Paper 2 Physical Options

UNIT 3 Hazardous environments

Recommended Prior Knowledge As is the case for all the Advanced Geography options completion of the core modules is expected. This option builds on knowledge gained in the compulsory core Units 2 Atmosphere and weather and 3 Rocks and weathering.

www.Xtremepapers.com

Context This option is focused and dependent upon an understanding of the physical/human interface of the subject, i.e. the relationship and interaction between the physical events and the human response to those events.

Outline Three major groups of hazards should be studied. In section 3.2 the activity and resultant landforms has been separated from the hazardous nature of the activity. Exemplar material is essential to an understanding of the ways in which the impacts of these hazards vary according to location and scale of the impact. Therefore the final unit which focuses upon a case study may already have been covered as the rest of the syllabus for this option is covered. Examination questions may focus on a specific hazard or require knowledge of a range of hazards.

Content	Objectives and suggested teaching activities	Online resources	Other resources
	General introduction to hazards		Introductory chapters in Skinner,
		www.geography@btint	Ross and Bishop.
	Definitions of terms Hazard and disaster.	ernet.co.uk has	
	Beletienship between the physical event and human	excellent links to volcanoes.	Dishan n.E. Vann diagram. Fig. 1
	Relationship between the physical event and human population Where the two overlap - that is the	voicanoes.	Bishop p.5, Venn diagram, Fig. 1
	hazard/disaster. Usefully shown by means of a Venn		
	diagram, see Fig. 1 opposite.		Nagle p.329, classification table. Waugh p.31
	Classification of hazards		
	Tectonic or crustal Volcanic activity and earthquakes (3.1); geomorphological : a range of mass movements, landslides, mudflows and avalanches (3.2); atmospheric : tropical storms and tornadoes (3.2); should include coastal and river flooding.		Bishop pp.10-11
	nooding.		
	Factors which influence the impact of hazards such as: economic (e.g. level of development); social (e.g. ethnic groups, education); physical (e.g. magnitude and frequency);		

political (e.g. aid, international relations); psychological (e.g.		Bishop p.17
perception of risk).		
Location Start with a world map showing relationship		
between hazards and population distribution and densities.		
Annotate, highlight multi-hazardous zones. Discuss level of		
economic development and likely variations in impact and		
response.	http://www.guardian.c	
November 2003 Q. 6(a) tectonic hazards	o.uk Newspapers are	
	an excellent resource.	
Encourage students to keep diaries of hazardous		
events as they occur throughout their course.		
Newspaper cuttings, television/radio news; current		
internet sources. They should record date, time,		
magnitude, location, cause, impact, scale of response-		
short term/longer term; local, national, global.		
		Bishop p.7, pp.10-11
		Bishop Chapter 2 covers these points
Introduce idea of increasing frequency of hazardous events		in general and the book provides a
and numbers affected. Reasons: Global warming? Population		structural framework and useful
increase? Relationship between magnitude and frequency;		terminology for the study of hazards.
recurrence intervals.		
Beer Hatten Device the constantion and a the		Disky (OO) a 0 as a disk statistical
Prediction Precaution, protection, prevention,		Digby (GC) p.9 good on determinism
preparedness, costs, benefits, aid, insurance, perception –		versus 'technological fix'.
acceptance - deterministic view where the environment is in		
control, adaptation, dominance i.e. 'technological fix' - the opposite of acceptance, so human control of the environment		Bishop p.23
by engineering and technology. Discussion of this	The US Geological	Bishop p.23
philosophical issue may generate interest and further	Survey has excellent	
enquiry. Management strategies which involve technological	sites.	Bishop Chapter 2
fix, acceptance and /or adaptation. Discussion would include	www.Vulcan.wr.usgs.g	
assessment of costs and benefits of strategies chosen.	0V	Quoted in Bishop p.18
Forecasting and prediction of hazards, e.g. weather/tropical	Volcano World	
storms. Differences in response due to variations in levels of	www.adpc.ait.ac.th	
wealth, economic and technological development.	www.volcanoes.com	

	Differentiate between prediction and forecast. Forecast 'is a relatively imprecise statement of time place and nature of the expected event' (Bishop, p.23). Prediction 'is a relatively precise statement of time place and ideally the nature and size of the event i.e. a precise forecast' (Bishop, p.23).		Cook, Hordern et al. pp.336-343.
	 Human response to hazards Introduction to basic ideas of risk and vulnerability. Risk exposure of people to a hazardous event. Vulnerability 'ability of a person or group to anticipate, cope with and recover from the impact of a natural hazard' (Blaikie et al. 1994). 		
	It may be that these ideas are best conveyed through case study material, rather than as general principles. This is a matter of individual choice and resources. However the ideas form the guidelines which can be followed in each of the units of this option.		
3.1 Hazardous environments resulting from crustal (tectonic) movement	Activity related to tectonic plates Definition/description i.e. lithospheric plates Global distribution Relate to plate boundaries - global distribution of tectonic plates. Definition of a tectonic plate; activity related specifically to plate margins. Add reminder about relationship to population distribution. Not random, linear, coastal.	November 2003 Q. 6(a)	Good diagram of model of plate tectonics, Bishop p.37 Maps Bishop p.37 types of plate boundary; p.38 earthquake location; p.60 active volcanoes; p.16 hazard zones. Witherick p.12 clear map. Waugh p.15 Guinness and Nagle p.94-95 Nagle p.9 Witherick p.12 Waugh p.16-21, excellent block diagrams, ideal visual aids for

-	Turnes of plate margin Convergent/destructive:	l	Dishan an 26 20
	Types of plate margin Convergent/destructive;		Bishop pp.36-39
	divergent/constructive; conservative/passive.		
	Causes of plate movement Convection currents relate to		Ross pp. 36-7 Causes - good
	direction of movement - slab pull at the destructive margins		diagram includes 'hot spots'.
	and slab push at the mid-oceanic ridges. Relation between		
	crustal creation (divergent margin) and crustal destruction		Geofile 554 Sept 2006 Plate
	(convergent margin). Rates of movement.		boundaries Himalayas and Pacific
	Clear well annotated diagrams are ideal here - ones that can		USA
	be reproduced easily in response to examination questions		
	which frequently demand this skill.		Geofile 526 Hot spots in Plate
			tectonics Evolution of a theory
			June 2008 Fig. 3 Good map of a
	Activity associated with tectonic movements	Use key words for	destructive margin.
	Volcanic activity Relationship between plate margin and type of activity.	search engine. e.g. <i>Montserrat</i>	
	Destructive margins Explosive activity, pyroclastic	Volcanic observatory	Nagle pp.14-15 Good on landforms
	flows/nuées ardentes, ash fallout, acid viscous lava flows.	Volcanic observatory	and type of eruption
	Resultant landforms Dome volcanoes – high, steep-sided,		Waugh p.24 Very good on lava.
	narrow cones.		Bishop p.68
	Constructive margins Less explosive activity - fluid, basic,	June 2005 Fig. 3 Q. 6	Bishop pp.68-9
	basalt lava flows, fire fountaining, lava bombs e.g. Iceland.	Useful diagram of a	Bishop pp.65-6 Good detail on lava
	Resultant landforms: shield cones - low, gently-sloping, wide	typical volcanic cone.	flows, pyroclastic flows.
	cones.		Ross pp.29-30 very good on ash
	Conservative margins Little vertical displacement, largely		fallout.
	horizontal movement, produces earthquakes. Link to next		Ross pp.30-1 for products of activity.
	section on earthquakes.		Guinness and Nagle p.104 excellent
	Emphasise hazardous nature of the activity: pyroclastic flows, lava flows and bombs, fire fountaining and lahars. Location	June 2008 Q. 5(a)	series of diagrams of pyroclastic flows.
	especially 'Pacific Ring of Fire'.	Excellent map of Ring of	nows.
		Fire, (b) products.	Guinness and Nagle AS p.103,
	Hot spots e.g. Pacific plate. These are 'plumes' of molten		excellent diagram of the Hawaiian
	material from the mantle which are ejected on the surface far	June 2006 Q. 6 Fig. 3 map	hot spots.
	from a plate boundary. They tend to produce isolated activity	based on the Mt St Helens	
	and can occur on continents as well.	blast.	

 Secondary activity Lahars - mudflows. Link to 3.2. A lahar is a type of mass movement. Best example is Nevado del Ruiz in Colombia, 1985. Climate change as the addition of dust to the atmosphere results in temporary cooling, e.g. Mt Pinatubo. 	June 2005 Q. 6(a) Fig. 3 Mt Pinatubo eruption map.	Guinness and Nagle AS p.106 Nevado del Ruiz includes map. Ross pp.33-4 Guinness and Nagle p.395 excellent section on the effect of a pyroclastic flow on global temperatures, Mt Pinatubo.
June 2002 Q. 6(b) Nature and causes of tectonic hazards June 2003 Q. 6(b) Well annotated diagrams can be used to answer questions which require description.		
Prediction - monitoring indications of imminent activity such as harmonic tremors, bulges in the cone, geochemical changes, gravitational changes, temperature changes, satellite monitoring. Reduction - control, hazard mapping, building structures.		Ross pp.37-9 Bishop pp.74-80 very comprehensive Skinner pp.29-30 Ross pp.39-41 Bishop pp.71-80 Geofile 536 Jan 2007 Physical Disaster Warning systems
Human response to volcanic activity Case studies best exemplify this section. Highlight the physical causes and nature of the activity. The example should be closely tied to the relevant plate boundaries so that the causes and nature of the eruption are clearly known and understood. The links can be made to the impact on the population. Two case studies which contrast the type of activity and level of economic development of the country would be ideal.		All the textbooks have case studies e.g. Waugh Mt Pinatubo pp. 30-32; Bishop Mont Pelee pp.67-8 and Pinatubo pp.81-2; Ross Pinatubo pp.34-5 and Montserrat, 1995 pp.42- 5 Skinner pp.27-8 Congo, 2002
Earthquakes Definition of terms: focus, epicentre, seismic waves.		

	Measurement of a other alice. D'alice (as a still day)		
	Measurement of earthquakes: Richter (magnitude) and		Nov 2005 Q. 6(a) Richter and
	Mercalli (intensity) scales. Seismograph (instrument)		Mercalli scales, excellent teaching
	seismogram (print out of magnitude of seismic waves).		resource and (b) on measurement
			cause and effect.
			Bishop p.42, good diagram.
			Nagle p.19
	Causes Link to conservative plate boundaries, fault lines.		Skinner pp.16-7
	Appreciate that the effects extend beyond the immediate		Ross pp.10-11, measurement.
	plate boundary.		Ross p.12 and Guinness and Nagle
	Ground movement, landslides.		p.336 Mercalli scale Bishop p.44
	Other physical factors may compound the impact:		Waugh pp.9-10
	geological conditions; liquefaction.	June 2002 Q.6(b)	
		www.earthquakes.bgs	
	November 2002 Q. 5(a) Nature and causes of earthquakes.	<u>.ac.uk</u>	
			Ross pp.12-14
			Bishop pp.44-46
	Management of the hazard	Use Key words of	
		location of an	Bishop p.46
	Prediction Seismic gap theory. Monitoring of earthquake	earthquake to locate	Nagle p.21
	zones - use of instruments.	factual information on	Guinness and Nagle p.336
	Hazard mapping; community preparedness, e.g. Earthquake	the internet. In the	Ross p.14
	Awareness Day in Japan; hard engineering: earthquake proof	case of a recent event	Nov 2006 Q. 6 distribution and
	building structures are an example of technological fix.	CNN and the BBC are	hazardous nature.
	5 1 5	useful sources of up-	
		to-date information.	Ross pp.20-24; Nagle pp.20-1 Both
	Human Response to earthquakes		texts have good diagrams on
		www.curriculum-	earthquake proof buildings.
	Two contrasting case studies. Earthquakes of similar	press.co.uk Geo	Bishop pp.47-51 Very good diagram
	magnitude, one in an LEDC and one in an MEDC.	Factsheet September	of instrumentation p.49.
	Good examples: Iran 2003 and California 2003.	2002 Number 133	Skinner pp.23-4, good on Japan.
	Kobe 1995 is an excellent example of an earthquake which	Earthquakes: Why do	Some case study material is
	had a huge impact on a country seemingly prepared.	some places suffer	attached.
	Provides many issues for discussion and is well documented.	more than others?	Ross pp.16-20 Kobe pp.24-27
	Examples should relate to the particular plate boundary and		Guinness and Nagle AS pp.100-102
	contain factual detail. Issues of the causes, hazardous nature		Nagle pp.22-3 Japan
	and impact of the event should be at the core of the study.		Loma Prieta, California, 1989 Bishop
	Scale is a useful framework: area affected; long and short		pp.27-8; 45; 51; 52-4; Kobe pp.55-8
	term impacts.		Gujarat 2001.
L		1	

	Τ		
3.2 Hazardous environments resulting from mass movements	Awareness of secondary events e.g. mass movements: landslides and mudflows. Link with 3.2 mass movements. These activities can compound the hazard. November 2002 Q. 5(b) Tsunamis Definition - popularly known as tidal waves, but not linked to tides. Causes and formation, link to earthquakes. Nature of hazardous activity associated with tsunamis. A short case study e.g. Papua New Guinea 1998 is the best documented example. Indian Ocean ('the Asian Tsunami') Dec 2004 Slope processes Revision of theoretical work covered in Paper 1 Physical Core Unit 3.3. Focus for this unit should be on hazardous nature of the activity, especially management. This section may be short because foundations were laid in the AS course and case study material has been covered already.		Skinner pp.20-1 Waugh pp.52-3 Geofile 513 Jan 2006 The Asian Tsunami Geo Factsheet 179 Tsunamis - rare but devastating Geo Factsheet 194 Tsunami + 1 – An Analysis of the Response Skinner pp.88-91 Nagle pp.24-5 Ross pp.31-2
	Causes of mass movements 1.Physical Idea of downslope movement of material under the influence of gravity. Relationship between internal strength of, and external stress on, weathered material on a slope. 2. Human mismanagement.	www.marauder.miller. SV June 2002 Q. 5(a) asks about the causes of mass movement.	
	Nature and speed of the movement Classification of processes: flows, slides and heaves. Speed of flows; mixed lithology - rotational slip.		
	Landslides and mudflows June 2003 Q. 6(a)		Waugh pp.46-9 Waugh pp.52-3, natural causes.

	 Lahars link to previous section - volcanic activity. Link to river flooding. Avalanches will be new material. Nature of avalanches: slab-dry and snow-wet. Causes: conditions for avalanche formation. Precaution, prevention, control. Avalanches as hazards: human responses. Case studies will illustrate the above main points: Vaiont Dam, Italy; Aberfan, South Wales 1966; Holbeck Hall, Scarborough, UK. Note This section may appear short. This is for two reasons. The theoretical side of the section on processes may have been covered in the AS Physical Core, Rocks and weathering 3.3 and 3.4 (to some extent). The case study material may also be linked closely to section 3.4 in this syllabus, the sustainable management of a hazardous environment resulting from mass movement. 	WWW.CSAC.Org June 2007 Q. 5(c) Www.curriculum- press.co.uk Geo Factsheet Number 143 Avalanches January 2003 Geofile online September 2002 Number 435 Avalanche Management Www.nhc.noaa.gov www.regolith.com	Nagle pp.48-52 Good on theory Bishop pp.123-5 Ross pp.46-48 Waugh pp.54-5 Excellent section on human mismanagement.Guinness and Nagle AS p.110 excellent diagrams of types of mass movement. Skinner pp.80-1 Holbeck Hall, UK. Bishop pp.129-30 Ross pp.50-52 Waugh pp.52-53Bishop pp.129-132 Waugh pp.124-7, good case studies. Nagle p.52; p.130 excellent classification and diagrams.Alps 1999 in Bishop pp.133-4; Waugh pp.124-7 Italy 1998 in Nagle p.54 and Waugh p.49 UK landslides in Nagle p.55 Hong Kong 1992 in Ross pp.48-50
3.3 Hazard resulting from atmospheric disturbances	 Tropical storms (cyclones) Definition Classification Hurricanes, cyclones and typhoons. Location Map to show global location and areas most at risk. June 2002 Q. 6(a) June 2003 Q. 5 (a) Formation Conditions for formation. Understanding of processes of instability, adiabatic changes of temperature, release of latent heat. Link to AS Unit Atmosphere and weather 2.1 and 2.2. 	June 2007 Q. 6(a) Map of Cyclone Eline, useful teaching resource.	Maps of location Skinner p.39; Bishop p.97; Nagle p.170; Ross p.56; Guinness and Nagle p.421 Ross p.57; Skinner p.38; Bishop pp.95-7; Nagle pp.170-1; Warburton

Weather conditions High winds, heavy rainfall and storm surges may result in flooding and landslides. Link to hazardous nature of the physical event. The weather elements and the way in which they are hazardous are important. June 2008 Q. 5(b) Cross section of a tropical storm - fully labelled and annotated. November 2002 Q. 6(a)		pp.156-163, very good on impact. Geofile 516 April 2006 Hurricane Katrina Geofile 530 Sept 2006 Hurricanes Rita and Katrina and the after effects Geofile 500 Sept 2005 Hurricane season in the Caribbean Skinner p.40; Bishop pp.99-100; Ross pp.57-8
Magnitude and frequency these hazards have considerable potential to damage life and property. Location may be an important factor - e.g. barrier islands of the eastern seaboard of the USA.		Skinner p.40; Digby, p.18 Skinner p.43;Ross p.59
Prediction Arguably tropical storms and tornadoes are the most predictable of all these physical events. Forecasting technology, seasonal pattern of the storms. However it is notoriously difficult to guarantee track and speed of movement. Reminder about distinction between forecasting and prediction.	www.curriculum- press.co.uk Geo Factsheet Number 162 Hurricanes: A Predictable Hazard?	Money pp.39-43 Skinner p.44 June 2008 Q. 5 Nov 2006 Q. 5
Precaution Evacuation, protection: coastal and river defences against flooding, drills, land use planning/zoning. Insurance, perception of the risk.		
Two contrasting case studies one in an MEDC, one in an LEDC. Hurricane Isabel Autumn 2003 - eastern seaboard of the USA. (Other well documented ones are Gilbert and Andrew) and Hurricane Mitch 1998 – Central America. The causes and secondary effects, e.g. storm surges, high winds, coastal flooding should be highlighted as these are specifically mentioned in the syllabus. The impact of the storm and the response to the event should be emphasised. Population densities, perception of the risk and contrasting levels of empowerment to control the environment, can be highlighted in the contrasting choices.	www.bbc.co.uk ideal web site www.chaseday.com/to rnadoes.htm Good images.	Cyclones Bishop pp.17-21; Ross pp.60-1,62; Guinness and Nagle p.423; Waugh p.238; 'Orissa' Warburton pp.165-6 Hurricanes 'Mitch' Bishop pp.103-4; Waugh p.238; Skinner pp.41-2. Digby (GC) pp.16-17 'Andrew' Warburton pp.163-5

	Recent examples: Cyclone Nargis, Irrawaddy delta, Burma May 2008. Useful because of the political implication of the rescue and management of the aftermath. November 2003 Q. 5(b) Tornadoes Definition A tornado is a short-lived, violently rotating, narrow, funnel-like column of cloud that reaches the ground from a cumulo-nimbus cloud. It is associated with intense low pressure conditions. Formation Measurement of magnitude Fujita Tornado scale Case study to demonstrate hazardous nature. November 2003 Q. 5(a) formation of tropical storms and tornadoes	www.spc.noaa.gov/faq /tornado Has frequently asked questions. www.zetnet.co.uk/iogs /torro www.solar.ifa.hawaii- edu/tropical/tropical.ht ml www.wmo.ch	Bishop pp.105-6, very good detail maps and diagrams Fujita scale - Ross pp.60-2; Warburton pp.166-8 Ross p.61-2; Warburton Oklahoma 1999, p.167-8, p.169 Geo Factsheet Jan 2006 192 Tornadoes
3.4 Sustainable management in hazardous environments	 Case studies incorporated at each stage will fulfil the requirements for this section of work. Therefore a separate section may not be needed. General guidance on case studies Knowledge of the cause and nature of the event and its location is fundamental. In the case of tectonic hazards, the nature and location of the plate boundary is essential. The information should be focused under side headings. Annotated maps and diagrams which are reproducible in examination conditions are ideal. Factors that influence the impact of the hazard - physical, economic, social, political. Discussion and awareness of causes and factors that influence magnitude and response are important, e.g. nature of the underlying material in an earthquake can magnify the event. Political tensions may potentially influence availability of aid, e.g. Iran 2003. 		

Time scale i.e. short term and long term view of factors and impacts should be considered.		
Link made between the physical event and the human response. Case studies which contrast an MEDC with an LEDC provides useful material for discussion of human response to the physical event. Evaluation of the impact in terms of magnitude and timing of the physical event, preparedness, precautionary measures,		See attached case study of the Bam earthquake, Iran, December 2003.
prevention and control measures need consideration. e.g. hard engineering schemes. More sustainable precautionary measures, impact on the landscape/environment. Reality of accurate prediction in the future. Importance of technological fix.		Ross pp. 42-5 Good case study and
Management of the hazard after the event and preparation for the next hazardous event, e.g. Montserrat 1995 or impact of Mt Pinatubo on global climate.		questions on Montserrat. Ross pp.34-5
Multiple Hazard Zones could provide a useful vehicle for this section, e.g. California, Iceland, New Zealand. Local examples are always preferable, if applicable.	<u>www.curriculum-</u> press.co.uk Geo Factsheet	
Candidates are expected to cover a range of hazards and be able to appreciate the human responses and management strategies, as well as the impact of the physical event itself, e.g. timing, location and scale of the event. Kobe 1995 would	September 2002 Number 137 West Sussex: A multiple hazard zone?	
be a useful example. China 2008, 7.2 on the Richter scale, was interesting because of primary and secondary impacts. Candidates should be aware of long term effects not always obvious at the time. These include psychological trauma; loss of family members, possessions and livelihoods; economic		Guinness and Nagle p.395
effects. June 2002 Q. 5(b) June 2003 Q. 5(b) November 2003 Q. 5(b) and Q. 6(b) June 2008 Q. 6(b)		Skinner has a chapter on multi- hazard urban environments - Los Angeles, USA, and Mexico City.

These questions focus on the prediction and management of hazards/hazardous environments. Case studies of contrasting environments and levels of economic development serve to illustrate answers very well.	