UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the November 2004 question paper

0620 CHEMISTRY

0620/03

Paper 3 (Extended Theory), maximum mark 150

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

UNIVERSITY of **CAMBRIDGE** International Examinations Grade thresholds taken for Syllabus 0620 (Chemistry) in the November 2004 examination.

	maximum	minimum mark required for grade:				
	mark available	А	С	Е	F	
Component 3	150	52	34	25	19	

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

November 2004

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 150

SYLLABUS/COMPONENT: 0620/03

CHEMISTRY Extended Theory

	Page 1	Mark Scheme	Syllabus	Paper	
		IGCSE – November 2004	0620	3	
1	(a)	carbon dioxide, water vapour, noble gases or a named Any TWO	noble gas	[2]	
	(b)	ourning fossil fuels COND that contain sulphur acid rain or any effect of acid rain - deforestation, effect on stone work,			
		corrosion of metals, acidity in lakes, health etc			
		motor vehicles or petrol or car exhausts health, if specified then brain, nervous system, development of children etc do not select from list illnesses			
		OR lead in old paint harmful effect as above		[1] [1]	
	(c) (i)	combustion or burning NOT dissolving in the ocean		[1]	
	(ii)	6CO ₂ + 6H ₂ O exothermic		[1] [1]	
	(d) (i)	glowing splint burst into flame or rekindled Must have glowing or equivalent idea OR any similar description that includes the two points gl	owing and rel	[1] ights.	
	(ii)	measure volume or count bubbles time NOT units		[1] [1]	
	(iii)	<u>rate</u> slows down Because the reaction is photochemical or rate depends on intensity of light or light less bright or less light falling on plant or light provides energy for			
		photosynthesis etc.	photosynthesis etc.		
			Г	OTAL = 15	
2		dilute filter saturated cool blue			
		sulphate		[6]	
				TOTAL = 6	
3	(a) (i)	no change in concentration of reagents or rates equal Accept no change in amounts or it is as if the reaction ha	s Stopped	[1]	
	(ii)	back reaction is endothermic or the forward reaction is ex Increase in temperature favours the endothermic reaction	kothermic which is the	[1] back	
		reaction or vice versa. NB look for correct conclusion re thermicity and commen equilibrium.	t re position o	[1]	

	Page 2	Mark Scheme IGCSE – November 2004	Syllabus 0620	Paper 3
	(iii)	increased rate because molecules collide more frequently or concentrate increased or molecules are closer NOT they have more KE increased yield high pressure favours side with few molecules or smaller to reduce the pressure this is product side this can be implied	ion of molecu volume or m	[1] Iles is [1] Ioves [1] [1]
	(b) (i)	CO_2 and H_2O balanced $2CH_3OH + 3O_2 = 2CO_2 + 4H_2O$		[1] [1]
	(ii)	methyl ethanoate water		[1] [1]
	(iii)	Methanoic (acid) accept formic acid		[1]
			7	FOTAL = 13
4	(a) (i)	Correct equation with a more reactive metal		[1]
	(ii)	Electron loss		[1]
	(iii)	Because they can accept electrons or take electrons aw from	ау	[1]
	(iv)	Silver or silver(I)		[1]
	(b) (i)	increase		[1]
	(ii)	zinc COND and a correct reason - such as it loses electrons n it is more reactive Need both zinc and reason for the mark.	nore easily o	or [1]
		(iii)from the more reactive to the less reactive NOT just	from zinc to l	ead [1]
				TOTAL = 7
5	(a)	Group II metals will lose 2e Group VI elements will gain 2e		[1] [1]
	(b)	SCl_2 COND 8e around both chlorine atoms 8e around sulphur with 2nbp and 2bp If x and o reversed ignore if this is the only error		[1] [1] [1]
	(c) (i)	lons cannot move in solid or can move in liquid		[1]
	(ii)	No ions in sulphur chloride or it is covalent or only mole strontium chloride has ions	cules or only	[1]
				TOTAL = 7

Page 3		Mark Scheme	Syllabus	Paper
		IGUSE – November 2004	0620	3
6	(a) (i)	correct structure $CH_2=CCl_2$		[1]
	(ii)	because it has a lower M_r or density or its molecules n it is lighter ONLY [1] only comment - smaller molecules [0] answer implies or states sieve idea then [0]	nove faster	[2]
	(b) (i)	ester linkage COND polymer chain showing different monomers and continuation -OOC-C ₆ H ₄ -COOCH ₂ CH ₂ O-		[1] [1]
	(ii)	fats or lipids		[1]
	(iii)	does not decompose easily when heated accept similar statements		[1]
	(c) (i)	does not decompose or non-biodegradable shortage of space visual pollution poisonous/toxic/harmful gases when <u>burnt</u> NOT carbon monoxide, sulphur dioxide. If gas named has to be a correct one eg HC <i>l</i> , HCN dangerous to animals Any TWO	f landfill sites as	or of [2]
	(ii)	conserve petroleum or save energy		[1]
	()	NOT cheaper		TOTAL = 10
7	(a) (i)	Zn(OH) ₂ = ZnO + H ₂ O reactant [1] products [1]		[2]
	(ii)	it would melt or it does not decompose or it does not rea NOT no change	act	[1]
	(iii)	blue (solid) to black (solid) brown <u>gas</u>		[1] [1] [1]
		Mark consequentially to any error but not involving sin There has to be some evidence that the candidate has a through the calculation and not merely inserted whole not For example 2, 1, 160 or 1, 0.5, 80 number of moles of Fe ₂ (SO ₄) ₃ = 1/40 or 0.025 number of moles of Fe ₂ O ₃ formed = 1/40 or 0.025 mass of iron(III) oxide formed = 0.025 x 160 = 4g number of moles of SO ₃ produced = 3/40 or 0.075 volume of sulphur trioxide at r.t.p. = 0.075 x 25 = 1.8 dm ³	nple integers attempted to w umbers.	rork
		– 1.00m		
			-	101AL = 11

	Page 4	Mark Sche	eme	Syllabus	Paper
		IGCSE – Novem	ber 2004	0620	3
8	(a) (i)	C₀H₁₂ between 60 to 65°C			[1] [1]
	(ii)	C ₁₂ H ₂₄ COND giving some indication of	the method		[1] [1]
	(b)	add bromine water or potassium	manganate(VII) e/vellow to colourless		[1]
		or manganate (VII) from pink to NOT clear	colourless		[1]
		Cyclobutane it remains brown/or or no colour change Accept does not react Provided colour of reagent some	ange/yellow or mangana where in the answer [3]	ate (VII) stays is possible	pink [1]
	(c) (i)	alcohol			[1]
	(ii)	CH ₃ -CH ₂ -CHC <i>l</i> -CH ₃			[1]
	(iii)	-CH(CH ₃)-CH(CH ₃)- or any equivalent diagram [1] for repeat unit and [1] for con	linuation		[2]

TOTAL = 11