MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 31 (Extended Theory), maximum raw mark 80

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2009	0620	31

GENERAL INSTRUCTIONS FOR MARKING

- Error carried forward may be allowed in calculations. This will be discussed in the mark scheme. This is not applied when the candidate has inserted incorrect integers or when the answer is physically impossible.
- COND the award of this/these mark(s) is conditional upon a previous mark being awarded. Example – Is the reaction exothermic or endothermic? Give a reason for your choice. Mark scheme exothermic [1]
 COND a correct reason given [1]. This mark can only be awarded if the candidate has recognised that the reaction is exothermic.
- When the name of a chemical is demanded by the question, a **correct** formula is usually acceptable. When the formula is asked for, the name is not acceptable.
- When a word equation is required a **correct** symbol equation is usually acceptable. If an equation is requested then a word equation is not usually acceptable.
- An incorrectly written symbol, e.g. NA or CL, should be penalised once in a question.
- In the mark scheme if a word or phrase is underlined it (or an equivalent) is required for the award of the mark.
 (.....) is used to denote material that is not specifically required.
- **OR** designates alternative and independent ways of gaining the marks for the question. **or** indicates different ways of gaining the same mark.
- Unusual responses which include correct Chemistry which answer the question should always be rewarded even if they are not mentioned in the marking scheme.

	Page	3	Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – October/November 2009	0620	31
	(a) (i)	Acc	on or krypton or helium cept xenon and radon even though percentages are ve T hydrogen	ery small	['
	(ii)	wate	er and carbon dioxide		[:
	(b) (i)		ur dioxide or lead compounds or CFCs or methane o inburnt hydrocarbons or ozone etc.	r particulates	['
	(ii)		omplete combustion fossil fuel or a named fuel or a fuel that contains carb	oon	[1 [1
	(iii)		igh temperature or inside engine ogen and oxygen (from the air) react		[1 [1
	(iv)		nanges carbon monoxide to carbon dioxide les of nitrogen to nitrogen		[1 [1
			symbol or word equation of the type: $D + 2CO \rightarrow CO_2 + N_2$		[2
		diox	a redox explanation – the oxides of nitrogen oxidis kide, / are reduced to nitrogen	se carbon mono>	kide to carbo [1 [1
			$\begin{array}{rcl} 2NO & \rightarrow & N_2 + O_2 \\ 2CO + O_2 & \rightarrow & 2CO_2 \end{array}$		[′ [′
					[Total: 10
	(a) p⊦ ex	l < 7 ample	9		[1 [1
	ex	l > 7 ample)T am	e nphoteric oxides Be, A <i>l</i> , Zn, Pb, Sn etc		[1 [1
	ex the	e two r	e H ₂ O, CO, NO marks are not linked, mark each independently photeric oxides Be, A <i>l</i> , Zn, Pb, Sn etc.		[1 [1
	(b) (i)	shov	ws both basic and acidic properties		[1
	(ii)		amed strong acid amed alkali		[1
		a na			[1

	Page 4			Mark Scheme: Teachers' version	Syllabus	Paper		
				IGCSE – October/November 2009	0620	31		
3	(a)	(i)	heat or roast or burn <u>in air</u> need both points for mark					
		(ii)	(ii) $ZnO + C \rightarrow Zn + CO$ or $2ZnO + C \rightarrow 2Zn + CO_2$ unbalanced ONLY [1]					
	(b)	 b) zinc is more reactive it loses electrons and forms ions in preference to iron zinc corrodes not iron NOT zinc rusts 						
		OR zinc loses electrons and forms ions the electrons move on to the iron the iron cannot be oxidised or it cannot rust or it cannot lose electrons CREDIT correct Chemistry that includes the above ideas						
	(c)	(i)		atoms change into ions, (the zinc dissolves) per(II) ions change into atoms, (becomes plated with c	opper)	[1] [1]		
		(ii)	ions elec	trons		[1] [1]		
						[Total: 10]		
4	(a)	 a) diffusion different M_r or ozone molecules heavier than oxygen molecules or different densities or oxygen molecules move faster than ozone molecules NOT oxygen is lighter or ozone heavier 			[1] [1]			
		OR fractional distillation they have different boiling points				[1] [1]		
	(b)	(i)		rown (solution)		[1] [1]		
		(ii)		ses electrons (to form iodine molecules) t be in terms of electron transfer NOT oxidation numbe	er	[1]		
	(iii) they (electrons) are accepted by ozoneor it is an electron acceptor					[1]		

	Page 5			Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – October/November 2009	0620	31
	(c)	(i)	CON 2bp	ect structural skeleton ID 4bp around both carbon atoms and 2nbp around sulfur atom TE marks 2 and 3 can only be awarded if mark 1 has be	een scored	[1] [1] [1]
		(ii)	sulfu all th any	on dioxide ır dioxide		[2]
						[Total: 11]
5	(a)	(i)	high Acc	5		
				THREE		[3]
		(ii)	silico four	on		[1] [1]
	(b)	diagram to include: each germanium atom bonded 4 oxygen atoms each oxygen to 2 germanium atoms looks or stated to be tetrahedral "tetrahedral" scores mark even if diagram does not look tetrahedral independent marking of three points		[1] [1] [1]		
	(c)	(i)	struc	ctural formula of Ge_4H_{10} all bonds shown		[1]
		(ii)	gern wate	nanium(IV) oxide er		[1] [1]
						[Total: 11]

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper	
			IGCSE – October/November 2009 0620			
6			n sulfur in air or oxygen eat a metal sulfide in air		[1]	
	(ii)	or m	ich for wood pulp/cloth/straw or preserve food or sterili naking wine or fumigant or refrigerant ept making paper	sing	[1]	
	(iii)	or v	adium(V) oxide accept vanadium oxide or V_2O_5 anadium pentoxide ation state not essential but if given it has to be (V)		[1]	
	(iv)	rate	too slow or rate not economic		[1]	
	(v)	read	tion too violent or forms a mist		[1]	
	(b) (i)		water to yellow powder or to anhydrous salt ould go green		[1] [1]	
	(ii)		nge from purple or pink plourless NOT clear		[1] [1]	
	(iii)	read	ts with <u>oxygen</u> in air		[1]	
	nur ma ma nur vol	mber of ss of ss of mber of ume o	of moles of FeSO ₄ used = $9.12/152 = 0.06$ of moles of Fe ₂ O ₃ formed = 0.03^* one mole of Fe ₂ O ₃ = 160 g iron(III) oxide formed = $0.03 \times 160 = 4.8 \text{ g}$ of moles of SO ₃ formed = 0.03 of sulfur trioxide formed = $0.03 \times 24 = 0.72 \text{ dm}^3$ of iron(III) oxide greater than 9.12 g , then only marks 1	and 2 available	[1] [1] [1] [1] [1]	

Apply ecf to number of moles of $Fe_2O_3{}^{\star}$ when calculating volume of sulfur trioxide. Do not apply ecf to integers

[Total: 16]

	Page 7			Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – October/November 2009	0620	31
7	(a)	(i)	heat cata			[1] [1]
		(ii)	alke	quation that gives: ne + alkane lkene + alkene + hydrogen		[1]
			a co	rrect and balanced equation for the cracking of decane,	$C_{10}H_{22}$ but not b	
		(iii)	wate	er or steam		[1]
	(b)	(i)		$_{9}OH + 6O_{2} \rightarrow 4CO_{2} + 5H_{2}O$ Iy error is balancing the oxygen atoms		[2] [1]
		(ii)		nol + methanoic acid \rightarrow butyl methanoate + water ect products or reactants ONLY		[2] [1]
	(c)	(i)	acce pena	ect structural formulae [1] each ept either propanol and –OH in alcohol and acid alise once for CH ₃ type diagrams either C ₃ H ₈ O or C ₃ H ₆ O ₂ [0]		[2]
		(ii)	to co	onserve petroleum or reduce greenhouse effect		[1]
	(d)	ha	/e sar	ne boiling point		[1]
						[Total: 13]