Paper 1 Physical Core

UNIT 2 Atmosphere and weather

Recommended Prior Knowledge Students require little prior knowledge although some fundamental principles of systems and processes such as condensation, etc. may have been covered for IGCSE and in the hydrology unit (Unit 1).

Context It is a discrete unit but atmospheric processes are fundamental to all the other natural systems. For instance, weathering processes are directly affected by atmospheric processes.

www.xtremepapers.com

Outline This unit covers global, meso scale and micro scale atmospheric processes.

Content	Objectives	Terminology	Teaching Strategies (TS) and Activities (A)	Resources
Content 2.1 Local energy budgets	 Objectives A basic appreciation of the vertical structure of the atmosphere An appreciation of the atmosphere as a heat engine An understanding that incoming solar radiation must be balanced by outgoing radiation 	Terminology Troposphere Tropopause Stratosphere Energy budget Evaporation Condensation	 Teaching Strategies (TS) and Activities (A) TS Introduce by a temperature/height diagram to show vertical structure of the atmosphere. A Annotate with troposphere, tropopause, stratosphere. Emphasise the troposphere as the region of the weather. Temperature inversion acting as a cap on rising air at the tropopause. Nearly all atmospheric moisture is contained in the troposphere. TS Idea that the atmosphere is an engine powered by the sun. Inputs must be balanced by outputs or overall heating/cooling may result 	Resources The Atmospheric Systems chapter in Hart's textbook is suitable for this unit and provides good simple straightforward visual material, which is appropriate at this level. Warburton p.25 Waugh p.207 Guinness and Nagle p.387 Hart p.59
				Ross p.179. This is a simplified diagram and by far the most useful of the earth -atmosphere system.

 Diurnal spatial and temporal variations in energy budgets Methods of heating Knowledge and understanding of local diurnal energy budgets 	Albedo Reflection Scattering Conduction Convection Radiation - long wave and short	Local energy budgets. Input-output analysis using daytime and night- time energy models The 'day model' and 'night model' energy budget form the basis of 2.1 and need full discussion and explanation of albedo, the role of clouds as reflectors, scatterers and absorbers of light/heat. Different clouds perform different functions. Day model Transfers of heat: evaporation, sensible heat transfer, incoming solar radiation, long wave radiation, surface absorption	Geofactsheet 167 A simple guide to Energy Budgets Six factor day model Hart p.74 fig. 3.25 and Four factor night model p.76 fig. 3.32 Hart p.75 Includes a good table of albedos p.61 Effects of cloud cover on energy transfers	
	wave	Night model Transfers of heat: long wave radiation, sensible heat transfer, heat supply to the surface, condensation, production of dew. Methods of heating. Radiation, conduction, convection. Use analogies with which the students can readily identify. Radiators, air conditioning, a Bunsen burner flame under a beaker of water, which they may have used in the physics lab., or pan of boiling water. See Hart p.61.	June 2007 Fig. 2 very good diagram of day-night budgets which could be used as a teaching tool. Nov 2005 Q. 7(b) 'night model' Hart p.61	
	Latent heat transfer Sensible heat transfer	 Distinguish between latent heat and sensible heat transfers. Latent heat - involves phase change e.g. gas to liquid. Energy is "stored" or "released" Sensible heat - energy gain or loss without a phase change. Water vapour does not undergo a phase change This section of work can be kept fairly straightforward if the daytime and night-time budgets are used. Need not occupy too many lessons. 	Prosser p.114 Very good diagram on phase change Witherick p.118 Hart p.76 and p.77 Nov 2007 Q. 7(b) Latent heat transfer There are other useful sources of information for Unit 2.1 Waugh Chapter 9 p.206	

			 A Consolidate by asking questions based on one or both of the diagrams. 1. Draw a fully labelled diagram to show the 'day model' of radiation balance in the earth's energy budget. 2. Describe and explain the effect of cloud cover on the earth's heat energy budget. 3. Leave some energy transfers blank. Students have to fill them in and then describe two ways in which the local energy budget might be different at night. These questions test knowledge and understanding. 	Nagle Chapter 8 p.148 Prosser p.149 Garrett and Nagle AS Geography Concepts and Cases Chapter 3 p.62 Money Chapter 1 Waugh p.208 Ross p.180 Geofile 543 April 2007 Albedo and Energy Budgets
2.2 The global energy budget	 Weather phenomena associated with local energy budgets Understanding of the global energy budget Reasons for differential heating on a global scale, i.e. why is it hot at the equator and cold at the poles? Global pattern of pressure and winds 	Mist, fog, dew, temperature inversions Hadley cell Ferrel cell	 TS Introduce the simple idea of energy surplus and deficit. High temperatures at the equator and low temperatures at the poles. Can be demonstrated by giving students a map of average annual distribution of insolation received. By shading areas of less than 150W/m² in one colour and over 225W/m² in another, it raises several points for discussion, e.g. low values over equator due to high amounts of cloud cover. Differing temperature patterns produce differential atmospheric pressure. How are the differences balanced? Air movement - winds (and ocean currents). Leads into discussion of the general circulation of the atmosphere. Tri-cellular model of the general circulation of the model. They should know and understand something of the three cells, know which are thermally direct and which thermally 	O'Hare and Sweeney, The Atmospheric System, p18, fig 2.5

Understanding that temperature variations produce pressure and winds	Atmospheric circulation ITCZ High pressure Low pressure Geriolis force Pressure gradient force Geostrophic force Ferrel's Law Trade winds Doldrums Polar front	 indirect and why. Be able to map the world wind belts (which will include the pressure belts too, probably) Understand how the model helps to explain the pattern of winds. Therefore it is necessary to know about the forces which act on the air, the Coriolis and pressure gradient forces and the resolution of those forces. Influence of the rotation of the earth and deflection of air. Relationship between temperature and vertical and horizontal air movement, i.e. high pressure is subsiding air and low pressure is rising air. 	June 2007 Q. 7(b) Nov 2004 Fig. 2 World surface temperatures - useful resource. Hart p.67 Fig 3.15 Money p.26 (simplified version) Guinness and Nagle pp.71- 3 is very good on air motion Nagle p.154 Ross p.189
 Manifestation of the general circulation in the form of world maps of sea level temperature and pressure 	Jet stream Rossby waves Upper westerlies	 General circulation involves upper air movement as well as surface wind. Some explanation and clarification of these upper air movements in simple terms. A General circulation diagram can be drawn and annotated. Testing of understanding can be done using questions and partly completed diagrams for the student to fill in. Introduce idea of effect of circulation on global distribution of surface temperature and pressure probably using maps. World map showing distribution of isotherms for summer and winter, i.e. January and July World map showing distribution of isobars for summer and winter, i.e. January and July 	Nagle pp.155-6 is very good on upper air movement

		· · · · · · · · · · · · · · · · · · ·
Knowledge and understanding of the factors that influence local variation within the global pattern	 Description emphasising patterns and anomalies. Students can pick out similarities and differences across the globe. Explanation of pattern. Factors: latitude/seasons and day and night. Highlight anomalies by relating back to the general circulation. Some of the 	Money p.25 Money p.27 Ross p.194
	reasons may not be accounted for on a global scale therefore this is the link into the next section of work on micro/local scale variations. A A useful exercise to consolidate – analysis of satellite photographs.	Nagle p.151 is good on anomalies Ross p.187
	 TS Explanation of models as simplifications of reality. Leads into local variations. Factors influencing these local changes. Ocean currents - influence of cold and warm currents on temperatures and wind patterns in coastal locations across the globe. Students will need a map of ocean currents with names, direction of flow and characteristics. Proximity to the sea - specific heat capacity of water compared with land surfaces. Relate to temperature and pressure patterns and anomalies Altitude Aspect Length of day and night and seasons Cloud cover Prevailing winds 	Guinness and Nagle pp.66-7 is very good on the factors affecting temperature www.met-office.gov.uk has useful satellite photographs Map of ocean currents Waugh p.212 Ross p.184 Nagle p.150 is excellent Guinness and Nagle p.417 Very good illustrations of modification of lapse rates by ocean currents June 2008 Fig. 2 is an excellent map of ocean

				currents, a useful teaching
				resource.
				Warburton pp. 123-4 Witherick pp. 135-6
				Waugh pp 229-30
				Guinness and Nagle
				pp.415-6 Very good source
			Meso scale winds	Global Map Fig. 12.40
			Fohn/Chinook winds link to orographic	
			rainfall and rain shadow areas	
				Waugh p.241
2.3		Fohn wind		Operfile 550 Autimates
weather		Orographic	Micro scale winds	Geofile 552 Anticyclones
and	Onderstand phase change	Rain shadow	 Land and sea broazes 	
phenomena	change			
			TS Well annotated diagrams may suffice or	
			diagrams with paragraphs of explanation of	
		Katabatia wind	processes responsible for formation.	
		Anabatic wind		$lune 2004 \cap 7(b)$ lune
			TS Introduce diagram to show phase changes	2005 Fig. 2 very useful
			of water in the atmosphere – description and	simple diagrams of land and
	 Understanding of 		definitions.	sea breezes - excellent
	adiabatic			teaching resource.
	temperature change		Explanation of ways in which phase changes	
	and relationship	Water vapour	can occur	Ross p.190 Fig 6.16 very
	between actual air	Evaporation	I emperature change	Wough p 240
	that of rising air	Condensation	 Increase amount of water vapour Introduce idea of relative humidity and 	Wadgir p.240
	that of hong all	Sublimation	absolute humidity	
	The link between air	Deposition	Ways in which cooling can occur -	Ross p.192 Fig.6.18
	mass stability and	-	radiation/adiabatic, conduction,	Waugh p.241
	weather conditions		convection	
		Adiabatic		
		cooling	Explanation of adiabatic changes as a	Brosser p 114
			fundamental principle.	Prosser p.114

	Adiabatic lapse rate (ALR) Environmental lapse rate (ELR) Dew point temperature Condensation level DALR SALR Stability Instability Conditional instability	Air mass stability - introduced using diagrams. Well annotated, fully labelled diagrams are a good way of describing the conditions and a springboard for explanation. Fig 3 Explain DALR and SALR – the rates and reasons for the different rates. Relationship between ELR and ALRs A Give 2 or 3 different ELRs to be plotted on graph paper and then ask the students to plot the adiabatic lapse rates. Need to give dew point temperature /condensation level. They can then draw conclusions about the stability of each air mass. Figs 4 and 5 Exercise on Atmospheric stability. Once understanding of stability and instability is secure, include conditional instability.	Hart p.64 Fig.3.9 Ross p.197 Waugh pp.213-224 Money p.11 Ross p.198 has a useful diagram June 2004 Q. 2 lapse rates, instability - good graph to show instability - useful resource. Could be annotated. Waugh pp.216-7 Nagle pp.161-2 is particularly clear
How these changes produce weather phenomena like dew, etc.		a situation of orographic uplift , with labels to be attached at appropriate points to explain why differences in temperature and humidity occur on opposite sides of a hill/mountain. This is also a useful reinforcement/revision exercise for explaining orographic uplift mechanisms.	Fig 3 temperature/height diagrams Warburton pp.100-4 Money pp.12-13
			June 2006 Q. 7(b) Weather associated with stability and instability

Condensation/ hygroscopic nuclei Anticyclonic conditions Hoar frost	 TS Some general thoughts on points to include for comprehensive coverage of this unit: Introduce weather phenomena. This can be done by association with each air mass type or by dealing with forms of precipitation and including cloud formation. The way in which this is approached is largely personal preference. Description, explanation - should be linked to conditions in which they can be found. Diagrams where possible. Include as much detail as is realistic in the time available, e.g. distinction between advection and radiation fogs. (This is important - often examined.) Rainfall – Explanation - brief coverage of Bergeron-Findeisen and coalescence theories. Types – frontal, orographic and convectional rainfall are easily incorporated with air mass stability. 	Warburton p.113 Table 8.2 Good table of types of precipitation. Nagle pp. 156, 158,163-4 Hart pp.82-4 Waugh pp.218-220 Guinness and Nagle pp.69- 70 Ross pp.199-201 Warburton pp.106-9 Good cloud photographs can be found on regolith.com Also www.met- office.gov.uk/ for satellite
Hoar frost Rime Dew Advection/	conditions. Cloud type related to air mass stability. Anticyclones.	office.gov.uk/ for satellite photos of all areas of the world as well as local and regional weather information
Rain Hail Snow Clouds Temperature inversions	TS This unit could be introduced using energy budgets - global and local to link the two parts together and to link back to other parts of the unit and the atmosphere as a system.	Ross p.207 Nov 2007 Q. 7(c) Cloud and fog formation

2.4 The				
human				
impact	 Wider context of the whole unit - concerns local and global energy budgets. It is divided into two sections Greenhouse effect - local and global Urban microclimates Understand the greenhouse effect both natural and man-made Causes and consequences of the greenhouse effect 	Greenhouse effect Greenhouse gases Climatic change - global warming /cooling Atlantic conveyor El Nino/La Nina	 Greenhouse effect – causes: natural gases in the atmosphere. Identify these, consequence of their presence-emphasise that it is a natural process. What would happen without it? Discuss how and why human activity has had an impact. Diagrams can help. It may be necessary/essential to put the ozone layer in context here because so often there is confusion between the greenhouse effect and ozone depletion. Relate the greenhouse effect to possible global warming/cooling. A section on climatic change is necessary. A Consequences of global warming should be discussed - it is important that students appreciate that the issue is a matter of conjecture and that the consequences may be far-reaching but not certain. 	Money Chapter 4 Causes and Effects of Climatic change - very good source Guinness and Nagle p.87 Effects of greenhouse effect
	Urban microclimates - knowledge of characteristics, understanding of causes and consequences. Relationships between the individual weather conditions, e.g. temperature, wind speed and humidity.	Specific heat capacity Albedo Urban heat island Anomalies	 TS Introduce general principles - starting with the concept of the heat island and using this as a springboard for the other phenomena. Inter-relationships between temperature, wind speed, humidity, precipitation and pollution should be emphasised. A A case study would be ideal e.g. London, Los Angeles, which are well documented in the textbooks. However, it is worth noting that urban microclimates vary according to urban areas' size, shape and location. These factors can be built into study, e.g. Tokyo, Mexico City 	Greenhouse effect - Waugh pp.254-5 June 2006 Q.7(c) Global warming Global Climatic change- Waugh p.248 Bowen and Pallister pp.82- 95 Ozone layer, Nagle p.179 Nov 2006 Q. 2 CO ₂ emissions linked to global warming Nagle pp.180-1 very good

 Characteristics because of their particular sites. Distortions of pattern within the urban area are also worthy of consideration, e.g. effects of the River Thames and Lea Valley in London Note It is important to appreciate the comparison between rural and urban microclimates. Questions set demand knowledge of both. Therefore specific knowledge is needed and comments like "rural areas are not as warm as urban areas" are insufficient for a Level 3 mark. Relative climatic data and an assessment and comparison between day and night would be especially pertinent. Nov 2006 Q. 2(c) and June 2007 Q. 7(c) 	Pallister pp.80-1 Waugh pp.250-3 Nagle p.178 Nov 2006 Q. 2(c) June 2005 Q. 1 Fig. 1 useful diagram/graph of the urban heat island. June 2004 Q. 7(c) June 2008 Q. 7(c) urban heat island. This is a popular subject area for questions. Nagle pp.176-177 very good Waugh pp.242-3 Guinness and Nagle pp. 82-4 Ross pp.211-213 Bowen and Pallister pp.72- 79 very good
---	--