likely to

Paper 3 Human Options

UNIT 2 Environmental management

Recommended Prior Knowledge Not essential, but candidates who have studied IGCSE Geography, Natural Economy or a Science subject are likely to have some knowledge of the basics of energy and power supplies.

Context There will be some linkage to the material studied in the AS Physical Core, Unit 2.4, regarding the human impact on the environment: urban effects on climate, particularly pollution. In addition, AS Human Core, Unit 3.2 Urban trends and issues of urbanisation, may have looked at the difficulties of upgrading parts of urban areas, in terms of dealing with pollution, etc. This unit will take the topic further by looking at and evaluating the success of possible solutions to the problems.

Outline This section is divided into two discrete but inter-related sections: energy supplies and environmental degradation.

This unit will examine the patterns of supply and demand for different energy resources, and the factors that encourage or limit their development/exploitation. It will examine both renewable and non-renewable resources and the environmental impacts resulting from their exploitation. Case studies of the development of different energy sources will illustrate the issues raised. The distribution of power sources is geographically uneven, necessitating the formulation of energy strategies by local and national governments to ensure the best possible exploitation/procurement of their energy needs, with the least harmful impact on the physical environment. Exploitation of other natural resources may contribute to the economic wellbeing of an area, but may also produce undesirable environmental consequences. There is a need for the development of strategies to combat the effects of over-exploitation of natural resources in rural areas, and the effects of industrial and urban growth in urban areas. The solutions are not always successful. A key expansion of content in the revised syllabus is water resources and water quality (2.3).

Content	Objectives	Terminology	Suggested Teaching Activities	Online	Other resources
				Resources	
2.1 Sustainable	To understand the	Sustainability	Classification of resources:	http://www.uic.c	Nagle & Spencer
energy supplies	differences between	Renewable energy	renewable and non-renewable.	om.au/educatio	(Diagrams) pp.118-119
	renewable and non-	Non-renewable	Facts and statistics for energy	<u>n.htm</u>	Waugh chapter 18 pp.488-
	renewable energy	energy	use can be taken from an atlas	This includes	501
	resources	Energy budget	or from one of the references	items on	Guinness and Nagle
		Fossil fuels	given here.	nuclear energy	pp.63-66
		Hydro-electric	Analysis of trends in use of	and the	
		power (HEP)	energy should be a starting point	greenhouse	Bowen & Pallister p.236
		Solar energy	e.g. energy demand and supply	effect.	
		Biofuels	in a country in 2005 and 2020.		Waugh chapter 18 pp.492-
		Tidal power	It is important that there is detail		498
		Wind power	about each of the sources of		
		Nuclear power	energy in this section. Questions		Geothermal Energy (Geo
		Technology	may focus on a particular source	June 2004	Factsheet 76 Sept 1999)
			of energy - requirements for	Q. 11(a)	
			production, location, contribution	June 2005	
			to energy budget, etc.	Q. 11	
				June 2006	
				Q. 3(a)	
				June 2007	
			Suggested case studies:	Q. 3(a)	
			USA - energy alternatives for the	November	
			future	2008 Q. 3	
			Wind farms in Europe - a topical	All these	
			issue	questions	
				demand	
				detailed	!
				knowledge.	

levels of sidemand for resources national left. This sectifocussed and supplements.	endowment evel Technology Energy gap	Maps and statistics can be studied to show that the main producers of energy are not necessarily the main consumers. Local case studies are encouraged and often highly effective.	June 2004 Q. 11(b) energy consumption in LEDCs	Bowen & Pallister pp.238- 241 Nagle (Development & Underdevelopment) pp.111- 114 Nagle & Spencer (Diagrams) p.115 (dated, but can be used for comparison purposes).
the patter consumpt	ne trends in rns of energy tion in nd MEDCs	A good starting point is Waugh 489-491 (graphs and data). Relate to changes in technology. Trends in consumption. Comparison of statistics for present demand/ supply and future demand/supply. e.g. for 2005 and 2020. Possible comparison of LEDCs and MEDCs. This could be picked up as part of the case study (2.2).		Guinness & Nagle pp.56- 62 Waugh pp.489-91

T	F	All and a supplied to the supplied to	Total Harris	Name (Daniela de la constante de
To understand the	Environmental	All energy production has some	http://www.iclei.	Nagle (Development &
environmental impact	impact	environmental impact (including	org/EFACTS/GL	Underdevelopment) p.111
of energy production,	Natural	renewables). Fuel extraction and	BWFIG1.GIF	
transport and usage at	environment	electricity production create	(diagram)	Cook, Hordern et al. pp.
the local scale	Pollution	industrial waste, transport may	http://www.iclei.	119-20 is very good.
	Degradation	spill crude oil, etc. This can be	org/EFACTS/GL	
	Conservation	demonstrated by use of case	OBWARM.HTM	
Note Impact on		studies e.g. Exxon Valdez oil	(global	
people (human		spill or the Trans-Alaska pipeline	warming)	
impact) is not needed.		which has great effects on the	Other links on	
		natural environment. Nuclear	this site explore	
		energy has distinct actual and	alternative	
		potential impacts locally which	energy sources	
		may impact wider areas e.g.	and their	
		Chernobyl.	effects.	
		Chemosyn.	Circoto.	
			June 2006 Q.	
			3(a)(i) Fig. 2	
To understand the		Data of carbon dioxide	http://www.uic.c	Cook, Hordern et al.
environmental impact		emissions and levels of	om.au/educatio	p.125, p.129
of energy production,		deforestation can be analysed,	n.htm	Waugh p.495
				vvaugn p.495
transport and usage at		considering 'Carbon sinks', and	deals with	
the global scale		a link made to Tropical	Australian	
		environments, Physical Options	uranium	
		Unit 1. Could compare burning		
		fossil fuels with nuclear energy,		
		which may be seen as "clean"		
		but has other possible dangers.		

2.2 The management of energy supply	To examine and evaluate the supply of electrical energy in one country at two scales 1. Overall energy strategy (national) 2. Named, located energy scheme (local)	Demand Supply Energy gap Production Location	One case study is sufficient as long as it covers both scales, e.g. of Zimbabwe and Kariba (HEP). Teachers may develop more than one case study, e.g. the home country and a contrast (LEDC or MEDC). It is anticipated that the scheme studied will be from the same country as the strategy, to offer greater detail and depth.	June 2007 Q. 3(b) Nov 2006 Q. 3(b) Nov 2005 Q. 11(b)	Nagle (Development & Underdevelopment) pp.111-114 Geo Factsheet 95 April 2000 UK Energy – Update
2.3 Environmental degradation	To understand the nature and causes of the many types of pollution To distinguish pollution from environmental degradation	Environmental degradation Land pollution Air pollution Water pollution May also include: Noise pollution Visual Pollution	Industries in all four sectors can pollute land, air and water. Definition. Classification. Causes and sources of pollution as an introduction. Can use spider diagram to brainstorm the topic. Add water as a resource to the discussion. Could link to AS Unit 1 Hydrology through water quality, abstraction, etc. Could Physical Options, Unit 4 Arid and semi-arid environments. Past questions can indicate emphasis that should be made when interpreting the syllabus.	Nov 2008 Q. 4(b) water pollution June 2008 Q. 4 June 2007 Q. 4 Fig. 2 shows water supply - a useful teaching resource. Nov 2006 Q. 4 pollution June 2004 Q. 12(b) involves evaluation of factors such as finance in the upgrading of the environment.	Cook, Hordern et al. pp.114-123
	To analyse the factors which have led to degradation of rural environments. Causes and consequences of misuse or overuse of rural land	Population pressure Soil erosion Land degradation Deforestation Desertification Poor farming practices	Degradation of rural environments occurs in both MEDCs and LEDCs. Suggested case study from home country or any context which students can readily understand.		Nagle (Development & Underdevelopment) pp.66-67 Hart et al. pp.133-136

To examine and	Reclamation	Case study – Basilicata, Italy, is		Hill (Advanced Geography
evaluate policies	Land reform	a very good, up-to-date case		Case Studies) pp.54-60
designed to improve	Soil conservation	study to use.		7
the quality of	Afforestation	·		
degraded rural	Environmentally			
environments	Sensitive Areas			
	(ESAs)			
	Waste disposal			
To understand why	Urbanisation	Case study 1: The problems of	Nov 2005 Q. 12	Hill pp.89-95
selected urban	Urban decay	the city of Rome, Italy	(a) urban	
environments have	Zones of discard		degradation	
become degraded	and assimilation	Case study 2: Cairo, Egypt:		Hill pp.96-105
	Inner city	Africa's largest city		
Note Teachers may	Informal settlement			
want to compare one	Waste management	Case study 3: American cities		Guinness & Nagle pp.70-
MEDC and one LEDC	- solid, liquid, gas and	Case study 4: The quality of life		74
city but this is not	particulates	in cities		Guinness & Nagle pp.89-
necessary.				94 on American cities
				Guinness & Nagle pp.95-
				105
To understand the	Urban regeneration	Case study 5: urban	http://www.foei.	Nagle & Spencer
relative success or	Urban redevelopment	redevelopment in Glasgow, UK	Org/media/index	(Diagrams) p.94, an older
failure of policies			<u>.html</u>	project but still useful
designed to address		Case study 6: inner city areas		Cook, Hordern et a. pp.92-
urban environmental		Case study 7: São Paulo, Brazil		94
degradation				Guinness & Nagle pp.109-
				113, pp.114-119
		Case study 8: London		Waugh pp.402-3, p. 408
		Docklands		0 - 1 - 121
				Geo Factsheet 121
		There may be links to AS Unit		January 2002 Urban
		3.4 The management of urban		Problems in Rio de
		settlements		Janeiro
		Case studies are a matter of		
		individual choice.		

	Knowledge of risk factors affecting environments, environmental protection policies and their impact	Examples are diverse and may include: National Parks Nature reserves Mining agreements Tropical rainforest (TRF) Ecotourism Earth summits Kyoto protocol CO ₂ emissions targets	Identifying risk factors: general risk factors e.g. population pressure and specific risk factors (to time and/or place) e.g. road building project. Awareness of the need for some form of environmental protection. Measures: proposed or taken. Outcomes: relative success/failure. Unexpected effects, further needs, etc. Study of the Earth summits of Rio de Janeiro 1996 and Kyoto 1997 and the targets of the Kyoto Protocol. Possible link back to AS Unit 2 Atmosphere and weather, 2.4 The human impact		
2.4 The management of a degraded environment	To acquire detailed knowledge of one degraded environment Factors, causes, problems, issues, management strategy, attempts or initiatives, and relative success or failure are the key elements	Factors that cause and influence degradation: economic, social, environmental, political. Positive and negative.	This section may be covered by reference to any case study of a teacher's or student's choice. Note Be careful to ensure that the chosen case study has all the attributes needed. It is advisable to check the wording of past questions in order to select a case study that fulfils the question requirements.	Nov 2006 Q. 4(b) government as a factor June 2005 Q. 12(b)	Geo Factsheet 91 April 2000 Cardiff Bay Redevelopment, UK