UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/02

Paper 2

May/June 2006

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

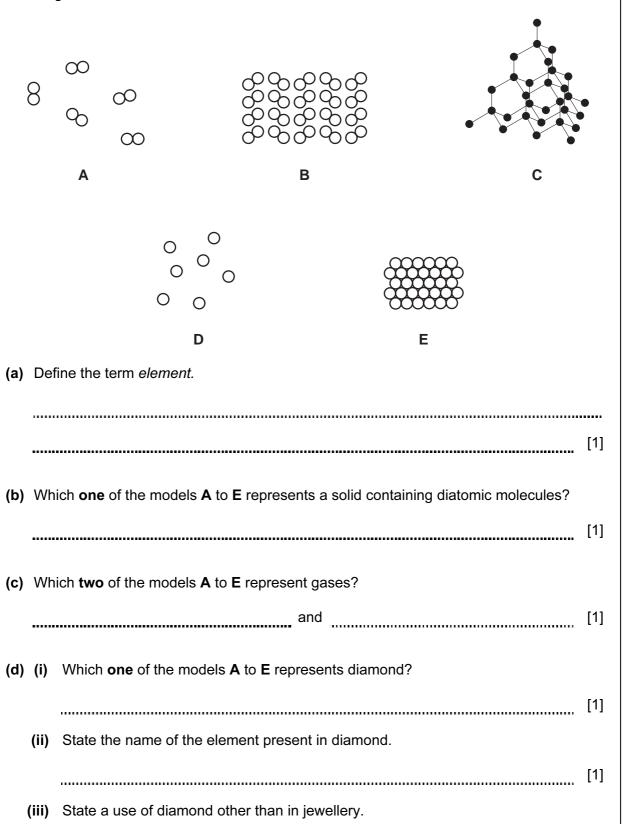
Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

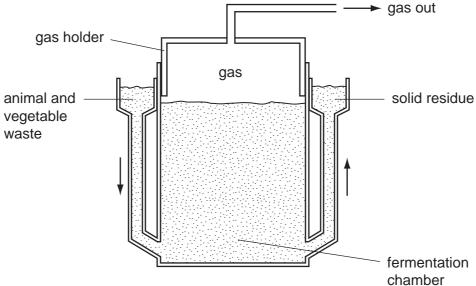
Answer all questions.

A copy of the Periodic Table is printed on page 16.


At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
1			
2			
3			
4			
5			
6			
Total			


This document consists of 15 printed pages and 1 blank page.

1 The diagram shows models of various elements.

(e)	Structu metals.		State three	physical p	roperties which are characte	ristic of all
						[3]
(f)	Metals	are sometimes m	nixed with oth	ner element	s in order to change their prop	erties.
	(i) W	nat is the name gi	iven to a mix	ture of meta	als with other elements?	
						[1]
		atch up the metal e has been done		es on the le	ft with their uses on the right.	. The first
		tin			for making chemical plants	
		mild steel			for plating tin cans	
		stainless ste	el		for car bodies	
		aluminium			for electrical wiring in houses	
		copper			for aircraft bodies	

2 The diagram shows a biogas digester. Animal and vegetable waste is fermented by bacteria. The gas produced is a mixture of mainly carbon dioxide and methane.

		Chamber	
(a)		te the name given to the energy-releasing process in which organisms use food a duce carbon dioxide.	and
			[1]
(b)	The	drogen is also produced during the fermentation. hydrogen reacts with the carbon dioxide to form methane and oxygen. Complete the equation for this reaction.	
		$CO_2 + 2H_2 \longrightarrow \dots + \dots$	
	(ii)	Suggest a use for the methane produced in this reaction.	[2]
			[1]
	(iii)	Describe the arrangement and motion of the molecules in methane gas.	
		arrangement	
		motion	[2]
	(iv)	State the name of the homologous series to which methane belongs.	
			[1]
	(v)	Which one of the following compounds belongs to the same homologous series methane? Tick one box.	as

CH₃OH

CH₃CO₂H

[1]

© UCLES 2006 0620/02/M/J//06

 C_2H_6

 C_2H_4

101	Mhigh and of the	ha fallowing aguatia	no A D C or F) dogaribaa farmantati	\sim \sim \sim
(C)	willen one of th	ne ionowina eduado	115 A. D. C 01 L	describes fermentation	OH:

A
$$CH_4 + H_2O \longrightarrow CO + 3H_2$$

B
$$C_6H_{12}O_6 + 6O_2 \longrightarrow 6H_2O + 6CO_2$$

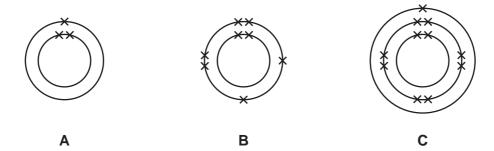
C
$$C_6H_{12}O_6$$
 \longrightarrow $2C_2H_5OH + 2CO_2$

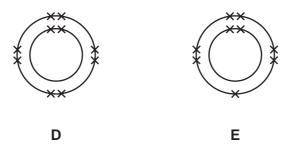
$$D \quad C_6H_{14} \quad \longrightarrow \quad C_4H_{10} \ + \ C_2H_4$$

[1]	1

- (d) Many of the reactions occurring in the biogas digester are catalysed by enzymes.
 - (i) Suggest where the enzymes come from.

F.	47	
l'i	11	
L!	ני	


(ii) Define the term catalysis.


	Г1	1
	ь.	,

(e) The solid residue from the biogas digester can be used as a fertiliser. State the names of **two** non-metallic elements found in fertilisers which are needed for plant growth.

and	[2	2]

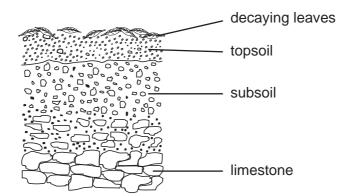
3 The electronic structures of various atoms are shown below.

(a)	(i)	Which one of these structures A to E represents a noble gas?	
			[1]
	(ii)	Which two of these structures represent atoms from the same Group of Periodic Table?	the
		andand	[1]
	(iii)	Which one of these structures represents an atom with an atomic number of 8?	
			[1]
	(iv)	Which one of these structures forms a stable ion by gaining one electron?	
			[1]
	(v)	Which one of these structures is in Period 3 of the Periodic Table?	
			[1]

(b) Complete the following sentences using words from the list.

	chlorine	diamond	high	low	sharing
	sodium	strong	transfe	r	weak
cov	alent molecules s ting points. Giant	uch ascovalent structures	and brom	nine have	
The	·			ed in a hydroge	n molecule.
(ii)	test				
	The	Covalent bonds are for covalent molecules is melting points. Giant bond The simplest covalent (i) Draw a diagram is for test	Covalent bonds are formed by the covalent molecules such as melting points. Giant covalent structures bonds and have high me bonds and have high me The simplest covalent molecule is hydrog (i) Draw a diagram to show how the electrical covalent molecule is hydrogen.	sodium strong transfe Covalent bonds are formed by the of p covalent molecules such as and brom melting points. Giant covalent structures such as bonds and have high melting points. The simplest covalent molecule is hydrogen. (i) Draw a diagram to show how the electrons are arranged (ii) Describe a test for hydrogen. test	sodium strong transfer Covalent bonds are formed by the

4 Coal gas is made by heating coal in the absence of air. The table shows the composition of coal gas.


name of gas	% of gas in coal gas
hydrogen	50
methane	30
carbon monoxide	7
carbon dioxide	4
nitrogen	4
ethene	3
oxygen	2

(a)	(i)	Which element in this table is a highly flammable gas?	
			[1]
	(ii)	Which compound in the table is an alkene?	
			[1]
	(iii)	Which compound in the table turns limewater milky?	
			[1]
(b)	De	scribe a test you can use to distinguish between ethene and methane.	
	tes	st	
	res	sult with ethene	
	res	sult with methane	[3]

© UCLES 2006 0620/02/M/J//06

(c)	Mol	lecules of ethene can react with each other to make poly(ethene).	
	(i)	What is the name given to this type of reaction?	
			[1]
	(ii)	Which formula below best represents a molecule of poly(ethene)? Tick one box.	
-	 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
			[1]
(d)	usi	nene can be manufactured by breaking down hydrocarbons into smaller mole ng high temperatures and a catalyst. ate the name given to this type of reaction.	ecules
			[1]
(e)		quid is also formed when coal is heated in the absence of air. s liquid contains a high percentage of ammonia.	
	(i)	Describe a test for ammonia.	
		test	
		result	[2]
	(ii)	Ammonia has the formula NH ₃ . Calculate the relative molecular mass of ammonia.	
			[41
(f)		al contains a small amount of sulphur. Dain why burning coal is harmful to the environment.	[1]
			[2]

5 The diagram shows a cross section of a soil.

(a) A student took 10 g of topsoil and shook it with 200 cm³ of distilled water.

(i)	How can the student separate th	ne solids in the soil from the solution?	
(ii)	The topsoil had a pH of 6. Which of the following gives the Tick one box.		
	strongly acidic		
	weakly acidic		
	neutral		
	weakly alkaline		

[1]

© UCLES 2006 0620/02/M/J//06

(b) The	e soil con	tained large ar	mounts of calcium	ions and carbonate ions.	
(i)	Use the	information in	the diagram to su	ggest where these ions car	ne from.
					[1]
(ii)	Comple acid.	te the word eq	uation for the reac	ction of calcium carbonate v	with hydrochloric
calciu carbon		hydrochlorid acid	calci	-	+
(c) The	e table sh	ows the mass	of each ion preser	nt in 200 cm³ of soil solution	[2] n.
		ion	formula of ion	mass present/milligrams	
		calcium	Ca ²⁺	12	-
		carbonate	CO ₃ ²⁻	20	
		iron(III)	Fe ³⁺	4	
		magnesium	Mg ²⁺	5	
		nitrate	NO ₃	2	
		phosphate	PO ₄ ³⁻	1	
		others		6	
(i)	Which n	egative ion ha	s the highest cond	entration in the soil solution	i?
(ii)	Calculat			e litre (1000 cm ³) of solution	
(iii)	hydroxid	de and alumini	um foil?	monia when heated with a	
(iv)		e a test for iror			
	test				
	result				[0]

(d) The air trapped in the soil has a different composition from the air in the atmosphere. The table shows the composition of the air in the soil.

gas	percentage of gas in soil air
carbon dioxide	2
nitrogen	82
oxygen	15
other gases	1

State how the composition of soil air compares with the composition of air in the atmosphere.

carbon o	dioxide	
nitrogen		
oxygen		[3]

(e) Decaying leaves produce ethanoic acid.

Complete the formula for ethanoic acid showing all atoms and bonds.

[1]

6

lr	on	is e	extracted from iron ore by heating the iron ore with coke and limestone.	
(6	a)	Sta	te the name of the ore from which iron is extracted.	
				[1]
(I	b)	The	e coke burns in a blast of hot air to form carbon monoxide.	
		(i)	Complete the equation for this reaction.	
			C + O ₂ CO	
				[1]
		(ii)	State an adverse effect of carbon monoxide on human health if it were to esca from the blast furnace.	ape
				[1]
(0	c)	Nea	ar the top of the blast furnace, carbon monoxide reacts with iron ore.	
			$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$	
		(i)	Write a word equation for this reaction.	
				[1]
		/ii\	What type of chemical reaction is the conversion of Fe ₂ O ₃ to 2Fe?	ניו
		(11)	what type of chemical reaction is the conversion of 1 e ₂ O ₃ to 21 e?	[41]
				[1]

(d)		e limestone is cor furnace.	nverted to	calcium ox	ide and c	arbon diox	kide by the inte	nse heat ir
			CaC	O ₃ -	CaO -	+ CO ₂		
	(i)	What type of che	emical rea	ction is this	?			
								[1]
	(ii)	Name a use of li	imestone o	other than i	n the blast	t furnace.		
								[1]
((iii)	The calcium oxide The product of the furnace. What is Put a ring around	this reactions the name	on collects e of this pro	on top of oduct?			ottom of the
		baux	xite	sand	slag	slake	ed lime	
(e)	The	e iron obtained fro	om the blas	st furnace o	contains th	e followin	g impurities.	[1]
		carbon	manga	inese	phosph	orus	silicon	
	(i)	Which one of the	ese eleme	nts is a tra	nsition ele	ment?		
								[1]
	(ii)	What type of oxi	•	•				
		acidic	am	photeric	basi	C	neutral	
								[1]
((iii)	50 tonnes of im Calculate the pe	•					nes of iron
								[41
								[1]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

								Gro	Group								
_	=											≡	≥	>	5		0
							-										4
							I										Не
							Hydrogen 1										Helium 2
7	6					-						1	12	14	16	19	20
=	Be											Ω	ပ	z	0	ш	Ne
Lithium 3	Beryllium 4											Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	28		32	35.5	40
Na	Mg											Ν	Si	a	ഗ	10	Ā
Sodium 11	12 M	ε										Aluminium 13	Silicon 14	Phosphorus 15	Sulphur 16	17	Argon 18
39	40	45	48	51	52	55	99	59	59	64		20	73	75	62	80	84
×	Sa	လွင	F	>	ပံ	M	Ьe	ပိ	Z	ວ	Zn	Ga	Ge	As	Se	Ā	궃
Potassium 19	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
82	88	68	91	93	96		101	103	106	108	112	115		122	128	127	131
Rb	Š	>	Zr	Q N	Mo	ည			Pq	Ag	ဦ	In	Sn		<u>Б</u>	П	Xe
Rubidium 37	Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	n Technetium 43	_	Rhodium 45	Palladium 46		Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	139	178	181		186	190	192	195	197	201	204	207	209			
S	Ba	Га	Ξ	Б	>	Re	SO.	ľ	₹	Αn	Нg	11	Pb	:E	Ро	Αŧ	Rn
Caesium 55	Barium 56	Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
	226	227															
<u>ن</u>	Ra																
Francium 87	Radium 88	Actinium 89															
*58-71	*58-71 anthanoid series	id cariae		140	141	144		150	152	157	159	162	165	167	169	173	175
190-10,	30-7 1 Edininariola serre	la series		ပီ	ቯ	٩	Pm	Sm	Ш	gg	Д	ρ	운	ш	T	ХÞ	Ľ
				Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
	a	a = relative atomic mass	nic mass	232		238											
Key	×	X = atomic symbol	loc	ħ	Ра		Q Q	Pu	Am	CB	B	ర		Fm	Md	9	۲
	p	b = proton (atomic) number	ic) number	Thorium 90	Protactinium 91		Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	≥	Einsteinium 99		Mendelevium 101		Lawrencium 103

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).