CAMBRIDGE INTERNATIONAL EXAMINATIONS MMM. Hiremepapers.com

June 2003

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0620/01

CHEMISTRY

(Multiple Choice)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	1

Question Number	Key	Question Number	Key
1	С	21	В
2	В	22	D
3	Α	23	Α
4	D	24	В
5	Α	25	D
6	С	26	В
7	Α	27	D
8	Α	28	D
9	В	29	D
10	С	30	В
11	В	31	D
12	D	32	D
13	С	33	Α
14	D	34	Α
15	В	35	В
16	С	36	Α
17	Α	37	Α
18	С	38	В
19	Α	39	С
20	С	40	С

TOTAL 40

June 2003

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/02

CHEMISTRY

(Core Paper 2)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	2

1	(a)	(i) (ii) (iii) (iv) (v) (vi)	Fe/Cu ALLOW Zn C/N/S/F/C1/Br O/S C Li/Na/K ALLOW F CU/Zn/Br/Kr	[1] [1] [1] [1] [1] [1]
	(b)		argon - light bulbs; chlorine - kills bacteria; carbon - as lubricant; helium - in balloons	[4]
	(c)	(i) (ii) (iii)	covalent BrF ₅ ALLOW F ₅ Br ions/charged particles; NOT: particles not free to <u>move</u> in <u>solid</u> /free to move in <u>molten/liquid</u> state	[1] [1] [2]
2	(a)		drop small tube in acid/loosen string/idea of mixing zinc and acid/let go of cotton ALLOW: cut the string NOT: heat (the acid) NOT: pull the string	[1]
	(b)	(i) (ii) (iii)	correct plotting including 0-0 point (-1 per omission or error) best curve drawn and to go through origin no more gas produced/reaction finished; all zinc reacted/used up	[2] [1] [2]
	(c)		graph drawn with faster initial rate and starting at 0-0; ALLOW: straight line as initial rate ends up at 55 cm ³	[2]
	(d)	(i) (ii) (iii)	2 (HC <i>l</i>) zinc chloride 136 IGNORE units	[1] [1] [1]
	(e)		substance containing only one type of atom/substance which cannot be broken down to any other substance by <u>chemical means</u> NOT 'can't be split' alone NOT is a pure substance	[1]
3	(a)	(i) (ii) (iii)	evaporation/vaporisation/boiling freezing/solidification NOT: fusion condensing/condensation/liquefaction	[1] [1] [1]
	(b)		2 nd box ticked	[1]
	(c)		A; energy needed to overcome forces between molecules/idea of energy input/ taking in heat	[2]
	(d)	(i) (ii) (iii)	chlorine bromine sodium chloride	[1] [1] [1]

Page 2	Page 2 Mark Scheme		Paper
	IGCSE EXAMINATIONS – June 2003	0620	2

(e)	(i) (ii) (iii)	diffusion NOT: Brownian motion ammonium chloride NOT: ammonia chloride ammonia diffuses or moves faster/HC <i>l</i> diffuses or moves slower/ammonia has lower mass/HC <i>l</i> higher mass/molecules of HC <i>l</i> and ammonia move at different speeds NOT: ammonia evaporates faster/HC <i>l</i> evaporates more slowly	[1] [1] [1]		
(f)		neutralisation/acid base [NOT: exothermic NOT: addition			
(g)	(i) (ii)	thermometer reference to the solid or melting point of the solid is needed for the mark. boiling point of water too low to get solid to melt/boiling water cannot get to 155°C NOT: boiling point of water is only 100°C/boiling point of water too low. NOT: water boils off first	[1] [1]		
	(iii)	so that the liquid is the same temperature throughout/no hot or cold spots/so the tube is the same temperature as the thermometer/so heat can circulate in all places ALLOW: so that temperature of liquid is balanced NOT: to keep temperature constant	[1]		
(a)	(i) (ii)	<u>breaking down</u> of molecules substances using <u>heat</u> substance which speeds up a reaction NOT: alters/changes rate of reaction NOT: speeds up and slows down rate	[1] [1]		
(b)		ethene/ethylene NOT: formula	[1]		
(c)	(i) (ii) (iii)	paraffin 4000g/4kg (correct unit needed) C_2H_4 ; H_2	[1] [1] [2]		
(d)	(i)	two units polymerised with continuation bonds at either end and hydrogen atoms drawn ALLOW: $-CH_2CH_2CH_2CH_2-$ ALLOW: $-[-CH_2CH_2 -]_{-n}$ ALLOW: $-[-CH_2 -]_{-n}$	[1]		
	(ii)	addition (polymerisation)	[1]		
(a)		(sodium) hydroxide/ammonia; \rightarrow green/grey green; silver nitrate; \rightarrow yellow; ALLOW: lead nitrate NOT: cream	[2] [2]		
		ALLOW: bubble chlorine \rightarrow grey/black (precipitate)silver nitrate; \rightarrow white:barium chloride/nitrate; \rightarrow white;ALLOW: lead acetate \rightarrow white;	[2] [2]		

Page 3			Mark Scheme		Syllabus	Paper
			IGCSE EXAMINATIONS – June 2	2003	0620	2
	(b)		filtration/filtering or diagram of correct apparatus be present on diagram) NOT: decanting sodium chloride through filter paper/shown on di NOT: filtrate through filter paper evaporate off water from sodium chloride/suitabl ALLOW: distilling off <u>water</u>	agram;	filter paper	must [3]
	(c)		<u>different atoms/elements</u> (chemically) joined/bonded/combined (both point (reference to mixtures = 0 unless qualified enous of elements which are then chemically combined	gh in time fran	ne e.g. a m	ixture [1]
	(d)	(i) (ii)	chlorine/C <i>l</i> ₂ sodium/Na			[1] [1]
6	(a)		potassium/magnesium/aluminium			[1]
	(b)		they did not have electricity/did not know about metal existed NOT: did not have the right technology	it electrolysis/c	lid not kno	w the [1]
	(c)	(i) (ii)	indication that bubbles produced rapidly or quick faster than zinc OR number of bubbles produced intermediate be uranium dissolved slower than magnesium bu medium rate etc. atoms of same element with different mass	etween magne it faster than z	sium and zi zinc/dissolv	nc; [1] es at [1]
		(iii)	neutrons/different nucleon number NOT: compounds/molecules with different mass indication of use for energy – nuclear power stat ALLOW: atomic/nuclear bombs NOT: curing cancer/medical uses NOT: 'for fuel'	number		[1] [1]
	(d)		magnesium oxide ALLOW: MgO			[1]
	(e)	(i) (ii)	idea of mixture of (different) metals alloys harder/stronger/decreased malleability/inc corrosion resistance/heat or electrical resistance NOT: increase in melting point NOT: cheaper NOT: improving properties		ess/increas	[1] sed [1]
	(f)		removes oxygen from zinc oxide ALLOW: definition of reduction involving oxidatic	on numbers/ele	ctron trans	[1] ^f er
	(g)	(i)	reversible reaction			[1]
		(ii)	ALLOW: equilibrium 76-80%			[1]
	(h)	(i) (ii)	correct electronic structure of Mg (2.8.2) on diag loses two electrons/loses its valence electrons = forms Mg^{2+} ion = 1			[1]
			loses electron(s) = 1 forms Mg^{2+} ion by losing electrons = 2			[2]

CAMBRIDGE INTERNATIONAL EXAMINATIONS

June 2003

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/03

CHEMISTRY

(Extended Paper 3)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	3

In the mark scheme if a word or phrase is underlined it (or an equivalent) is required for the award of the mark.

(.....) is used to denote material that is not specifically required.

OR designates alternative and independent ways of gaining the marks for the question.

or indicates different ways of gaining the same mark.

COND indicates that the award of this mark is conditional upon a previous mark being gained.

- Unusual responses which include correct Chemistry that answers the question should always be rewarded-even if they are not mentioned in the marking scheme.
- All the candidate's work must show evidence of being marked by the examiner.

1	(a)) or CO ₂ as product e correct [1] ONLY	[2]
	(b)	(i) (ii)	(higher in furn	CO ₂ NOT wace) no oxyge e reacts with c	•	[1] [1] [1]
			OR incomplet	te combustion	of carbon	[2]
				uation gains bo CO or 2C + O ₂ =		
			OR carbon did with carbon	oxide reacts		[1] [1]
	(c)		limestone + sa OR calcium ca	•	con (IV) oxide \rightarrow calcium silicate (+ carbon dioxide)	[2]
			For knowing t	hat impurity is	sand [1] ONLY	
			Accept calciu Accept lime	m oxide and si	licon oxide	
	(d)	(i) (ii) (iii)	cars or sinks nickel or chro blow air/oxyge carbon becom carbon dioxide silicon and ph	or aircraft or g mium or moly	odenum or niobium or titanium xide gas ome oxides	[1] [1]
			Any FOUR		NOT blast furnace	[4]
	(e)			tin iron or steel ons as electrol hydroxide or c	•	[1] [1] [1]
					TOTAL :	= 16

	Page 2		2	Mark Scheme Syllabus			Paper
		uge 1	-	IGCS	E EXAMINATIONS – June 2003	0620	3
2	(2)	(i)	3	ignore any cha	raes		[1]
Z	(a)	(i) (ii)	high m hard	ignore any cha nelting or boiling conductor of elec	point		[1]
			brittle				[0]
		()		nsoluble, dull, oi			[2]
		(iii)	silicon	(IV) oxide or si	ond silicon, germanium lica or silicon dioxide or silicon ox	ide	[1]
		(iv)	four a	round one	vide or named polymer		[1] [1]
			For gra Accep	aphite layers [1] t any macromole	l or shows continuation weak bonds between layers [1] ecule, no link with (iii) it [1] continuation [1]		[1]
	(b)	(i)		<u>precipitate</u>) upon a precipit	ata		[1]
		(ii)	dissolv	ves in excess or recipitate			[1] [1]
		(11)	COND	upon a precipit ot dissolve in e			[1]
	(c)	(i)			= 0.24/24 = 0.01		[']
	(0)	(i) (ii)	conse conse	eq number of mo eq number of mo	bles of CaCO ₃ and MgCO ₃ = 0.01 bles of CaCO ₃ = 0.005 of hydrochloric acid, 1.0 mole/dm ³	³ , needed to react wi	[3] th
		. ,	Expec	er of moles of C	aCO ₃ and MgCO ₃ in one tablet = (er to (c)(i). NO marks to be award response		
				eq number of mo ct with one table	bles of HC <i>l</i> needed at = 0.02		[1]
			conse tablet	eq volume of hy = 0.02 dm ³ or 2	drochloric acid, 1.0 mole/dm³, nee 0 cm³	ded to react with on	e [1]
						TO	TAL = 16
3	(a)	(i)	For gi	ct equation ving correct forn ot alkene and hy	nula of alkane and alkene [1] only drogen		[2]
		(ii)	chlori	ne	or heat or lead tetraethyl		[1]
			or hig	h temperature N e comment 'cata	1AX 1000°C		[1]
	(b)	(i)		molecular formu	<u>ıla</u> structural formulae		[1] [1]
		(ii)	but- <u>2</u> -0 corres	ene or cyclobuta ponding structur 2-butene	ine		[1] [1]
	(c)		butano butano dibron	e	ignore numbers ignore numbers ignore numbers		[1] [1] [1]

	F	Page 3	3	Mark Scheme IGCSE EXAMINATIONS – June 2003	Syllabus 0620	Paper 3
					0020	
	(م)	(1)	DFODO			[4]
	(d)	(1)	prope			[1]
			CH₃—	CH==CH ₂		[1]
		(ii)		ct structure of repeat unit		[1]
				point of attachment of ester group) upon repeat unit		
				continuation n through ester group [0] out of [2]		[1]
		(iii)	do not	decay or non-biodegradable		
				ge of sites or amount of waste per year pollution		
			forms	methane		501
		(iv)	Any T form p	wo oisonous or toxic gases or named gas CO, HC <i>l</i> HCN		[2] [1]
			NOT	arbon dioxide, harmful, sulphur dioxide		
					т	OTAL = 18
4	(a)	(i)	Correc	ct equation		[2]
-	()	(-)	not ba	lanced [1] ONLY		[-]
			•	$ O_3 _2 = 2PbO + 4NO_2 + O_2$		
		(::)		$(D_3)_2 = PO + 2 NO_2 + \frac{1}{2} O_2$		[4]
		(ii)	potass	sium nitrate \rightarrow potassium nitrite + oxygen		[1]
	(b)	(i)		or tightly packed ed or lattice		[1] [1]
			vibrati	onal		[1]
		(ii)	NOT f	orces g or freezing or fusion or solidification		[1]
	(-)	. ,				
	(c)	(1)		n and nitrogen (in air) at high temperatures (and high pressure)		[1] [1]
		(ii)		gen in fuel [0] out of [2] tic converter		
		(")	react v	with carbon monoxide or hydrocarbons		
			form n ANY T	itrogen ™O		[2]
	(d)		Add or	xcess lead oxide to nitric acid		
	(d)		can im	nply excess		[1]
				IOT if residue is lead nitrate rate or heat solution		[1] [1]
					-	
					I	OTAL = 14
5	(a)		proton electro			
			neutro			[3]
	(b)	(i)	La ³⁺ +	3e- = La		[1]
	. ,	(ií)	hydrog	gen		[1]
			caesiu	ne NOT Bromide ım hydroxide		[1] [1]
			ianore	any comments about electrodes		

(b) (i) (ii) La³⁺ + 3e- = La hydrogen bromine NOT Bromide caesium hydroxide ignore any comments about electrodes

Page	4	Mark Scheme	Syllabus	Paper
		IGCSE EXAMINATIONS – June 2003	0620	3
(c)	metal hydro	hydroxide or hydroxide ions gen		[1] [1]
(d)	charg 8e arc All thr Two p	et formula 1Ba to 2C <i>l</i> es correct ound the anion ee points points ONLY [1] alent [0] out [2]		[2]
(e)	altern patter	ating (positive and negative) n		[1] [1]
(f) (i) (ii)	bond bond	n - oxygen or ionic forming energy released/exothermic breaking energy taken in/endothermic energy released		[1] [1] [1] [1]
			т	OTAL = 17

Total for Paper: 80

June 2003

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0620/05

CHEMISTRY

(Practical)

Page 1				Mark Scheme IGCSE EXAMINATIONS – June 2003			Syllabus 0620	Paper 5
L					<u> 5005 – 5006 2005</u>	0020	J	
1				of results iment 1	Initial and fina	al readings recorded to 1 decimal place	9	[1] [1]
			Experi	iment 2	Initial and fina	al readings recorded to 1 decimal place	9	[1] [1]
			Result	ts comparable	to Supervisor's	results ± 1 cm ³		[2]
	(a)		red/bu	irgundy/brown				[1]
	(b)			r (1) to blue/bla RE green	ick (1)	see Supervisor		[2]
	(c)	(i) (ii) (iii) (iv)	$\underline{^{\land}} 2 x$, potass <u>not</u> dif	sium iodate les ferent concent	s concentrated	ent 1 (1) <u>not</u> just more solution C than B or vice v	versa	[1] [2] [1]
		()		line formed				[1]
	(d)			tor (1) referenc st for I ₂ /I ⁻	ce to accuracy (1)/end-point/see more clea	arly	[2]
			<u>1101</u> 100				[Questio	n total: 18]
2	(a)		bubble	es/condensatio	n/goes black		max 2	[2]
	(b)			- colourless <u>n</u> e - green	<u>iot</u> clear			[1] [1]
	(c)	(i) (ii)	limewa solutic blue (1	escence/fizz/bu ater → milky on is blue 1) precipitate (1 deep blue (1) s	1)			[1] [1] [2] [2]
	(d)	(i) (ii) (iii)	white	· / · ·	(1) dissolves in (1) dissolves (1			[3] [3] [1]
	(e)		zinc (1	I) sulphate (1)		reversed = 0		[2]
	(f)		coppe hydrat	r (1) carbonate ed (1)	e (1)	reversed = 0	max 2	[2]
							[Questio	n total: 22]
							[Total for	paper: 40]
	Results obtained for Question 1/cm ³							
					1 st	2 nd		

	1 st	2""
Experiment 1	16.5	16.3
Experiment 2	8.3	8.2

CAMBRIDGE INTERNATIONAL EXAMINATIONS

June 2003

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0620/06

CHEMISTRY

(Alternative to Practical)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	6

1	(a)	A = mortar (1) B = stirrer/stirring rod (1) <u>not</u> th C = tripod (1)	nermometer	
		D = Bunsen Burner (1)		[4]
	(b)	filtration		[1]
	(c)	D or description		[1]
2	(a)	because precipitate formed/goes cloudy (sulphur (1)/turbid	1)	[2]
	(b)	reference to fair test/comparison/same de	pth	[1]
	(c)	sodium thiosulphate/water 1 st /2 nd acid, las	t	[1]
	(d) (i)	all points correct (3), -1 for any incorrect smooth line (1)		
	(ii)	label (1) line lower down (1)		[5]
	(")	does not touch other line (1)		[2]
	(e)	times would be longer (1) because solutio surface area/depth (1)	n more spread out/reference to	[2]
3		Table of results correct burette readings in table (3) i.e. 16.8, 17.1 and 25.5	or 17.2, 18.9, 26.5	
		Differences correctly completed (1) i.e. 8.4	Difference 7.6	[4]
	(a) (i) (ii)	Experiment 1 twice volume/more than twice as much		[1] [1]
	(iii)	Solution B was 2x (1) concentration of C (B more concentrated than C (1 only)	1) or similar	[2]
	(iv)	volume A = 33.6 (1) cm ³ (1)/34.4cm ³ 2x iodine produced (1)		[3]
	(b)	reference to accuracy (1) indicator (1)/eas not test for I ₂ max 2	ier to see	[2]
4	(c)	effervescence/fizz/bubbles (1) limewater milky (1)/blue solution		[2]
	(d) (ii)	blue (1) precipitate (1) royal/dark blue (1) solution (1)		[4]
	(e) (i)	white (1) precipitate (1) dissolves (1)		[3]
	(ii)	white (1) precipitate (1) dissolves (1)		[3]
	(f)	Solid D is a sulphate (1) hydrated (1)		[0]
	() (g)	copper (1)/Cu ²⁺ (2)		[2]
	(3)			[-]

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	6

5	(a) (i) (ii)	Smooth line graph result at 5 minutes (1)	[1]
	()	not on curve (1)/gas escapes, gone down	[2]
	(b)	0.8 g	[1]
	(c)	reference to leak/loss of gas (1) ∴ volumes lower (1)	[2]
6		Known mass of beach sand (1) add excess (1) dilute hydrochloric acid (1) filter (1) wash (1) dry (1) residue and weigh sand (1) working out result (1)	
		max 6 of 8	[6]
			[Total: 60]

	maximum	minimum mark required for grade:				
	mark available	А	С	E	F	
Component 1	40	-	26	20	17	
Component 2	80	-	52	36	27	
Component 3	80	53	31	-	-	
Component 5	40	31	24	18	14	
Component 6	60	42	32	21	15	

Grade thresholds taken for Syllabus 0620 (Chemistry) in the June 2003 examination

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.