

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/23
Paper 2		Oct	ober/November 2014
			1 hour 15 minutes
Candidates ans	wer on the Question Paper.		
No Additional M	aterials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

(a) The structures of five substances, A, B, C, D and E, are shown below.

Answer the following questions about these substances. Each substance may be used once, more than once or not at all.

	(i)	Which two substances are elements? an	d[2
	(ii)	Which substance has a giant ionic structure?	[[1]
	(iii)	Which substance is a product formed when a hydrocarbon is completely	burnt in air?	
			[[1]
	(iv)	Which substance, when molten, produces a brown vapour at the anode wh	en electrolysed	d?
			[[1]
	(v)	Which substance is used as a lubricant?	[[1]
(b)	Dec	duce the simplest formula of substance A .		
			[[1]
(c)	Cal	culate the relative molecular mass of substance F		

Calculate the relative molecular mass of substance **E**. You must show your working.

[2]

[Total: 9]

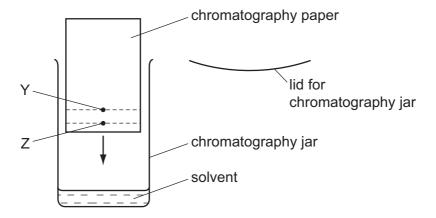

2

• lic	quids have a def	nite volume and shape, inite volume but no definite shape, finite volume or shape.							
		e properties of six substances, A to F , which are eith	ner solids or I						
at roo	m temperature.								
stance	melting point /°C	electrical conductivity	solubility in water						
Α	+3550	does not conduct in any state	insoluble						
В	+44	does not conduct in any state	insoluble						
С	+1660	conducts when solid or liquid	insoluble						
	1.004	only conducts when in aqueous solution or liquid	soluble						
D	+681								
D E	-39	conducts when solid or liquid	insoluble						
		conducts when solid or liquid does not conduct in any state	insoluble insoluble						
E F	-39 -11	·							
E F	-39 -11	does not conduct in any state has a giant covalent structure?	insoluble						
E F (i) \(\times \)	-39 -11 /hich substance	does not conduct in any state has a giant covalent structure?	insoluble						
E F (i) \(\times \)	-39 -11 /hich substance	does not conduct in any state has a giant covalent structure?	insoluble						
E F (i) \(\times \)	-39 -11 /hich substance /hich two substa	does not conduct in any state has a giant covalent structure?	insoluble						
E	-39 -11 /hich substance /hich two substa	does not conduct in any state has a giant covalent structure? ances are liquids at room temperature?	insoluble						
E	-39 -11 /hich substance /hich two substa	does not conduct in any state has a giant covalent structure? ances are liquids at room temperature?	insoluble						
E F (i) \(\text{\tin}\text{\ti}\text{\tinit\tint{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\texit{\text{\texi\tinit\text{\text{\text{\texit{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texit{\texi}\text{\texi{\texi{\texi{\texi{\texi\texi\\\ \tint}\tint{\texi}\tiint{\texit{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\ti	-39 -11 /hich substance /hich two substance	does not conduct in any state has a giant covalent structure? ances are liquids at room temperature? ances are metals?	insoluble						

(c)	Dry	air contains mainly nitrogen, noble gases and oxygen.
	(i)	Which one of the following shows the correct composition of dry air? Tick one box.
		nitrogen 21%, oxygen 78%, noble gases 1%
		nitrogen 1%, oxygen 78%, noble gases 21%
		nitrogen 69%, oxygen 21%, noble gases 10%
		nitrogen 78%, oxygen 21%, noble gases 1%
	(ii)	Metals can be joined together by high temperature welding. This process is sometimes carried out in the presence of argon. Suggest why welding is carried out in the presence of argon.
		[2]
		[Total: 14]

- 3 Rhubarb is a plant which has a red stem.
 - (a) A student separated the pigments in the rhubarb stem by chromatography. He used the apparatus shown below to extract the pigments.

(i) State the name of the piece of apparatus labelled A.

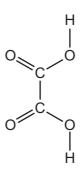


1]

- (ii) Suggest a suitable solvent, other than water, that he could use to extract the pigments.
- (iii) The solution of pigments was not concentrated enough to use for chromatography. Suggest how the student could make the solution more concentrated.

(b) The student carried out chromatography using the apparatus shown below.

(i)	A spot of the pigment mixture was placed at Y.
	Explain why a spot of the mixture was not placed at Z.


[1

(ii) Describe how the rest of the procedure was carried out.

(c) Rhubarb leaves contain ethanedioic acid.

The structure of ethanedioic acid is shown below.

- (i) On the structure above, put a ring around a carboxylic acid group. [1](ii) Deduce the molecular formula of ethanedioic acid.
- (d) A teacher heated ethanedioic acid with concentrated sulfuric acid. The equation for the reaction is:

(i) Deduce the formula of compound X.

(iii) Carbon dioxide is a product of this reaction.

$$\begin{array}{c}
\text{COOH} \\
\mid \\
\text{COOH(s)}
\end{array}
\xrightarrow{\text{H}_2\text{SO}_4} \text{CO(g)} + \text{CO}_2(g) + \mathbf{X}$$

[1
At the end of the reaction, the contents of the test-tube contained diluted sulfuric acid only Explain why.
[1

- State **one** common source of the carbon dioxide in the atmosphere.

 [1]
- (iv) Explain why an increase in the concentration of carbon dioxide in the atmosphere is harmful to the environment.

[Total: 13]

							1.41	CH I
4	А	mixture	of soil	and	water was	shaken	and then	tiltered

(a)	Draw a labelled diagran	n of the	apparatus	you would	use for	separating	the insoluble	particles
	of soil from the solution							

[2]

(b) The filtrate was then evaporated.

The table shows the composition and mass of each compound obtained by evaporating the filtrate.

compound	ions present in the compound	mass of compound/g
calcium carbonate	Ca ²⁺ and CO ₃ ²⁻	4.0
calcium sulfate	Ca ²⁺ and SO ₄ ²⁻	5.0
magnesium sulfate	Mg ²⁺ and SO ₄ ²⁻	2.8
	K⁺ and NO₃⁻	1.2
potassium sulfate	K ⁺ and SO ₄ ²⁻	2.4
sodium carbonate		3.0
sodium chloride	Na⁺ and C <i>l</i> ⁻	1.6

) State the name of the compound which contains K* and NO ₃ - ions.
[1]
) Write the symbols for the ions present in sodium carbonate. [1]
) Which compound with a singly charged negative ion has the highest mass in the mixture?
[1]

The table from page 7 is repeated below:

compound	ions present in the compound	mass of compound/g
calcium carbonate	Ca ²⁺ and CO ₃ ²⁻	4.0
calcium sulfate	Ca ²⁺ and SO ₄ ²⁻	5.0
magnesium sulfate	Mg ²⁺ and SO ₄ ²⁻	2.8
	K⁺ and NO₃⁻	1.2
potassium sulfate	K ⁺ and SO ₄ ²⁻	2.4
sodium carbonate		3.0
sodium chloride	Na⁺ and C <i>l</i> ⁻	1.6

/i.	٨.	C_{α}	اريما	104	
(i)	"	Ca	ıcu	ıαι	C.

the total mass of all the compounds present in the mixture,

.....[1]

the percentage of magnesium sulfate by mass in the mixture.

[1]

[1]

- (c) Calcium carbonate decomposes when heated.
 - (i) Complete the symbol equation for this reaction.

$$CaCO_3 \rightarrow CaO +$$

(ii) Calcium oxide, CaO, reacts with water to form a strongly alkaline solution. Which **one** of the following pH values is strongly alkaline? Put a ring around the correct answer.

pH3 pH7 pH8 pH12 [1]

[Total: 9]

5	Methanol r	eacts with	n excess l	hydrochloric	acid to	form ch	nloromethane	and wate	r.
---	------------	------------	------------	--------------	---------	---------	--------------	----------	----

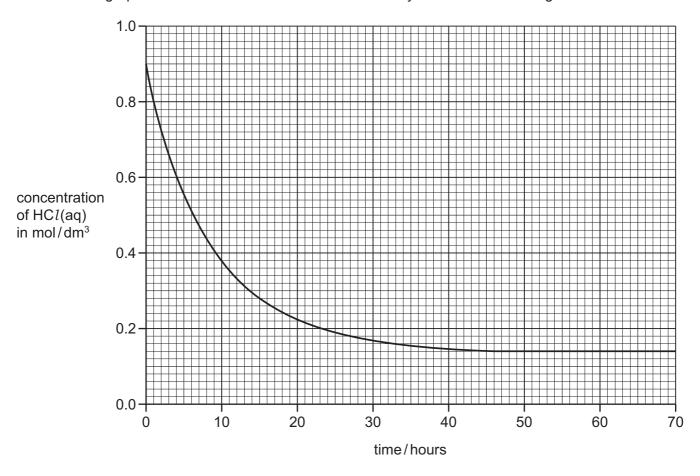
methanol + hydrochloric acid \rightarrow chloromethane + water

(a) To which homologous series does methanol belong?

(b) Complete the structure of methanol below to show its functional group.

[1]

- **(c)** Methanol can be made from synthesis gas which contains carbon monoxide and hydrogen. Synthesis gas is made from methane.
 - (i) Complete the symbol equation for this reaction.


$$CH_4 + H_2O \rightarrow CO +H_2$$
 [1]

(ii) Suggest two hazards associated with the products of this reaction.

[2]

(d) A student investigated the rate of reaction of methanol with hydrochloric acid.

The graph below shows how the concentration of hydrochloric acid changes with time.

(i)	Describe how the concentration of hydrochloric acid changes with time.	
		[2]
(ii)	Deduce the concentration of hydrochloric acid when the reaction had proceeded to 15 hours.	for

.....[1]

(iii) At what time was the reaction just complete?

[1]

(iv) On the grid above, draw a line to show how the concentration of hydrochloric acid changes with time when the reaction takes place at a higher temperature. [2]

(e) Hydrochloric acid is formed when hydrogen chloride gas is dissolved in water.

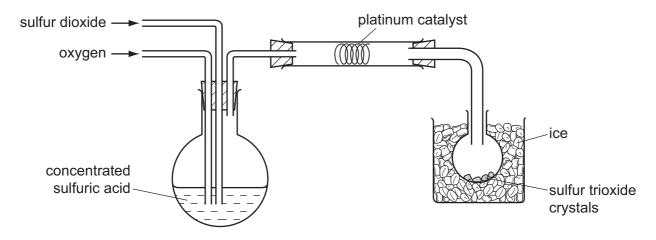
Draw a dot-and-cross diagram to show the electron arrangement in a molecule of hydrogen chloride.

Show only the outer electron shells.

Show hydrogen electrons as x.

Show chlorine electrons as •.

[2]


[Total: 13]

6 Sulfur burns in air to form sulfur dioxide.

(a)	(i)	Is sulfur dioxide an acidic or basic oxide? Give a reason for your answer.	
			[1]
	(ii)	Sulfur dioxide is an atmospheric pollutant. Explain why sulfur dioxide in the atmosphere can erode buildings made of limestone.	
			[3]

(b) Sulfur dioxide reacts with oxygen to form sulfur trioxide.

Sulfur trioxide can be made in the laboratory using the apparatus shown below. Sulfur trioxide has a melting point of 17 °C and a boiling point of 45 °C.

(i) Suggest **one** safety precaution when carrying out this experiment.

[1]

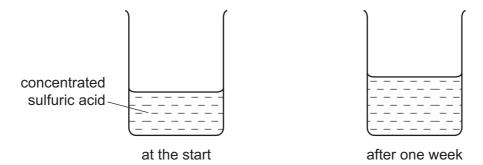
(ii) What is the purpose of the platinum catalyst?

14
11
L .

(iii) Complete the symbol equation for the reaction.

$$2SO_2 + \dots SO_3$$
 [2]

(iv) Suggest why the sulfur trioxide is collected in a flask surrounded by ice.


	(v)	When 64 g of sulfur dioxide react with excess oxygen, 80 g of sulfur trioxide is formed. Calculate the mass of sulfur trioxide formed from 160 g of sulfur dioxide.
		mass = g [1]
(c)	A s	fur trioxide reacts with water to form sulfuric acid. tudent used the apparatus shown below to determine the concentration of a solution of ium hydroxide.
		sodium hydroxide + indicator
	(i)	Which one of these pieces of apparatus should the student use to put $25.0\mathrm{cm^3}$ of sodium hydroxide into the flask. Tick one box.
		beaker measuring cylinder test-tube volumetric pipette [1]

(ii) How would the student know when the sulfuric acid had neutralised the sodium hydroxide?

(d) Clean air contains mainly nitrogen, noble gases, oxygen and water vapour.

A teacher left a beaker of concentrated sulfuric acid open to the air for a week.

After a week, the concentration of sulfuric acid in the beaker had decreased.

Explain these results by referring to one or more of the substances present in the air.	
	[1]
lTota	al· 131

7

(a)	Describe the	properties of ch	nlorine, brom	ine and iodir	ne.	
	In your answtheir stattheir cold		rends in:			
	• their read					
						[4]
(b)	Which one of	f chlorine can b f the following w bund the correct	ords describ		cule?	
		diatomic	giant	ionic	monatomic	[1]
(c)	Draw the elec	ctronic structure	of a fluorine	e atom.		
						[2]
(d)	The equation	below describe			en with a halide.	
				\rightarrow I ₂ + 2K	Br	
	Write a word	equation for thi	s reaction.			
						[2]

[Total: 9]

DATA SHEET
The Periodic Table of the Elements

_	=							Gro	Group			=	2	>	>	5	
-	=											=	2	>	- -	\	0
							-										4
							I										He
							Hydrogen 1										Helium 2
7	6					-						7	12	41	16	19	20
=	Be											Δ	ပ	z	0	ш	Ne
Uthium 3	Beryllium 4												Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	28		32		40
Na	Mg											Ν		۵	ဟ		Ā
Sodium 11	Magnesium 12	F										F	Silicon 14	Phosphorus 15	Sulfur 16	Chlorine 17	Argon 18
39	40	45	48	51	52		26	59	59	64	65	70	73		79		84
×	Ca	Sc	F	>	ပ်	Mn	Ъ	ပိ	Z	ر د	Zn	Ga	ge		Se	Б	Ϋ́
Potassium 19	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	2 5	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30		Ε		Selenium 34	m	Krypton 36
85	88	68	91	93	96		101	103	106	108	112				128		131
Rb		>	Z	٩N	Mo	ဍ	Ru	R	Pd	Ag	ဥ	'n	Sn	Sb	ā	н	Xe
Rubidium 37	Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	n Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	49		Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	139	178	181	184	186	190	192	195	197	201		207				
S	Ва	La	Ŧ	Та	>		os	'n	Ŧ	Αn	Нg	11	Pb	ï	Ро		R
Caesium 55	Barium 56	Lanthanum 57 *	Hafnium 72	Tantalum 73		_	Osmium 76		Platinum 78	Plog 79	Mercury 80	E	Lead 82	_	Polonium 84		Radon 86
ů	226	227															
Francium	Radium																
) d	80	88															
*58-71	*58-71 Lanthanoid series	id series		ر 140 ر	¹ 4	444		150		ا24		162	165	167		173	175
190-103	90-103 Actinoid series	series		Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	=	E	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	_ 7
	æ	a = relative atomic mass		232		238											
Key	×	X = atomic symbol	ΙQ		Ра	_	QN.	Pu	Am	Cm		ర	Es	Fm	Md	٥ N	ت
<u>а</u>		b = proton (atomic) number	ic) number	_	Protactinium 9.1	_	Neptunium 93		Americium		Berkelium 97	Ε	Ε	Fermium 100	Mendelevium 101	Nobelium 102	Lawrendum 103
J			_			35	200		200			_	┑	20	- 2	301	3

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.