CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/32 Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	32

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
 - When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	32

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable)

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only – often written by a "fortuitous" answer

ISW Ignore Subsequent Working

MR Misread

PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR 1 A penalty of MR 1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR 2 penalty may be applied in particular cases if agreed at the coordination meeting.
- **PA 1** This is deducted from A or B marks in the case of premature approximation. The PA 1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	32

1 EITHER: State or imply non-modular inequality $(x + 2a)^2 > (3(x - a))^2$, or corresponding quadratic equation, or pair of linear equations $(x + 2a) = \pm 3(x - a)$

Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations

B1

A₁

5

for x M1

Obtain critical values $x = \frac{1}{4}a$ and $x = \frac{5}{2}a$ A1 State answer $\frac{1}{4}a < x < \frac{5}{2}a$ A1

OR: Obtain critical value $x = \frac{5}{2}a$ from a graphical method, or by inspection, or by solving

a linear equation or inequality

Obtain oritical value as a local reliable.

Obtain critical value $x = \frac{1}{4}a$ similarly

State answer $\frac{1}{4}a < x < \frac{5}{2}a$ B1 4

[Do not condone \leq for \leq .]

2 Remove logarithms and obtain $5 - e^{-2x} = e^{\frac{1}{2}}$, or equivalent B1

Obtain a correct value for e^{-2x} , e^{2x} , e^{-x} or e^{x} , e.g. $e^{2x} = 1/(5 - e^{\frac{1}{2}})$

Use correct method to solve an equation of the form $e^{2x} = a$, $e^{-2x} = a$, $e^x = a$ or $e^{-x} = a$ where a > 0. [The M1 is dependent on the correct removal of logarithms.]

Obtain answer x = -0.605 only.

3 Use cos(A + B) formula to obtain an equation in cos x and sin x Use trig formula to obtain an equation in tan x (or cos x or sin x)

M1

Obtain $\tan x = \sqrt{3} - 4$, or equivalent (or find $\cos x$ or $\sin x$)

Obtain $\tan x = \sqrt{3} - 4$, or equivalent (or find $\cos x$ or $\sin x$)

A1

Obtain answer $x = -66.2^{\circ}$

Obtain answer $x = 113.8^{\circ}$ and no others in the given interval

[Ignore answers outside the given interval. Treat answers in radians as a misread (-1.16, 1.99).]

[The other solution methods are $via \cos x = \pm 1/\sqrt{(1+(\sqrt{3}-4)^2)}$ and

$$\sin x = \pm (\sqrt{3} - 4) / \sqrt{(1 + (\sqrt{3} - 4)^2)}$$
.]

4 (i) State $\frac{dx}{dt} = 1 - \sec^2 t$, or equivalent

Use chain rule M1

Obtain $\frac{dy}{dt} = -\frac{\sin t}{\cos t}$, or equivalent

Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$

Obtain the given answer correctly. A1 5

(ii) State or imply $t = \tan^{-1}(\frac{1}{2})$ B1
Obtain answer x = -0.0364 B1

	Pa	ge 5	Mark Scheme	Syllabus	Paper	
			GCE A LEVEL – May/June 2014	9709	32	
_	(<u>*</u>)	Differenti	at $f(x)$ and alteria $f(x)$ $f(x) = 2x^2 \cdot f(x) \cdot 2(x-2) \cdot f(x)$		D1	
5	(i)		ate $f(x)$ and obtain $f'(x) = (x-2)^2 g'(x) + 2(x-2)g(x)$ that $(x-2)$ is a factor of $f'(x)$		B1 B1	2
		Conclude	that $(x-2)$ is a factor of $\Gamma(x)$		DI	2
	(ii)	EITHER:	Substitute $x = 2$, equate to zero and state a correct equation	n,		
			e.g. $32 + 16a + 24 + 4b + a = 0$		B1	
			Differentiate polynomial, substitute $x = 2$ and equate t $(x-2)$ and equate constant remainder to zero	o zero or divide	by M1*	
			Obtain a correct equation, e.g. $80 + 32a + 36 + 4b = 0$		A1	
		OR1:	Identify given polynomial with $(x-2)^2(x^3 + Ax^2 + Bx + C)$	(1) and obtain an	AI	
		OIII.	equation in a and/or b	o) and obtain an	M1*	
			Obtain a correct equation, e.g. $\frac{1}{4}a - 4(4+a) + 4 = 3$		A1	
			Obtain a second correct equation, e.g. $-\frac{3}{4}a + 4(4+a) = b$		A1	
		OR2:	Divide given polynomial by $(x-2)^2$ and obtain an equation	on in <i>a</i> and <i>b</i>	M1*	
			Obtain a correct equation, e.g. $29 + 8a + b + 0$		A1	
			Obtain a second correct equation, e.g. $176 + 47a + 4b = 0$		A1	
		Solve for			M1(dep*)	
		Obtain <i>a</i> =	= -4 and b = 3		A1	5
6	(i)	Use corre	ct arc formula and form an equation in r and x		M1	
			correct equation in any form		A1	•
		Rearrange	e in the given form		A1	3
	(ii)	Consider	sign of a relevant expression at $x = 1$ and $x = 1.5$, or compa	are values of rele	vant	
		_	ns at $x = 1$ and $x = 1.5$		M1	_
		Complete	the argument correctly with correct calculated values		A1	2
	(iii)	Use the it	erative formula correctly at least once		M1	
			nal answer 1.21		A1	
			ficient iterations to 4 d.p. to justify 1.21 to 2 d.p., or show to erval (1.205,1.215)	here is a sign cha	inge A1	3
		III the litte	1.203,1.213)		AI	3
_			5.4.1.			
7	(a)	EITHER:	Substitute and expand $(-1 + \sqrt{5} i)^3$ completely		M1	
			Use $i^2 = -1$ correctly at least once		M1	
			Obtain $a = -12$		A1	
		0.01	State that the other complex root is $-1 - \sqrt{5}$ i		B1	
		OR1:	State that the other complex root is $-1 - \sqrt{5}$ i		B1	
			State the quadratic factor $z^2 + 2z + 6$ Divide the cubic by a 3-term quadratic, equate remainder	to zoro and colve	B1	
			a or, using a 3-term quadratic, factorise the cubic and dete		M1	
			Obtain $a = -12$		A1	
		OR2:	State that the other complex root is $-1 - \sqrt{5i}$		B1	
			State or show the third root is 2		B1	
			Use a valid method to determine <i>a</i>		M1	
		OD2:	Obtain $a = -12$ Substitute and use De Moivre to cube $\sqrt{6}$ cis(114.1°), or ea	i	A1	
		OR3:	,	quivaient	M1	
			Find the real and imaginary parts of the expression Obtain $a = -12$		M1 A1	
			State that the other complex root is $-1 - \sqrt{5i}$		B1	4
			Similar and other complex root is 1 voi		Di	•

	Page 6		Mark Scheme Syllabus		Paper	
			GCE A LEVEL – May/June 2014	9709	32	
	(b)	EITHER:	Use double angle formulae throughout		B1 M1	
			Express numerator and denominator in terms of $\cos \theta$ and	$\sin \theta$ only	A1	
		OD	Obtain given answer correctly $\frac{2i\theta}{2} = \frac{1}{2} $		A1	
		OR:	Substitute $w = e^{2i\theta}$ in the given expression		B1	
			Divide numerator and denominator by $e^{i\theta}$, or equivalent	. 0 1	M1	
			Express numerator and denominator in terms of $\cos\theta$ and Obtain the given answer correctly	sin∂only	A1 A1	4
8	(i)	Use produ	not rulo		M1	
O	(1)		rivative in any correct form		A1	
			ate first derivative using the product rule		M1	
		Obtain se	cond derivative in any correct form, e.g. $-\frac{1}{2}\sin\frac{1}{2}x - \frac{1}{4}x\cos^2\theta$	$s \frac{1}{2} x - \frac{1}{2} \sin \frac{1}{2} x$	A1	
			e given statement		A1	5
	(ii)	Integrate	and reach $kx \sin \frac{1}{2}x + l \int \sin \frac{1}{2}x dx$		M1*	
		Obtain 22	$a \sin \frac{1}{2} x - 2 \int \sin \frac{1}{2} x dx$, or equivalent		A1	
		Obtain in	definite integral $2x \sin \frac{1}{2}x + 4 \cos \frac{1}{2}x$		A1	
			ct limits $x = 0$, $x = \pi$ correctly		M1(dep*)	
		Obtain an	swer $2\pi - 4$, or exact equivalent		A1	5
9	(i)	State or in	inply $\frac{dN}{dt} = kN(1 - 0.01N)$ and obtain the given answer $k = 0$	0.02	B1	1
	(ii)	Separate v	variables and attempt integration of at least one side		M1	
	()	-	and obtain term $0.02t$, or equivalent		A1	
		-	a relevant method to obtain A or B such that $\frac{1}{N(1-0.01N)}$	$\equiv \frac{A}{N} + \frac{B}{1 - 0.01N}$	$\frac{1}{I}$, or	
		equivalen	t		M1*	
		Obtain A	=1 and $B = 0.01$, or equivalent		A1	
		Integrate	and obtain terms $\ln N - \ln(1 - 0.01N)$, or equivalent		A1√	
			a constant or use limits $t = 0$, $N = 20$ in a solution w $01N$), $ab \neq 0$	ith terms $a \ln \lambda$	and M1(dep*)	
		Obtain co	rrect answer in any form, e.g. $\ln N - \ln(1 - 0.01N) = 0.02t + 0.001N$	- ln 25	A1	
		Rearrange	e and obtain $t = 50 \ln(4N/(100 - N))$, or equivalent		A1	8
	(iii)	Substitute	N = 40 and obtain $t = 49.0$		B1	1

Page 7		ge 7	Mark Scheme	Syllabus	Paper	
	,		GCE A LEVEL – May/June 2014	9709	32	
			→ →			
10	(i)	EITHER:	State or imply \overrightarrow{AB} and AC correctly in component form		B1	
			Using the correct processes evaluate the scalar product \overrightarrow{AB} . Using the correct process for the moduli divide the scalar	_		
			product of the moduli	p	M1	
			Obtain answer $\frac{20}{21}$		A1	
		OR:	Use correct method to find lengths of all sides of triangle A	1RC	M1	
		OK.	Apply cosine rule correctly to find the cosine of angle BAC		M1	
			Obtain answer $\frac{20}{21}$		A1	4
	(ii)	State an ex	exact value for the sine of angle <i>BAC</i> , e.g. $\sqrt{41/21}$		B1√	
			et area formula to find the area of triangle ABC		M1	
		Obtain an	swer $\frac{1}{2}\sqrt{41}$, or exact equivalent		A1	3
		[SR: Allo	w use of a vector product, e.g. $\overrightarrow{AB} \times \overrightarrow{AC} = -6\mathbf{i} + 2\mathbf{j} - \mathbf{k}$	B1√. Using corre	ct	
		process fo	r the modulus, divide the modulus by 2 M1. Obtain answer	$\frac{1}{2}\sqrt{41}$ A1.]		
	(iii)	EITHER:	State or obtain $b = 0$		B1	
	. ,		Equate scalar product of normal vector and \overrightarrow{BC} (or \overrightarrow{CB}) to	zero	M1	
			Obtain $a + b - 4c = 0$ (or $a - 4c = 0$)		A1	
			Substitute a relevant point in $4x + z = d$ and evaluate d		M1	
			Obtain answer $4x + z = 9$, or equivalent		A 1	
		<i>OR</i> 1:	Attempt to calculate vector product of relevant vectors, e.g	$\mathbf{j}.\ (\mathbf{j})\times(\mathbf{i}+\mathbf{j}-4\mathbf{k})$	M1	
			Obtain two correct components of the product Obtain correct product, e.g4i - k		A1 A1	
			Substitute a relevant point in $4x + z = d$ and evaluate d		M1	
			Obtain $4x + z = 9$, or equivalent		A1	
		OR2:	Attempt to form 2-parameter equation for the plane with re		M1	
			State a correct equation, e.g. $\mathbf{r} = 2\mathbf{i} + 4\mathbf{j} + \mathbf{k} + \lambda(\mathbf{j}) + \mu(\mathbf{i} + \mathbf{j})$	$-4\mathbf{k}$	A1	
			State 3 equations in x , y , z , λ and μ		A1	
			Eliminate μ Obtain answer $4x + z = 9$, or equivalent		M1 A1	
		OR3:	State or obtain $b = 0$		B1	
		ONS.	Substitute for B and C in the plane equation and obta	in 2a + c = d ar		
			3a - 3c = d (or $2a + 4b + c = d$ and $3a + 5b - 3c = d$)		B1	
			Solve for one ratio, e.g. <i>a</i> : <i>d</i>		M1	
			Obtain $a:c:d$, or equivalent		M1	
		OR4:	Obtain answer $4x + z = 9$, or equivalent Attempt to form a determinant equation for the plane with	relevant vectors	A1 M1	
		ong.	$\begin{vmatrix} x-2 & y-4 & z-1 \end{vmatrix}$	1010 (4111 (001013	1411	
			State a correct equation, e.g. $\begin{vmatrix} x-2 & y-4 & z-1 \\ 0 & 1 & 0 \\ 1 & 1 & -4 \end{vmatrix} = 0$		A1	
			Attempt to use a correct method to expand the determinant	_	M1	
			Obtain two correct terms of a 3-term expansion, or equival		A1	
			Obtain answer $4x + z = 9$, or equivalent		A1	5