ONS REPREDENCE ON SONS

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY

Paper 3 (Extended)

0620/03

October/November 2005

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials required.

Candidate Name							
Centre Number				andidate			
Number			Nι	umber			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

WRITE IN THE BOXES PROVIDED ON THE QUESTION PAPER

DO NOT WRITE IN THE BARCODE.

DO NOT WRITE IN THE GREY AREAS BETWEEN THE PAGES.

Do not use staples, paper clips, highlighters, glue or correction fluid.

You may use a calculator.

Answer all questions.

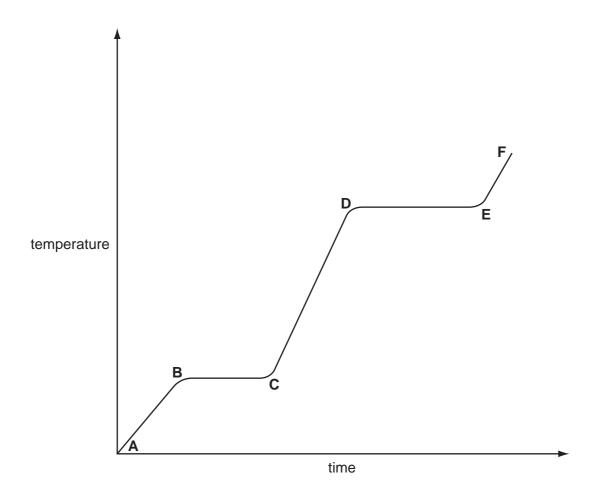
The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 16.

For Examin	er's Use
1	
2	
3	
4	
5	
6	
7	
Total	

1 (a) The structure of a typical ionic compound is a regular arrangement of positive and negative ions.

For
Examiner's
Use


(i)	What is the name of this regular arrangement of particles?	
		[1]
(ii)	Give two physical properties of ionic compounds.	
		[2]
	s are formed by electron loss or gain. The electron distribution of a magnesi m is 2 + 8 + 2 and of a nitrogen atom is 2 + 5.	um
(i)	Give the formula of the magnesium ion.	
		[1]
(ii)	Give the formula of the nitride ion.	
		[1]
(iii)	What is the formula of the ionic compound, magnesium nitride?	
		[1]
(iv)	In this compound there is an ionic bond. Why are the two ions attracted to ear other?	ach
		[1]

(b)

2 Ethanoic acid is a colourless liquid at room temperature. It has the typical acid properties and forms compounds called ethanoates.

For Examiner's Use

(a) A pure sample of ethanoic acid is slowly heated from 0°C to 150°C and its temperature is measured every minute. The results are represented on the graph below.

(i)	Name the change that occurs in the region D to E .	
-----	--	--

[1]

(ii) What would be the difference in the region **B** to **C** if an impure sample had been used?

[1]

(iii) Sketch on the graph how the line would continue if the acid was heated to a higher temperature. [1]

(iv) Complete the following table that compares the separation and movement of the molecules in regions C to D with those in E to F.

For Examiner's Use

[2]

	C to D	E to F	
separation (distance between particles)			
movement of particles	random and slow		
Can particles move apart to fill any volume?			
			[5
Complete the word equations to calcium + ethanoic act		c acid.	

+ ethanoic acid → zinc ethanoate + water

(c) Write the symbol equation for the reaction between ethanoic acid and sodium

[2]

© UCLES 2005 0620/03/O/N/05

(b)

hydroxide.

3 Reversible reactions can come to equilibrium. They have both a forward and a backward reaction.

For Examiner's Use

(a) When water is added to an acidic solution of bismuth(III) chloride, a white precipitate forms and the mixture slowly goes cloudy.

(i)	Explain why the rate of the forward reaction decreases with time.	
		[2]
(ii)	Why does the rate of the backward reaction increase with time?	
		 [1]
		ניו
(iii)	After some time why does the appearance of the mixture remain unchanged?	
		 [2]
(iv)	When a few drops of concentrated hydrochloric acid are added to the clomixture, it changes to a colourless solution. Suggest an explanation.	udy
		[2]

(b) Both of the following reactions are reversible.

(i)	Suggest a reason why an increase in pressure does not affect the position equilibrium for reaction 1.	of
		[1]
(ii)	What effect would an increase in pressure have on the position of equilibrium reaction 2? Give a reason for your answer.	for
		[2]

4

The alcohols form a homologous series. The first member is methanol and the butanol.	fourth is
$CH_3 - OH$ $CH_3 - CH_2 - CH_2 - OH$ methanol butanol	
(a) (i) Give two general characteristics of a homologous series.	
	[2]
(ii) Calculate the mass of one mole of the C ₈ alcohol.	
	[2]
(b) Give the name and structural formula of the third member of this series.	
name	[1]
structural formula	
	[1]
(c) The structural formula of the fifth member, pentan-1-ol, is drawn below.	
CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH	
(i) Draw the structural formula of an isomer of this alcohol.	

[1]

(ii)	Predict	the names of the product(s) formed when pentan-1-ol	
	•	reacts with an excess of oxygen,	
		and	[1]
	•	is dehydrated to form an alkene,	
			[1]
	•	is oxidised by acidified potassium dichromate(VI).	
			[1]

5

	ım and zinc are bo nistry is similar to		lency of 2. Strontiu	um is more reactive tha	an zinc.
(a) (i)	Complete the for neutrons in each		shows the number	er of protons, electro	ns and
	particle	protons	electrons	neutrons	
	⁸⁸ Sr				
	⁹⁰ Sr				
	⁶⁵ Zn ²⁺				
					[3]
(ii)	Explain why ⁸⁸ Sr	and ⁹⁰ Sr are isotop	es.		
					[1]
(iii)	Complete the ele	ectron distribution o	f an atom of stront	ium.	
	2 +	8 +	18 +	+	[1]
(b) The	e major ore of zind	is zinc blende, Zns	3 .		
(i)	Describe how zin	nc is extracted from	zinc blende.		
					[2]
(ii)	Give a use of zir	nc.			
					[1]

(c)		e major ore of strontium is its carbonate, SrCO ₃ . Strontium is extracted by the ctrolysis of its molten chloride.
	(i)	Name the reagent that will react with the carbonate to form the chloride.
		[1]
	(ii)	The electrolysis of molten strontium chloride produces strontium metal and chlorine. Write ionic equations for the reactions at the electrodes.
		negative electrode (cathode)
		positive electrode (anode) [2]
	(iii)	One of the products of the electrolysis of concentrated aqueous strontium chloride is chlorine. Name the other two.
		[2]
(d)	Bot	h metals react with water.
	(i)	Write a word equation for the reaction of zinc and water and state the reaction conditions.
		word equation [1]
		conditions [2]
	(ii)	Write an equation for the reaction of strontium with water and give the reaction condition.
		equation [2]
		condition [1]

6 (a) The following method is used to make crystals of hydrated nickel sulphate.
An excess of nickel carbonate, 12.0 g, was added to 40 cm³ of sulphuric acid, 2.0 mol/dm³. The unreacted nickel carbonate was filtered off and the filtrate evaporated to

For Examiner's Use

$$NiCO_3 + H_2SO_4 \longrightarrow NiSO_4 + CO_2 + H_2O$$

 $NiSO_4 + 7H_2O \longrightarrow NiSO_4.7H_2O$

Mass of one mole of NiSO₄.7H₂O = 281 g Mass of one mole of NiCO₃ = 119 g

(i) Calculate the mass of unreacted nickel carbonate.

obtain the crystals.

	Number of moles of H_2SO_4 in 40 cm ³ of 2.0 mol/dm ³ acid = 0.08						
	Number of moles of NiCO ₃ reacted =						
	Mass of nickel carbonate reacted =	g					
	Mass of unreacted nickel carbonate =	g	[3]				
(ii)	The experiment produced 10.4 g of hydrated nickel sulphate. C percentage yield.	alculate	the				
	The maximum number of moles of NiSO ₄ .7H ₂ O that could be formed =						

The maximum mass of NiSO ₄ .7H ₂ O that could be formed = $\frac{1}{2}$	g	
The percentage yield =	%	[3

- **(b)** In the above method, a soluble salt was prepared by neutralising an acid with an insoluble base. Other salts have to be made by different methods.
 - (i) Give a brief description of how the soluble salt, rubidium sulphate could be made from the soluble base, rubidium hydroxide.

 [31]

(ii)	Suggest a method of making the insoluble salt, calcium fluoride.
	[3]

	of ammonia was 8%.			
	$N_2(g) + 3H_2(g) \rightleftharpoons 2I$	NH ₃ (g) the forward	d reaction is exothermic	
	catalyst platin temperature (pressure 200	300 °C		
(a) D	escribe how hydrogen is ob	tained for the moder	n process.	
				[2]
(b) (i)) What is the catalyst in the	e modern process?		
				[1]
(ii)) Explain why the modern yield of 15%.	process, which use	es a lower temperature, has a hig	he
				[2]
(c) (i)) Complete the following to reaction between nitrogen		the bond breaking and forming in rm ammonia.	the
	bonds	energy change		
		/kJ	exothermic or endothermic	
	1 mole of N ≡ N proken	/kJ +945	exothermic or endothermic	
k			exothermic or endothermic	
3 t	oroken 3 moles of	+945	exothermic or endothermic	
3 t	oroken 3 moles of oroken 6 moles of N – H formed	+945 +1308 -2328		[3]

7

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

	0	Helium		35.5 40 C1 Ar Chlorine 17 18	80 84 Br Kr Bromine Rypton 35	127 131 Xe lodine 53 54 Xenon	At Radon Astatine 86		Yb Lu Ytterbium	No No
	5		16 Oxygen 9	32 S Sulphur 16	79 Selenium 3	128 Te Tellurium 5	Polonium 84		169 Tm Thulium 69	Þ
	>		Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	E
	≥		12 Carbon 6	28 Silicon	73 Ge Germanium 32	S0 Tin	207 Pb Lead		165 Ho Holmium 67	ц
	≡		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium 66	ځ
					65 Zn Zinc 30	Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	ă
					64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	2
Group				•	Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium	ΔA
9			1		59 Co Cobalt 27	Rhodium 45	192 Ir Indium		Samarium 62	مَّ
		T Hydrogen			56 Fe Iron	Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	S
					Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238
				-	Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Praseodymium 59	0
					51 V Vanadium 23	93 Ni obium	181 Ta Tantalum		140 Ce Cerium	232
					48 Ti Titanium 22	2 Z Zirconium	178 Hf Hafnium * 72		1	omic mass
					Scandium 21	89 ≺	139 La Lanthanum 57	227 Ac Actinium	d series series	a = relative atomic mass X = atomic symbol
	=		9 Beryllium 4	Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 90-103 Actinoid series	в ×
	_		7 Lithium	Na Sodium	39 K	Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71	Κρν

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).