MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012	0620	33

- (a) neon has full outer shell / energy level / valency shell / octet / 8 (electrons) in outer shell / neon does not need to lose or gain electrons; [1] fluorine atoms have 7 electrons / needs 1 to fill / has incomplete shell / forms bonds with other fluorine atoms / fluorine (atoms) form covalent bonds / shares electrons; [1]
 - (b) atomic number / proton number / number of protons (in one atom); [1]
 - (c) weak intermolecular (or between molecules) forces / Van der Waals forces between molecules / low amount of energy required to break bonds between molecules; [1] strong bonds don't break / covalent bonds don't break / (unnamed) bonds within molecules / between atoms don't break; [1]
 - (d) 1 non-bonding pair on each nitrogen atom;[1]6 electrons between nitrogen atoms;[1]

(a) weak forces between layers or between (hexagonal) rings / weak bonds between layers or between (hexagonal) rings / Van der Waals forces between layers or between (hexagonal) rings;
 [1] (layers/rings) slip/slide (over each other) / move over each other

- (b) strong <u>bonds</u> (between atoms) / <u>covalent bonds</u> (between atoms); [1] <u>all</u> bonds are covalent/strong / each atom covalently bonded / carbon (atoms) is bonded to four others / bonds are directional / (atoms are arranged) tetrahedrally; [1] accept: carbon has four bonds
- (c) graphite has delocalised / mobile / free electrons; [1] diamond (outer shell) electrons used / fixed / localised in bonding / no delocalised electrons / no mobile electrons / no free electrons; [1]

3 (a) flexible / easily form different shapes / easily moulded / bends (without cracking); [1] non-biodegradable / unreactive / don't corrode / prevent corrosion / prevent oxidation (of the conducting metal) / water resistant / waterproof; [1]

- (b) improve appearance / decorative / makes appearance shiny; [1] prevent corrosion / rusting / protect steel / chromium will not corrode / chromium is not oxidised / chromium protected by an oxide layer; [1]
- (c) low density / light / protected by oxide layer / no need to paint / resists corrosion / (high) strength / strong;; any two
 [2] note: high strength to weight ratio = 2
- (d) high mpt / withstands high temperature / good conductor (of heat) / heats up quickly / malleable / ductile / resists corrosion / good appearance / unreactive (or example of lack of reactivity e.g. does not react with food or water or acid or air);; any two [1]

	Page 3				Mark So							llabus		Paper	
					IGO	CSE –	May/Ju	une 20'	12			0620		33	
	 (e) (lattice) positive ions / cations / metal ions and sea of electrons / delocalised or moving electrons; attraction between positive ions and electrons; 								d or free	e or mo	bi]]				
	(a)	(i)	oxyg carb	gen; oon dioxi	de / fluo	orine / o	carbon	monox	de;						[
 (ii) decrease mpt (of alumi 800/1000 (°C) / reduce improve conductivity / oxide conduct / to cond 						uce ene y / dis:	ergy (ad solves	ccept h the A <i>l</i> ₂	eat or e O ₃ / ac	lectrica ts as s	l) requi olvent;	rement; (allow:)			[
		(iii)		0₃ (accep O₃ remo		,						ter / is ne	eutralise	ed;	[
	(b)	(i)	chlor incom men <u>hydr</u> or in men one solut	rine forr rrect eq tioned.) cogen fo ncorrect tioned.) correct	ned at a uation w rmed at equation half equa aining c	with C <u>cathor</u> n with ation e	<u>(positiv</u> 2₁ as th de (neg H₂ as either 20 as Na⁺ a	$\frac{e \text{ elect}}{e \text{ only}}$ $\frac{e}{e}$ $\frac{e}{e}$ e e e e e e e e	<u>rode)</u> ; (i / substa <u>lectrode</u> y substa C <i>l</i> ₂ + 2e i⁻ / sodiu	note: c ance or <u>e);</u> (note ance or or 2H ⁺	an be n the n e: can n the r + 2e –	city / cell; awarded right as I be award ight as Ic → H ₂ xide ions	from a ong as led fror ong as	s anode n a cor cathod	e rre e [
			elect chlor inco men <u>sodii</u> with one (acc NaC when note sodii	rine forr rrect eq itioned.) <u>um form</u> Na as th correct cept: eq DH/sodiu n added	d electrol ned at a uation w ned at ca ne only s half equ uivalent m hydro to wate the fou odium m	lyte / e anode with C athode substa uation with N oxide is er; urth an hercury	electrode (<u>positiv</u> l_2 as the electron l_2 ; (note ince on at ano laHg and s forme nd fifth v amalg	es / and re elect he only the rigi de i.e. nalgam ed by so mark am rea	rode); ((v substance pe aware nt as lor 2Cl ⁻ → pdium/so if corre cting with	note: c ance of ded fro ng as ca $rac{c_2}{c_2}$ + odium r ct equa	an be n the m a co athode 2e or nercury ation g	city / cell; awarded right as l prrect or i is mentio at cathoo / amalgan iven for	from a long as ncorred ned.) de Na ⁺ m reac	s anode ct equa + e → ting wit	e [itic [h [

(ii) H₂ / H / hydrogen and making ammonia / making margarine / hardening fats / fuel / energy source / cryogenics / welding; [1] Cl₂ / Cl / chlorine and (making) bleach / water treatment / kill bacteria (in water) / water purification / swimming pools / making solvents / making PVC / making weed killer / making disinfectants / making hydrochloric acid / HCl / making herbicides / pesticides / insecticides; [1]

	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012	0620	33
	•		[1] [1]
any	name or correct formula of a (strong) acid / H^+ ;		[1]
cont	ain carbon hydrogen and oxygen /C, H and O;		[1]
gluc	ose \rightarrow ethanol + carbon dioxide		[1]
			ut yeast; [1] [1]
enzy not: redu	/mes; enzyme killed / denatures yeast ices rate of reaction / slows reaction / (yeast or e		[1]
prev	ent aerobic respiration / so products are not oxidis		- ,
crac (met redu disp	king hydrocarbons to make methane no longer requ hane) is renewable / carbon neutral; ice pollution of water or sea / prevents visual pol osal or accumulation (accept: any methods of wa	ired; lution / prevents	need for waste
AC	DB		[1]
incre rate B is or B is prop D slo A is alrea	eases; or speed or time depends on (concentration) of H ⁺ of slow because propanoic acid is weak or doesn't dis slow because HC <i>l</i> and H ₂ SO ₄ are stronger or banoic; bw <u>er</u> than C because C is more concentrated than I fast because H ⁺ concentration high (note: this wor ady awarded) / H ₂ SO ₄ is diprotic or dibasic or 2H ⁺ ;	or hydrogen ions; sociate or weakly ionise or dissoc 0 / ORA;	[1] [1] ionises; iate more than [1] [1]
	corrections any cont gluc yeas yeas heat enzy not: reduc cata wou prev with foss crace (met disp recy A C spee incrections alice B is prop D slo A is alice	IGCSE – May/June 2012 correct -O- linkage; correct unit and continuation -O-□- (minimum); any name or correct formula of a (strong) acid / H*; contain carbon hydrogen and oxygen /C, H and O; glucose → ethanol + carbon dioxide yeast is catalyst / provides enzymes / speeds up reaction yeast cells grow / multiply / reproduce / undergo budding heat or high temperature would kill yeast (cells) / heat enzymes; not: enzyme killed / denatures yeast reduces rate of reaction / slows reaction / (yeast or e catalyst / stops reaction / no more product; would produce carbon dioxide or carboxylic or organic prevent aerobic respiration / so products are not oxidis with oxygen; fossil fuels have a reduced need / conserved / no me cracking hydrocarbons to make methane no longer requ (methane) is renewable / carbon neutral; reduce pollution of water or sea / prevents visual pol disposal or accumulation (accept: any methods of wa recycled; any two A C D B speed (or rate) increases as <u>concentration</u> increases / increases; rate or speed or time depends on (concentration) of H* d B is slow because propanoic acid is weak or doesn't dis	IGCSE – May/June 2012 0620 correct -O- linkage; correct unit and continuation -O-□- (minimum); any name or correct formula of a (strong) acid / H*; contain carbon hydrogen and oxygen /C, H and O; glucose → ethanol + carbon dioxide yeast is catalyst / provides enzymes / speeds up reaction / too slow witho yeast cells grow / multiply / reproduce / undergo budding / breed; heat or high temperature would kill yeast (cells) / heat or high temperature mould kill yeast (cells) / heat or high temperature mould kill yeast or enzyme; mot: enzyme killed / denatures yeast reduces rate of reaction / slows reaction / (yeast or enzyme) no longer catalyst / stops reaction / no more product; would produce carbon dioxide or carboxylic or organic acids (if oxygen prevent aerobic respiration / so products are not oxidised / anaerobic bawith oxygen; fossil fuels have a reduced need / conserved / no need to import / v cracking hydrocarbons to make methane no longer required; (methane) is renewable / carbon neutral; reduce pollution of water or sea / prevents visual pollution / prevents disposal or accumulation (accept: any methods of waste disposal) / s recycled; any two A C D B speed (or rate) increases as concentration increases / time decreases a increases; rate or speed or time depends on (concentration) of H* or hydrogen ions; B is slow because HC/ and H ₂ SO ₄ are stronger or ionise or dissoc propanoic; D slower than C because C is more concentrated than D / ORA; A is fast because H* concentrati

D -		Mayle Cohomos Toookama's same's a	Cyllabera	Dener
Pa	age 5	Mark Scheme: Teachers' version IGCSE – May/June 2012	Syllabus 0620	Paper 33
		IGCSE – May/Julie 2012	0020	33
(b)	inci par mo cha inci piec mo or cata mo	Inge 1: rease temperature / heat (the mixture); ticles/molecules/ions have more energy or move faster; re (successful) collisions / more particles with E _a ; inge 2: rease surface area / decrease particle size / use powe ces / crush the magnesium; re collisions / more particles exposed to reaction; alyst; re (successful) collisions; ers E _a ;	dered (magnesium	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]
7 (a)	(i)	CH ₂ /H ₂ C		[1]
	(ii)	same ratio of C:H (atoms) / all cancel to CH_2 / because ratio of atoms or elements (in the compound) / C:H ratio		is C _n H _{2n} / same [1]
(b)	(i)	propanoic / propionic (acid); ethanoic / acetic (acid);		[1] [1]
	(ii)	formula of ethene / but-2-ene / any symmetrical alkene		[1]
(c)	(i)	CH ₃ CH(Br)CH ₂ Br		[1]
	(ii)	CH ₃ CH(OH)CH ₃ / CH ₃ CH ₂ CH ₂ OH / C ₃ H ₇ OH		[1]
(d)				
	_	$- \left[- CH_2 - CH_{-} \right]_{n}$ CH ₃		
		rect unit; : ept: more than one repeat unit		[1]
		tinuation bonds at both ends;		[1]
(e)	if C if 1 in a	${}_{5}H_{10}$ is given award 3 marks;;; ${}_{10}H_{20}$ is given award 2 marks;; 7.5:5 / 2:15:10 is given award 2 marks;; Il other cases a mark can be awarded for moles of O ₂ (= CO ₂ (= 2.2/44 =) 0.05;	2.4/32 =) 0.075 A	[3] ND moles

 $2C_5H_{10} + 15O_2 \rightarrow 10CO_2 + 10H_2O$ accept: multiples including fractions allow: ecf for correct equation from any incorrect alkene

[1]

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2012	0620	33
8	(a)	proton de	onor;		[1]
	(b)	add Univ ethylami or equal co	oncentrations of both (solutions); versal indicator / determine pH / pH paper; ine has lower pH / ORA; oncentration of both (solutions);		[1] [1] [1]
			e conductivity of aqueous ethylamine and sodium l ine will have low <u>er</u> conductivity / sodium hydroxide	•	[1] onductivity; [1]
	(c)	add stror warm / h	ng(er) base / NaOH / KOH; neat;		[1] [1]
	(d)		nine forms) hydroxide <u>ions /</u> OH⁻ (in water); le <u>ions</u> / OH⁻ reacts with iron(III) <u>ions</u> / Fe ³⁺ ;		[1]
			hydroxide / Fe(OH) ₃ (forms as a brown precipitate alanced or unbalanced ionic equation i.e. $Fe^{3+\frac{1}{2}}$		[1] H)₃ scores both