]$$

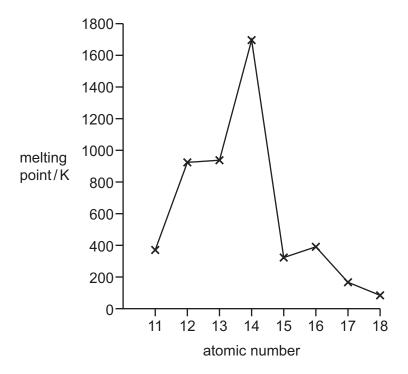
(ii) The number of moles of N_2O_4 that dissociated can be represented by n.

State, in terms of n, the amount, in moles, of NO_2 in the equilibrium mixture.


moles of
$$NO_2$$
 =[1]

The	e number of moles of N_2O_4 remaining at equilibrium is $(0.05 - n)$.
(iii)	State, in terms of n , the total amount, in moles, of gas in the equilibrium mixture.
	[1]
(iv)	State, in terms of n , the mole fraction of NO_2 in the equilibrium mixture.
	ra)
المصا	[1]
III U	his equilibrium mixture, the mole fraction of NO ₂ is 0.400.
(v)	Use your answers to (ii) and (iv) to calculate the amount in moles of each gas in the equilibrium mixture. Give your answers to three significant figures.
	amount of $N_2O_4 = \dots mol$
	amount of NO_2 = mol [2]
(vi)	Write the expression for the equilibrium constant, K_p , for this equilibrium.
	$K_{_{\mathrm{D}}}$ =
	[1]
(vii)	Use the total pressure of the mixture, 1.68×10^5 Pa, to calculate the value of the equilibrium constant, K_p , and give its units.
	$K_p = \dots$
	units =[3]

© UCLES 2016 9701/22/O/N/16 **[Turn over**


[Total: 13]

- 3 The Periodic Table is arranged such that the properties of the elements show a number of trends.
 - (a) A plot of the first ionisation energies for the first 18 elements is shown.

(i)	Explain why the values show a general increase from atomic number 11 to 18.
	[2]
(ii)	Explain the decreases in first ionisation energies between
	atomic numbers 12 and 13,
	atomic numbers 15 and 16.
	[4]
(iii)	Suggest an explanation for the trend in the first ionisation energies of the elements with atomic numbers 2, 10 and 18.

(b) A plot of the melting points of the elements across the third period is shown.

(i)	Explain the increase in melting point from atomic number 11 to 12.
<i>(</i> !!)	
(ii)	Suggest a reason why the increase from atomic number 12 to 13 is much smaller than the increase from atomic number 11 to 12.
	[1]
(iii)	State and explain the pattern of the melting points from atomic number 15 to 18.
	[3]
(iv)	Explain why the element with atomic number 14 has a melting point so much higher than the rest of the elements in the third period.
	[1]

[Total: 15]

4

	(a)	CH	₃CH₂CHBrCH₃
		(i)	Name this compound.
		(ii)	This compound shows stereoisomerism.
			Draw the two stereoisomers in the conventional way.
			[2]
		(iii)	Give the structures of three other structural isomers of C ₄ H ₉ Br.
			[3]
	(b)	$(C_2 $	H ₅) ₃ CBr
		(i)	Name this compound.
		(ii)	$(C_2H_5)_3CBr$ reacts with aqueous OH $^-$.
			Complete the mechanism for this reaction including all necessary curly arrows, charges, partial charges and lone pairs.
		CH ₂	
СН	₃ CH ₂	Ċ— CH ₂	-Br →
			[3]
	((iii)	What type of mechanism occurs in (ii)?
			[1]

(c)	CH ₃	3CH2CH2CHBrCH3		
	(i)	Give the reagents mixture of alkenes	and conditions necessary for the conv	version of this compound into a
				[2]
	(ii)	Give the name of	the mechanism for the conversion in (i).	
				[1]
	(iii)	Draw the skeletal	formulae of the three alkenes produced	by the conversion in (i).
]

[3]

[Total: 17]

In each section of this question choose the answer or answers from the options listed.											
(a) S	Six	particles	are lis	sted.							
				Н∙	H⁺	C1∙	C <i>l</i> -	•CH ₃	⁺CH ₃		
((i)	Identify to		articles	produc	ed durir	ng the re	action of	methane and	chlorine in	the presence
											[1]
(i	ii)	Identify	the tw	o parti	cles pro	oduced	by the h	eterolytic	fission of a b	ond in chlo	oromethane.
											[1]
(b) S	Sev	en reacti	on typ	es are	listed.						
			ad	dition	sub	stitution	oxi	dation	elimination		
				hyd	rolysis	con	densatio	on red	luction		
((i)	Name th	ne type	·	·				duction agent is used	to identify	an aldehyde.
((i)			e of rea	ction ir	nvolved	when To	ollens' rea		-	
				e of rea	etion ir	nvolved	when To	ollens' rea	agent is used		[1]
		Name th	ne type	e of rea	ection ir	nvolved	when To	ollens' rea	agent is used	using 2,4	[1] -DNPH.
(i		Name th	ne type	e of rea	ection ir	nvolved	when To	ollens' rea	agent is used	using 2,4	[1] -DNPH.
(i	ii)	Name the	ne type	e of rea	action ir	nvolved	when To	est for a c	agent is usedarbonyl group	using 2,4	[1] -DNPH. [1]
(i	ii) ii)	Name the	ne type	e of rea	action ir	nvolved	when To	est for a c	agent is used arbonyl group a ketone with	using 2,4 NaBH ₄ .	[1] -DNPH. [1]
(i	ii) ii)	Name the Nam	ne type	e of rea	action ir	nvolved	in the re	est for a content of eaction of	agent is used arbonyl group a ketone with	o using 2,4 n NaBH ₄ . with HCN.	[1] -DNPH[1]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.