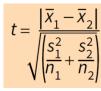

1 | Page https://www.cienotes.com/

Test	Results	Information
t-test	(Use a t-test table to look up your value of t)	Whether two sets of continuous data are significantly
	Obtained value > t value for a probability of 0.05 (the critical	different from one another
	value), there is significant difference between A and B	
Chi-squared (x2) test	(Use a χ 2 table to look up value of χ^2)	Whether observed results differ significantly from your
	Obtained value > χ^2 value for a probability of 0.05, there is	expected result
	significant difference between observed results and	
	expected results	
Pearson's linear correlation	Value close to +1 indicates a positive linear correlation	Whether there is a linear correlation between two paired
	Value close to -1 indicates a negative linear correlation	sets of data
	Value close to 0 indicates no correlation	
Spearman's rank correlation	(Use correlation coefficient table to look up value of r_s)	Whether there is a correlation between two random paired
	Obtained value of $r_s > r_s$ value for a probability of 0.05,	sets of data
	there is a significant correlation between your two values	
Simpson's index of diversity, D	0 (lowest species diversity) – 1 (highest species diversity)	To find species diversity after collecting data on species
		abundance

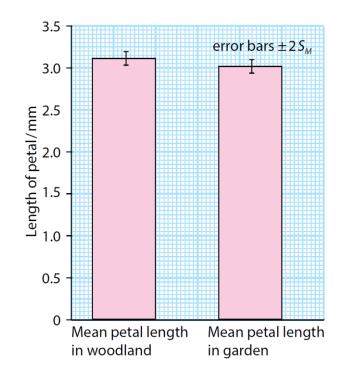
Standard deviation


Chi-squared test

Standard error (S_M)

t-test

 $\chi^2 = \sum \frac{(O - E)^2}{E}$ where: $\sum = \text{sum of}$ O = observe


O = observed valueE = expected value

Pearson's linear correlation

$$r = \frac{\sum xy - n\overline{x}\overline{y}}{ns_x s_y}$$

Spearman's rank correlation

$$r_{s} = 1 - \left(\frac{6 \times \sum D^{2}}{n^{3} - n}\right)$$

Simpson's index of diversity, D

$$D = 1 - \left(\sum \left(\frac{n}{N}\right)^2\right)$$

Simple dilution and serial dilution

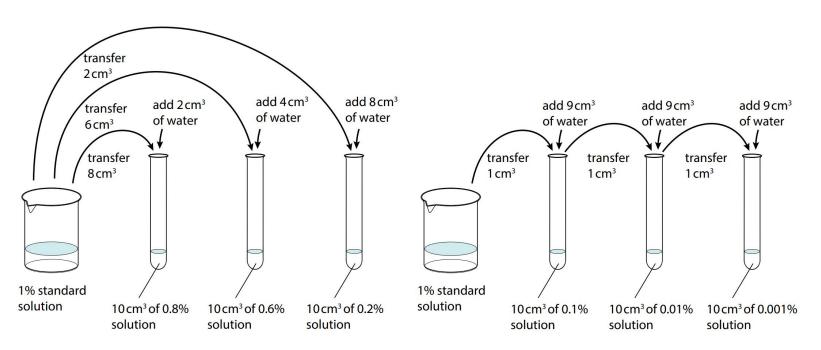


Figure P1.2 Producing a range of concentrations from a standard solution.