

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/42

Paper 4 A Level Structured Questions

October/November 2017

MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Question	Answer	Marks				
1(a)	C1+3 to +4 (and oxidised)	1				
	Cl 0 to -1 (and reduced)	1				
1(b)	19 electrons total [1] correct diagram [1]					
1(c)(i)	he exponent / power to which a concentration is raised in the rate equation					
1(c)(ii)	$(0.0022 = k (0.01) \times (0.06))$ k = 3.7 (3.67)	1				
	$mol^{-1} dm^3 s^{-1}$	1				
1(c)(iii)	initial rate = 5.50×10^{-3}	1				
	$[ClO_2] = 0.048$	1				
1(d)(i)	slowest step (in a multi-step reaction)	1				
1(d)(ii)	1 mole of F ₂ and 1 mole C1O ₂ reacting in the rate-determining step	1				
	1st step is rate-determining step and a balanced mechanism consistent with overall equation e.g. $ClO_2 + F_2 \rightarrow ClO_2F_2$ $ClO_2 + ClO_2F_2 \rightarrow 2ClO_2F$ or $ClO_2 + F_2 \rightarrow ClO_2F + F$ $ClO_2 + F_2 \rightarrow ClO_2F$	1				
1(e)	k increases (as rate increases)	1				

Question	Answer	Marks
2(a)(i)	$Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3$	1
2(a)(ii)	moles of $Mg_3N_2 = 2.52 / 100.9 = 0.025 (0.0249)$	1
	(moles of Mg(OH) ₂ = 0.075 (0.0749)) mass of Mg(OH) ₂ = (0.075×58.3) = 4.37 g or 4.4 g	1
2(b)	solubility increases (down the group)	1
	ΔH_{latt} and ΔH_{hyd} both decrease / less exothermic / more endothermic	1
	but ΔH_{latt} decreases more (than ΔH_{hyd} decreases)	1
	$\Delta H_{\rm sol}$ becomes more negative / more exothermic / less endothermic	1
2(c)(i)	$K_{\rm sp} = [{\rm Mg}^{2^+}] [{\rm OH}^-]^2$	1
2(c)(ii)	$K_{\rm sp} = (1.7 \times 10^{-4}) \times (2 \times 1.7 \times 10^{-4})^2 = 2.0 \times 10^{-11} \ (1.97 \times 10^{-11})$	1
	mol ³ dm ⁻⁹	1
2(d)	cations become bigger / ionic radius increases	1
	polarisation/distortion of anion / hydroxide ion decreases	1

Question	Answer	Marks
3(a)(i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2
3(a)(ii)	peptide link [1] rest of the structure [1]	2

© UCLES 2017 Page 4 of 12

Question		Mark	เร		
3(b)	reagent structure of product type of organic reaction				8
	Na	Na ⁺ O ⁻ NH ₂ NH ₂ [1]	redox or reduction		
	excess Br ₂ (aq)	HO NH ₂ NH ₂ I[1]	(electrophilic) substitution		
	excess CH ₃ COC <i>l</i>	acylated OH [1] acylated NH(2) [1]	condensation (or addition + elimination)		
	excess H ₂ /Pt catalyst	HO NH ₂	reduction or hydrogenation or addition		

© UCLES 2017 Page 5 of 12

Question	Answer	Marks
3(c)(i)	(spectrum of M) contains a broad peak (for O–H) at 2500–3000 cm ⁻¹ or (spectrum of M) contains peak (for C=O) at 1640–1750 cm ⁻¹ or (spectrum of M) lacks (NH ₂ peak) at 3300–3500 cm ⁻¹	1
3(c)(ii)	5 or 6 peaks	1
	OH/NH protons exchange with deuterium <i>or</i> –OH / –NH + D₂O → –OD / –ND + DHO	1
3(d)	ester and hydrolysed	1

Question	Answer	Marks
4(a)(i)	$E_{\text{cell}}^{\circ} = 1.00 - (-0.26) = (+)1.26 \text{ V}$	1
4(a)(ii)	$VO_2^+ + V^{2+} + 2H^+ \rightarrow VO^{2+} + V^{3+} + H_2O$	1
4(a)(iii)	Solutions labelled correctly in one half-cell [1] solutions labelled correctly in both half-cells [1] two graphite or platinum electrodes [1] salt bridge and voltmeter [1]	4

© UCLES 2017 Page 6 of 12

Question	Answer	Marks
4(b)	• $V^{2^+}(aq)$ and $Sn^{4^+}(aq)$: yes and $E^{\circ}_{cell} = +0.15 - (-0.26) = +0.41 V [1]$ $2V^{2^+} + Sn^{4^+} \rightarrow 2V^{3^+} + Sn^{2^+} [1]$	3
	 VO²⁺(aq) and Fe³⁺(aq) no reaction [1] 	

Question	Answer	Marks
5(a)	(Na ⁺) 0.095 / 0.181 = 0.525 and octahedral and co-ordination no. = 6	1
	(Mg ²⁺) 0.065 / 0.181 = 0.359 and tetrahedral and co-ordination no. = 4	1
5(b)	enthalpy change = (-642) - (2 × -106) = - 430	1
5(c)(i)	-106 = 147 + 121 + 736 + (-349) + lattice energy lattice energy = -761	3
5(c)(ii)	MgC1 ₂ more exothermic / negative / bigger than MgCl and NaCl more exothermic / negative / bigger than MgCl	1
	(reason for MgC l ₂) higher charge / lower radius of Mg ²⁺ cation	1
	(reason for NaCl) smaller radius of Na ⁺ cation	1
5(d)	energy change when 1 mole of atoms / ions each gain an electron or energy change when 1 mole of atoms / ions gain 1 mole of electrons	1
	gaseous	1

© UCLES 2017 Page 7 of 12

Question			A	nswer	Marks
6(a)	central metal atom/ion surrounded by (one or more) ligands			1	
6(b)		co-ordination number	oxidation number		2
	[Pt(NH ₃) ₄ C <i>l</i> ₂] ²⁺	6	+4		
	[PtC1 ₄] ²⁻	4	+2		
6(c)	H ₃ N _{////} , Pt NH ₃	Pt	<i>l</i> Н ₃		2
6(d)	(HNO ₃ +) AgNO ₃	reagent			1
	[Pt(NH ₃) ₄ Cl ₂]Br ₂ v	with cream ppt. (of	AgBr) and [Pt(NH ₃) ₄ Br ₂]Cl ₂ , with white ppt. (of AgCl) observation with both	1
6(e)	octahedral: both				1
	square planar: geometric				1
	tetrahedral: neith	er			1

© UCLES 2017 Page 8 of 12

Question	Answer					
6(f)	diagrams	3				
	enzyme substrate ES complex enzyme + products Marks can be awarded from words or diagram. Any three marking points from: substrate shape is complementary to active site the substrate binds / bonds / fits into the active site products are released lower E _A / bonds weakened in substrate					

Question	Answer	Marks
7(a)(i)	$CaC_2 + 2H_2O \rightarrow C_2H_2 + Ca(OH)_2$	1
7(a)(ii)	X X XX XX XX	1
7(b)	C_nH_{2n-2}	1
7(c)(i)	delocalised electrons	1
7(c)(ii)	СН	1
7(c)(iii)	less dense	1

© UCLES 2017 Page 9 of 12

Question			,	Answer			Marks
7(d)(i)	δ^{-} δ^{+} δ^{+} δ^{+} δ^{+} δ^{+} δ^{-} δ^{+} δ^{+} δ^{-} δ^{+} δ^{-} δ^{+} δ^{-} δ^{+} δ^{-} δ^{+} δ^{-} δ^{+} δ^{-} δ^{-} δ^{+} δ^{-} δ^{-	R"	→ R-	_c=_cc o- intermediate	R'		3
7(d)(ii)	nucleophilic additio	n					1
7(d)(iii)	C_2H_5 — C = C — C 1]					2	
	Q		R				
7(e)		CH₃CHO	HCO₂H	CH₃COCH₃	HO ₂ CCO ₂ H		4
	hot acidified MnO ₄ ⁻ (aq)	✓	✓	*	✓		
	alkaline I ₂ (aq)	✓	×	✓	×		
	Tollens' reagent	✓	✓	*	×		

© UCLES 2017 Page 10 of 12

Question	Answer	Marks
8(a)(i)	circle or asterisk on correct C atom only [1]	2
	lines through the two correct bonds only [1]	
8(a)(ii)	ketone, (tertiary) alcohol, alkene, carboxylic acid two for each mark	2
8(a)(iii)	sp carbons = 0 sp ² carbons = 8 sp ³ carbons = 9	1
8(a)(iv)	HO O O O O O O O O O O O O O O O O O O	2
8(b)(i)	compound spot	1
	J 2	
	K 3	

Question	Answer	Marks
8(b)(ii)	The more polar the compound and stronger attractive forces to the (polar) stationary phase ora: less polar compound and weaker attractive forces to the (polar) stationary phase	1
8(b)(iii)	R_f = retardation factor or retention factor or R_f = distance moved by compound from baseline over distance travelled by solvent front	1

© UCLES 2017 Page 12 of 12