Interactive Learner Guide

Cambridge IGCSE ${ }^{\oplus}$
 Chemistry (9-1) 0971

For examination from 2017

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB
${ }^{\circledR}$ IGCSE is a registered trademark
Copyright © UCLES 2017
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Contents

About this guide 4
Section 1: Syllabus content - what you need to know about 5
Section 2: How you will be assessed 6
Section 3: What skills will be assessed 15
Section 4: Example candidate response 17
Section 5: Revision 26

About this guide

This guide introduces you to your Cambridge IGCSE® Chemistry (9-1) (0971) course and how you will be assessed. You should use this guide alongside the support of your teacher.

By the end of this guide, you should:
\checkmark have an overview of the course and what you will learn about
\checkmark understand the structure of the assessment that you will be taking
\checkmark be able to plan your revision
\checkmark know how to show your skills to the best of your ability.

Section 1: Syllabus content

Find out what topics you will be learning about. Your teacher can give you more detail.

Section 2: How you will be assessed

Find out:

- how many examinations you will take
- how long each examination lasts
- what different question types the examination will contain
- how to tackle each examination.

Section 3: What skills will be assessed

Find out what areas of knowledge, understanding and skills you will need to demonstrate throughout the course and in your examinations.

Section 4: Example candidate response

Take a look at a learner's response taken from a real examination. Find out:

- how to interpret the question
- how to avoid common mistakes
- how to improve your exam technique.

Section 5: Revision

Discover:

- ways to help you plan your revision
- example revision planners
- some basic revision skills
- some 'top revision tips'
- revision checklist for each topic.

Section 1: Syllabus content - what you need to know about

This section gives you an outline of the syllabus content for this course. Only the top-level topics of the syllabus have been included here, which are the same for both the Core and Extended course. In the 'overview' column you are given a very basic idea of what each topic covers.

Learners taking the Extended course need to know all of the Core content as well as some extra content. This extra content is known as supplement content; it requires learners to explore topics and sub-topics of the Core syllabus in more detail, and to learn new sub-topics.

Ask your teacher for more detail about each topic, including the differences between the Core and Extended courses. You can also find more detail in the Revision checklists in this guide.

Topic	Overview
1. The particulate nature of matter	Solids, liquids and gases
2. Experimental techniques	Measurement, purity and purification
3. Atoms, elements and compounds	Atomic structure, the Periodic Table and bonding
4. Stoichiometry	Chemical symbols, chemical formulae and balancing equations
5. Electricity and chemistry	Electrolysis and electroplating
6. Chemical energetics	Energetics of a reaction and energy transfer
7. Chemical reactions	Physical and chemical changes, rates, reversible, redox
8. Acids, bases and salts	groperties of acids and bases, oxides, preparation of salts, identification of ions and
9. The Periodic Table	Properties, reactivity, extraction and uses
10. Metals	Chemical tests, pollutants, fertilisers, greenhouse gases
11. Airansition elements, noble gases	
12. Sulfur	Sources and uses
13. Carbonates	Manufacture and uses of lime, calcium carbonate and slaked lime
14. Organic chemistry	Names and properties of organic compounds

In addition to the syllabus content, you are also expected to understand and know experimental skills. For Papers 1-4 and Paper 6, you will also need to learn a number of tests and test results for different ions and gases called the 'Notes for use in qualitative analysis' (these are given in Paper 5). You can find more detail about the experimental skills, and these tests, from your teacher, and also in the Revision checklist.

Section 2: How you will be assessed

You will be assessed using three components:

- Paper 1 or Paper 2 (Multiple choice)
- Paper 3 or Paper 4 (Written paper, Theory)
- and either Paper 5 (Practical Test) or Paper 6 (Alternative to Practical).

Your teacher will discuss with you which course is appropriate for you, Core or Extended.

As mentioned in Section 2, the Extended course covers all the same material as the Core course but also includes more to learn in some sub-topics and some additional sub-topics.

* Your teacher will tell you if you are going to take Paper 5 or Paper 6.

Components at a glance

The tables summarise the key information about each component for each syllabus. You can find details and advice on how to approach each component on the following pages.

Component		How long and how many marks	Skills assessed	Details	Percentage of the qualification
Core	Paper 1 (Multiple choice)	45 minutes 40 marks	Knowledge with understanding, handling information and problem solving	You need to answer all 40 questions on the Core syllabus content. Each question will have four options to choose from.	30\%
	Paper 3 (Written paper, Theory)	1 hour 15 minutes 80 marks	Knowledge with understanding, handling information and problem solving	The questions are shortanswer or structured questions on the Core syllabus content. You need to answer all questions.	50\%
	Paper 5 (Practical Test)	1 hour 15 minutes 40 marks	Experimental skills and investigations	You will take a practical exam that is supervised by your teacher.	20\%
	or Paper 6 (Alternative to Practical)	1 hour 40 marks	Experimental skills and investigations	This is a written paper about practical work.	20\%

Component		How long and how many marks	Skills assessed	Details	Percentage of the qualification
Extended	Paper 2 (Multiple choice)	45 minutes 40 marks	Knowledge with understanding, handling information and problem solving	You need to answer all 40 questions on the Extended (Core and Supplement) syllabus content. Each question will have four options to choose from.	30\%
	Paper 4 (Written paper, Theory)	1 hour 15 minutes 80 marks	Knowledge with understanding, handling information and problem solving	The questions are shortanswer or structured questions on the Extended (Core and Supplement) syllabus content. You need to answer all questions.	50\%
	Paper 5 (Practical Test)	1 hour 15 minutes 40 marks	Experimental skills and investigations	You will take a practical exam that is supervised by your teacher.	20\%
	or Paper 6 (Alternative to Practical)	1 hour 40 marks	Experimental skills and investigations	This is a written paper about practical work.	20\%

About the components

It is important that you understand the different types of question in each component and how you should approach them. These papers assess your knowledge with understanding and your skills in handling information and solving problems. You need to answer all 40 questions.

Advice

Read each question carefully.
If possible, work out the answer before you look at the answer options.

If you cannot work out an answer straight away:

- eliminate options that are clearly incorrect
- choose between those that are left
- don't make a guess from all four options
- never leave an answer blank

There is 45 minutes for Paper 1 , so you have about one minute to read and answer each question.

Don't look for patterns in the letter answers you give. If your answers mean you are selecting one letter, e.g. A, more often than others, it doesn't matter. Concentrate on answering the question you are doing.

You will likely make fewer mistakes if you write down your working than if you try to work out the answers in your head.

Practise multiple-choice questions and get someone else to mark them. Look for:

- errors
- questions you didn't read carefully
- topics you don't know or understand.

Paper 3 (Core) and Paper 4 (Extended) - Written paper, Theory
These papers assess your knowledge with understanding, and your skills in handling information and solving problems. You need to answer all questions.

The number of marks for each question or question part often gives you a clue about how many separate points you need to make in your answer.

Question types and advice

Paper 3 and Paper 4 have short-answer and structured questions.

Make sure you:

- answer the question being asked

Draw a diagram to show the electron arrangement in a molecule of hydrogen.

Predict how the reaction of potassium with water compares with the reaction of lithium with water. In your answer, include any differences in observations.

Two of the elements present in a sample of coal are carbon and sulfur. A sample of coal was heated in the absence of air and the products included water, ammonia and hydrocarbons. Name three other elements present in this sample of coal.

You are asked to draw a 'molecule', so two H atoms with a pair of electrons joining them is needed, not an 'atom'.

The question asks you to 'compare' and include any 'differences', so you need to say that 'potassium produces more bubbles than lithium', not just that 'potassium produces bubbles'.

The question asks you to name 'three other elements', so 'hydrogen, oxygen and nitrogen' is needed - not 'carbon' or 'sulfur', which are given in the question.

- look at how many marks are available for a question, this gives you a good idea of how many different points you need to make

Explain why zinc chloride conducts electricity when molten, not when solid. [2]

- know the chemical terms used in the questions State two differences in the physical \longleftarrow
properties of the metals potassium and iron.

Carboxylic acids can be made by the oxidation of alcohols. Name a reagent, other than oxygen, which can oxidise alcohols to carboxylic acids.

There are 2 marks available, so 2 separate points are needed.

You need to understand the term 'physical properties' in order to answer the question correctly.

You need to understand what the term 'reagent' means in order to answer the question correctly.

- know how to write chemical equations in words and using symbols

In Paper 3 you will be told in the question to write either a 'word' equation or a 'symbol' equation.

Do not combine symbols and words in the same answer.

In Paper 4 you may be asked to give a word equation, but if you are asked to write an equation for a particular reaction you need to provide a balanced equation using symbols and formulae. For example, 'Write an equation for the complete combustion of methane' would require the answer:

- are specific in your answer and not vague

Copper(II) sulfate is heated strongly. The products are copper(II) oxide and sulfur trioxide. Sulfur trioxide is an acidic gas.

What precautions must be taken when 'don't breathe in the gas' will not get the mark. You would need to be specific such as 'use a fume cupboard' or 'carry out the reaction in a well-ventilated area'.

- do not contradict yourself

Give two harmful effects of acid rain.
Acidifies lakes \checkmark and raises the pHx
'Acidifies lakes' is correct, but 'raises the pH ' has the opposite meaning, that the lakes are more alkaline.

- keep an eye on the time.

Make sure you have time to answer all the questions and return at the end to check your answers.

Paper 5 (Practical Test)

Paper 5 assesses experimental skills and investigations. You take the exam in a laboratory under teacher supervision; you will have your own working space and set of apparatus. It is important that you learn and practise experimental skills during your course.

The questions in Paper 5 are structured. Each question includes the instructions for the experiments you must carry out, space for you to record observations and data, and space for you to then interpret or process your results. You need to answer all questions.

The questions might, for example, require you to:

- measure, record and then use data
- investigate an unknown substance using test-tube reactions
- plan an experiment or an investigation

Write your answers on the question paper.

Tests to identify ions and gases (known as Notes for use in qualitative analysis) are included in the exam paper to help you identify ions and gases.

The number of marks for each question or question part often gives you a clue about how many separate points you need to make in your answer.

Paper 6 (Alternative to Practical)

Paper 6 assesses experimental skills and investigations. It is a written paper about practical work, so make sure that you study all the experiments you have done in the classroom and seen demonstrated. You will take this examination under the same conditions as other written papers. It is important that you learn and practise experimental skills during your course.
The paper consists of short-answer questions and/or structured questions. You need to answer all questions.

Advice for Paper 5 (Practical Test) and Paper 6 (Alternative to Practical)

These papers will not test specific topic content from the syllabus content, they test experimental skills and investigations. This is assessment objective AO3. Any information required to answer the questions in these papers is contained within the paper itself or should be known from the experimental context, and skills listed in the Revision checklist.

Questions might include:

- the measurement of a quantity such as volume or mass
- investigation of rates (speeds) of reaction
- measurement of temperature using a thermometer with $1^{\circ} \mathrm{C}$ graduations
- investigations of some aspect of chemistry, possibly including organic compounds
- filtration
- electrolysis
- identification of ions and gases.

See the 'Notes for use in qualitative analysis' later in this guide for the tests to identify ions and gases. You need to learn these for Paper 6. The tests and results are given in Paper 5.

You will need to be able to:

- describe, explain or comment on experimental arrangements and techniques
- take accurate readings from apparatus / diagrams of apparatus, such as cylinders, burettes and pipettes to measure the volume of liquids, thermometers to record temperature, clocks to measure time
- fill in tables of data, and process data, using a calculator where necessary
- draw an appropriate conclusion, justifying it by reference to the data and using an appropriate explanation
- interpret and evaluate observations and experimental data
- plot and interpret information from graphs
- identify sources of error and suggest possible improvements in experiments
- plan an experiment or investigation, including making reasoned predictions of expected results and suggesting suitable apparatus and techniques.

Record readings using suitable accuracy

For example,

- volume to the nearest $0.1 \mathrm{~cm}^{3}$
- thermometer readings usually to the nearest $0.5^{\circ} \mathrm{C}$
- time to the nearest second.

Record observations carefully

Record observations in the order the steps are carried out.
Try to use the same language as used in the 'Notes for use in qualitative analysis' tests later in this guide.

Observations might include:

- the colour of solids
- the colour of solutions - use colourless if the solution has no colour ('clear' is not the same as colourless)
- what you see if you test for a gas, such as bubbles, or fizzing, or effervescence - not just 'a gas is given off'.

See the notes on drawing graphs in Section 5: Revision.

Write notes before writing the plan.
Clearly state:

- details of apparatus
- quantities of substances to be used
- practical procedures you think should be carried out
- a conclusion.

Make sure any diagrams fill the space given on the paper and are fully labelled.

Section 3: What skills will be assessed

The areas of knowledge, understanding and skills that you will be assessed on are called assessment objectives (AOs).

AO1	AO2	AO3
Knowledge with understanding	Handling information and problem solving	Experimental skills and investigations

The tables explain what each assessment objective means and what percentage of the whole qualification is assessed using that objective. Your teacher will be able to give you more information about how each of the assessment objectives are tested.

AO 1	What this means	Where
Candidates should be able to demonstrate knowledge and understanding of: 1. scientific phenomena, facts, laws, definitions, concepts and theories 2. scientific vocabulary, terminology and conventions (including symbols, quantities and units) 3. scientific instruments and apparatus, including techniques of operation and aspects of safety 4. scientific and technological applications with their social, economic and environmental implications.	Knowledge with understanding This is all about remembering facts and applying these facts to new situations. You need to be able to: - use scientific ideas, facts and laws - know definitions and the meaning of scientific terms, e.g. what is reduction? - know about chemical apparatus and how it works - know chemical symbols, quantities (e.g. volume) and units (e.g. dm^{3}) - understand the importance of science in everyday life.	Two out of three components: Paper 1 or 2 Paper 3 or 4 Percentage of IGCSE: 50\%

The syllabus content is the factual material that you might need to recall and explain. You will also be asked to apply this material to unfamiliar contexts, and to apply knowledge from one area of the syllabus to another.
AO2
Candidates should be able, in words
or using other written forms of
presentation (i.e. symbolic, graphical
and numerical), to:

1. locate, select, organise and
present information from a
variety of sources
2. translate information from one
form to another
3. manipulate numerical and other
data
4. use information to identify
patterns, report trends and draw
inferences
5. present reasoned explanations
for phenomena, patterns and
relationships
6. make predictions and hypotheses
7. solve problems, including some
of a quantitative nature.

What this means

Handling information and problem solving

This is all about how you extract information and rearrange it in a sensible way, how you carry out calculations, and how you make predictions.

You need to be able to:

- select and organise information from graphs, tables and written text
- change information from one form to another, e.g. draw graphs from data, construct symbol equations from word equations
- arrange data and carry out calculations
- identify trends and patterns from information given and draw conclusions
- explain scientific relationships, e.g. increasing the temperature of a gas increases the speed of its particles
- make predictions and develop scientific ideas
- solve problems.

Where

Two out of three components:
Paper 1 or 2
Paper 3 or 4
Percentage of IGCSE: 30\%

Questions that test AO2 skills might be based on information that is unfamiliar to you, meaning that you have to apply the principles and concepts from the syllabus to a new situation in a logical, deductive way.

AO3	What this means	Where
Candidates should be able to:	Experimental skills and investigations	One out of three components:
1. demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)	This is all about planning and carrying out experiments and recording and analysing information.	Paper 5 or 6

Section 4: Example candidate response

This section takes you through an example question and candidate response from a Cambridge IGCSE Chemistry (9-1) (0971) past paper. It will help you to see how to identify words within questions and to understand what is required in your response. Understanding the questions will help you to know what you need to do with your knowledge, for example, you might need to describe something, explain something, argue a point of view or list what you know.

All information and advice in this section is specific to the example question and response being demonstrated. It should give you an idea of how your responses might be viewed by an examiner but it is not a list of what to do in all questions. In your own examination, you will need to pay careful attention to what each question is asking you to do.

This section is structured as follows:

C. Example candidate response

This is an answer by a real candidate in exam conditions. Good points and problems have been highlighted.
D. How the answer could have been improved

This summarises what could be done to gain more marks.

E. Common mistakes

This will help you to avoid common mistakes made by candidates. So often candidates lose marks in their exams because they misread or misinterpret the questions.

A. Question

The question used in this example is a structured question that you might find in Paper 3 and Paper 4. This means that the question is split into parts, often with later parts linked to the answer of earlier parts of the paper. This example is taken from a Core paper, but the comments are still relevant for Extended papers.

5 (a) Match the phrases on the left with the definitions on the right.

[3]
(b) Sodium hydroxide, NaOH , is an ionic compound which dissolves in water to form a strongly alkaline solution
(i) Which one of the following best describes the pH of a concentrated aqueous solution of sodium hydroxide?
Put a ring around the correct answer

Calculate the relative formula mass of sodium hydroxide.

[1]
(iii) The equation describes how sodium hydroxide reacts with hydrochloric acid.

$$
\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

What type of chemical reaction is this?

Match...The first one has been done for you. This means that you are expected to connect a phrase with its correct definition. The example shows you that you need to match by drawing a line from one box to one other. If you join one box to two boxes, you would not be awarded the mark for that phrase
one... this instruction is in bold to emphasise that there is only one correct answer.

Put a ring round ... tells you how to select/show your answer.

Calculate... this means you need to use numbers to do a calculation. Sometimes the numbers will be given in the question, other times you will need to know them or find them. Here, you are expected to know the relative atomic masses of each of the atoms in sodium hydroxide, or to find them in the Periodic table if you do not know them from memory.
(iv) A student used a syringe to add $1 \mathrm{~cm}^{3}$ portions of hydrochloric acid to an aqueous solution of sodium hydroxide.

Describe how the pH of the solution in the beaker changes as the hydrochloric acid is added until the acid is in excess.
....

Describe ... means you must state, in words, the main points of the topic in the question. You might need to recall facts, events or processes in an accurate way. Here, you are asked to describe how something changes during a particular reaction, so you should state what change occurs in the reaction You do not need to explain why things happen, just what happens.
c) The diagram shows the apparatus used to electrolyse concentrated aqueous sodium chloride.

Give a description of this electrolysis. In your description include

- what substance substance
- what you would observe during the electrolysis
- the names of the substances produced at each electrode.

Give a description ... means the same thing as 'Describe'. In this question however, you are asked to describe a more complex process and there are more marks available, so more detail is required than for part (b)(iv). Bullet points are given to help you structure your answer; it is a good idea to make sure you cover each bullet in your answer.
. would observe ... where you see the word observe you need to state something you would see or smell. 'A gas is given off' is not an observation, it is a statement of a fact. Saying 'bubbles of gas' is an observation as the bubbles can be seen.

B. Mark scheme

The mark scheme provides the final answer for each sub-part of a question and, when appropriate, the required lines of working to reach that answer. Sometimes the answer has to be exactly as given in the mark scheme. Other times there will be an acceptable range of answers. The presence of a '/' between items in the mark scheme means 'or', and indicates a list of possible answers. Look at the mark scheme below.

5 (a) Each item should be joined to the correct definition box. There is no mark if a box is joined to more than one other box. Correct pairs are:
molecule \rightarrow two or more atoms covalently bonded together [1]
atom \rightarrow the smallest part of an element which can take part in a chemical change [1]
ion \rightarrow an atom that has become charged
(b) (i) pH 13
[1]
(ii) 40
[1]
(iii) neutralisation [1]
(iv)The first part of the answer must refer to pH getting lower/less/decreases, e.g.
pH decreases / pH goes from higher to lower pH / pH changes from pH 12 to pH 8 .
The second part of the answer must refer to the pH going below 7, e.g.
final pH below 7 / state a pH values less than 7
The statements above are examples only, any suitable comment can be awarded marks. Using actual values e.g. changes from pH 12 to pH 8 and then to pH 5 gains marks but simply stating that the solution becomes 'less alkaline' or 'more acidic' is not correct. pH must be mentioned.
(c) The following are examples of correct answers relating to each bullet point. A maximum of 6 marks can be awarded. If the candidate provides an answer that is not listed but which is accurate and relevant, award marks accordingly.

- Electrodes are made from carbon / graphite / platinum
because it is unreactive / inert / conducts electricity / electrons move in
- Any two from:
- bubbles (of gas from the electrodes)
- smell of chlorine / swimming pools
- solution goes (pale) green(ish) / yellow(ish)
- Chlorine is produced at the anode / chloride (ions) go to anode
- Hydrogen is produced at the cathode / hydrogen (ions) go to the cathode

If candidate says that hydrogen is produced at the anode and chlorine at the cathode, award just 1 mark maximum for this point.

Additional marks (up to a maximum of six) can be scored from the following points:
Ions are attracted to oppositely charged electrodes
Ions move through the solution
Electrons move through the electrodes
Electrolyte conducts electricity
'Hydroxide ions' does not score a mark.

Now let's look at the sample candidate's response to question 9 and the examiner's comments on this response.

C. Example candidate response and examiner comments

An extract from a real candidate's exam paper has been used. The examiner comments are included inside the orange boxes.

5 (a) Match the phrases on the left with the definitions on the right. The first one has been done for you.

Mark awarded: 3

The phrases are perfectly matched with the definitions.

Note that if they had matched a phrase with more than one definition, they would not score a mark for that phrase, even if one of the two connected definitions was correct.
[3]
(b) Sodium hydroxide, NaOH , is an ionic compound which dissolves in water to form a strongly alkaline solution.
(i) Which one of the following best describes the pH of a concentrated aqueous solution of sodium hydroxide?
Put a ring around the correct answer.
pH 2
pH 5
pH 7
pH 8
pH 13
[1]

Mark awarded: 1
The correct answer has been circled.
(ii) Calculate the relative formula mass of sodium hydroxide.

$$
\begin{aligned}
\text { relative formula mass } & =\begin{array}{l}
\mathrm{Na} \\
23+16+1 \\
\\
\end{array} \begin{aligned}
\mathrm{H} \\
40
\end{aligned}
\end{aligned}
$$

The relative atomic masses of the atoms in sodium hydroxide are added together to find the relative formula mass. If you didn't know the relative atomic masses of each atom, you could use the Periodic Table provided in the back of the paper

Mark awarded: 1

The mark is awarded for the final answer of '40'. However, it is always a good idea to show your working.
[1]
(iii) The equation describes how sodium hydroxide reacts with hydrochloric acid.

$$
\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

What type of chemical reaction is this?
This is the only acceptable answer.
(iv) A student used a syringe to add $1 \mathrm{~cm}^{3}$ portions of hydrochloric acid to an aqueous solution of sodium hydroxide.

Mark awarded: 2
1 mark was awarded for 'the pH decreases' and 1 mark was awarded for 'pH < 7'.

The acid/alkaline comments do not gain marks because they do not answer the question, which is about pH . It is the ideas of decreasing pH and going down to less than pH 7 that got the marks. However, no marks are taken away by including the acid/ alkaline comments.

1
sodium hydroxide solution

Describe how the pH of the solution in the beaker changes as the hydrochloric acid is added until the acid is in excess.

E decreases. Until......... the avid...is in exsess.,...the solution
\qquad is acidic. (pH $<n$)
(c) The diagram: shows the apparatus used to electrolyse concentrated aqueous sodium chloride.

Give a description of: this electrolysis. i . - .

Mark awarded: 4

This extended writing about electrolysis was well laid out in bullet points. Answering each bullet like this meant that they were awarded marks for the correct statements even though some of the answer was incorrect.

The number of separate / different points made should equal the number of marks available. The candidate has recognised this and made two points for the three suggested bullets, but due to errors they were only awarded four of the available six marks. In your description include

- what substance the electrodes are made from and the reason for using this substance
- what you would observe during the electrolysis
- the names of the substances produced at each electrode.
-..... Electrodes are made from graphite or platinum.
because.....it... is. inert.

2 marks were awarded for the first bullet: 1 mark for 'electrodes are made from graphite or platinum' and 1 mark for 'Because it is inert'.

1 mark was awarded for 'gas bubbles off at anode'.
'The metal attaches at cathode' is not correct. No mark is awarded or taken away for this point

1 mark was awarded for 'Anode: 'chlorine gas'.
'cathode: sodium metal' is not correct so they do not get a mark for this statement but no mark is taken away.

Total mark awarded = 12 out of 14.

D. How the answer could have been improved

This answer was a good attempt and demonstrated a good understanding of acid-base reactions and definitions. The candidate structured their answer to part (c) well, using the bullet points as guidance and writing two points for each of the three bullets, taking note of the six possible marks for the question. However, although they made six points, only four of them were correct.

They could have been awarded one more mark for the second bullet point if they had also said any one of the following:

- there is a smell of chlorine / swimming pools
- the solution changes colour to pale green / yellow
- ions are attracted to oppositely charged electrodes
- ions move through the solution
- electrons move through the electrodes
- electrolyte conducts electricity

They could have scored one more mark for their last bullet if they had also said that hydrogen is produced at the cathode.
Note that the answers in the mark scheme are not the only possible answers, and other suggestions from candidates that are accurate and relevant would also be awarded marks.

E. Common mistakes

On this question, common mistakes made by candidates in the examination were as follows for each part:
a) Not using the given example as a guide to answering the question, and therefore matching a phrase to two definitions - a mark was not awarded for the phrase if it is matched to more than one definition.
b) (i) Not knowing or understanding how pH relates to acidity and alkalinity, or, not knowing about a solution of sodium hydroxide. A solution of sodium hydroxide is a strong alkali, so the only possible answer from the list is pH 13 . An answer of pH 8 was a common error; this shows some understanding that the solution is alkaline but no appreciation of the strength. Other mistakes were pH 5 or pH 7 , which either shows a lack of understanding of acidity and alkalinity in relation to pH , or a lack of knowledge about the solution itself.
b) (ii) Errors during the calculation. For example, multiplying the masses together rather than adding them.

Another common mistake was using the Periodic Table incorrectly, using the atomic number rather than the atomic mass of each element.
b) iii) Not knowing the content well enough. There is nowhere to hide in a question like this. The only possible answer is 'neutralisation', so common answers such as 'exothermic' and 'displacement' do not get a mark.
b) (iv) Many candidates hardly mentioned pH in their answers. 'The solution gets more acidic' was a common answer scoring no marks. Many thought the pH would increase as it got more acidic. Even those who correctly wrote about pH often didn't go on to refer to what happened when excess acid was added. They lost a mark by only writing about what happens until the solution is neutral.
(c) There were a number of different common mistakes for this part:

- the description did not relate to the experiment given in the question, e.g. general statements about electrolysis without referring to the particular example in the question
- the focus was on details that weren't required, e.g. the definitions of an anode and cathode; no marks were taken away for including this detail but it is a waste of time as it doesn't get awarded marks
- there were factual errors, e.g. writing about the bulb lighting up but there is no bulb in the circuit; copper electrodes rather than graphite; and sodium being produced.
- candidates did not include what would be observed during the electrolysis.

The suggested points in the bullet of the question are intended to help guide the candidate in their answer, so it's a good idea to follow them. However, credit is always given for correct chemistry that also answers the question, even if the bullets are not followed.

General advice

- Read the question carefully.

This may seem obvious but some candidates write answers that contain factually correct chemistry but that do not answer the question. In such cases, marks cannot be awarded. Don't just write down everything you know or remember about the topic; focus on what is being asked. For example, if a question asks 'what happens to the pH ' during a given reaction, a response of 'the solution becomes more acidic' cannot be awarded any marks. Although this response is scientifically correct, it doesn't mention pH and therefore doesn't answer the question.

- Show your working when answering a 'calculate' question.

You may get some credit even if your answer is wrong. Writing down your working can also help you to spot errors you have made.

- Know the names of different reactions, processes and experiments and what they all mean.

Your answers have to be accurate; often there is only one acceptable and precise answer.

- Look at the number of marks available for a question or question part.

The number of marks is usually a clue to how many different points you need to make. For example, if a question has two marks allocated to it, two pieces of information are needed. However, each point has to be accurate!

- Describe the experiment or reaction given in the question.

Don't describe a general experiment or reaction if a specific example has been requested in the question. When describing an experiment, a labelled diagram often helps the description (diagrams would not help the description of a reaction).

- Know how to read and use the Periodic Table accurately.

Remember that there is a Periodic Table provided at the back of Paper 1, Paper 2, Paper 3 and Paper 4. You can use the Periodic Table to help answer some questions, so it's important that you know how to use it.

Section 5: Revision

It is important that you plan your revision in plenty of time for the examinations and that you develop a revision technique that works for you.

Planning your revision

A well-structured revision plan can give you the best chance of success in your examinations. As early as possible (at least six weeks before the examinations for each subject) identify the time you will spend revising and schedule slots for revision of this subject alongside your other subjects.

To create a revision schedule, you could use an overall planner for the weeks leading up to the examinations. You could then create weekly revision plans at the start of each week, which include the detail of which subjects you will revise and when. There are some example planners on the next page but there are lots of other ways you can do this. Planning takes time but will help you be more productive.

Use the following as a checklist to help you create your schedule:

Write down the dates and times of each of the examinations you are taking, in a calendar, diary or planner.\square Work out how much time you have before each examination, so you can leave yourself plenty of time to revise each subject.

For each subject make sure you:

know how long each examination paper isknow what each examination paper is going to assesswork out how much time you can spend on each topic so that you revise all topics.
It is important to have breaks in order to stay alert and productive, so make sure you:

include one rest day per week, or break this up into shorter rest breaks across a weekinclude at least two hours of rest before bed time; working too late is unlikely to be productivetake regular breaks during revision; revising for hours without a break will overload youhave short revision sessions and short breaks between each sessionknow ways to relax during your breaks; for example, physical exercise can be good during breaks.
It is important to be flexible and realistic, so make sure you:

include most days leading up to the exams and include any days or times when you are not able to revise (for example due to attending school, eating meals, participating in sports and hobbies)are honest with yourself about how much time you can really spend on each subject and topicdon't get upset about plans that did not work - think of new plans that are easier to achieve.
It might help to:

include a mixture of subjects each daybreak up the material in your subjects into manageable chunks.Plan to return to topics and review them; revisiting a topic means that you can check that you still remember the material and it should help you to recall more of the topic.Include doing past paper examinations in your plan.
Revision planners

There are many different planners, calendars and timetables you could use to plan your revision. The ones provided in this section are just examples. They range from an overview of all the weeks leading up to the first examination, to the detail of what you will be revising each day.

Use colour-coding for different subjects, time off, examinations and so on. Plan which subjects you are going to revise in which slots. You could then add more detail such as topics to be covered. The planner can be as detailed, large and colourful as you like. Remember to tick off sections as you complete them and to review your plans if needed.

Overview planner

In the example below, imagine that the first examination is on 1 June. Here, the box has just been highlighted but you should write down the paper number, the subject and the time of the examination. You should do this for all the examinations you have. This helps you to visualise how much time you have before each examination. You can use this to block out whole or half days when you can't revise. You can also include as much or as little detail about your daily or weekly revision plan as you like.

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
17	18	19	20	21	22	23
24	25	26	27	28	29	30
1	2	3	4	5	6	7
8	9	10	11			
15						

Weekly planner
This allows you to input greater detail about what you will revise each week. In the example below, each day is split into three.

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Morning							
Afternoon							
Evening							

In the example below, each day has been split into 1-hour slots so you can include even more detail.

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
$\begin{aligned} & \text { 08:00 } \\ & \text { 09:00 } \end{aligned}$							
$\begin{aligned} & \text { 09:00 } \\ & \text { 10:00 } \end{aligned}$							
$\begin{aligned} & \text { 10:00 - } \\ & \text { 11:00 } \end{aligned}$							
$\begin{aligned} & \text { 11:00- } \\ & \text { 12:00 } \end{aligned}$							
$\begin{aligned} & \text { 12:00 } \\ & \text { 13:00 } \end{aligned}$							
$\begin{aligned} & \text { 13:00 } \\ & \text { 14:00 } \end{aligned}$							
$\begin{aligned} & \text { 14:00 - } \\ & \text { 15:00 } \end{aligned}$							
$\begin{aligned} & \text { 15:00 } \\ & \text { 16:00 } \end{aligned}$							
$\begin{aligned} & \text { 16:00 - } \\ & \text { 17:00 } \end{aligned}$							
$\begin{aligned} & \text { 17:00 } \\ & \text { 18:00 } \end{aligned}$							
$\begin{aligned} & \text { 18:00 - } \\ & \text { 19:00 } \end{aligned}$							
$\begin{aligned} & \text { 19:00 - } \\ & \text { 20:00 } \end{aligned}$							
$\begin{aligned} & \text { 20:00 } \\ & \text { 21:00 } \end{aligned}$							

General revision advice

Here are some useful tips to help you with your revision. Use this as a checklist.Make accurate notes during the course.Look at the revision checklists and be really clear what topics you need to know.Check that your notes are complete and make sense.

If you need to improve your notes, you could:

- ask your teacher for help, especially if you don't understand some of your notes- ask a friend if you can copy missed work, but make sure you understand it- find more information on topics using your teacher, textbook, the library or the internet; your teacher will have a full copy of the syllabus- use different note-taking methods such as colour-coded notes, tables, spider-diagrams and mind maps; Venn diagrams can be very useful when you need to compare and contrast things.Make lots of new notes: they don't have to be neat, you can use scrap paper or a digital notepad. Remember that the process of writing and reviewing your notes helps you to remember information.Be organised: keep your notes, textbooks, exercise books and websites to hand.Find a revision method that works for you; this might be working alone, with friends, with parents, online, at school, at home or a mixture of many different methods.Have a clear revision plan, schedule or timetable for each subject you are studying.

Vary your revision activities: your revision programme should do more than remind you what you can and cannot do - it should help you to improve.Use revision checklists to analyse how confident you feel in each topic.

Try doing some past examination papers; use the mark schemes to assess yourself.

Use plenty of pens, colours, paper and card of different sizes to make your notes more fun.

Test yourself in different ways, for example by:

- playing 'Teach the topic'- using Question and answer cards- answering real exam questionsBuy a good revision guide.You might also find it helpful to:

Target single issues such as correcting those little things you always get wrong, or reminding yourself about any facts/issues/skills that you have never been too sure of.

Spend most of your time on specific skills, knowledge or issues that you have found more difficult when practising them, either during revision or earlier in the course during tests or mock exams.

Spend some time focussing on your strengths as well, so that you can improve.

Top tips for revision of Cambridge IGCSE Chemistry (9-1)

1. Using the Periodic Table

The Periodic Table is included at the back of Papers 1, 2, 3 and 4. It is not included in Papers 5 and 6.
Make sure that you are familiar with the layout of the table and know that:

- the Groups are the columns in the table numbered I-VIII
- the Periods are the rows across the table
- the first Period only contains two elements, hydrogen and helium
- the key shows the position of the proton number (atomic number) and relative atomic mass of each element
- the volume of one mole of gas at room temperature and pressure (r.t.p.) is shown at the bottom of the Periodic Table.

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.)

2. Mind maps

Mind maps are a great way to revise the links between different factors or to explore a larger topic. They can also be used to brainstorm your ideas.
i. Use a blank sheet of paper and turn it on its side (landscape).
ii. Put the topic title in the middle of the page and build the mind map outwards using lines called 'branches'.

- The first branches are from the central topic to sub-topics; draw these as thick lines.
- Add new branches from the sub-topics to include more detail; draw these as thinner lines.
- Add even more detail to a point by adding more branches.

This creates a hierarchy of information from 'overview' (the thick branches) to 'fine detail' (thinnest branches).
iii. Write single key words or phrases along a branch and add drawings for visual impact.
iv. Use different colours, highlighter pens, symbols and arrows to highlight key facts or issues.

It is a good idea to use a large piece of plain A3 (or larger) paper and lots of coloured pens.

3. Teach the topic

This is a very simple but effective technique that focusses on knowledge recall. It tests the brain and rehearse the information you need to know for a certain topic and so will help your revision.
i. Create some topic cards with key bullet points of information on. Leave space for ticks.
ii. Give these to your parents, family or friends for example.
iii. Give yourself 10 minutes maximum to teach your audience the main points of the topic. You could use a mini-whiteboard or flip chart to help.
iv. Your audience tick off all the points you mention in your presentation and give you a final score.

The brain loves competition, so if you do not score full marks, you can try again the next day, or compete against friends. This system of repeat and rehearsal is very effective, especially with more complex topics, and doesn't take much preparation.

4. Question and answer (Q\&A) cards

This is very similar to 'Teach the topic' but less formal and less public for those who dislike performing in front of others. It tests knowledge recall and rehearses the information you need to know for a certain topic.
i. Pick a topic and create two sets of cards: question cards and answer cards. You might find it helpful to make the question cards a different size or use different coloured card for answers.
ii. Make sure you have the topic, or something appropriate depending on what you are focusing on, as a heading on each card. The questions should test your knowledge and understanding of key areas of the course.
iii. A friend or family member uses the cards to test you in short 5 or 10 minute periods at any time during the day.
iv. You could also do this alone by reading the questions to yourself, giving the answer and then checking the correct answer card.
v. This game can be adapted by using the cards to find matching pairs: turn all cards face down across the space in front of you. Turn over two cards, leaving them where they are. If they match (one is a question card and the other is the corresponding answer card) pick up the pair and put them to one side. If they don't match, try to remember where they are and what is on each card, then turn them back over. Turn over two other cards. Continue until you have matched all pairs.

5. Question paper and mark schemes

Looking at past question papers and the mark scheme helps you to familiarise yourself with what to expect and what the standard is.
i. Ask your teacher for past paper questions with mark schemes for the course - ask your teacher for help to make sure you are answering the correct questions and to simplify the mark scheme.
ii. Look at the revision checklist and identify which topic a given question relates to - you might need to ask your teacher to help you do this.
iii. Once you have finished revising a topic or unit, time yourself answering some appropriate exam questions. Check the mark schemes to see how well you would have scored, or give the answers to your teacher to check.
iv. Add details or notes to the mark scheme where you missed out on marks in your original answers using a different coloured pen. Use these notes when you revise and try the question again later.
You can find plenty of past exam papers and mark schemes on the Cambridge International public website:
http://www.cambridgeinternational.org/programmes-and-qualifications/cambridge-igcse-chemistry-9-1-uk-0971/pastpapers/

Other useful revision advice for Cambridge IGCSE Chemistry (9-1)

Before you start, look through the paper to see how many marks are allocated to each question. Then work out the time you should spend on each question.

Calculations

Calculators are allowed in all the papers.
Make sure you know the difference between significant figures and decimal places. For example, the number $\mathbf{1 1 . 4 5}$ is given here to:

- four significant figures (all the digits)
- two decimal places (the number of digits after the point)

Always show your working in calculations. You might gain marks for your method even if your final answer is wrong.

Ask yourself if your answer is sensible and in context.

Example calculation:

Calculate the rate of reaction using
rate $=$ volume of gas $/ \mathrm{cm}^{3}$
time taken / s
rate $=50.5 \mathrm{~cm} 3 / 30 \mathrm{secs}$
$=1.7 \mathrm{cm3} / \mathrm{s}$

Don't forget to include the units if they are not already in the answer space.

Notes for use in qualitative analysis (Tests for ions and gases)

The 'Notes for use in qualitative analysis' are chemical tests for various ions and gases, and the expected results. These tests are given on pages 106-108 in the Revision checklist. You must learn these tests for Papers 1-4 and for Paper 6.

Remember:

$$
\begin{aligned}
& \text { in excess: } \\
& \text { in the tests for aqueous cations, this } \\
& \text { means that you add a lot more of } \\
& \text { the aqueous sodium hydroxide or } \\
& \text { ammonia to see if any precipitate } \\
& \text { formed remains or dissolves }
\end{aligned}
$$

cations
are positively
charged ions

> cations
> are positively
> charged ions

in solution:

the tests for anions, this means that the substance is dissolved in water

Chemical names

Be clear about the chemical names you use. You will not get a mark if you write, for example, 'ammonium' when you mean 'ammonia', or if you write 'chlorine' when you mean 'chloride', as these are different chemicals.

Drawing graphs

Practise drawing graphs, remembering the following points:

1. Use a sharp pencil and make sure you have a clean eraser in case you need to rub anything out.
2. Use a ruler for drawing the axes.
3. Unless the question tells you otherwise, plot the

- independent variable (the variable you control, such as the time you take on observations) on the \boldsymbol{x}-axis (horizontal axis)
- dependent variable (the variable you are measuring) on the \boldsymbol{y}-axis (vertical axis).

4. Choose a scale that uses most of the grid provided on the exam paper.
5. Choose a simple scale. Do not use a scale that makes it difficult for you to plot points on the given graph paper.
6. Plot the points carefully using a cross (x) or a dot in a circle. Do not use a single dot as it may not be seen after you have drawn your line. Your dots should be small because large dots do not show exactly where you intended to plot the point.
7. Draw the points lightly so that you can rub them out if you need to. Make them more definite when you are sure they are right.
8. If you are asked to draw a line of best fit, remember that this could be straight or curved.
9. Draw straight lines with a ruler, but do not use a ruler to join the points on a curve. Avoid any points that don't fit the general pattern.

Now use the revision checklists on the next pages to help guide your revision.

Revision checklists for Cambridge IGCSE Chemistry

The tables below can be used as a revision checklist: It doesn't contain all the detailed knowledge you need to know, just an overview. For more detail see the syllabus and talk to your teacher.

You can use the tick boxes in the checklists to show when you have revised and are happy that you do not need to return to it. Tick the ' R ', ' A ', and ' G ' column to record your progress. The ' R ', 'A' and ' G ' represent different levels of confidence, as follows:

- $R=$ RED: means you are really unsure and lack confidence in that area; you might want to focus your revision here and possibly talk to your teacher for help
- $A=A M B E R$: means you are reasonably confident in a topic but need some extra practice
- $G=G R E E N$: means you are very confident in a topic

As your revision progresses, you can concentrate on the RED and AMBER topics, in order to turn them into GREEN topics. You might find it helpful to highlight each topic in red, orange or green to help you prioritise.

You can use the 'Comments' column to:

- add more information about the details for each point
- include a reference to a useful resource
- add learning aids such as rhymes, poems or word play
- highlight areas of difficulty or things that you need to talk to your teacher about.

Click on the relevant link below to go directly to the appropriate checklist:

Core syllabus content

Extended syllabus content

Core and Extended: Mathematical skills - Core and Extended

Experimental skills - Core and Extended
Notes for use in qualitative analysis (Tests for ions and gases) - Core and Extended

Core syllabus content

Core: 1. The particulate nature of matter
You should be able to
State the distinguishing properties of solids, liquids and gases
Describe the structure of solids, liquids and gases in terms of particle separation,
arrangement and types of motion
Describe changes of state in terms of melting, boiling, evaporation, freezing,
condensation and sublimation
Describe qualitatively the pressure and temperature of a gas in terms of the motion
of its particles
Show an understanding of the random motion of particles in a suspension
(sometimes known as Brownian motion) as evidence for the kinetic particle
(atoms, molecules or ions) model of matter
Describe and explain diffusion

Core: 2. Experimental techniques

2.1 Measurement You should be able to
Name appropriate apparatus for the measurement of time, temperature, mass and
volume, including burettes, pipettes and measuring cylinders
2.2.1 Criteria of purity
Demonstrate knowledge and understanding of paper chromatography
Interpret simple chromatograms
Identify substances and assess their purity from melting point and boiling point
information
Understand the importance of purity in substances in everyday life, e.g. foodstuffs
and drugs
2.2.2 Methods of purification
Describe and explain methods of purification by the use of a suitable solvent,
filtration, crystallisation and distillation including use of fractionating column. (This
is linked to fractional distillation of petroleum in sub-topic 14.2 and products of
fermentation in sub-topic 14.6.).
Suggest suitable purification techniques, given information about the substances
involved

Core: 3. Atoms, elements and compounds

You should be able to

R
A G
Comments

3.1 Atomic structure and the Periodic Table

State the relative charges and approximate relative masses of protons, neutrons and electrons

Define proton number (atomic number) as the number of protons in the nucleus of an atom

Define nucleon number (mass number) as the total number of protons and neutrons in the nucleus of an atom

Use proton number and the simple structure of atoms to explain the basis of the Periodic Table (see Topic 9 for more detail about the Periodic Table), with special reference to the elements of proton number 1 to 20

Define isotopes as atoms of the same element which have the same proton number but a different nucleon number

State the two types of isotopes as being radioactive and non-radioactive
State one medical and one industrial use of radioactive isotopes
Describe the build-up of electrons in 'shells' and understand the significance of the noble gas electronic structures and of the outer shell electrons

3.2.1 Bonding: the structure of matter

Describe the differences between elements, mixtures and compounds, and between metals and non-metals

Describe an alloy, such as brass, as a mixture of a metal with other elements

Core: 3. Atoms, elements and compounds

You should be able to

R

Describe the formation of ionic bonds between elements from Groups I and VII

3.2.3 Molecules and covalent bonds

Describe the formation of single covalent bonds in $\mathrm{H}_{2}, \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{NH}_{3}$ and HCl as the sharing of pairs of electrons leading to the noble gas configuration

Describe the differences in volatility, solubility and electrical conductivity between ionic and covalent compounds

3.2.4 Macromolecule

Describe the giant covalent structures of graphite and diamond

Relate their structures to their uses, e.g. graphite as a lubricant and a conductor and diamond in cutting tools

3.2.2 lons and ionic bonds

Describe the formation of ions by electron loss or gain

Comments

Core: 4. Stoichiometry
You should be able to
R
A
G
Comments

4.1 Stoichiometry

Use the symbols of the elements and write the formulae of simple compounds

Deduce the formula of a simple compound from the relative numbers of atoms present

Deduce the formula of a simple compound from a model or a diagrammatic representation

Construct word equations and simple balanced chemical equations

Define relative atomic mass, $A r$, as the average mass of naturally occurring atoms of an element on a scale where the ${ }^{12} \mathrm{C}$ atom has a mass of exactly 12 units

Define relative molecular mass, M_{r}, as the sum of the relative atomic masses (Relative formula mass or M_{r} will be used for ionic compounds.)

Calculations involving reacting masses in simple proportions

Core: 5. Electricity and chemistry

Core: 6. Chemical energetics
\quad What I need to do
6.1 Energetics of a reaction
Describe the meaning of exothermic and endothermic reactions
Interpret energy level diagrams showing exothermic and endothermic reactions
6.2 Energy transfer
Describe the release of heat energy by burning fuels
State the use of hydrogen as a fuel
Describe radioactive isotopes, such as ${ }^{235} \mathrm{U}$, as a source of energy

Core: 7. Chemical reactions

7.1 Physical and chemical changes

Identify physical and chemical changes, and understand the differences between them

Core: 7. Chemical reactions

You should be able to

R
G
Comments

7.2 Rate (speed) of reaction

Describe and explain the effect of concentration, particle size, catalysts (including enzymes) and temperature on the rate of reactions

Describe the application of the above factors to the danger of explosive combustion with fine powders (e.g. flour mills) and gases (e.g. methane in mines)

Demonstrate knowledge and understanding of a practical method for investigating the rate of a reaction involving gas evolution

Interpret data obtained from experiments concerned with rate of reaction

Try to use the term rate rather than speed

7.3 Reversible reactions

Understand that some chemical reactions can be reversed by changing the reaction conditions
(For example, the effects of heat and water on hydrated and anhydrous copper(II) sulfate and cobalt(II) chloride.)

7.4 Redox

Define oxidation and reduction in terms of oxygen loss/gain.

Oxidation state in terms of its use to name ions, e.g. iron(II), iron(III), copper(II), manganate(VII).)

Core: 8. Acids, bases and salts

You should be able to

R
G
Comments

8.1 The characteristic properties of acids and bases

Describe the characteristic properties of acids as reactions with metals, bases, carbonates and effect on litmus and methyl orange

Describe the characteristic properties of bases as reactions with acids and with ammonium salts and effect on litmus and methyl orange

Describe neutrality and relative acidity and alkalinity in terms of pH measured using Universal Indicator paper (whole numbers only)

Describe and explain the importance of controlling acidity in soil

8.2 Types of oxides

Classify oxides as either acidic or basic, related to metallic and non-metallic character

8.3 Preparation of salts

Demonstrate knowledge and understanding of preparation, separation and purification of salts as examples of some of the techniques specified in sub-topic
 2.2.2 and the reactions specified in sub-topic 8.1.

Core: 8. Acids, bases and salts

8.4 Identification of ions and gases

Describe the following tests to identify:
aqueous cations: aluminium, ammonium, calcium, chromium(III), copper(II), iron(II), iron(III) and zinc (using aqueous sodium hydroxide and aqueous
 ammonia as appropriate) (Formulae of complex ions are not required.)
cations: use of the flame test to identify lithium, sodium, potassium and copper(II)

anions:

- carbonate (by reaction with dilute acid and then limewater)
- chloride, bromide and iodide (by reaction under acidic conditions with aqueous silver nitrate)
- nitrate (by reduction with aluminium)
- sulfate (by reaction under acidic conditions with aqueous barium ions)
- sulfite (by reaction with dilute acids and then aqueous potassium manganate(VII))

gases:

- ammonia (using damp red litmus paper)
- carbon dioxide (using limewater)
- chlorine (using damp litmus paper)
- hydrogen (using lighted splint)
- oxygen (using a glowing splint)
- sulfur dioxide (using aqueous potassium manganate(VII)) See also 'Notes for use in qualitative analysis' later in this guide.

Core: 9. The Periodic Table
9.1 The Periodic Table
Describe the Periodic Table as a method of classifying elements and its use to
predict properties of elements
9.2 Periodic trends
Describe the change from metallic to non-metallic character across a period
9.3 Group properties
Describe lithium, sodium and potassium in Group I as a collection of relatively soft
metals showing a trend in melting point, density and reaction with water
Predict the properties of other elements in Group I, given data, where appropriate
Describe the halogens, chlorine, bromine and iodine in Group VII , as a collection of
diatomic non-metals showing a trend in colour and density and state their reaction
with other halide ions
Predict the properties of other elements in Group VII , given data where appropriate
9.4 Transition elements
Describe the transition elements as a collection of metals having high densities,
high melting points and forming coloured compounds, and which, as elements and
compounds, often act as catalysts
9.5 Noble gases
Describe the noble gases, in Group VIII or 0 , as being unreactive, monoatomic
gases and explain this in terms of electronic structure
State the uses of the noble gases in providing an inert atmosphere, i.e. argon in
lamps, helium for filling balloons

Core: 10. Metals

You should be able to:	R	A	G	Comments
10.1 Properties of metals List the general physical properties of metals Describe the general chemical properties of metals e.g. reaction with dilute acids and reaction with oxygen Explain in terms of their properties why alloys are used instead of pure metals Identify representations of alloys from diagrams of structure				
10.2 Reactivity series Place in order of reactivity: potassium, sodium, calcium, magnesium, zinc, iron, (hydrogen) and copper, by reference to the reactions, if any, of the metals with: - water or steam - dilute hydrochloric acid - and the reduction of their oxides with carbon Deduce an order of reactivity from a given set of experimental results				
10.3 Extraction of metals Describe the ease in obtaining metals from their ores by relating the elements to the reactivity series Describe and state the essential reactions in the extraction of iron from hematite Describe the conversion of iron into steel using basic oxides and oxygen Know that aluminium is extracted from the ore bauxite by electrolysis Discuss the advantages and disadvantages of recycling metals (iron/steel and aluminium)				

Core: 10. Metals
You should be able to:
10.4 Uses of metals
Name the uses of aluminium:

- in the manufacture of aircraft because of its strength and low density
in food containers because of its resistance to corrosion
Name the uses of copper related to its properties (electrical wiring and in cooking
utensils)
Name the uses of mild steel (car bodies and machinery) and stainless steel
(chemical plant and cutlery)

Core: 11. Air and water
11.1 Water
Describe chemical tests for water using cobalt(II) chloride and copper(II) sulfate
Describe, in outline, the treatment of the water supply in terms of filtration and
chlorination
Name some of the uses of water in industry and in the home

Core: 11. Air and water
You should be able to:
$R \quad A \quad G$
Comments

11.2 Air

State the composition of clean, dry air as being approximately 78% nitrogen, 21% oxygen and the remainder as being a mixture of noble gases and carbon dioxide

Name the common pollutants in the air as being carbon monoxide, sulfur dioxide, oxides of nitrogen and lead compounds

State the source of each of these pollutants:

- carbon monoxide from the incomplete combustion of carbon-containing substances
- sulfur dioxide from the combustion of fossil fuels which contain sulfur
- compounds (leading to 'acid rain')
- oxides of nitrogen from car engines
- lead compounds from leaded petrol

State the adverse effect of these common pollutants on buildings and on health and discuss why these pollutants are of global concern

State the conditions required for the rusting of iron

Describe and explain methods of rust prevention, specifically paint and other coatings to exclude oxygen

11.3 Nitrogen and fertilisers

Describe the need for nitrogen-, phosphorus- and potassium-containing fertilisers

Describe the displacement of ammonia from its salts

Core: 11. Air and water

State that carbon dioxide and methane are greenhouse gases and explain how they may contribute to climate change

State the formation of carbon dioxide

- as a product of complete combustion of carbon-containing substances
- as a product of respiration
- as a product of the reaction between an acid and a carbonate
- from the thermal decomposition of a carbonate

State the sources of methane, including decomposition of vegetation and waste gases from digestion in animals

Core: 12. Sulfur

You should be able to:	R	A	c	Comments
Name some sources of sulfur				
Name the use of sulfur in the manufacture of sulfuric acid				
State the uses of sulfur dioxide as a bleach in the manufacture of wood pulp for paper and as a food preservative (by killing bacteria)				

Core: 13. Carbonates

You should be able to:	R	A	G	Comments
Describe the manufacture of lime (calcium oxide) from calcium carbonate (limestone) in terms of thermal decomposition				
Name some uses of lime and slaked lime such as in treating acidic soil and neutralising acidic industrial waste products, e.g. flue gas desulfurisation				
Name the uses of calcium carbonate in the manufacture of iron and cement				

Core: 14. Organic chemistry

You should be able to:
R
G
Comments

14.1 Names of compounds

Name and draw the structures of methane, ethane, ethene, ethanol, ethanoic acid and the products of the reactions stated in sub-topics 14.4-14.6

State the type of compound present, given a chemical name ending in -ane, -ene -ol, or -oic acid or a molecular structure

14.2 Fuels

Name the fuels: coal, natural gas and petroleum

Name methane as the main constituent of natural gas

Describe petroleum as a mixture of hydrocarbons and its separation into useful fractions by fractional distillation

Describe the properties of molecules within a fraction

Core: 14. Organic chemistry

You should be able to:	R A G	Comments
14.2 Fuels (continued) Name the uses of the fractions as: - refinery gas for bottled gas for heating and cooking - gasoline fraction for fuel (petrol) in cars - naphtha fraction for making chemicals - kerosene/paraffin fraction for jet fuel - diesel oil/gas oil for fuel in diesel engines - fuel oil fraction for fuel for ships and home heating systems - lubricating fraction for lubricants, waxes and polishes - bitumen for making roads		
14.3 Homologous series Describe the concept of homologous series as a 'family' of similar compounds with similar chemical properties due to the presence of the same functional group		
14.4 Alkanes Describe the properties of alkanes (exemplified by methane) as being generally unreactive, except in terms of burning Describe the bonding in alkanes		

Core: 14. Organic chemistry

You should be able to:	R A G	Comments
14.5 Alkenes Describe the manufacture of alkenes and of hydrogen by cracking Distinguish between saturated and unsaturated hydrocarbons: - from molecular structures - by reaction with aqueous bromine Describe the formation of poly(ethene) as an example of addition polymerisation of monomer units		
14.6 Alcohols Describe the manufacture of ethanol by fermentation and by the catalytic addition of steam to ethene Describe the properties of ethanol in terms of burning Name the uses of ethanol as a solvent and as a fuel		
14.7 Carboxylic acids Describe the properties of aqueous ethanoic acid		
14.8.1 Polymers Define polymers as large molecules built up from small units (monomers)		
14.8.2 Synthetic polymers Name some typical uses of plastics and of man-made fibres such as nylon and Terylene Describe the pollution problems caused by non-biodegradable plastics		
14.8.3 Natural polymers Name proteins and carbohydrates as constituents of food		

Extended syllabus content
Extended: 1. The particulate nature of matter

Extended: 2. Experimental techniques

Extended: 2. Experimental techniques

Extended: 3. Atoms, elements and compounds

Extended: 3. Atoms, elements and compounds

Extended: 3. Atoms, elements and compounds

Extended: 4. Stoichiometry

Extended: 4. Stoichiometry
You should be able to: Core material

Extended: 5. Electricity and chemistry

Extended: 5. Electricity and chemistry

You should be able to:	
Describe the reasons for the use of copper and (steel-cored) aluminium in cables, and why plastics and ceramics are used as insulators	Describe the transfer of charge during electrolysis to include: the movement of electrons in the metallic conductor
the removal or addition of	
electrons from the external	
circuit at the electrodes	
the movement of ions in the	
electrolyte	

Extended: 6. Chemical energetics

| You should be able to: | |
| :--- | :--- | :--- |
| 6.1 Energetics of a reaction
 Describe the meaning of
 exothermic and endothermic
 reactions | |

Extended: 7. Chemical reactions

You should be able to:	Core material			Comments	You should be able to:	Supplement material			Comments
	R	A	G			R	A	G	
7.1 Physical and chemical changes Identify physical and chemical changes, and understand the differences between them					There is no supplement material for				
7.2 Rate (speed) of reaction Describe and explain the effect of concentration, particle size, catalysts (including enzymes) and temperature on the rate of reactions Describe the application of the above factors to the danger of explosive combustion with fine powders (e.g. flour mills) and gases (e.g. methane in mines) Demonstrate knowledge and understanding of a practical method for investigating the rate of a reaction involving gas evolution Interpret data obtained from experiments concerned with rate of reaction Try to use the term rate rather than speed.					7.2 Rate (speed) of reaction Devise and evaluate a suitable method for investigating the effect of a given variable on the rate of a reaction Describe and explain the effects of temperature and concentration in terms of collisions between reacting particles, e.g. an increase in temperature causes an increase in collision rate and more of the colliding molecules have sufficient energy (activation energy) to react whereas an increase in concentration only causes an increase in collision rate				

Extended: 7. Chemical reactions

Extended: 7. Chemical reactions

| |
| :--- | :--- | :--- |
| |
| You should be able to: |

Extended: 8. Acids, bases and salts

You should be able to:	Core material			Comments	You should be able to:	Supplement material		Comments
	R	A	G				A G	
8.1 The characteristic properties of acids and bases Describe the characteristic properties of acids as reactions with metals, bases, carbonates and effect on litmus and methyl orange Describe the characteristic properties of bases as reactions with acids and with ammonium salts and effect on litmus and methyl orange Describe neutrality and relative acidity and alkalinity in terms of pH measured using Universal Indicator paper (whole numbers only) Describe and explain the importance of controlling acidity in soil					8.1 The characteristic properties of acids and bases Define acids and bases in terms of proton transfer, limited to aqueous solutions Describe the meaning of weak and strong acids and bases			
8.2 Types of oxides Classify oxides as either acidic or basic, related to metallic and nonmetallic character					8.2 Types of oxides Classify more oxides as neutral or amphoteric			

Extended: 8. Acids, bases and salts

	Core material			Comments	You should be able to:	Supplement material			Comments
You should be able to:	R	A	G			R	A	G	
8.3 Preparation of salts Demonstrate knowledge and understanding of preparation, separation and purification of salts as examples of some of the techniques specified in sub-topic 2.2.2 and the reactions specified in sub-topic 8.1.					8.3 Preparation of salts Demonstrate knowledge and understanding of the preparation of insoluble salts by precipitation Suggest a method of making a given salt from a suitable starting material, given appropriate information				

Core material

8.4 Identification of ions and gases

Describe the following tests to identify:
aqueous cations: aluminium, ammonium, calcium, chromium(III), copper(II), iron(II), iron(III) and zinc (using aqueous sodium hydroxide and aqueous ammonia as appropriate) (Formulae of complex ions are not required.)
cations: use of the flame test to identify lithium, sodium, potassium and copper(II)
anions: carbonate (by reaction with dilute acid and then limewater), chloride, bromide and iodide (by reaction under acidic conditions with aqueous silver nitrate), nitrate (by reduction

There is no supplement material for this sub-topic. with aluminium), sulfate (by reaction under acidic conditions with aqueous barium ions) and sulfite (by reaction with dilute acids and then aqueouspotassium manganate(VII))
gases: ammonia (using damp red litmus paper), carbon dioxide (using limewater), chlorine (using damp litmus paper), hydrogen (using lighted splint), oxygen (using a glowing splint), and sulfur dioxide (using aqueous potassium manganate(VII))

Extended: 9. The Periodic Table

Extended: 9. The Periodic Table

Extended: 10. Metals

Extended: 10. Metals

Extended: 10. Metals

Extended: 11. Air and water

You should be able to:	Core material	Comments	You should be able to:	Supplement material		Comments
	R A G			R	A G	
11.1 Water Describe chemical tests for water using cobalt(II) chloride and copper(II) sulfate Describe, in outline, the treatment of the water supply in terms of filtration and chlorination Name some of the uses of water in industry and in the home			11.1 Water Discuss the implications of an inadequate supply of water, limited to safe water for drinking and water for irrigating crops			
11.2 Air State the composition of clean, dry air as being approximately 78\% nitrogen, 21% oxygen and the remainder as being a mixture of noble gases and carbon dioxide Name the common pollutants in the air as being carbon monoxide, sulfur dioxide, oxides of nitrogen and lead compounds			11.2 Air Describe the separation of oxygen and nitrogen from liquid air by fractional distillation			

Extended: 11. Air and water

Extended: 11. Air and water

Extended: 12. Sulfur

Extended: 13. Carbonates

Extended: 14. Organic chemistry

	Core material			Comments	You should be able to:	Supplement material			Comments
You should be able to:	R	A	G			R	A	G	
14.1 Names of compounds Name and draw the structures of methane, ethane, ethene, ethanol, ethanoic acid and the products of the reactions stated in sub-topics 14.4-14.6 State the type of compound present, given a chemical name ending in -ane, -ene, -ol, or -oic acid or a molecular structure					14.1 Names of compounds Name and draw the structures of the unbranched alkanes, alkenes (not cis-trans), alcohols and acids containing up to four carbon atoms per molecule Name and draw the structural formulae of the esters which can be made from unbranched alcohols and carboxylic acids, each containing up to four carbon atoms				
14.2 Fuels Name the fuels: coal, natural gas and petroleum Name methane as the main constituent of natural gas Describe petroleum as a mixture of hydrocarbons and its separation into useful fractions by fractional distillation Describe the properties of molecules within a fraction					There is no supplement material for				

Extended: 14. Organic chemistry

Extended: 14. Organic chemistry

Extended: 14. Organic chemistry

	Core material			Comments	You should be able to:	Supplement material		
You should be able to:	R	A	G			R	A G	Comments
14.5 Alkenes Describe the manufacture of alkenes and of hydrogen by cracking Distinguish between saturated and unsaturated hydrocarbons: - from molecular structures - by reaction with aqueous bromine Describe the formation of poly(ethene) as an example of addition polymerisation of monomer units					14.5 Alkenes Describe the properties of alkenes in terms of addition reactions with bromine, hydrogen and steam		\square	
14.6 Alcohols Describe the manufacture of ethanol by fermentation and by the catalytic addition of steam to ethene Describe the properties of ethanol in terms of burning Name the uses of ethanol as a solvent and as a fuel					14.6 Alcohols Outline the advantages and disadvantages of these two methods of manufacturing ethanol		\square	

Extended: 14. Organic chemistry

Core material				Comments	You should be able to:	Supplement material			Comments
You should be able to:	R	A	G			R	A	G	
14.7 Carboxylic acids Describe the properties of aqueous ethanoic acid					14.7 Carboxylic acids Describe the formation of ethanoic acid by the oxidation of ethanol by fermentation and with acidified potassium manganate(VII) Describe ethanoic acid as a typical weak acid Describe the reaction of a carboxylic acid with an alcohol in the presence of a catalyst to give an ester				
14.8.1 Polymers Define polymers as large molecules built up from small units (monomers)					14.8.1 Polymers Understand that different polymers have different units and/or different linkages				

Extended: 14. Organic chemistry
You should be able to: Core material

Name some typical uses of
plastics and of man-made fibres
such as nylon and Terylene

Describe the pollution problems
caused by non-biodegradable
plastics

Extended: 14. Organic chemistry
You should be able to: Core material
14.8.3 Natural polymers
Name proteins and carbohydrates
as constituents of food

Extended: 14. Organic chemistry

	Core material			Comments	You should be able to:	Supplement material			Comments
You should be able to:	R	A	G			R	A	G	
There is no more Core material for this sub-topic.					14.8.3 Natural polymers (continued) Describe the fermentation of simple sugars to produce ethanol (and carbon dioxide) (You will not be expected to give the molecular formulae of sugars.) Describe, in outline, the usefulness of chromatography in separating and identifying the products of hydrolysis of carbohydrates and proteins				

Mathematical skills - Core and Extended
You can use a calculator for all components.
Add
Subtract
Multiply
Divide
Use:

- decimals be able to:
- fractions
- ratios
- reciprocals

Mathematical skills - Core and Extended
You can use a calculator for all components.
You should be able to:

Mathematical skills - Core and Extended

You can use a calculator for all components.

You should be able to:
Understand the meaning of:

- angle
- curve
- circle
- diadius
- squarcumference
- rectangle
- diagonal
Solve equations of the form $x=y$ a z and $\mathrm{x}=\mathrm{yz}$ for any one term when the
other two are known

Experimental skills - Core and Extended
For Paper 5 and Paper 6 you might be asked questions on the following experimental contexts.

You should be able to:	Supplement material			Comments
	R	A	c	
Simple quantitative experiments involving the measurement of volumes and/or masses				
Rates (speeds) of reaction				
Measurement of temperature based on a thermometer with $1^{\circ} \mathrm{C}$ graduations				
Problems of an investigatory nature, possibly including suitable organic compounds				
Filtration				
Electrolysis				
Identification of ions and gases (Paper 5 will include notes for use in qualitative analysis for the use in the examination. For Paper 6 you will need to learn these.)				

Experimental skills - Core and Extended
For Paper 5 and Paper 6 you might be asked to do the following.

You should be able to:
Take and record readings from apparatus, including:
- reading a scale with appropriate accuracy and precision
- interpolating between scale divisions
- taking repeated measurements, where appropriate
Describe, explain or comment on experimental arrangements and techniques
Draw an appropriate conclusion, justifying it by reference to the data and using
an appropriate explanation

Notes for use in qualitative analysis (Tests for ions and gases) - Core and Extended
The tables below show some tests for ions and gases and the result that you should get. These tables are given in Paper 5. They are not given in Papers 1-4 or Paper 6, so you must learn these tests and their results. The notes for use in qualitative analysis cover:

- Tests for anions
- Tests for aqueous cations
- Tests for gases
- Flame tests for metal ions

Tests for anions

Anion	Test	Test result	R	A G	Comments
carbonate (CO^{2-})	add dilute acid	effervescence, carbon dioxide produced			
chloride (Cl^{-}) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white precipitate (ppt.)			
bromide $\left(\mathrm{Br}^{-}\right)$ [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	cream ppt.			
iodide (l^{-}) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt.			
nitrate $\left(\mathrm{NO}^{3}\right)$ [in solution]	add aqueous sodium hydroxide, then aluminium foil; warm carefully	ammonia produced			
sulfate (SO^{2-}) [in solution]	acidify, then add aqueous barium nitrate	white ppt.			
sulfite (SO^{2-})	add dilute hydrochloric acid, warm gently and test for the presence of sulfur dioxide	sulfur dioxide produced will turn acidified aqueous potassium manganate(VII) from purple to colourless			

Notes for use in qualitative analysis (Tests for ions and gases) - Core and Extended

Tests for aqueous cations

Notes for use in qualitative analysis (Tests for ions and gases) - Core and Extended
Tests for gases

Gas	Test and test result	R	A		Comments
ammonia $\left(\mathrm{NH}_{3}\right)$	turns damp, red litmus paper blue				
carbon dioxide (CO_{2})	turns limewater milky				
chlorine (Cl_{2})	bleaches damp litmus paper				
hydrogen $\left(\mathrm{H}_{2}\right)$	'pops' with a lighted splint				
oxygen (O_{2})	relights a glowing splint				
sulfur dioxide (SO_{2})	turns acidified aqueous potassium manganate(VII) from purple to colourless				

Flame tests for metal ions

Metal ion	Test and test result	R	A	G	Comments
lithium (Li^{+})	red				
sodium (Na^{+})	yellow				
potassium (K^{+})	lilac				
copper(II) (Cu^{2+})	blue-green				

Cambridge Assessment International Education
1 Hills Road, Cambridge, CB1 2EU, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

