

	UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education
CANDIDATE NAME	
CENTRE NUMBER	CANDIDATE NUMBER
CHEMISTRY	0620/02
Paper 2	May/June 2009

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the periodic table is printed on page 16.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of 15 printed pages and 1 blank page.

(a) (Choose from the list c	of compounds	to answer qu	estions (i) to	(v) .		For Examiner's
	calcium car	oonate	carbon diox	kide h	ydrogen chloride		Use
	iron(III) oxide	lead(II) bi	romide	methane	sodium hydroxi	de	
I	ach compound can l	pe used once	, more than o	nce or not at	all.		
I	lame the compound	which					
	i) is a transition me	tal compound	,				
						[1]	
(i) produces brown f	umes at the a	anode when e	lectrolysed,			
						[1]	
(i	i) is used to manufa	acture lime,					
						[1]	
(i) dissolves in water	r to form an a	Ikaline solutio	n,			
						[1]	
() is the main consti	ituent of natur	al gas.				
						[1]	

(b)	At a	high temperature iron(III) oxi	de is reduce	ed by	carb	on.			For Examiner's
		$Fe_2O_3 + 3C$	\longrightarrow	2⊦e	+	300			036
	(i)	Explain how the equation sho	ws that iror	n(III) o	xide	e is reduced b	y carbon.		
								[1]	
	(ii)	Complete these sentences at	oout the ext	ractior	n of	iron using wo	ords from the list.		
		bauxite blast	conv	erter		haematite	lime		
		limestone	sar	nd			slag		
		Iron is extracted from				by mixing t	he ore with		
		coke and	in	a			furnace		
		The iron ore is reduced to iron	n and impur	rities ir	n the	e ore react wi	th calcium oxide		
		to form		· · ·				[4]	
							[Total:	10]	

2 The table shows some observations about the reactivity of various metals with dilute hydrochloric acid.

For Examiner's Use

	metal	observations						
	calcium many bubbles produced rapidly with much spitting							
	copper no bubbles formed							
	iron a few bubbles produced very slowly							
	magnesium	many bubbles produced rapidly with no spitting						
(a)	Put these metals in or most reactive	der of their reactivity. ► least reactive						
		[1]						
(b)	Zinc is between iron a Suggest what observ zinc reacts with dilute	nd magnesium in its reactivity. ations are made about how fast the bubbles are produced when hydrochloric acid.						
		[1]						
(c)	Magnesium is extracted	ed by the electrolysis of molten magnesium chloride.						
		anode (+)						

(i) What information in the diagram suggests that magnesium is less dense than molten magnesium chloride?

[1]

	(ii)	Suggest why magnesium has to be extracted by electrolysis rather than by heating its oxide with carbon.	For Examiner's Use
		[1]	
	(iii)	Suggest why a stream of inert gas is blown over the surface of the molten magnesium.	
		[1]	
	(iv)	State the name of a gaseous element which is inert.	
		[1]	
(d)	In s mag The	some old magnesium manufacturing plants, coal gas is blown over the surface of the gnesium. gnesium. e list shows the main substances in coal gas.	
		carbon monoxide ethene hydrogen	
		hydrogen sulfide methane	
	(i)	Draw the structure of ethene showing all atoms and bonds.	
		[1]	
	(ii)	[1] Suggest two hazards of using coal gas by referring to two specific substances in the list.	
	(ii)	[1] Suggest two hazards of using coal gas by referring to two specific substances in the list. substance	
	(ii)	[1] Suggest two hazards of using coal gas by referring to two specific substances in the list. substance hazard	
	(ii)	[1] Suggest two hazards of using coal gas by referring to two specific substances in the list. substance hazard substance	

(e) Carbon monoxide can be removed from coal gas by mixing it with steam and passing the mixture over a catalyst of iron(III) oxide at 400 °C. Examiner's

For

Use

 $\mathsf{CO} \ \ \textbf{+} \ \ \mathsf{H}_2\mathsf{O} \ \ \rightleftharpoons \ \ \mathsf{CO}_2 \ \ \textbf{+} \ \ \mathsf{H}_2$

(i)	Write a word equation for this reaction.	
		[1]
(ii)	What does the symbol \rightleftharpoons mean?	
		[1]
(iii)	Iron(III) oxide reacts with acids to form a solution containing iron(III) ions. Describe a test for aqueous iron(III) ions.	
	test	
	result	
		[2]
	[Total: 1	3]

petro	etroleum is a mixture of hydrocarbons which can be separated into fractions such as etrol, paraffin and diesel.							
(a)	State the name	e of the process	used to separate the	ese fractions.				
								[1]
(b)	Name two othe	er fractions whicl	n are obtained from	petroleum .				[0]
			and					[2]
(c)	Give one use f	for the paraffin fra	action.					
								[1]
(d)	Many of the co Which two of t	ompounds obtain the following stru	ed from petroleum a ctures are alkanes?	are alkanes.				
	Α	В	(0		D		
	н н—с—н 	H C=c	H H / H—C-	—о—н	H H—C-	H -C-	H -C—	-н
	н́	H	н н		н	Η	н Н	
e)	H Use words from	H m the list below to	Ή Η Η	wing sentence	н Н	H	H	[1]
(e)	H Use words fror ethane	H m the list below to ethene	`H H	wing sentence	н Н Э.	 H	H 	[1]
(e)	H Use words fror ethane reac	H m the list below to ethene ctive	`H H o complete the follo hydrogen unreactive	wing sentence nitrogen	e. water	I H xygei	н Н	[1]
(e)	H Use words fror ethane reac	H m the list below to ethene ctive	`H H o complete the follo hydrogen unreactive	wing sentence nitrogen	e. o water	H Xygei	н Н	[1]
(e)	H Use words fror ethane reac	H m the list below to ethene ctive	`H H o complete the follo hydrogen unreactive are generally	wing sentence nitrogen		I H xyger	⊢ H n	[1] n
(e)	H Use words fror ethane reac Alkanes such a be burnt in	H m the list below to ethene ctive	`H H o complete the follow hydrogen unreactive are generally to form carbon did	wing sentence nitrogen	e. water t	н Н xyger	⊢ H n ∍y cai	[1] n [4]
(e) (f)	H Use words from ethane read Alkanes such a be burnt in Alkanes are sa What do you u	H m the list below to ethene ctive as aturated hydrocar	`H H b complete the follow hydrogen unreactive are generally to form carbon did bons.	wing sentence nitrogen	H e. water	L H xyger	h h	[1] n [4]
(e) (f)	H Use words fror ethane reac Alkanes such a be burnt in Alkanes are sa What do you u (i) saturated,	H m the list below to ethene ctive as aturated hydrocar inderstand by the	`H H	wing sentence nitrogen	e. water	xyger	н н	[1] n [4]
(e)	H Use words from ethane reac Alkanes such a be burnt in Alkanes are sa What do you u (i) saturated,	H m the list below to ethene ctive as aturated hydrocar inderstand by the	`H H	wing sentence nitrogen	H •. •. •. •. •. •. •. •. •. •. •. •. •.	L Xyger	н н еу сан	[1] [4]
(e) (f)	H Use words fror ethane reac Alkanes such a be burnt in Alkanes are sa What do you u (i) saturated,	H m the list below to ethene ctive as aturated hydrocar inderstand by the	`H H	wing sentence nitrogen	H water	L Xyger	H H → H → H → H → H → H → H → H → H	[1] [4]
(e) (f)	H Use words from ethane read Alkanes such a be burnt in Alkanes are sa What do you u (i) saturated, (ii) hydrocarb	H m the list below to ethene ctive as aturated hydrocar inderstand by the	`H H	wing sentence nitrogen	H e. water	H xyger	H •••y car	[1] [4]

This question is about some compounds of nitrogen. For Examiner's Use A mixture of ammonium sulfate and sodium hydroxide was warmed in a test-tube. The gas was tested with moist red litmus paper. red litmus paper ammonium sulfate and sodium hydroxide heat gently (a) State the name of the gas released. [1] (b) State the colour change of the litmus paper. [1] (c) Complete the word equation for the reaction of ammonium carbonate with hydrochloric acid. → + + hydrochloric ammonium carbonate acid [3] . (d) Ammonium salts such as ammonium nitrate, NH₄NO₃ and ammonium chloride NH₄Cl are used as fertilisers. (i) Explain why farmers need to use fertilisers.[1] (ii) Explain why ammonium nitrate is a better fertiliser than ammonium chloride. [1]

	(iii)	Calculate the relative formula mass of ammonium nitrate.		For Examiner's Use
			[1]	
(e)	Whe Nitro Nan	en ammonium nitrate is heated nitrogen(I) oxide is given off. ogen(I) oxide relights a glowing splint. ne one other gas which relights a glowing splint.	[1]	
(f)	Stat	e one harmful effect of nitrogen oxides on the environment.	[1]	
		[Tota	l: 10]	

5 A student used the apparatus shown below to investigate the rate of reaction of calcium carbonate with dilute hydrochloric acid.

For

Examiner's Use

(i) At what time was the reaction just complete?	For
	[1]	Use
(ii) On the graph, mark with an X the point where the speed (rate) of reaction was fastest. [1]	
(iii) The student repeated the experiment but altered the concentration of the hydrochloric acid so that it was half the original value. In both experiments calcium carbonate was in excess and all other conditions were kept the same.	
	On the graph on page 10, draw a curve to show how the mass of the flask and contents changes with time when hydrochloric acid of half the concentration was used. [2]	
(c) H	ow does the speed (rate) of this reaction change when	
(i) the temperature is increased, [1]	
(ii) smaller pieces of calcium carbonate are used? [1]	
(d) C	omplete the following sentence using words from the list.	
	combustion expansion large rapid slow small	
In	flour mills there is often the risk of an explosion due to the rapid	
of	the very particles which have a very	
	surface area to react. [3]	
(e) C	surface area to react. [3] ells in plants and animals break down glucose to carbon dioxide and water.	
(e) C	surface area to react. [3] ells in plants and animals break down glucose to carbon dioxide and water. glucose + oxygen → carbon dioxide + water	
(e) C	surface area to react. [3] ells in plants and animals break down glucose to carbon dioxide and water. glucose + oxygen → carbon dioxide + water) State the name of this process.	
(e) C (i	surface area to react. [3] ells in plants and animals break down glucose to carbon dioxide and water. glucose + oxygen → carbon dioxide + water) State the name of this process. [1]	
(e) C (i	surface area to react. [3] ells in plants and animals break down glucose to carbon dioxide and water. glucose + oxygen → carbon dioxide + water) State the name of this process. [1]) In this process enzymes act as catalysts. [1]	
(e) C (i	surface area to react. [3] ells in plants and animals break down glucose to carbon dioxide and water. glucose + oxygen → carbon dioxide + water) State the name of this process. [1]) In this process enzymes act as catalysts. [1] (1] [1]	
(e) C (i	surface area to react. [3] ells in plants and animals break down glucose to carbon dioxide and water. glucose + oxygen → carbon dioxide + water) State the name of this process. [1]) In this process enzymes act as catalysts. [1] (1] [1] [1] [1] [1] [1] [1]	

Bromine is an element in Group VII of the Periodic Table. 6 For Examiner's Use (a) Write the formula for a molecule of bromine. [1] (b) Complete the diagram below to show the arrangement of the molecules in liquid bromine. [>]represents a bromine molecule [2] (c) A teacher placed a small amount of liquid bromine in the bottom of a sealed gas jar of air. After two minutes brown fumes were seen just above the liquid surface. After one hour the brown colour had spread completely throughout the gas jar. air liquid bromine after 2 minutes after start Use the kinetic particle theory to explain these observations. [3]

- (d) Magnesium salts are colourless but Group VII elements are coloured. For An aqueous solution of magnesium bromide reacts with an aqueous solution of Examiner's Use chlorine. magnesium bromide + chlorine ------ magnesium chloride + bromine State the colour change in this reaction. [2] (e) A solution of magnesium bromide will not react with iodine. Explain why there is no reaction. [1] (f) The structures of some compounds containing bromine are shown below. Α В С D Na Br Na Br Br Br Br Br H—Br Zn²⁺ 7n²⁻ Br Na Br Na Br Br Br Br Br Na Br Na⁺ Br Br Na⁺ Br Na (i) Write the simplest formula for the substance with structure A. [1]
 - (ii) State the name of the substance with structure **D**.
 - (iii) State the type of bonding within a molecule of structure **C**.
 - (iv) Which two structures are giant structures?
 and [1]
 (v) Why does structure A conduct electricity when it is molten?

.....

[1]

[1]

Hyd	drogen chloride can be made by	y burning hydrogen in chlorine.		For Examiner's
(a)	Complete the equation for this	reaction.		Use
	H ₂ +	→ HC <i>l</i>	[2]	
(b)	Draw a dot and cross diagram Show all the electrons.	for a molecule of hydrogen chlori	de.	
	use o for an electron from a hy use x for an electron from a ch	ydrogen atom nlorine atom		
			[2]	
(c)	Hydrochloric acid is formed wh Suggest the pH of hydrochloric Put a ring around the correct a	hen hydrogen chloride gas dissolv c acid. answer.	ves in water.	
	рН 1 рН	17 pH9	pH 13 [1]	
(d)	pH 1 pH Complete the equation for the	7 pH9 reaction of hydrochloric acid with	pH 13 [1] zinc.	
(d)	pH 1 pH Complete the equation for the zinc + hydrochloric ar	7 pH9 reaction of hydrochloric acid with cid → zinc chloride + .	pH 13 [1] zinc. [1]	
(d) (e)	pH 1pHComplete the equation for the zinc+hydrochloric arDescribe how dry crystals of chloride.	 7 pH9 reaction of hydrochloric acid with cid → zinc chloride + . f zinc chloride can be obtained f 	pH 13 [1] zinc. [1] from a solution of zinc	
(d) (e)	pH 1 pH Complete the equation for the zinc + hydrochloric a Describe how dry crystals of chloride.	7 pH9 reaction of hydrochloric acid with cid \longrightarrow zinc chloride + . f zinc chloride can be obtained f	pH 13 [1] zinc. [1] from a solution of zinc	
(d) (e)	pH 1pHComplete the equation for the zinc + hydrochloric arDescribe how dry crystals of chloride.	7 pH9 reaction of hydrochloric acid with cid → zinc chloride + . f zinc chloride can be obtained t	pH 13 [1] zinc. [1] from a solution of zinc	
(d) (e)	pH 1 pH Complete the equation for the zinc + hydrochloric a Describe how dry crystals of chloride.	17 pH9 reaction of hydrochloric acid with cid → zinc chloride + . f zinc chloride can be obtained f	pH 13 [1] zinc. [1] from a solution of zinc [2]	
(d) (e) (f)	pH 1pHComplete the equation for the zinc + hydrochloric arDescribe how dry crystals of chloride.Describe how dry crystals of chloride.A student electrolysed molten State the name of the product	I7 pH9 reaction of hydrochloric acid with cid → zinc chloride + . f zinc chloride can be obtained f zinc chloride. formed at	pH 13 [1] zinc. [1] from a solution of zinc 	
(d) (e) (f)	pH 1 pH Complete the equation for the zinc + zinc + hydrochloric ar Describe how dry crystals of chloride. - Market are arrested a	I7 pH9 reaction of hydrochloric acid with cid → zinc chloride + . f zinc chloride can be obtained f zinc chloride. formed at	pH 13 [1] zinc. [1] from a solution of zinc [2]	
(d) (e) (f)	pH 1 pH Complete the equation for the zinc + zinc + Describe how dry crystals of chloride. - Mathematical electrolysed molten State the name of the product - (i) the anode, (ii) the cathode.	I7 pH9 reaction of hydrochloric acid with cid → zinc chloride + . f zinc chloride can be obtained formed at	pH 13 [1] zinc. [1] from a solution of zinc [2] [1] [1] [1] [1] [1] [1]	

BLANK PAGE

Group		N	11 12 14 16 19 B C N O F 5 Boom Carbon Nitrogen Provine 5 6 7 8 9	27 28 31 32 35.5 A1 Si P P S C1 Auminium Silicon 14 15 16 18	59 64 65 70 73 75 79 80 Ni Cu Zn Ga Ge As See Br Notei 29 30 31 32 33 34 35 36	106 108 112 115 119 122 128 127 Pd Ag Cd In Sn Sb Te I n Paladium Siver Cadmium Indum Tin Antimoty Tailutium Iodine 54	195 197 201 204 207 209 Pt Au Hg T1 Pb Bi Po At Plainum Goid Mercury T1 Pb Bismuth Poonium At 78 79 80 81 84 85 86		152 157 159 162 165 167 169 173 N Eu Gd Tb Dy Ho Er Tm Yb Im Evopium Gadotnium Dyspressium Homium Erbitum Tm Yb Im Evopium Gadotnium Dyspressium Homium Erbitum Yb Yb	
0		T T			56 59 Fe Co Iron 27	101 103 Ru Rh Ruhenium Rhodium	190 192 005 192 05mium 77		Pm Samarium 62	
		~			55 Manganese 25	Technetium 43	186 Re Rhenium 75		144 Neodymium 60	238
					52 Cr Chromium 24	96 Molybdenum 42	184 V Tungsten 74		141 Pr Praseodymium 59	á
					51 Vanadium 23	93 Niobium 41	181 Ta Tantalum 73		140 Ce ^{Cerium}	232 1
					48 Titanium 22	91 Zr Zirconium 40	178 Hafnium 72		1	mic mass
					45 SC Scandium 21	29 Yttrium	139 Latthanum 57	227 Actinium 89	id series series	a = relative atc
	=	-	9 Beryllium 4	24 Magnesiur 12	40 Calcium 20	88 Strontium 38	137 Ba Barium 56	226 Rad Radium 88	Lanthano 3 Actinoid	ه >
	_		7 Lithium 3	23 Na Sodium	39 A Potassium 19	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 †90-10	Ne X

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.