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Introduction

This book covers the entire syllabus of Cambridge
International Examinations AS and A Level Physics. It is
designed to work with the syllabus that will be examined
from 2016. It is in three parts:

m Chapters 1-16 and P1: the AS level content, covered in the
first year of the course, including a chapter (P1) dedicated to
the development of your practical skills

m Chapters 17-32 and P2: the remaining A level content,
including a chapter (P2) dedicated to developing your ability
to plan, analyse and evaluate practical investigations

m Appendices of useful formulae, a Glossary and an Index.

The main tasks of a textbook like this are to explain the
various concepts of physics that you need to understand
and to provide you with questions that will help you to test
your understanding and prepare for your examinations.
You will find a visual guide to the structure of each chapter
and the features of this book on the next two pages.

When tackling questions, it is a good idea to make
a first attempt without referring to the explanations in
this Coursebook or to your notes. This will help to reveal
any gaps in your understanding. By working out which
concepts you find most challenging, and by spending more
time to understand these concepts at an early stage, you
will progress faster as the course continues.

The CD-ROM that accompanies this Coursebook
includes answers with workings for all the questions in
the book, as well as suggestions for revising and preparing
for any examinations you take. There are also lists of
recommended further reading, which in many cases will
take you beyond the requirements of the syllabus, but
which will help you deepen your knowledge and explain
more of the background to the physics concepts covered in
this Coursebook.

In your studies, you will find that certain key concepts
come up again and again, and that these concepts form
‘themes’ that link the different areas of physics together. It
will help you to progress and gain confidence in tackling
problems if you take note of these themes. For this
Coursebook, these key concepts include:

m Models of physical systems

Testing predictions against evidence

Mathematics as a language and problem-solving tool
Matter, energy and waves

Forces and fields

In this Coursebook, the mathematics has been kept to
the minimum required by the Cambridge International
Examinations AS and A Level Physics syllabus. If you
are also studying mathematics, you may find that more
advanced techniques such as calculus will help you with
many aspects of physics.

Studying physics can be a stimulating and worthwhile
experience. It is an international subject; no single
country has a monopoly on the development of the ideas.
It can be a rewarding exercise to discover how men and
women from many countries have contributed to our
knowledge and well-being, through their research into
and application of the concepts of physics. We hope not
only that this book will help you to succeed in your future
studies and career, but also that it will stimulate your
curiosity and fire your imagination. Today’s students
become the next generation of physicists and engineers,
and we hope that you will learn from the past to take
physics to ever-greater heights.



How to use this book

Each chapter begins with a short list of the
facts and concepts that are explained iniit.

Kinematics -
describing motion

Learning outcomes
You should be able to:

define displacement, speed and velocity

draw and interpret displacement-time graphs
describe laboratory methods for determining speed
use vector addition to add two or more vectors

Figure 13.3 or a similar graph of displacement against /

time illustrates the following important definitions about
waves and wave motion:

The distance of a point on the wave from its undisturbed
position or equilibrium position is called the displacement x.
The maximum displacement of any point on the wave
from its undisturbed position is called the amplitude A.
The amplitude of a wave on the sea is measured in units

of distance, e.g. metres. The greater the amplitude of the
wave, the louder the sound or the rougher the sea!

The distance from any point on a wave to the next exactly
similar point (e.g. crest to crest) is called the wavelength A
(the Greek letter lambda). The wavelength of a wave on the
sea is measured in units of distance, e.g. metres.

The time taken for one complete oscillation of a pointin a
wave is called the period T. Itis the time taken for a point to
move from one particular position and return to that same
position, moving in the same direction. It is measured in
units of time, e.g. seconds..

The number of oscillations per unit time of a pointin a
wave is called its frequency f. For sound waves, the higher
the frequency of a musical note, the higher is its pitch.
Frequency is measured in hertz (Hz), where 1Hz = one
oscillation per second (1 kHz = 10*Hz and 1 MHz = 10°Hz).
The frequency f of a wave is the reciprocal of the period T:

1
=7

‘Waves are called mechanical waves if they need a
substance (medium) through which to travel. Sound is one
example of such a wave. Other cases are waves on strings,
seismic waves and water waves (Figure 13.4).

Some properties of typical waves are given on page 183
in Table 13.1.

Figure 13.4 The impact of a droplet on the surface of a liquid
creates a vibration, which in turn gives rise to waves on the
surface.

Describing movement

Our eyes are good at detecting movement. We notice
even quite small movements out of the corners of
our eyes. It’s important for us to be able to judge
movement - think about crossing the road, cycling or
driving, or catching a ball.

Figure 1.1 shows a way in which movement can
be recorded on a photograph. This is a stroboscopic
photograph of a boy juggling three balls. As he juggles,
a bright lamp flashes several times a second so that
the camera records the positions of the balls at equal
intervals of time.

If we knew the time between flashes, we could
measure the photograph and calculate the speed of a
ball as it moves through the air.

1 Determine the wavelength and amplitude of each
of the two waves shown in Figure 13.5.

g 6
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Figure 13.5 Two waves - for Question 1.

You can measure the frequency of sound waves
using a cathode-ray oscilloscope (c.r.0.). Figure 13.6
shows how.

Amicrophone is connected to the input of the
c.r.o. Sound waves are captured by the microphone
and converted into a varying voltage which has the
same frequency as the sound waves. This voltage is
displayed on the c.r.o. screen.

It is best to think of a c.r.0. as a voltmeter which
is capable of displaying a rapidly varying voltage. To
do this, its spot moves across the screen at a steady
speed, set by the time-base control. At the same
time, the spot moves up and down according to the
voltage of the input.

Hence the display on the screen is a graph of the
varying voltage, with time on the (horizontal) x-axis.
If we know the horizontal scale, we can determine
the period and hence the frequency of the sound
wave. Worked example 1 shows how to do this. (In
Chapter 15 we will look at one method of measuring
the wavelength of sound waves.)

Figure 13.6 Measuring the frequency of sound waves
from a tuning fork.

There is a short context at the beginning of each chapter, containing an example of
how the material covered in the chapter relates to the ‘real world’.

Figure 1.1 This boy is juggling three balls. A stroboscopic
lamp flashes at regular intervals; the camera is moved to one
side at a steady rate to show separate images of the boy.

The text and illustrations describe and explain all of the facts and concepts
that you need to know. The chapters, and often the content within them as
well, are arranged in a similar sequence to your syllabus, but with AS and

A Level content clearly separated into the two halves of the book.

Questions throughout the text
give you a chance to check that
you have understood the topic
you have just read about. You
can find the answers to these
questions on the CD-ROM.

74

This book does not contain
detailed instructions for doing
particular experiments, but you
will find background information
about the practical work you
need to do in these Boxes. There
are also two chapters, P1 and
P2, which provide detailed
information about the practical
skills you need to develop during
your course.

74

Important equations and other
facts are shown in highlight boxes.

\

For an object of mass m travelling at a speed v, we have:
kinetic energy = 3 x mass x speed?

E.=3mv?




How to use this book

Wherever you need to know how to use a formula to carry out a calculation,
there are worked example boxes to show you how to do this.

\ WORKED EXAMPLE

In Figure 6.5, trolley A of mass 0.80 kg travelling at a
velocity of 3.0ms™ collides head-on with a stationary
trolley B. Trolley B has twice the mass of trolley A. The
trolleys stick together and have a common velocity of
1.0ms™ after the collision. Show that momentum is
conserved in this collision.

-

before  positive after
direction

Vap=1.0ms?t

Figure 6.5 The state of trolleys A and B, before and after
the collision.

Step 1 Make a sketch using the information given in the
question. Notice that we need two diagrams to show
the situations, one before and one after the collision.
Similarly, we need two calculations - one for the
momentum of the trolleys before the collision and one
for their momentum after the collision.
Step 2 Calculate the momentum before the collision:
momentum of trolleys before collision
=My X Upy+ Mg X Ug
=(0.80%3.0) +0
=2.4kgms™
Trolley B has no momentum before the collision,
because it is not moving.
Step 3 Calculate the momentum after the collision:
momentum of trolleys after collision
= (mp+ mg) X Vag
=(0.80+1.60) x 1.0
=2.4kgms?
So, both before and after the collision, the trolleys have
acombined momentum of 2.4kgms™. Momentum has
been conserved.

Key words are highlighted in the text
when they are first introduced.

The metre, kilogram and second are three of the seven SI
base units. These are defined with great precision so that
every standards laboratory can reproduce them correctly.

You will also find definitions of
these words in the Glossary.

\ base units Defined units of the SI system from which all
other units are derived.

There is a summary of

Summary

m Forces are vector quantities that can be added by
means of a vector triangle. Their resultant can be
determined using trigonometry or by scale drawing.

key points at the end
of each chapter. You
might find this helpful
when you are revisi ng. Vectors such as forces can be resolved into
components. Components at right angles to one
another can be treated independently of one another.
For a force F at an angle 0 to the x-direction, the
components are:

x-direction: Fcos 6

y-direction: Fsin 6

= The moment of a force = force x perpendicular
distance of the pivot from the line of action of
the force.

= The principle of moments states that, for any object
that is in equilibrium, the sum of the clockwise
moments about any point provided by the
forces acting on the object equals the sum of the
anticlockwise moments about that same point.

m Acoupleis a pair of equal, parallel but opposite forces
whose effect is to produce a turning effect on a body
without giving it linear acceleration.
torque of a couple = one of the forces x perpendicular
distance between the forces

m Foran object to be in equilibrium, the resultant force

acting on the object must be zero and the resultant
moment must be zero.

Questions at the end of each chapter begin with shorter answer questions, then move on to more
demanding exam-style questions, some of which may require use of knowledge from previous

chapters. Answers to these questions can be found on the CD-ROM.

\ 1 Figure 15.19 shows a stationary wave on a string.

vibrator
Figure 15.19 For End-of-chapter Question 1.

a Onacopy of Figure 15.19, label one node (N) and one antinode (A).

b Mark on your diagram the wavelength of the standing wave and label it A.

¢ Thefrequency of the vibrator is doubled. Describe the changes in the standing wave pattern.

2 Atuning fork which produces a note of 256 Hz is placed above a tube which is nearly filled with water.
The water level is lowered until resonance is first heard.

a Explain what is meant by the term resonance.
b Thelength of the column of air above the water when resonance is first heard is 31.2cm.
Calculate the speed of the sound wave.
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Describing movement

Our eyes are good at detecting movement. We notice
even quite small movements out of the corners of
our eyes. It’s important for us to be able to judge
movement - think about crossing the road, cycling or
driving, or catching a ball.
shows a way in which movement can

be recorded on a photograph. This is a stroboscopic
photograph of a boy juggling three balls. As he juggles,
a bright lamp flashes several times a second so that
the camera records the positions of the balls at equal
intervals of time.

If we knew the time between flashes, we could
measure the photograph and calculate the speed of a
ball as it moves through the air.

Speed

We can calculate the average speed of something moving if
we know the distance it moves and the time it takes:

distance
average speed = ~time
ime

In symbols, this is written as:

v=—
t

where v is the average speed and d is the distance travelled
in time t. The photograph (Figure 1.2) shows Ethiopia’s
Kenenisa Bekele posing next to the scoreboard after
breaking the world record in a men’s 10000 metres race.
The time on the clock in the photograph enables us to
work out his average speed.

If the object is moving at a constant speed, this
equation will give us its speed during the time taken. If its
speed is changing, then the equation gives us its average
speed. Average speed is calculated over a period of time.

Figure 1.2 Ethiopia’s Kenenisa Bekele set a new world record
for the 10000 metres race in 2005.
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Figure 1.1 This boy is juggling three balls. A stroboscopic

lamp flashes at regular intervals; the camera is moved to one
side at a steady rate to show separate images of the boy.

If you look at the speedometer in a car, it doesn’t
tell you the car’s average speed; rather, it tells you its
speed at the instant when you look at it. This is the car’s
instantaneous speed.

1 LookatFigure 1.2. The runner ran 10000 m, and
the clock shows the total time taken. Calculate his
average speed during the race.

Units

In the Systeme Internationale d’Unités (the SI system),
distance is measured in metres (m) and time in seconds (s).
Therefore, speed is in metres per second. This is written as
ms™! (or as m/s). Here, s7! is the same as 1/s, or ‘per second’.

There are many other units used for speed. The choice of
unit depends on the situation. You would probably give the
speed of a snail in different units from the speed of a racing
car. Table 1.1 includes some alternative units of speed.

Note that in many calculations it is necessary to work
in SI units (ms™).

ms metres per second
cmst centimetres per second
kms™t kilometres per second
kmh™or km/h kilometres per hour
mph miles per hour

Table 1.1 Units of speed.

2
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Chapter 1: Kinematics - describing motion

Determining speed
You can find the speed of something moving by measuring
2 Here are some units of speed: the time it takes to travel between two fixed points. For
ms? mms? kms? kmh? example, some motorways have emergency telephones
Which of these units would be appropriate when every 2000 m. Using a stopwatch you can time a car over
stating the speed of each of the following? this distance. Note that this can only tell you the car’s
a atortoise average speed between the two points. You cannot tell
b acaronalongjourney whether it was increasing its speed, slowing down, or
¢ light moving at a constant speed.
d asprinter.
3 Asnail crawls 12cm in one minute. What is its
average speed in mms™?
Here we describe four different ways to measure the stop
speed of a trolley in the laboratory as it travels along a start l
straight line. Each can be adapted to measure the speed l

of other moving objects, such as a glider on an air track, /

light
or a falling mass. timer glgte v

Measuring speed using two light gates

The leading edge of the card in Figure 1.3 breaks the light
beam as it passes the first light gate. This starts the timer.
The timer stops when the front of the card breaks the

Figure 1.4 Using a single light gate to find the average

second beam. The trolley’s speed is calculated from the speed of a trolley.
time interval and the distance between the light gates.
e Measuring speed using a ticker-timer
light The ticker-timer (Figure 1.5) marks dots on the tape at
el M regular intervals, usually s (i.e. 0.025s). (This is because
timer it works with alternating current, and in most countries

the frequency of the alternating mains is 50 Hz.)
The pattern of dots acts as a record of the trolley’s
movement.

start
stop

Figure 1.3 Using two light gates to find the average speed Do SR

of a trolley.

7
Measuring speed using one light gate 2 At
The timer in Figure 1.4 starts when the leading edge ’
of the card breaks the light beam. It stops when the / ’ a5 = 4 e

trailing edge passes through. In this case, the time — - - %
shown is the time taken for the trolley to travel a
distance equal to the length of the card. The computer trolley  start

software can calculate the speed directly by dividing Figure 1.5 Using a ticker-timer to investigate the motion
the distance by the time taken. of a trolley.
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Start by inspecting the tape. This will give you a
description of the trolley’s movement. Identify the start
of the tape. Then look at the spacing of the dots:

even spacing - constant speed
increasing spacing - increasing speed.

Now you can make some measurements. Measure the
distance of every fifth dot from the start of the tape.
This will give you the trolley’s distance at intervals

of 0.1s. Put the measurements in a table and draw a
distance-time graph.

Measuring speed using a motion sensor

The motion sensor (Figure 1.6) transmits regular pulses
of ultrasound at the trolley. It detects the reflected
waves and determines the time they took for the trip
to the trolley and back. From this, the computer can
deduce the distance to the trolley from the motion
sensor. It can generate a distance-time graph. You can
determine the speed of the trolley from this graph.

4 Atrolley with a 5.0cm long card passed through
asingle light gate. The time recorded by a digital
timer was 0.40s. What was the average speed of
the trolley in ms™?

5 Figure 1.7 shows two ticker-tapes. Describe the
motion of the trolleys which produced them.

start

Ale o e e e e e e o=
S

bl- . . . . .

Figure 1.7 Two ticker-tapes; for Question 5.

6 Four methods for determining the speed of a
moving trolley have been described. Each could
be adapted to investigate the motion of a falling
mass. Choose two methods which you think
would be suitable, and write a paragraph for each
to say how you would adapt it for this purpose.

computer

trolley
motion
sensor

Figure 1.6 Using a motion sensor to investigate the motion
of a trolley.

Choosing the best method

Each of these methods for finding the speed of a trolley
has its merits. In choosing a method, you might think
about the following points:

Does the method give an average value of speed

or can it be used to give the speed of the trolley at
different points along its journey?

How precisely does the method measure time - to the
nearest millisecond?

How simple and convenient is the method to set up in
the laboratory?

Distance and displacement,
scalar and vector

In physics, we are often concerned with the distance
moved by an object in a particular direction. This is called
its displacement. Figure 1.8 illustrates the difference
between distance and displacement. It shows the route
followed by walkers as they went from town A to town C.
Their winding route took them through town B, so that
they covered a total distance of 15km. However, their
displacement was much less than this. Their finishing
position was just 10 km from where they started. To give a
complete statement of their displacement, we need to give
both distance and direction:

displacement = 10km 30°E of N

Displacement is an example of a vector quantity. A
vector quantity has both magnitude (size) and direction.
Distance, on the other hand, is a scalar quantity. Scalar
quantities have magnitude only.
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QUESTION

Figure 1.8 If you go on a long walk, the distance you travel
will be greater than your displacement. In this example, the
walkers travel a distance of 15 km, but their displacement is
only 10 km, because this is the distance from the start to the
finish of their walk.

Speed and velocity

It is often important to know both the speed of an
object and the direction in which it is moving. Speed
and direction are combined in another quantity, called
velocity. The velocity of an object can be thought of as
its speed in a particular direction. So, like displacement,
velocity is a vector quantity. Speed is the corresponding
scalar quantity, because it does not have a direction. So,
to give the velocity of something, we have to state the
direction in which it is moving. For example, an aircraft
flies with a velocity of 300 ms™ due north. Since velocity is
a vector quantity, it is defined in terms of displacement:

change in displacement
time taken

velocity =

Alternatively, we can say that velocity is the rate of change
of an object’s displacement. From now on, you need to be
clear about the distinction between velocity and speed,
and between displacement and distance. Table 1.2 shows
the standard symbols and units for these quantities.

Quantity zﬁ?nbt‘i)tl;or Symbol for unit
distance d m

displacement S, X m

time t S

speed, velocity % mst

Table 1.2 Standard symbols and units. (Take care not to
confuse italic s for displacement with s for seconds. Notice
also that vis used for both speed and velocity.)

7 Which of these gives speed, velocity, distance or
displacement? (Look back at the definitions of
these quantities.)

a The ship sailed south-west for 200 miles.
b |averaged 7mph during the marathon.

¢ The snail crawled at 2mms™ along the straight
edge of a bench.

The sales representative’s round trip was
420km.

Q.

Speed and velocity calculations
We can write the equation for velocity in symbols:

N
V==

t
v—&

At

The word equation for velocity is:

change in displacement
time taken

velocity =

Note that we are using As to mean ‘change in displace-
ment s’. The symbol A, Greek letter delta, means ‘change
in’. It does not represent a quantity (in the way that s does);
it is simply a convenient way of representing a change in a
quantity. Another way to write As would be s, —s;, but this
is more time-consuming and less clear.

. . A
The equation for velocity, v = Ki, can be rearranged

as follows, depending on which quantity we want to
determine:

change in displacement As = v x At
change in time At = As
v

Note that each of these equations is balanced in
terms of units. For example, consider the equation
for displacement. The units on the right-hand side are
ms~!xs, which simplifies to m, the correct unit for
displacement.

Note also that we can, of course, use the same
equations to find speed and distance, that is:

y==
t

distance d = vx t

time t:é
%
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1 Acaristravelling at 15ms™. How far will it travel in

1 hour?

Step 1 Itis helpful to start by writing down what you
know and what you want to know:

v=15ms?

t=1h=3600s

d=?

Step 2 Choose the appropriate version of the

equation and substitute in the values. Remember
toinclude the units:

d=vxt
=15x3600
=5.4x10*m
=54km
The car will travel 54 km in 1 hour.
The Earth orbits the Sun at a distance of
150000000 km. How long does it take light from

the Sun to reach the Earth?
(Speed of light in space =3.0 x 108 ms™.)

Step 1 Start by writing what you know. Take care
with units; it is best to work in m and s. You need to
be able to express numbers in scientific notation
(using powers of 10) and to work with these on your
calculator.

v=3.0x108ms™
d =150000000 km

=150000000000m

=1.5x101m
Step 2 Substitute the values in the equation for
time:

d 1.5x104

= v = 3.0x10° =500s
Light takes 5005 (about 8.3 minutes) to travel from
the Sun to the Earth.

Hint: When using a calculator, to calculate the time't,
you press the buttons in the following sequence:

[1.5] [EXP] [11] [=] [3] [EXP] [8]

or

[1.5] [<10"] [11] [<] [3] [*10"] [8]

Making the most of units

In Worked example 1 and Worked example 2, units have
been omitted in intermediate steps in the calculations.
However, at times it can be helpful to include units as this
can be a way of checking that you have used the correct
equation; for example, that you have not divided one
quantity by another when you should have multiplied
them. The units of an equation must be balanced, just as the
numerical values on each side of the equation must be equal.
If you take care with units, you should be able to carry
out calculations in non-SI units, such as kilometres per
hour, without having to convert to metres and seconds.
For example, how far does a spacecraft travelling at
40000kmh™! travel in one day? Since there are 24 hours in
one day, we have:

distance travelled = 40000kmh™'x24h
=960000km

8 Asubmarine uses sonar to measure the depth of
water below it. Reflected sound waves are detected
0.40s after they are transmitted. How deep is the
water? (Speed of sound in water=1500ms™.)

9 The Earth takes one year to orbit the Sun at a
distance of 1.5 x 10! m. Calculate its speed. Explain
why this is its average speed and not its velocity.

Displacement-time graphs

We can represent the changing position of a moving object
by drawing a displacement-time graph. The gradient
(slope) of the graph is equal to its velocity (Figure 1.9).

The steeper the slope, the greater the velocity. A graph

like this can also tell us if an object is moving forwards or
backwards. If the gradient is negative, the object’s velocity
is negative — it is moving backwards.

Deducing velocity from a displacement-
time graph

A toy car moves along a straight track. Its displacement at
different times is shown in Table 1.3. This data can be used
to draw a displacement-time graph from which we can
deduce the car’s velocity.

Displacement/m | 1.0 | 30 | 50 | 70 | 7.0 | 7.0
Time/s 0.0 1.0 2.0 3.0 4.0 5.0

Table 1.3 Displacement (s) and time (t) data for a toy car.



The straight line shows that the S
object’s velocity is constant.

0
0 t
The slope shows which object is s highv
moving faster. The steeper
the slope, the greater the velocity.
low v
0
0 t
The slope of this graph is 0. Sk

The displacement s is not changing.
Hence the velocity v=0.
The object is stationary.

The slope of this graph suddenly
becomes negative. The object is
moving back the way it came.

Its velocity v is negative after time T.

This displacement-time graph is S
curved. The slope is changing.

This means that the object’s

velocity is changing - this

is considered in Chapter 2.

Figure 1.9 The slope of a displacement-time (s-t) graph tells
us how fast an object is moving.
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It is useful to look at the data first, to see the pattern
of the car’s movement. In this case, the displacement
increases steadily at first, but after 3.0s it becomes
constant. In other words, initially the car is moving at a
steady velocity, but then it stops.

Now we can plot the displacement-time graph
(Figure 1.11).

We want to work out the velocity of the car over the
first 3.0 seconds. We can do this by working out the
gradient of the graph, because:

velocity = gradient of displacement—time graph

s/m

| gradient = velocity

As

0 T T T T T
0 1 2 3 4 5 t/s

Figure 1.11 Displacement-time graph for a toy car; data as
shown in Table 1.3.

We draw a right-angled triangle as shown. To find the
car’s velocity, we divide the change in displacement by the
change in time. These are given by the two sides of the
triangle labelled As and At.

change in displacement

velocity v =

time taken
V e E
At
_(70-1.0) 6.0

V=—r—— == 2.0ms‘1
(3.0-0) 3.0

If you are used to finding the gradient of a graph, you may
be able to reduce the number of steps in this calculation.
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10 The displacement-time sketch graph in Figure Displacement/m | 0| 85 | 170 |255 |340
1.10 represents the journey of a bus. What does

the graph tell you about the journey?

Time/s 0 1.0 2.0 3.0 4.0

Table 1.4 Displacement (s) and time (t) data for
Question 12.

N

13 Anold car travels due south. The distance it
travels at hourly intervals is shown in Table 1.5.

a Draw a distance-time graph to represent the
car’s journey.
b From the graph, deduce the car’s speed in
9 km h during the first three hours of the
0 Y journey.
Figure 1.10 For Question 10. ¢ Whatis the car’s average speed in kmh™
during the whole journey?

~

11 Sketch a displacement-time graph to show your

motion for the following event. You are walking at Time/h Distance /km
a constant speed across a field after jumping off a 0 0
gate. Suddenly you see a bull and stop. Your friend 1 23
says there’s no danger, so you walk on at a reduced ) 46
constant speed. The bull bellows, and you run back

to the gate. Explain how each section of the walk 3 69

n relates to a section of your graph. 4 84
12 Table 1.4 shows the displacement of a racing car at Table 1.5 Data for Question 13.
different times as it travels along a straight track
during a speed trial.
a Determine the car’s velocity.

b Draw adisplacement-time graph and use it to
find the car’s velocity.

Combining displacements

The walkers shown in Figure 1.12 are crossing difficult
ground. They navigate from one prominent point to the
next, travelling in a series of straight lines. From the map,
they can work out the distance that they travel and their
displacement from their starting point:

distance travelled = 25km FINISH

(Lay thread along route on map; measure thread against
map scale.)

displacement = 15km north-east

(Join starting and finishing points with straight line;
measure line against scale.)

A map is a scale drawing. You can find your displacement
by measuring the map. But how can you calculate your
displacement? You need to use ideas from geometry and Figure 1.12 In rough terrain, walkers head straight for a
trigonometry. Worked examples 3 and 4 show how. prominent landmark.

2345 km
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3 Aspider runs along two sides of a table (Figure 1.13). Here, the two displacements are not at 90° to one
Calculate its final displacement. another, so we can’t use Pythagoras’s theorem. We
can solve this problem by making a scale drawing, and
measuring the final displacement. (However, you could

solve the same problem using trigonometry.)

A

Step 1 Choose a suitable scale. Your diagram should
be reasonably large; in this case, a scale of 1cm to

0.8m}
represent 5km is reasonable.
north Step 2 Draw a line to represent the first vector. North is
S at the top of the page. The line is 6cm long, towards the
Y east (right).
east

Step 3 Draw a line to represent the second vector,
starting at the end of the first vector. The line is 10cm
long, and at an angle of 45° (Figure 1.15).

Figure 1.13 The spider runs a distance of 2.0 m, but
what is its displacement?

Step 1 Because the two sections of the spider’s run
(OA and AB) are at right angles, we can add the two
displacements using Pythagoras’s theorem:

OB?=0A? + AB?
=0.82+1.22=2.08
OB=V2.08=144m=14m

Step 2 Displacement is a vector. We have found the

magnitude of this vector, but now we have to find its 6 km
direction. The angle fis given by:
opp 0.8 Figure 1.15 Scale drawing for Worked example 4.
tanf = a_dj = ﬁ Using graph paper can help you to show the vectors
’ in the correct directions.
=0.667
6 =tan™ (0.667) Step 4 To find the final displacement, join the start to
=33.7°~34° the finish. You have created a vector triangle. Measure

this displacement vector, and use the scale to convert

So the spider’s displacement is 1.4 m at an angle of 34 back to kilometres:

north of east.
length of vector = 14.8cm

4 An aircraft flies 30 km due east and then 50 km north-
east (Figure 1.14). Calculate the final displacement of
the aircraft. Step 5 Measure the angle of the final displacement

vector:

angle =28°N of E

final displacement =14.8 x5 =74km

N

Therefore the aircraft’s final displacement is 74 km at
28° north of east.

>

E
Figure 1.14 What is the aircraft’s final displacement?
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14 You walk 3.0km due north, and then 4.0 km due
east.

a Calculate the total distance in km you have
travelled.

b Make a scale drawing of your walk, and use it
to find your final displacement. Remember to
give both the magnitude and the direction.

¢ Checkyouranswer to part b by calculating
your displacement.

15 Astudent walks 8.0 km south-east and then
12km due west.

a Draw avector diagram showing the route. Use
your diagram to find the total displacement.
Remember to give the scale on your diagram
and to give the direction as well as the
magnitude of your answer.

b Calculate the resultant displacement. Show
your working clearly.

5 Anaircraftis flying due north with a velocity of 200ms™.
Aside wind of velocity 50 ms™ is blowing due east. What
is the aircraft’s resultant velocity (give the magnitude
and direction)?

Here, the two velocities are at 90°. A sketch diagram and
Pythagoras’s theorem are enough to solve the problem.

Step 1 Draw a sketch of the situation - this is shown in

Figure 1.16a.
a b 50ms!
%
200ms 200mst
Not to
scale
50ms! ¢

Figure 1.16 Finding the resultant of two velocities -
for Worked example 5.

This process of adding two displacements together
(or two or more of any type of vector) is known as vector
addition. When two or more vectors are added together,
their combined effect is known as the resultant of the
vectors.

Combining velocities

Velocity is a vector quantity and so two velocities can be
combined by vector addition in the same way that we have
seen for two or more displacements.

Imagine that you are attempting to swim across a river.
You want to swim directly across to the opposite bank, but
the current moves you sideways at the same time as you
are swimming forwards. The outcome is that you will end
up on the opposite bank, but downstream of your intended
landing point. In effect, you have two velocities:

m thevelocity due to your swimming, which is directed
straight across the river

m thevelocity due to the current, which is directed
downstream, at right angles to your swimming velocity.

These combine to give a resultant (or net) velocity, which
will be diagonally downstream. In order to swim directly
across the river, you would have to aim upstream. Then
your resultant velocity could be directly across the river.

Step 2 Now sketch a vector triangle. Remember that
the second vector starts where the first one ends. This is
shown in Figure 1.16b.

Step 3 Join the start and end points to complete the
triangle.

Step 4 Calculate the magnitude of the resultant vector v
(the hypotenuse of the right-angled triangle).
v2=200?+502=40000 + 2500 = 42500

v=V42500=206ms!

Step 5 Calculatetheangle0:
50

tan9=m

=0.25
0 =tan™ (0.25) = 14°

So the aircraft’s resultant velocity is 206 ms™ at 14° east
of north.



16 Aswimmer can swim at2.0ms™ in still water.
She aims to swim directly across a river which
is flowing at 0.80 ms™. Calculate her resultant
velocity. (You must give both the magnitude and
the direction.)

17 Astoneis thrown from a cliff and strikes the
surface of the sea with a vertical velocity of
18 ms™ and a horizontal velocity v. The resultant
of these two velocities is 25ms™.

a Draw avector diagram showing the two
velocities and the resultant.

b Use your diagram to find the value of v.

¢ Useyourdiagram to find the angle between
the stone and the vertical as it strikes the
water.

Summary
m Displacement is the distance travelled in a particular

direction.

m Velocity is defined by the word equation

change in displacement
time taken

velocity =

The gradient of a displacement-time graph is equal
to velocity:

. As
velocity = e

Chapter 1: Kinematics - describing motion

Distance and speed are scalar quantities. A scalar
quantity has only magnitude.

Displacement and velocity are vector quantities.
A vector quantity has both magnitude and direction.

Vector quantities may be combined by vector addition
to find their resultant.
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End-of-chapter questions

1 Acartravels one complete lap around a circular track at a constant speed of 120kmh™.

a If one lap takes 2.0 minutes, show that the length of the track is 4.0 km. [2]
b Explain why values for the average speed and average velocity are different. [1]
¢ Determine the magnitude of the displacement of the car in a time of 1.0 minute. [2]

(The circumference of a circle = 2ntR, where R is the radius of the circle.)

2 Aboat leaves point A and travels in a straight line to point B (Figure 1.17). B,
The journey takes 60s. +
Calculate: 600 m
a thedistance travelled by the boat % [2]
b thetotaldisplacementoftheboat e e A 2]
¢ the average velocity of the boat. 800 m 2]
Figure 1.17 For End-of-chapter

Remember that each vector quantity must be given a direction as well

i Question 2.
as a magnitude.

3 Aboattravels at 2.0ms™ east towards a port, 2.2km away. When the boat reaches the port, the passengers
travel in a car due north for 15 minutes at 60 kmh™.

Calculate:
a thetotal distance travelled 2

—

]
b thetotal displacement 2]
¢ thetotal time taken [2]
d theaverage speedinms™ (2]
e the magnitude of the average velocity. 2]
4 Ariver flows from west to east with a constant velocity of 1.0ms™. A boat leaves the south bank heading
due north at 2.40 ms™. Find the resultant velocity of the boat. [2]
5 a Definedisplacement. [1]
b Use the definition of displacement to explain how it is possible for an athlete to run round a track yet
have no displacement. 2]
6 Agirlisriding a bicycle at a constant velocity of 3.0ms™ along a straight road. At time t =0, she passes
a boy sitting on a stationary bicycle. At time t =0, the boy sets off to catch up with the girl. His velocity
increases from time t =0 until t =5.0s, when he has covered a distance of 10m. He then continues at a
constant velocity of 4.0ms™.
a Draw the displacement-time graph for the girl from ¢t =0to 12s. 1]
b Onthe same graph axes, draw the displacement-time graph for the boy. [2]

¢ Usingyour graph, determine the value of t when the boy catches up with the girl. 1]
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7 Astudentdrops a small black sphere alongside a vertical scale marked in centimetres.
A number of flash photographs of the sphere are taken at 0.1s intervals, as shown in
Figure 1.18. The first photograph is taken with the sphere at the top at time t =0s.

a Explain how Figure 1.18 shows that the sphere reaches a constant speed.
b Determine the constant speed reached by the sphere.
¢ Determine the distance that the sphere has fallen whent =0.8s.

Figure 1.18 For End-of- =
. —130
chapter Question 7. .

State one difference between a scalar quantity and a vector quantity and give an example of each.

Aplane has an air speed of 500 km h™ due north. A wind blows at 100kmh™ from east to west. Draw
a vector diagram to calculate the resultant velocity of the plane. Give the direction of travel of the
plane with respect to north.

The plane flies for 15 minutes. Calculate the displacement of the plane in this time.

A small aircraft for one person is used on a short horizontal flight. On its journey from A to B, the resultant
velocity of the aircraftis 15ms™ in a direction 60° east of north and the wind velocity is 7.5ms™ due
north (Figure 1.19).

N

A E
Figure 1.19 For End-of-chapter Question 9.

a Show that for the aircraft to travel from A to B it should be pointed due east.

b After flying 5km from A to B, the aircraft returns along the same path from B to A with a resultant
velocity of 13.5ms™. Assuming that the time spent at B is negligible, calculate the average speed
for the complete journey from Ato B and back to A.




Accelerated
motion

Learning outcomes

You should be able to:

define acceleration

draw and interpret velocity-time graphs

derive and use the equations of uniformly accelerated
motion

describe a method for determining the acceleration due
to gravity, g

explain projectile motion in terms of horizontal and
vertical components of motion




Quick off the mark

The cheetah ) has a maximum speed of over

30ms™ (108 km/h). From a standing start a cheetah
can reach 20ms™ in just three or four strides, taking

only two seconds.

A car cannot increase its speed as rapidly but on
a long straight road it can easily travel faster than a
cheetah.

The meaning of acceleration

In everyday language, the term accelerating means
‘speeding up’. Anything whose speed is increasing is
accelerating. Anything whose speed is decreasing is
decelerating.

To be more precise in our definition of acceleration, we
should think of it as changing velocity. Any object whose
speed is changing or which is changing its direction has
acceleration. Because acceleration is linked to velocity in
this way, it follows that it is a vector quantity.

Some examples of objects accelerating are shown in
Figure 2.2.

Calculating acceleration

The acceleration of something indicates the rate at which
its velocity is changing. Language can get awkward here.
Looking at the sprinter in Figure 2.3, we might say, “The
sprinter accelerates faster than the car” However, ‘faster’
really means ‘greater speed’. It is better to say, “The sprinter
has a greater acceleration than the car.’

Acceleration is defined as follows:

acceleration = rate of change of velocity

change in velocity

average acceleration = -
8 time taken

So to calculate acceleration a, we need to know two
quantities — the change in velocity Av and the time taken At:
ad
At
Sometimes this equation is written differently. We write u
for the initial velocity and v for the final velocity (because
u comes before v in the alphabet). The moving object

Chapter 2: Accelerated motion

Figure 2.1 The cheetah is the world’s fastest land animal.
Its acceleration is impressive, too.

A car speeding up as

it leaves the town. The
driver presses on the
accelerator pedal to
increase the car’s velocity.

A car setting off from

the traffic lights. There is
an instant when the car
is both stationary and
accelerating. Otherwise it
would not start moving.

A car travelling round a
bend at a steady speed.
The car’s speed is
constant, but its velocity
is changing as it changes
direction.

Aball being hitby a
tennis racket. Both the
ball’s speed and direction
are changing. The ball’s
velocity changes.

A stone dropped over

a cliff. Gravity makes the
stone go faster and faster.
The stone accelerates

as it falls.

Figure 2.2 Examples of objects accelerating.
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accelerates from u to v in a time ¢ (this is the same as the
time represented by At above). Then the acceleration is

given by the equation:
v-u
a=
t

You must learn the definition of acceleration. It can be put

in words or symbols. If you use symbols you must state
what those symbols mean.

time=1s

START

time=2s time=3s

Figure 2.3 The sprinter has a greater acceleration than the
car, but her top speed is less.

1 Leavinga bus stop, a bus reaches a velocity of 8.0ms™
after 10s. Calculate the acceleration of the bus.

Step 1 Note that the bus’s initial velocity is 0Oms™.
Therefore:

change in velocity Av = (8.0-0)ms™

time taken At =10s

Step 2 Substitute these values in the equation for
acceleration:

eration AV _ 80
acceleration="+ = ~
=0.80ms™2

2 Asprinter starting from rest has an acceleration of
5.0ms2 during the first 2.0s of a race. Calculate her
velocity after 2.0s.

v-u
Step 1 Rearranging the equationa = Tgives:
v=u+at
Step 2 Substituting the values and calculating gives:
v=0+(5.0x2.0)=10ms*

Units of acceleration

The unit of acceleration is m s~ (metres per second squared).
The sprinter might have an acceleration of 5ms™; her
velocity increases by 5ms™ every second. You could express
acceleration in other units. For example, an advertisement
might claim that a car accelerates from 0 to 60 miles per
hour (mph) in 10s. Its acceleration would then be 6mphs™
(6 miles per hour per second). However, mixing together
hours and seconds is not a good idea, and so acceleration is
almost always given in the standard SI unit of ms™.

1 Acaraccelerates from a standing start and
reaches a velocity of 18 ms™ after 6.0s. Calculate
its acceleration.

2 Acardriver brakes gently. Her car slows down
from23ms*to1llms™in20s. Calculate the
magnitude (size) of her deceleration. (Note that,
because she is slowing down, her acceleration is
negative.)

3 Astoneis dropped from the top of a cliff. Its
acceleration is 9.81 ms™2. How fast is it moving:
a afterls?
b after3s?

3 Atrain slows down from 60ms™to20ms™in50s.
Calculate the magnitude of the deceleration of the train.

Step 1 Write what you know:

u=60ms? v=20ms? t=50s

Step 2 Take care! Here the train’s final velocity is less
than its initial velocity. To ensure that we arrive at the

correct answer, we will use the alternative form of the
equation to calculate a.

a_V_U
Tt
_20-60 40 o,
“T50 50 oUms

The minus sign (negative acceleration) indicates that the
train is slowing down. It is decelerating. The magnitude
of the deceleration is 0.80 ms™.



Deducing acceleration

The gradient of a velocity-time graph tells us whether the
object’s velocity has been changing at a high rate or a low
rate, or not at all (Figure 2.4). We can deduce the value of
the acceleration from the gradient of the graph:

acceleration = gradient of velocity-time graph

The graph (Figure 2.5) shows how the velocity of a cyclist
changed during the start of a sprint race. We can find his
acceleration during the first section of the graph (where
the line is straight) using the triangle as shown.

Astraight line with a Vi
positive slope shows
constant acceleration.

The greater the slope, the Vi
greater the acceleration.

The velocity is constant. Vi
Therefore acceleration a =0.

A negative slope shows Vi
deceleration (a is negative).

0 t
The slope is changing; Vi
the acceleration is changing.
———
O-b t

Figure 2.4 The gradient of a velocity-time graph is equal to
acceleration.

Chapter 2: Accelerated motion

p 10 [ NS

10 - Av

At
O T
0 5 10 t/s

Figure 2.5 Deducing acceleration from a velocity-time graph.

The change in velocity Av is given by the vertical side of
the triangle. The time taken At is given by the horizontal
side.

change in displacement
time taken

acceleration =

=4.0ms>2

A more complex example where the velocity—time graph is
curved is shown on page 24.

Deducing displacement

We can also find the displacement of a moving object from
its velocity—-time graph. This is given by the area under the
graph:

displacement = area under velocity-time graph

It is easy to see why this is the case for an object moving
at a constant velocity. The displacement is simply
velocity x time, which is the area of the shaded rectangle
(Figure 2.6a).

For changing velocity, again the area under the graph
gives displacement (Figure 2.6b). The area of each square
of the graph represents a distance travelled: in this case,
Imstx1s,or 1 m. So, for this simple case in which the
area is a triangle, we have:

displacement = § x base x height

=1x5.0x10=25m

It is easy to confuse displacement-time graphs and
velocity-time graphs. Check by looking at the quantity
marked on the vertical axis.

For more complex graphs, you may have to use other
techniques such as counting squares to deduce the area,
but this is still equal to the displacement.
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a y/mst area=20x15=300m
20 {
101
0 ! ! |
0 5 10 15 t/s
b v/ms!
10 foammiee :
area under graph
! =displacement
57 :
0 E
0 5 t/s

Figure 2.6 The area under the velocity-time graph is equal to
the displacement of the object.

4 Alorrydriver is travelling at the speed limit on
a motorway. Ahead, he sees hazard lights and
gradually slows down. He sees that an accident
has occurred, and brakes suddenly to a halt.
Sketch a velocity-time graph to represent the
motion of this lorry.

5 Table 2.1 shows how the velocity of a motorcyclist
changed during a speed trial along a straight road.
a Draw a velocity-time graph for this motion.

b From the table, deduce the motorcyclist’s
acceleration during the first 10s.

¢ Checkyour answer by finding the gradient of
the graph during the first 10s.

d Determine the motorcyclist’s acceleration
during the last 15s.

e Usethe graph to find the total distance
travelled during the speed trial.

Velocity/ms™ | 0 | 15| 30 | 30 | 20 | 10 0
Time/s 0 5110 |15 |20 | 25| 30

Table 2.1 Data for a motorcyclist.

(Take care when counting squares: it is easiest when the
sides of the squares stand for one unit. Check the axes, as
the sides may represent 2 units, or 5 units, or some other
number.)

Measuring velocity and
acceleration

In a car crash, the occupants of the car may undergo a very
rapid deceleration. This can cause them serious injury, but
can be avoided if an air-bag is inflated within a fraction
of a second. Figure 2.7 shows the tiny accelerometer at the
heart of the system, which detects large accelerations and
decelerations.

The acceleration sensor consists of two rows of
interlocking teeth. In the event of a crash, these move
relative to one another, and this generates a voltage which

Figure 2.7 A micro-mechanical acceleration sensor is used to
detect sudden accelerations and decelerations as a vehicle
travels along the road. This electron microscope image shows
the device magnified about 1000 times.

At the top of the photograph, you can see a second
sensor which detects sideways accelerations. This is
important in the case of a side impact.

These sensors can also be used to detect when a car
swerves or skids, perhaps on an icy road. In this case, they
activate the car’s stability-control systems.

Determining velocity and

acceleration in the laboratory

In Chapter 1, we looked at ways of finding the velocity of a
trolley moving in a straight line. These involved measuring
distance and time, and deducing velocity. Box 2.1 below
shows how these techniques can be extended to find the
acceleration of a trolley.



Measurements using light gates
The computer records the time for the first ‘interrupt’
section of the card to pass through the light beam of the
light gate (Figure 2.8). Given the length of the interrupt,
it can work out the trolley’s initial velocity u. This is
repeated for the second interrupt to give final velocity v.
The computer also records the time interval t; - t;
between these two velocity measurements. Now it can
calculate the acceleration a as shown below:

— [1

B -t

(I, = length of first section of the interrupt card)

and
— [2
Lt

(I, = length of second section of the interrupt card)

%

Therefore:

_ changein velocity
time taken

_v-u
ot

(Note that this calculation gives only an approximate
value for a. This is because u and v are average speeds
over a period of time; for an accurate answer we would
need to know the speeds at times ¢, and t;.)

Sometimes two light gates are used with a card
of length [. The computer can still record the times as
shown above and calculate the acceleration in the same

way, with ;= 1, =1.

light gate /

interrupt
card

Figure 2.8 Determining acceleration using a single
light gate.
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Measurements using a ticker-timer

The practical arrangement is the same as for measuring
velocity. Now we have to think about how to interpret the
tape produced by an accelerating trolley (Figure 2.9).

start

\
TR

Figure 2.9 Ticker-tape for an
accelerating trolley.

start

The tape is divided into sections, as before, every
five dots. Remember that the time interval between
adjacent dots is 0.02s. Each section represents 0.10s.

By placing the sections of tape side by side, you can
picture the velocity-time graph.

The length of each section gives the trolley’s
displacement in 0.10s, from which the average velocity
during this time can be found. This can be repeated
for each section of the tape, and a velocity-time
graph drawn. The gradient of this graph is equal to
the acceleration. Table 2.2 and Figure 2.10 show some
typical results.

The acceleration is calculated to be:

_Av_0.93

a —E—m:47ms‘2
Section | Time at | Time Length of | Velocity /
of tape | start/s | interval /s | section/cm | ms™
1 0.0 0.10 2.3 0.23
2 0.10 0.10 7.0 0.70
3 0.20 0.10 11.6 1.16

Table 2.2 Data for Figure 2.10.

-1
v/ms 15 ]
1.0 Av=0.93ms?
0.5 1 Figure 2.10
At=020s Deducing
acceleration from
0 ‘ ‘ measurements of
0 0.1 0.2 t/s aticker-tape.
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Measurements using a motion sensor

The computer software which handles the data
provided by the motion sensor can calculate the
acceleration of a trolley. However, because it deduces
velocity from measurements of position, and then
calculates acceleration from values of velocity, its
precision is relatively poor.

6 Sketch a section of ticker-tape for a trolley which
travels at a steady velocity and which then
decelerates.

7 Figure 2.11 shows the dimensions of an
interrupt card, together with the times recorded
as it passed through a light gate. Use these
measurements to calculate the acceleration of the
card. (Follow the steps outlined on page 19.)
0s 0.20s

0.30s 0.35s

5.0cm 5.0cm

Figure 2.11 For Question 7.

8 Two adjacent five-dot sections of a ticker-tape
measure 10cm and 16 cm, respectively. The interval
between dots is 0.02s. Deduce the acceleration of
the trolley which produced the tape.

The equations of motion

As a space rocket rises from the ground, its velocity
steadily increases. It is accelerating (Figure 2.12).

Eventually it will reach a speed of several kilometres
per second. Any astronauts aboard find themselves pushed
back into their seats while the rocket is accelerating.

The engineers who planned the mission must be able to
calculate how fast the rocket will be travelling and where it
will be at any point in its journey. They have sophisticated
computers to do this, using more elaborate versions of the
equations given below.

Figure 2.12 Arocket accelerates as it lifts off from the ground.

There is a set of equations which allows us to calculate
the quantities involved when an object is moving with a
constant acceleration. The quantities we are concerned
with are:

s displacement a acceleration
u initial velocity t timetaken
v final velocity

Here are the four equations of motion.

equation 1: v=u+at
equation 2: s= @ x t
equation 3: s=ut+ %at‘2
equation 4: V2 = u?+2as

Take care using these equations. They can only be used:

m for motion in a straight line
m foran object with constant acceleration.

To get a feel for how to use these equations, we will
consider some worked examples. In each example, we will
follow the same procedure:

Step1 We write down the quantities which we know,
and the quantity we want to find.

Step2 Then we choose the equation which links these
quantities, and substitute in the values.

Step 3  Finally, we calculate the unknown quantity.

We will look at where these equations come from in the
next section.



4 Therocket shown in Figure 2.12 lifts off from rest with an

acceleration of 20ms™. Calculate its velocity after 50s.

Step 1 What we know: u=0ms?
a=20ms?2
t=50s

and what we want to know: v=7?

Step 2 The equation linking u, a, t and v is equation 1:

v=u+at

Substituting gives:
v = 0+(20 x 50)

Step 3 Calculation then gives:
v=1000ms™*

So the rocket will be travelling at 1000 ms™ after 50s.
This makes sense, since its velocity increases by 20ms™
every second, for 50s.

You could use the same equation to work out how long
the rocket would take to reach a velocity of 2000ms™,
or the acceleration it must have to reach a speed of
1000ms™in40s, and so on.

The car shown in Figure 2.13 is travelling along a straight
road at 8.0ms™. It accelerates at 1.0 ms™2 for a distance
of 18 m. How fast is it then travelling?

Figure 2.13 For Worked example 5. This car accelerates
for a short distance as it travels along the road.

In this case, we will have to use a different equation,
because we know the distance during which the car
accelerates, not the time.

Step 1 What we know: u=80ms?
a=10ms?2
$s=18m

and what we want to know: v=7?

Step 2 The equation we need is equation 4:
v2 = u?+2as

Substituting gives:

V2 =8.0%+(2x1.0x18)
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Step 3 Calculation then gives:
V2 = 64+36=100m?s?
v=10ms™

So the car will be travelling at 10 ms™ when it stops
accelerating.

(You may find it easier to carry out these calculations
without including the units of quantities when you
substitute in the equation. However, including the units
can help to ensure that you end up with the correct units
for the final answer.)

Atrain (Figure 2.14) travelling at 20ms™ accelerates at
0.50ms™2for 30s. Calculate the distance travelled by the
train in this time.

Figure 2.14 For Worked example 6. This train
accelerates for 30s.

u=20ms?t
t=30s
a=0.50ms>2

Step 1 What we know:

and what we want to know: s=7?

Step 2 The equation we need is equation 3:
s = ut+3at?

Substituting gives:

s =(20%30) + 3% 0.5 x (30)2

Step 3 Calculation then gives:
s=600+225=825m

So the train will travel 825 m while it is accelerating.
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7 Thecyclistin Figure 2.15 is travelling at 15ms™. Step 2 The equation we need is equation 4:
She brakes so that she doesn’t collide with the wall. V2= 42 +20s

Calculate the magnitude of her deceleration. o
Rearranging gives:

V2_u2
9=
. 02-152 -225
T 2x18 36

Step 3 Calculation then gives:
a=-6.25ms?=z-6.3ms™

So the cyclist will have to brake hard to achieve a
deceleration of magnitude 6.3 ms™2. The minus sign
Figure 2.15 For Worked example 7. The cyclist shows that her acceleration is negative,

brakes to stop herself colliding with the wall. i.e. a deceleration.

This example shows that it is sometimes necessary
to rearrange an equation, to make the unknown
quantity its subject. It is easiest to do this before
substituting in the values.

Step 1 What we know: u=15ms?
v=0mst

and what we wantto know: a=7?

Deriving the equations of

9 Acarisinitially stationary. It has a constant mOtlon
acceleration of 2.0ms™2. On the previous pages, we have seen how to make use of
a Calculate the velocity of the car after 10s. the equations of motion. But where do these equations
b Calculate the distance travelled by the car at come from? They arise from the definitions of velocity and
the end of 10s. acceleration.
¢ Calculate the time taken by the carto reach a We can find the first two equations from the velocity-
velocity of 24ms™. time graph shown in Figure 2.16. The graph represents the

10 Atrain accelerates steadily from 4.0ms™ to motion of an object. Its initial velocity is u. After time ¢, its

20ms7in 100s. final velocity is v.

a Calculate the acceleration of the train.

b Fromitsinitial and final velocities, calculate v
the average velocity of the train.

¢ Calculate the distance travelled by the train in
this time of 100s.

Velocity

<

11 Acaris movingat8.0ms™. The driver makes
it accelerate at 1.0 ms™ for a distance of 18 m. ut
What is the final velocity of the car?

0 . :
0 Time t

Figure 2.16 This graph shows the variation of velocity of an
object with time. The object has constant acceleration.



Equation 1
The graph of Figure 2.16 is a straight line, therefore the
object’s acceleration a is constant. The gradient (slope) of
the line is equal to acceleration.

The acceleration is defined as:
which is the gradient of the line. Rearranging this gives the
first equation of motion:

v=u+at (equation 1)
Equation 2
Displacement is given by the area under the velocity-time
graph. Figure 2.17 shows that the object’s average velocity
is half-way between u and v. So the object’s average
velocity, calculated by averaging its initial and final
velocities, is given by:

-v)

2
The object’s displacement is the shaded area in Figure 2.17.
This is a rectangle, and so we have:

displacement = average velocity x time taken

and hence:

(equation 2)

P - mmm e m e T oo 4

<

Velocity

0

0 Time
Figure 2.17 The average velocity is half-way between v and v.

Equation 3

From equations 1 and 2, we can derive equation 3:

v=u+at (equation 1)
s= @ Xt (equation 2)
Substituting v from equation 1 gives:
_(u+tu+ai) ot
2
2ut _ at?

2 2
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So

s=ut+3at? (equation 3)

Looking at Figure 2.16, you can see that the two terms on
the right of the equation correspond to the areas of the
rectangle and the triangle which make up the area under
the graph. Of course, this is the same area as the rectangle
in Figure 2.17.

Equation 4

Equation 4 is also derived from equations 1 and 2:

v=u+at (equation 1)
s= @x t (equation 2)

Substituting for time t from equation 1 gives:

s= (u+v)+(v+u)
2 a

Rearranging this gives:

(equation 2)

2as = (u+v)(v—u)

— 22

or simply:

v2=u?+2as

Investigating road traffic accidents

The police frequently have to investigate road traffic
accidents. They make use of many aspects of physics,
including the equations of motion. The next two questions
will help you to apply what you have learned to situations
where police investigators have used evidence from skid
marks on the road.

12 Trials on the surface of a new road show that,
when a car skids to a halt, its acceleration is
-7.0ms™2. Estimate the skid-to-stop distance
of a car travelling at a speed limit of 30ms™
(approx. 110km h™ or 70mph).

13 Atthe scene of an accident on a country road,
police find skid marks stretching for 50 m.
Tests on the road surface show that a skidding
car decelerates at 6.5ms™2. Was the car which
skidded exceeding the speed limit of 25ms™!
(90 kmh™) on this road?

(equation 4) H
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Uniform and non-uniform
acceleration

It is important to note that the equations of motion
only apply to an object which is moving with a constant
acceleration. If the acceleration a was changing, you
wouldn’t know what value to put in the equations.
Constant acceleration is often referred to as uniform
acceleration.

The velocity-time graph in Figure 2.18 shows non-
uniform acceleration. It is not a straight line; its gradient
is changing (in this case, decreasing).

v/ms?t
30
25

20 As=10m

151 At=20s

10+

5,

0 ‘ ‘ ‘ ‘
0 10 20 30 40 t/s

Figure 2.18 This curved velocity-time graph cannot be
analysed using the equations of motion.

The acceleration at any instant in time is given by the
gradient of the velocity-time graph. The triangle in Figure
2.18 shows how to find the acceleration at t = 20 seconds:

m Atthetime of interest, mark a point on the graph.
m Draw atangent to the curve at that point.

m Make a large right-angled triangle, and use it to find the
gradient.

You can find the change in displacement of the body as it
accelerates by determining the area under the velocity-
time graph.

To find the displacement of the object in Figure 2.18
between ¢ = 0 and 205, the most straightforward, but
lengthy, method is just to count the number of small
squares.

In this case up to ¢ = 20s, there are about 250 small
squares. This is tedious to count but you can save yourself
a lot of time by drawing a line from the origin to the point
at 20s. The area of the triangle is easy to find (200 small
squares) and then you only have to count the number of
small squares between the line you have drawn and the
curve on the graph (about 50 squares)

In this case each square is 1 ms™ on the y-axis by 1's
on the x-axis, so the area of each squareis 1 x1 =1m and
the displacement is 250 m. In other cases note carefully the
value of each side of the square you have chosen.

14 The graphin Figure 2.19 represents the motion of
an object moving with varying acceleration. Lay
your ruler on the diagram so that it is tangential to
the graph at point P.

a What are the values of time and velocity at this
point?
b Estimate the object’s acceleration at this point.

v/ms?t
300 -

200

100 4

0 T T T T
0 5 10 15 20 t/s

Figure 2.19 For Question 14.

15 The velocity-time graph (Figure 2.20) represents
the motion of a car along a straight road for a
period of 30s.

a Describe the motion of the car.

b From the graph, determine the car’s initial
and final velocities over the time of 30s.

Determine the acceleration of the car.

d By calculating the area under the graph,
determine the displacement of the car.

e Checkyour answer to part d by calculating the
car’s displacement using s = ut + 3at?.

v/ms
20 1
16 1
12
8

4]

0

0 10 20 30 t/s
Figure 2.20 For Question 15.



Acceleration caused by gravity

If you drop a ball or stone, it falls to the ground. Figure
2.21, based on a multiflash photograph, shows the ball at
equal intervals of time. You can see that the ball’s velocity
increases as it falls because the spaces between the images
of the ball increase steadily. The ball is accelerating.

o ooooo%

Figure 2.21 This diagram of a falling ball, based on a
multiflash photo, clearly shows that the ball’s velocity
increases as it falls.

A multiflash photograph is useful to demonstrate
that the ball accelerates as it falls. Usually, objects fall too
quickly for our eyes to be able to observe them speeding
up. It is easy to imagine that the ball moves quickly as soon
as you let it go, and falls at a steady speed to the ground.
Figure 2.21 shows that this is not the case.

If we measure the acceleration of a freely falling object
on the surface of the Earth, we find a value of about
9.81 ms. This is known as the acceleration of free fall,
and is given the symbol g:

acceleration of free fall, g=9.81 ms™

The value of g depends on where you are on the Earth’s
surface, but we usually take g = 9.81 ms™.

If we drop an object, its initial velocity u = 0. How far
will it fall in time 2 Substituting in s = ut + 1 at? gives
displacement s:

s=1x981x¢

=49x¢?

Hence, by timing a falling object, we can determine g.
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16 If you drop a stone from the edge of a cliff, its initial
velocity u = 0, and it falls with acceleration
g =9.81ms™. You can calculate the distance s it
falls in a given time t using an equation of motion.

a Copyand complete Table 2.3, which shows how
sdependsont.

b Draw a graph of s against t.

¢ Useyour graph to find the distance fallen by
the stonein 2.5s.

d Useyour graph to find how long it will take the
stone to fall to the bottom of a cliff 40 m high.
Check your answer using the equations
of motion.

Time/s 0 [1.0 [20 |30 |40
Displacement/m | 0 |49

Table 2.3 Time (t) and displacement (s) data for
Question 16.

17 An egg falls off a table. The floor is 0.8 m from the
table-top.

a Calculate the time taken to reach the ground.

b Calculate the velocity of impact with the
ground.

Determining g

One way to measure the acceleration of free fall g would be
to try bungee-jumping (Figure 2.22). You would need to
carry a stopwatch, and measure the time between jumping
from the platform and the moment when the elastic rope
begins to slow your fall. If you knew the length of the
unstretched rope, you could calculate g.

There are easier methods for finding g which can be used
in the laboratory. These are described in Box 2.2.

Figure 2.22 A bungee-jumper falls with initial acceleration g.




Cambridge International AS Level Physics

Measuring g using an electronic timer

In this method, a steel ball-bearing is held by an
electromagnet (Figure 2.23). When the current to the
magnet is switched off, the ball begins to fall and

an electronic timer starts. The ball falls through a
trapdoor, and this breaks a circuit to stop the timer.
This tells us the time taken for the ball to fall from rest
through the distance h between the bottom of the ball
and the trapdoor.

electromagnet
ball-bearing

Figure 2.23 The timer records the time for the ball to
fall through the distance h.
Here is how we can use one of the equations of motion
to find g:
displacements = h
time taken =t
initial velocity u = 0
accelerationa =g
Substituting in s = ut + at? gives:
h= 7gt2

and for any values of h and t we can calculate a value for g.

A more satisfactory procedure is to take
measurements of t for several different values of h. The
height of the ball bearing above the trapdoor is varied
systematically, and the time of fall measured several
times to calculate an average for each height. Table
2.4 and Figure 2.24 show some typical results. We can
deduce g from the gradient of the graph of h against t2.
The equation for a straight line through the origin is:

y = mx

In our experiment we have:

h/m t/s t2/s?
0.27 0.25 0.063
0.39 0.30 0.090
0.56 0.36 0.130
0.70 0.41 0.168
0.90 0.46 0.212

Table 2.4 Data for Figure 2.24. These are mean values.
h/m
1.0
0.8 1
0.6 4

0.4 1 Ah=0.84m
0.2

0 T T T J
0 0.05 0.10 0.15 0.20 0.25 t?/s?

Figure 2.24 The acceleration of free fall can be determined
from the gradient.

The gradient of the straight line of a graph of h
against t?is equal to 2. Therefore:

g 0.84
> =42

=020
g=42x2=84ms>

Sources of uncertainty
The electromagnet may retain some magnetism when it
is switched off, and this may tend to slow the ball’s fall.
Consequently, the time t recorded by the timer may be
longer than if the ball were to fall completely freely.
From h=3gt?, it follows that, if t is too great, the
experimental value of g will be too small. This is an
example of a systematic error - all the results are
systematically distorted so that they are too great (or too
small) as a consequence of the experimental design.
Measuring the height h is awkward. You can probably
only find the value of h to within £1 mm at best. So there
is arandom error in the value of h, and this will result in a
slight scatter of the points on the graph, and a degree of
uncertainty in the final value of g. For more about errors,
see P1: Practical skills for AS.



Measuring g using a ticker-timer

Figure 2.25 shows a weight falling. As it falls, it pulls a
tape through a ticker-timer. The spacing of the dots on
the tape increases steadily, showing that the weight

is accelerating. You can analyse the tape to find the
acceleration, as discussed on page 19.

. ticker-timer

"

a.c.

ticker-tape

ight
e/welg

Figure 2.25 Afalling weight pulls a tape through a
ticker-timer.

This is not a very satisfactory method of measuring
g. The main problem arises from friction between the
tape and the ticker-timer. This slows the fall of the
weight and so its acceleration is less than g. (This is
another example of a systematic error.)

The effect of friction is less of a problem for a large
weight, which falls more freely. If measurements are
made for increasing weights, the value of acceleration
gets closer and closer to the true value of g.

8 To getarough value for g, a student dropped a stone
from the top of a cliff. A second student timed the
stone’s fall using a stopwatch. Here are their results:

estimated height of cliff =30m
time of fall=2.6s
Use the results to estimate a value for g.

Step 1 Calculate the average speed of the stone:
30

average speed of stone during fall = 56 11.5ms™*

Step 2 Find the values of vand u:

final speedv =2x11.5ms*=23.0ms™
initial speed u=0ms
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Measuring g using a light gate

Figure 2.26 shows how a weight can be attached to a
card ‘interrupt’. The card is designed to break the light
beam twice as the weight falls. The computer can then
calculate the velocity of the weight twice as it falls, and
hence find its acceleration:

initial velocity u =
2 tl

final velocity v =
4~ L3

Therefore:

leration a = —
accelerationa = —
The weight can be dropped from different heights above
the light gate. This allows you to find out whether its
acceleration is the same at different points in its fall. This
is an advantage over Method 1, which can only measure
the acceleration from a stationary start.

computer /fa“ing plate

~t,
X
e
light
gate Xt b
- tl

Figure 2.26 The weight accelerates as it falls. The upper
section of the card falls more quickly through the light gate.

Step 3 Substitute these values into the equation for
acceleration:

= ﬂ = @ =8.8 -2
a=—F =, -88ms
Note that you can reach the same result more directly
using s = ut + 2at?, but you may find it easier to follow
what is going on using the method given here. We
should briefly consider why the answer is less than the
expected value of g=9.81ms2. It might be that the cliff
was higher than the student’s estimate. The timer may
not have been accurate in switching the stopwatch on
and off. There will have been air resistance which slowed
the stone’s fall.
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18 Asteel ballfalls from rest through a height of
2.10m. An electronic timer records a time of
0.67 s for the fall.

a Calculate the average acceleration of the ball
as it falls.

b Suggest reasons why the answer is not exactly
9.81ms=.

19 Inan experiment to determine the acceleration
due to gravity, a ball was timed electronically as
it fell from rest through a height h. The times t
shown in Table 2.5 were obtained.
a Plot agraph of h against t2.
b From the graph, determine the acceleration of
freefall, g.

¢ Comment on your answer.

Height/m | 0.70 | 1.03 | 1.25 | 1.60 | 1.99
Time/s 099 | 1.13 | 1.28 | 142 | 1.60

Table 2.5 Height (h) and time (t) data for
Question 19.

20 In Chapter 1, we looked at how to use a motion
sensor to measure the speed and position of a
moving object. Suggest how a motion sensor
could be used to determine g.

Motion in two dimensions -
projectiles

A curved trajectory
A multiflash photograph can reveal details of the path, or
trajectory, of a projectile. Figure 2.27 shows the trajectories
of a projectile — a bouncing ball. Once the ball has left the
child’s hand and is moving through the air, the only force
acting on it is its weight.

The ball has been thrown at an angle to the horizontal.
It speeds up as it falls — you can see that the images of the
ball become further and further apart. At the same time, it
moves steadily to the right. You can see this from the even
spacing of the images across the picture. The ball’s path has a
mathematical shape known as a parabola. After it bounces,
the ball is moving more slowly. It slows down, or decelerates,
as it rises — the images get closer and closer together.

We interpret this picture as follows. The vertical
motion of the ball is affected by the force of gravity, that
is, its weight. When it rises it has a vertical deceleration

Figure 2.27 A bouncing ballis an example of a projectile.
This multiflash photograph shows details of its motion which
would escape the eye of an observer.

of magnitude g, which slows it down, and when it falls

it has an acceleration of g, which speeds it up. The ball’s
horizontal motion is unaffected by gravity. In the absence
of air resistance, the ball has a constant velocity in the
horizontal direction. We can treat the ball’s vertical

and horizontal motions separately, because they are
independent of one another.

Components of a vector

In order to understand how to treat the velocity in the
vertical and horizontal directions separately we start by
considering a constant velocity.

If an aeroplane has a constant velocity v at an angle 6
as shown in Figure 2.28, then we say that this velocity has
two effects or components, vy in a northerly direction
and vy, in an easterly direction. These two components of
velocity add up to make the actual velocity v.

This process of taking a velocity and determining its
effect along another direction is known as resolving the
velocity along a different direction. In effect splitting the
velocity into two components at right angles is the reverse

Figure 2.28 Components of a velocity. The component due
north is vy =vcos 8 and the component due east is vy = vsin 6.



of adding together two vectors - it is splitting one vector
into two vectors along convenient directions.

To find the component of any vector (e.g. displacement,
velocity, acceleration) in a particular direction, we can use

the following strategy:
Step1 Find the angle 6 between the vector and the
direction of interest.

Step2 Multiply the vector by the cosine of the angle 6.

So the component of an object’s velocity v at angle 0 to v is
equal to vcos 6 (Figure 2.28).

21 Find the x- and y-components of each of the
vectors shown in Figure 2.29. (You will need to use
a protractor to measure angles from the diagram.)

y

50ms!

Figure 2.29
The vectors for
Question 21.
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Understanding projectiles

We will first consider the simple case of a projectile
thrown straight up in the air, so that it moves vertically.
Then we will look at projectiles which move horizontally
and vertically at the same time.

Up and down
A stone is thrown upwards with an initial velocity of
20ms L. Figure 2.30 shows the situation.

positive
direction

Figure 2.30 Standing at the edge of the cliff, you throw a
stone vertically upwards. The height of the cliff is 25m.

It is important to use a consistent sign convention
here. We will take upwards as positive, and downwards as
negative. So the stone’s initial velocity is positive, but its
acceleration g is negative. We can solve various problems
about the stone’s motion by using the equations of motion.

How high?

How high will the stone rise above ground level of the cliff?
As the stone rises upwards, it moves more and more
slowly — it decelerates, because of the force of gravity. At its
highest point, the stone’s velocity is zero. So the quantities

we know are:

initial velocity = u = 20ms™
final velocity =v =0ms™

acceleration =a=-9.81ms32

displacement =s =?
The relevant equation of motion is v? = u? + 2as.
Substituting values gives:

02 = 202+ 2 x (<9.81) X s

0 = 400 19.62s
400
=299 04m=2
ST 196y 20Am~20m

The stone rises 20 m upwards, before it starts to fall again.




Cambridge International AS Level Physics

How long? also shown in Figure 2.31. Study the table and the graph.
How long will it take from leaving your hand for the stone You should notice the following;
to fall back to the clifftop? m The horizontal distance increases steadily. This is because
When the stone returns to the point from which it was the ball’s horizontal motion is unaffected by the force of
thrown, its displacement s is zero. So: gravity. It travels at a steady velocity horizontally so we can
s
s=0 u=20ms?' a=-98lms? t=? usev = .
Substituting in s = uf + %aﬂ gives: m Thevertical distances do not show the same pattern.

The ball is accelerating downwards so we must use the
equations of motion. (These figures have been calculated

=20t -4.905t2 = (20-4.905¢) x t usingg=9.81ms=2)

There are two possible solutions to this:

0 =20t x3(-9.81) x 2

o ) ) ) Time/s Horizontal Vertical
m t=0s,i.e.the stone had zero displacement at the instant it distance/m distance/m
was thrown
B t=4.1s,i.e. thestonereturned to zero displacement after 0.00 0.00 0.000
4.1s, which is the answer we are interested in. 0.04 0.10 0.008
0.08 0.20 0.031
Falling further 0.12 0.30 0.071
The height of the cliff is 25 m. How long will it take the 0.16 0.40 0.126
stone to reach the foot of the cliff? 0.20 050 0.196
Thl.S is similar t(-) the last example, bujt now ‘Fhe stone’s 0.24 0.60 0.283
final displacement is 25 m below its starting point. By
. . .. . . 0.28 0.70 0.385
our sign convention, this is a negative displacement, and
s=-25m. Table 2.7 Data for the example of a moving ball, as shown in
Figure 2.31.
You can calculate the distance s fallen using the
. . 1 c o egs .
22 Inthe example above (Falling further), calculate equation of motion s = ut+3at>. (The initial vertical
the time it will take for the stone to reach the foot velocity u=0.)
of the cliff.

The horizontal distance is calculated using:
23 Aballis fired upwards with an initial velocity of

b . horizontal distance =2.5x ¢t
30ms™. Table 2.6 shows how the ball’s velocity

changes. (Take g=9.81ms2) The vertical distance is calculated using:
a Copyand complete the table. vertical distance = $x 9.81 x 12
b Draw agraph to represent the data.
¢ Useyour graph to deduce how long the ball Horizontal distance / m
took to reach its highest point. £ 0 0.1 02 03 04 05 06 0.7
= @ ] 1 1 1 1 1 1
Velocity/ms™ | 30 | 20.19 E o1
. S T
Time/s 0] 10 [20]30]40]50 g constant horizontal velocity
Table 2.6 For Question 23. § 0.2 1
o
s 0.3 1 increasing vertical velocity
. . . € 0.4 i
Vertical and horizontal at the same time 2

Here is an example to illustrate what happens when an

object travels vertically and horizontally at the same time.
In a toy, a ball-bearing is fired horizontally from

a point 0.4 m above the ground. Its initial velocity is

2.5msL Its positions at equal intervals of time have been

Figure 2.31 This sketch shows the path of the ball projected
horizontally. The arrows represent the horizontal and vertical
components of its velocity.

calculated and are shown in Table 2.7. These results are
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Astone is thrown horizontally with a velocity of 12ms™
from the top of a vertical cliff.

Calculate how long the stone takes to reach the ground
40m below and how far the stone lands from the base
of the cliff.

Step 1 Consider the ball’s vertical motion. It has
zero initial speed vertically and travels 40 m with
acceleration 9.81 ms™in the same direction.

1
s = ut+ yat?

40=0+3x9.81x t2

Thust =2.86s.

Step 2 Consider the ball’s horizontal motion. The ball
travels with a constant horizontal velocity, 12ms™, as
long as there is no air resistance.

distance travelled=uxt=12%2.86=34.3m

Hint: You may find it easier to summarise the
information like this:

vertically s=40 wu=0 g=9.81

horizontally u=12 v=12 a=0

Aball is thrown with an initial velocity of 20ms™ at an
angle of 30° to the horizontal (Figure 2.32). Calculate
the horizontal distance travelled by the ball (its range).

u=20ms

Figure 2.32 Where will the ball land?

A stone is thrown horizontally from the top of a
vertical cliff and lands 4.0s later at a distance 12.0m
from the base of the cliff. Ignore air resistance.

a Calculate the horizontal speed of the stone.

b Calculate the height of the cliff.

Astone is thrown with a velocity of 8ms™ into the air
at an angle of 40° to the horizontal.

a Calculate the vertical component of the velocity.

b State the value of the vertical component of the
velocity when the stone reaches its highest point.
Ignore air resistance.

26
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Step 1 Split the ball’s initial velocity into horizontal
and vertical components:

initial velocity=u=20ms™
horizontal component of initial velocity

=ucosf =20xcos30°=17.3ms™*
vertical component of initial velocity

=usinf =20xsin30°=10ms™

Step 2 Consider the ball’s vertical motion. How long
will it take to return to the ground? In other words,
when will its displacement return to zero?

a=-9.81ms?2 s=0 t=?

u=10ms?t

Using s = ut + 3 at?, we have:
0=10t - 4.905¢?

This gives t=0s or t=2.04s. So the ballis in the air
for2.04s.

Step 3 Consider the ball’s horizontal motion. How

far will it travel horizontally in the 2.04 s before it
lands? This is simple to calculate, since it moves with a
constant horizontal velocity of 17.3ms™.

horizontal displacement s =17.3 x 2.04
=35.3m

Hence the horizontal distance travelled by the ball
(its range) is about 35 m.

¢ Useyour answers to a and b to calculate the time
the stone takes to reach it highest point.

d Calculate the horizontal component of the velocity.

e Useyour answers to ¢ and d to find the horizontal
distance travelled by the stone as it climbs to its
highest point.

The range of a projectile is the horizontal distance
it travels before it reaches the ground. The greatest
range is achieved if the projectile is thrown at 45° to
the horizontal.

Aballis thrown with an initial velocity of 40ms™.
Calculate its greatest possible range when air
resistance is considered to be negligible.
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Summary

Acceleration is equal to the rate of change of velocity. Vectors such as forces can be resolved into
components. Components at right angles to one
another can be treated independently of one another.
For a velocity v at an angle 0 to the x-direction, the
components are:

Acceleration is a vector quantity.

The gradient of a velocity-time graph is equal to
acceleration:

Av
a=— x-direction: vcos
At
The area under a velocity-time graph is equal to rellizeJott: vellit)
displacement (or distance travelled). For projectiles, the horizontal and vertical components

of velocity can be treated independently. In the
absence of air resistance, the horizontal component
of velocity is constant while the vertical component of

The equations of motion (for constant acceleration in
a straight line) are:

v=u+at s=ut+ zat? velocity downwards increases at a rate of 9.81ms™2,
u+v
s= (2—) v2=u?+2as

End-of-chapter questions

1 Amotorway designer can assume that cars approaching a motorway enter a slip road with a velocity
of 10ms™ and reach a velocity of 30 ms™ before joining the motorway. Calculate the minimum
length for the slip road, assuming that vehicles have an acceleration of 4.0ms™, [4]

2 Atrainistravelling at 50ms™ when the driver applies the brakes and gives the train a constant deceleration
of magnitude 0.50 ms for 100s. Describe what happens to the train. Calculate the distance travelled
by the train in 100s. [7]

3 Aboy stands on a cliff edge and throws a stone vertically upwards at time t = 0. The stone leaves his
hand at 20ms™. Take the acceleration of the ball as9.81ms™2.

a Show that the equation for the displacement of the ball is:
s =20t-4.9t2 [2]
b Whatis the height of the stone 2.0s after release and 6.0s after release? [3]

When does the stone return to the level of the boy’s hand? Assume the boy’s hand does not move
vertically after the ball is released. [4]
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4 Thegraphin Figure 2.33 shows the variation of velocity
with time of two cars, A and B, which are travelling in
the same direction over a period of time of 40s. Car A,
travelling at a constant velocity of 40ms™, overtakes
carBattimet=0.In order to catch up with car A, car B
immediately accelerates uniformly for 20s to reach a
constant velocity of 50ms™. Calculate:

Velocity/m s

Time/s
Figure 2.33 Velocity-time graphs for two cars,
A and B. For End-of-chapter Question 4.

a how farAtravels during the first 20s

b the acceleration and distance of travel of B during the first 20s
¢ theadditional time taken for B to catch up with A

d thedistance each car will have then travelled since t=0.

An athlete competing in the long jump leaves the ground with a velocity of 5.6 ms™ at an angle of 30°
to the horizontal.

a Determine the vertical component of the velocity and use this value to find the time between leaving
the ground and landing.
Determine the horizontal component of the velocity and use this value to find the horizontal
distance travelled.

Figure 2.34 shows an arrangement used to measure the acceleration of a metal plate as it falls vertically.
The metal plate is released from rest and falls a distance of 0.200 m before breaking light beam 1. It then
falls a further 0.250 m before breaking light beam 2.

|:| metal plate

light beam 1

light beam 2
Figure 2.34 For End-of-chapter Question 6.

a Calculate the time taken for the plate to fall 0.200 m from rest. (You may assume that the metal plate
falls with an acceleration equal to the acceleration of free fall.)

b Thetimer measures the speed of the metal plate as it falls through each light beam. The speed as it
falls through light beam 1is 1.92ms™ and the speed as it falls through light beam 2 is 2.91ms™.

i Calculate the acceleration of the plate between the two light beams.

ii State and explain one reason why the acceleration of the plate is not equal to the acceleration
of free fall.
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7 Figure 2.35 shows the velocity-time graph for a vertically bouncing ball. The ballis released at A and strikes
the ground at B. The ball leaves the ground at D and reaches its maximum height at E. The effects of air
resistance can be neglected.

\
B

Velocity
o
Y

Time

Figure 2.35 For End-of-chapter Question 7.

a State:
i whythe velocity at D is negative [1]
ii why the gradient of the line AB is the same as the gradient of line DE [1]
iii what is represented by the area between the line AB and the time axis [1]
iv why the area of triangle ABC is greater than the area of triangle CDE. [1]
b Theballis dropped from rest from an initial height of 1.2 m. After hitting the ground the ball rebounds
n to a height of 0.80m. The ball is in contact with the ground between B and D for a time of 0.16s.
Using the acceleration of free fall, calculate:
i the speed of the ball immediately before hitting the ground 2]
ii the speed of the ballimmediately after hitting the ground 2]
iii the acceleration of the ball while it is in contact with the ground. State the direction of this acceleration. [3]
8 Astudent measures the speed v of a trolley as it moves down a slope. The variation of v with time t is shown
in the graph in Figure 2.36.
v/mst
1.2
/—’
0.8 /,/
0.4 v i
/]
0 0 0.2 0.4 0.6 0.8 1.0 t/s
Figure 2.36 For End-of-chapter Question 8.
a Usethe graph to find the acceleration of the trolley when t =0.7s. [2]
b State how the acceleration of the trolley varies between t =0 and t = 1.0s. Explain your answer by
reference to the graph. [3]
¢ Determine the distance travelled by the trolley between t =0.6 and t =0.8s. [3]

The student obtained the readings for v using a motion sensor. The readings may have random
errors and systematic errors. Explain how these two types of error affect the velocity-time graph. 2]
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9 Acardriveris travelling at speed v on a straight road. He comes over the top of a hill to find a fallen tree on
the road ahead. He immediately brakes hard but travels a distance of 60 m at speed v before the brakes
are applied. The skid marks left on the road by the wheels of the car are of length 140m (Figure 2.37).

The police investigate whether the driver was speeding and establish that the car decelerates at 2.0ms™
during the skid.

skid marks

/

60 m 140 m

top of hill

Figure 2.37 For End-of-chapter Question 9.

Determine the initial speed v of the car before the brakes are applied.

Determine the time taken between the driver coming over the top of the hill and applying the brakes.
Suggest whether this shows whether the driver was alert to the danger.

The speed limit on the road is 100km/h. Determine whether the driver was breaking the speed limit.

10 Ahot-air balloon rises vertically. At time t =0, a ball is released from the balloon. Figure 2.38 shows the
variation of the ball’s velocity v with t. The ball hits the ground at t = 4.1s.

20

v/ms1

10

Figure 2.38 For End-of-chapter Question 10.

a Explain how the graph shows that the acceleration of the ball is constant.
b Usethe graph to:

i determine the time at which the ball reaches its highest point

i show that the ball rises for a further 12m between release and its highest point

iii determine the distance between the highest point reached by the ball and the ground.
¢ Theequation relating vand tis v=15-9.81t. Explain the significance in the equation of:

i thenumberl15

ii the negative sign.
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11 An aeroplaneis travelling horizontally at a speed of 80 ms™ and drops a crate of emergency supplies
(Figure 2.39). To avoid damage, the maximum vertical speed of the crate on landingis 20ms™.
You may assume air resistance is negligible.

80mst

Figure 2.39 For End-of-chapter Question 11.

a Calculate the maximum height of the aeroplane when the crate is dropped.
b Calculate the time taken for the crate to reach the ground from this height.

¢ The aeroplane is travelling at the maximum permitted height. Calculate the horizontal distance travelled
by the crate after it is released from the aeroplane.




Dynamics -
explaining motion

Learning outcomes

You should be able to:

state Newton’s laws of motion
m identify the forces acting on a body in different situations
m describe how the motion of a body is affected by the
forces acting on it
m solve problems using F=ma
m relate derived units to base units in the Sl system
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Force and acceleration

If you have ever flown in an aeroplane you will know
how the back of the seat pushes you forwards when
the aeroplane accelerates down the runway (
The pilot must control many forces on the

aeroplane to ensure a successful take-off.

In and we saw how motion can
be described in terms of displacement, velocity,
acceleration and so on. This is known as .
Now we are going to look at how we can explain how
an object moves in terms of the forces which change
its motion. This is known as

Calculating the acceleration

Figure 3.2a shows how we represent the force which

the motors on a train provide to cause it to accelerate.

The resultant force is represented by a green arrow. The
direction of the arrow shows the direction of the resultant
force. The magnitude (size) of the resultant force of
20000N is also shown.

a -~ direction of acceleration a
F=20000N mass = 10 000 kg /\
I ﬂrl I lﬂ( r7‘=|l=lm{7

i

direction of acceleration a

—_ 2/
a 3m52j7_

> direction of force FZ, L

=ﬁﬂ‘ [ e TR ‘=ll=ﬂr
i

Figure 3.2 Aforceis needed to make the train a accelerate,
and b decelerate.

b R

To calculate the acceleration a of the train produced by
the resultant force F, we must also know the train’s mass m
(Table 3.1). These quantities are related by:

a= F or F=ma
m
Quantity Symbol | Unit
resultant force F N (newtons)
mass m kg (kilograms)
acceleration a ms (metres per second squared)

Table 3.1 The quantities related by F=ma.

=
3 ==

Figure 3.1 An aircraft takes off - the force provided by the
engines causes the aircraft to accelerate.

In this example we have F = 20000N and m = 10000kg,
and so:

F 10000 5
=== oms
m 10000

In Figure 3.2b, the train is decelerating as it comes into a
station. Its acceleration is —3.0 m s. What force must be

provided by the braking system of the train?
F=ma=10000 x -3 =-30000N
The minus sign shows that the force must act towards

the right in the diagram, in the opposite direction to the
motion of the train.

Force, mass and acceleration
The equation we used above, F = ma, is a simplified version
of Newton’s second law of motion.

For a body of constant mass, its acceleration is directly
proportional to the resultant force applied to it.

An alternative form of Newton’s second law is given in
Chapter 6 when you have studied momentum. Since
Newton’s second law holds for objects that have a constant
mass, this equation can be applied to a train whose mass

remains constant during its journey. The equation a = £
relates acceleration, resultant force and mass. In "
particular, it shows that the bigger the force, the greater
the acceleration it produces. You will probably feel that
this is an unsurprising result. For a given object, the
acceleration is directly proportional to the resultant force:

ao<F



The equation also shows that the acceleration produced
by a force depends on the mass of the object. The mass of
an object is a measure of its inertia, or its ability to resist
any change in its motion. The greater the mass, the smaller
the acceleration which results. If you push your hardest
against a small car (which has a small mass), you will have
a greater effect than if you push against a more massive
car (Figure 3.3). So, for a constant force, the acceleration is
inversely proportional to the mass:

P

m
The train driver knows that, when the train is full during
the rush hour, it has a smaller acceleration. This is because
its mass is greater when it is full of people. Similarly,
it is more difficult to stop the train once it is moving.
The brakes must be applied earlier to avoid the train
overshooting the platform at the station.

1 Acyclist of mass 60 kg rides a bicycle of mass 20 kg.
When starting off, the cyclist provides a force of
200N. Calculate the initial acceleration.

Step 1 Thisis a straightforward example. First, we
must calculate the combined mass m of the bicycle
and its rider:

m=20+60=80kg
We are given the force F:
force causing acceleration F=200N

Step 2 Substituting these values gives:
S =2.5ms™
m 80
So the cyclist’s acceleration is 2.5ms™.
2 Acarof mass 500kgis travelling at 20ms™. The driver
sees a red traffic light ahead, and slows to a halt in
10s. Calculate the braking force provided by the car.

Step 1 In this example, we must first calculate the
acceleration required. The car’s final velocity is
0ms™, soits change in velocity Av=0-20=-20ms™

. change in velocity
acceleratona=——>————

time taken
_Av_ =20 _ =
= At 10 2ms

Step 2 To calculate the force, we use:
F = ma =500x-2=-1000N
So the brakes must provide a force of 1000N. (The

minus sign shows a force decreasing the velocity of
the car.)

Chapter 3: Dynamics - explaining motion

mass m =700 kg

mass m = 2600 kg

Figure 3.3 Itis easier to make a small mass accelerate than a
large mass.

1 Calculate the force needed to give a car of mass
800kg an acceleration of 2.0ms™2.

2 Arocket has a mass of 5000 kg. At a particular
instant, the resultant force acting on the rocket is
200000 N. Calculate its acceleration.

3 (Inthis question, you will need to make use of
the equations of motion which you studied in
Chapter 2.) A motorcyclist of mass 60 kg rides a
bike of mass 40kg. As she sets off from the lights,
the forward force on the bike is 200N. Assuming
the resultant force on the bike remains constant,
calculate the bike’s velocity after 5.05s.

Understanding Sl units

Any quantity that we measure or calculate consists of a
value and a unit. In physics, we mostly use units from the
SI system. These units are all defined with extreme care,
and for a good reason. In science and engineering, every
measurement must be made on the same basis, so that
measurements obtained in different laboratories can be
compared. This is important for commercial reasons, too.
Suppose an engineering firm in Taiwan is asked to produce
a small part for the engine of a car which is to be assembled
in India. The dimensions are given in millimetres and the
part must be made with an accuracy of a tiny fraction of

a millimetre. All concerned must know that the part will
fit correctly - it wouldn’t be acceptable to use a different
millimetre scale in Taiwan and India.

Engineering measurements, as well as many other
technical measurements, are made using SI units to
ensure that customers get what they expected (and can
complain if they don’t). So governments around the
world have set up standards laboratories to ensure that
measuring instruments are as accurate as is required —
scales weigh correctly, police speed cameras give reliable
measurements, and so on. (Other, non-SI, units such as the
foot, pound or hour, are defined in terms of SI units.)
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Base units, derived units
The metre, kilogram and second are three of the seven SI
base units. These are defined with great precision so that
every standards laboratory can reproduce them correctly.
Other units, such as units of speed (ms™) and
acceleration (ms2) are known as derived units because
they are combinations of base units. Some derived units,
such as the newton and the joule, have special names
which are more convenient to use than giving them in
terms of base units. The definition of the newton will show
you how this works.

Defining the newton

Isaac Newton (1642-1727) played a significant part

in developing the scientific idea of force. Building on
Galileo’s earlier thinking, he explained the relationship
between force, mass and acceleration, which we now write
as F = ma. For this reason, the SI unit of force is named
after him.

We can use the equation F = ma to define the newton (N).

One newton is the force that will give a 1 kg mass an
acceleration of 1 ms™ in the direction of the force.

IN=1kgx1lms? or 1N=1lkgms?

The seven base units
In mechanics (the study of forces and motion), the units
we use are based on three base units: the metre, kilogram
and second. As we move into studying electricity, we will
need to add another base unit, the ampere. Heat requires
another base unit, the kelvin (the unit of temperature).
Table 3.2 shows the seven base units of the SI system.
Remember that all other units can be derived from these
seven. The equations that relate them are the equations
that you will learn as you go along (just as F = ma relates
the newton to the kilogram, metre and second). The unit
of luminous intensity is not part of the A/AS course.

Base unit Symbol Base unit
length X, | s etc. m (metre)
mass m kg (kilogram)
time t s (second)
electric current I A (ampere)
thermodynamic temperature | T K (kelvin)
amount of substance n mol (mole)
luminous intensity I cd (candela)

Table 3.2 Sl base quantities and units. In this course, you will
learn about all of these except the candela.

4 The pull of the Earth’s gravity on an apple (its
weight) is about 1 newton. We could devise a new
international system of units by defining our unit
of force as the weight of an apple. State as many
reasons as you can why this would not be a very
useful definition.

Other Sl units

Using only seven base units means that only this number
of quantities have to be defined with great precision. There
would be confusion and possible contradiction if more
units were also defined. For example, if the density of water
were defined as exactly 1 gcm™, then 1000 cm? of a sample
of water would have a mass of exactly 1kg. However, it is
unlikely that the mass of this volume of water would equal
exactly the mass of the standard kilogram. The standard
kilogram, which is kept in France, is the one standard from
which all masses can ultimately be measured.

All other units can be derived from the base units. This
is done using the definition of the quantity. For example,

speed is defined as %, and so the base units of
1

speed in the SI system are ms™.
Since the defining equation for force is F = ma, the base
units for force are kgms™.
Equations that relate different quantities must have the
same base units on each side of the equation. If this does
not happen the equation must be wrong.

When each term in an equation has the same base units
the equation is said to be homogeneous.

5 Determine the base units of:
force
area )
b energy (=force x distance)
mass
volume)
6 Use base units to prove that the following
equations are homogeneous.

a pressure (=

¢ density (=

a pressure
= density x acceleration due to gravity x depth

b distance travelled
=initial speed x time + 1 acceleration x time?
(s=ut+1at?)



3 Itissuggested that the time T for one oscillation of
a swinging pendulum is given by the equation
T2 =4n?(l/g) where [ is the length of the pendulum
and g is the acceleration due to gravity. Show that
this equation is homogeneous.

For the equation to be homogeneous, the term on
the left-hand side must have the same base units as
all the terms on the right-hand side.

Step 1 The base unit of time Tis s. The base unit of
the left-hand side of the equation is therefore s2.

Step 2 The base unit of [ is m. The base units of g are
ms™2. Therefore the base unit of the right-hand side is

% =s2. (Notice that the constant 4n2 has no

units.)

Since the base units on the left-hand side of the
equation are the same as those on the right, the
equation is homogeneous.

Prefixes

Each unit in the SI system can have multiples and sub-
multiples to avoid using very high or low numbers. For
example 1 millimetre (mm) is one thousandth of a metre
and 1 micrometre (um) is one millionth of a metre.

The prefix comes before the unit. In the unit mm, the
first m is the prefix milli and the second m is the unit
metre. You will need to recognise a number of prefixes for
the A/AS course, as shown in Table 3.3.

Multiples Sub-multiples
Multiple | Prefix | Symbol | Multiple | Prefix | Symbol
103 kilo k 107 deci d
108 mega | M 107 centi |c
10° giga G 1073 mill m
1012 tera T 107 micro | p
108 peta P 107 nano | n
10712 pico p

Table 3.3 Multiples and sub-multiples.

You must take care when using prefixes.

m Squaring or cubing prefixes - for example:

lcm=102m
so1lcm?=(102m)2=10"*m?
and 1cm3=(102m)3=10"°m3.

m  Writing units - for example, you must leave a small space
between each unit when writing a speed such as 3ms™,
because if you write it as 3ms™ it would mean
3 millisecond™.

Chapter 3: Dynamics - explaining motion

7 Find the area of one page of this book in cm? and
then convert your value to m?,

8 Write down in powers of ten the values of the
following quantities:
a 60pA
b 500MW
c¢ 20000mm

4 The density of water is 1.0 gcm™. Calculate this value
inkgm™,
Step 1 Find the conversions for the units:
1g=1x103kg
1cm3=1x10"°%m3
Step 2 Use these in the value for the density of water:

1.0x1x1073

_3:
1.0gecm 1x10°6

=1.0x103kgm™3

The pull of gravity

Now we need to consider some specific forces - such as
weight and friction.

When Isaac Newton was confined to his rural home
to avoid the plague which was rampant in other parts of
England, he is said to have noticed an apple fall to the
ground. From this, he developed his theory of gravity
which relates the motion of falling objects here on Earth to
the motion of the Moon around the Earth, and the planets
around the Sun.

The force which caused the apple to accelerate was the
pull of the Earth’s gravity. Another name for this force is the
weight of the apple. The force is shown as an arrow, pulling
vertically downwards on the apple (Figure 3.4). It is usual
to show the arrow coming from the centre of the apple -
its centre of gravity. The centre of gravity of an object is
defined as the point where its entire weight appears to act.

Figure 3.4 The weight of an objectis a
force caused by the Earth’s gravity. It acts

weight =mg vertically down on the object.
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Large and small

A large rock has a greater weight than a small rock, but if
you push both rocks over a cliff at the same time, they will
fall at the same rate. In other words, they have the same
acceleration, regardless of their mass. This is a surprising
result. Common sense may suggest that a heavier object
will fall faster than a lighter one. It is said that Galileo
dropped a large cannon ball and a small cannon ball from
the top of the Leaning Tower of Pisa in Italy, and showed
that they landed simultaneously. He may never actually
have done this, but the story illustrates that the result

is not intuitively obvious - if everyone thought that the
two cannon balls would accelerate at the same rate, there
would not have been any experiment or story.

In fact, we are used to lighter objects falling more
slowly than heavy ones. A feather drifts down to the floor,
while a stone falls quickly. However, we are being misled
by the presence of air resistance. The force of air resistance
has a large effect on the falling feather, and almost no
effect on the falling stone. When astronauts visited the
Moon (where there is virtually no atmosphere and so no
air resistance), they were able to show that a feather and a
stone fell side-by-side to the ground.

As we saw in Chapter 2, an object falling freely close
to the Earth’s surface has an acceleration of roughly
9.81 ms™2, the acceleration of free fall g

We can find the force causing this acceleration using
F = ma. This force is the object’s weight. Hence the
weight W of an object is given by:

weight = mass x acceleration of free fall
or

W=mg

Gravitational field strength

Here is another way to think about the significance

of g. This quantity indicates how strong gravity is at a
particular place. The Earth’s gravitational field is stronger
than the Moon’s. On the Earth’s surface, gravity gives an
acceleration of free fall of about 9.81 ms™. On the Moon,
gravity is weaker; it only gives an acceleration of free

fall of about 1.6 ms™. So g indicates the strength of the
gravitational field at a particular place:

g = gravitational field strength
and
weight = mass x gravitational field strength

(Gravitational field strength has units of Nkg™. This unit
is equivalent to ms~.)

9 Estimate the mass and weight of each of the
following at the surface of the Earth:

a kilogram of potatoes
this book

an average student
amouse

" o N T 9

a 40-tonne truck.

—_

For estimates, use g =10ms2; 1tonne = 1000kg.)

On the Moon

The Moon is smaller and has less mass than the Earth, and
so its gravity is weaker. If you were to drop a stone on the
Moon, it would have a smaller acceleration. Your hand is
about 1 m above ground level; a stone takes about 0.45s to
fall through this distance on the Earth, but about 1.1s on
the surface of the Moon. The acceleration of free fall on the
Moon is about one-sixth of that on the Earth:

SMoon = 1.6ms™

It follows that objects weigh less on the Moon than on the
Earth. They are not completely weightless, because the
Moon’s gravity is not zero.

Mass and weight

We have now considered two related quantities, mass and
weight. It is important to distinguish carefully between
these (Table 3.4).

If your moon-buggy breaks down (Figure 3.5), it will
be no easier to get it moving on the Moon than on the
Earth. This is because its mass does not change, because it
is made from just the same atoms and molecules wherever
itis. From F = ma, it follows that if m doesn’t change, you
will need the same force F to start it moving.

However, your moon-buggy will be easier to lift on the
Moon, because its weight will be less. From W = mg, since
gis less on the Moon, it has a smaller weight than when on
the Earth.

Quantity | Symbol | Unit | Comment

mass m kg this does not vary from place to
place
weight mg N this a force - it depends on the

strength of gravity

Table 3.4 Distinguishing between mass and weight.



Figure 3.5 The mass
of amoon-buggy

is the same on the
Moon as on the
Earth, but its weight
is smaller.

Mass and inertia

It took a long time for scientists to develop correct ideas
about forces and motion. We will start by thinking about
some wrong ideas, and then consider why Galileo, Newton
and others decided new ideas were needed.

Observations and ideas
Here are some observations to think about:

m Thelarge tree trunk shown in Figure 3.6 is being dragged
from a forest. The elephant provides the force needed to
pullit along. If the elephant stops pulling, the tree trunk will
stop moving.

m Ahorseis pulling a cart. If the horse stops pulling, the cart
soon stops.

® You areriding a bicycle. If you stop pedalling, the bicycle will
come to a halt.

® You are driving along the road. You must keep your foot
on the accelerator pedal, otherwise the car will not keep
moving.

m You kick a football. The ball rolls along the ground and
gradually stops.

In each of these cases, there is a force which makes
something move - the pull of the elephant or the horse,

Figure 3.6 An elephant provides the force needed to drag this
tree from the forest.
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your push on the bicycle pedals, the force of the car engine,
the push of your foot. Without the force, the moving object
comes to a halt. So what conclusion might we draw?

A moving object needs a force to keep it moving.

This might seem a sensible conclusion to draw, but it is
wrong. We have not thought about all the forces involved.
The missing force is friction.

In each example above, friction (or air resistance)
makes the object slow down and stop when there is no
force pushing or pulling it forwards. For example, if you
stop pedalling your cycle, air resistance will slow you
down. There is also friction at the axles of the wheels, and
this too will slow you down. If you could lubricate your
axles and cycle in a vacuum, you could travel along at a
steady speed for ever, without pedalling!

In the 17th century, astronomers began to use
telescopes to observe the night sky. They saw that objects
such as the planets could move freely through space. They
simply kept on moving, without anything providing a
force to push them. Galileo came to the conclusion that
this was the natural motion of objects.

m Anobject at rest will stay at rest, unless a force causes it to
start moving.

® A moving object will continue to move at a steady speed in
a straight line, unless a force acts on it.

So objects move with a constant velocity, unless a force
acts on them. (Being stationary is simply a particular

case of this, where the velocity is zero.) Nowadays it is
much easier to appreciate this law of motion, because we
have more experience of objects moving with little or

no friction - roller-skates with low-friction bearings, ice
skates, and spacecraft in empty space. In Galileo’s day,
people’s everyday experience was of dragging things along
the ground, or pulling things on carts with high-friction
axles. Before Galileo, the orthodox scientific idea was that
a force must act all the time to keep an object moving -
this had been handed down from the time of the ancient
Greek philosopher Aristotle. So it was a great achievement
when scientists were able to develop a picture of a world
without friction.

The idea of inertia
The tendency of a moving object to carry on moving is
sometimes known as inertia.

m Anobject with a large mass is difficult to stop moving - think
about catching a cricket ball, compared with a tennis ball.

m Similarly, a stationary object with a large mass is difficult to
start moving - think about pushing a car to get it started.

m Itisdifficult to make a massive object change direction -
think about the way a fully laden supermarket trolley tries
to keep movingin a straight line.
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All of these examples suggest another way to think of an
object’s mass; it is a measure of its inertia — how difficult

it is to change the object’s motion. Uniform motion is

the natural state of motion of an object. Here, uniform
motion means ‘moving with constant velocity’ or ‘moving
at a steady speed in a straight line’. Now we can summarise
these findings as Newton’s first law of motion.

An object will remain at rest or in a state of uniform
motion unless it is acted on by a resultant force.

In fact, this is already contained in the simple equation

we have been using to calculate acceleration, F = ma. If no
resultant force acts on an object (F = 0), it will not accelerate
(a = 0). The object will either remain stationary or it will
continue to travel at a constant velocity. If we rewrite the

. F
equation as a = _» We can see that the greater the mass m,

the smaller the acceleration a produced by a force F.

10 Use theidea of inertia to explain why some large
cars have power-assisted brakes.

11 Acar crashes head-on into a brick wall. Use the
idea of inertia to explain why the driver is more
likely to come out through the windscreen if he or
she is not wearing a seat belt.

Top speed

The vehicle shown in Figure 3.7 is capable of speeds as
high as 760 mph, greater than the speed of sound. Its
streamlined shape is designed to cut down air resistance
and its jet engines provide a strong forward force to
accelerate it up to top speed. All vehicles have a top speed.

Figure 3.7 The Thrust SSC rocket car broke the world land-
speed record in 1997. It achieved a top speed of 763 mph (just
over 340ms™) over a distance of 1 mile (1.6 km).

But why can’t they go any faster? Why can’t a car driver
keep pressing on the accelerator pedal, and simply go
faster and faster?

To answer this, we have to think about the two forces
mentioned above: air resistance and the forward thrust
(force) of the engine. The vehicle will accelerate so long as
the thrust is greater than the air resistance. When the two
forces are equal, the resultant force on the vehicle is zero,
and the vehicle moves at a steady velocity.

Balanced and unbalanced forces

If an object has two or more forces acting on it, we have to
consider whether or not they are ‘balanced’ (Figure 3.8).
Forces on an object are balanced when the resultant force
on the object is zero. The object will either remain at rest
or have a constant velocity.

We can calculate the resultant force by adding up two
(or more) forces which act in the same straight line. We
must take account of the direction of each force. In the
examples in Figure 3.8, forces to the right are positive and
forces to the left are negative.

When a car travels slowly, it encounters little air
resistance. However, the faster it goes, the more air it has
to push out of the way each second, and so the greater

Two equal forces acting
in opposite directions
cancel each other out.
We say they are balance
The car will continue to
move at a steady velocit
in a straight line.
resultant force=0N

These two forces are
unequal, so they do not
cancel out. They are
unbalanced. The car will
accelerate.
resultant force
=400 N - 300
=100 N to the right

Again the forces are
unbalanced. This time,
the car will slow down ol

decelerate.
resultant force
=400N-300N

=100 N to the left

Figure 3.8 Balanced and unbalanced forces.



the air resistance. Eventually the backward force of air
resistance equals the forward force provided between the
tyres and the road, and the forces on the car are balanced.
It can go no faster - it has reached its top speed.

Free fall

Skydivers (Figure 3.9) are rather like cars — at first, they
accelerate freely. At the start of the fall, the only force
acting on the diver is his or her weight. The acceleration of
the diver at the start must therefore be g Then increasing
air resistance opposes their fall and their acceleration
decreases. Eventually they reach a maximum velocity,
known as the terminal velocity. At the terminal velocity
the air resistance is equal to the weight. The terminal
velocity is approximately 120 miles per hour (about
50ms™), but it depends on the diver’s weight and
orientation. Head-first is fastest.

The idea of a parachute is to greatly increase the air
resistance. Then terminal velocity is reduced, and the
parachutist can land safely. Figure 3.10 shows how a
parachutist’s velocity might change during descent.

Terminal velocity depends on the weight and surface
area of the object. For insects, air resistance is much
greater relative to their weight than for a human being and

Velocity

0 - >
0 Time
Figure 3.10 The velocity of a parachutist varies during a
descent. The force arrows show weight (downwards) and air
resistance (upwards).
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so their terminal velocity is quite low. Insects can be swept
up several kilometres into the atmosphere by rising air
streams. Later, they fall back to Earth uninjured. It is said
that mice can survive a fall from a high building for the
same reason.

Moving through fluids

Air resistance is just one example of the resistive or
viscous forces which objects experience when they move
through a fluid - a liquid or a gas. If you have ever run
down the beach and into the sea, or tried to wade quickly
through the water of a swimming pool, you will have
experienced the force of drag. The deeper the water gets,
the more it resists your movement and the harder you have
to work to make progress through it. In deep water, it is
easier to swim than to wade.

You can observe the effect of drag on a falling object if
you drop a key or a coin into the deep end of a swimming
pool. For the first few centimetres, it speeds up, but for the
remainder of its fall, it has a steady speed. (If it fell through
the same distance in air, it would accelerate all the way.)
The drag of water means that the falling object reaches its
terminal velocity very soon after it is released. Compare
this with a skydiver, who has to fall hundreds of metres
before reaching terminal velocity.

Moving through air

We rarely experience drag in air. This is because air is
much less dense than water; its density is roughly o5 that
of water. At typical walking speed, we do not notice the
effects of drag. However, if you want to move faster, they
can be important. Racing cyclists, like the one shown in
Figure 3.11, wear tight-fitting clothing and streamlined

Figure 3.11 Aracing cyclist adopts a posture which helps to
reduce drag. Clothing, helmet and even the cycle itself are
designed to allow them to go as fast as possible.
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helmets. Other athletes may take advantage of the drag

of air. The runner in Figure 3.12 is undergoing resistance
training. The parachute provides a backward force against
which his muscles must work. This should help to develop
his muscles.

Figure 3.12 Arunner making use of air resistance to build up
his muscles.

12 Ifyou drop a large stone and a small stone from
the top of a tall building, which one will reach the
ground first? Explain your answer.

13 In arace, downhill skiers want to travel as quickly
as possible. They are always looking for ways to
increase their top speed. Explain how they might
do this. Think about:

a their skis
b their clothing
¢ their muscles
d theslope.
14 Skydivers jump from a plane at intervals of a few

seconds. If two divers wish to join up as they fall,
the second must catch up with the first.

a If onediveris more massive than the other,
which should jump first? Use the idea of forces
and terminal velocity to explain your answer.

b If both divers are equally massive, suggest
what the second might do to catch up with
the first.

5 Acarof mass500kg is travelling along a flat road.
The forward force provided between the car tyres
and the road is 300N and the air resistance is 200 N.
Calculate the acceleration of the car.

Step 1 Start by drawing a diagram of the car,
showing the forces mentioned in the question
(Figure 3.13). Calculate the resultant force on the car;
the force to the right is taken as positive:

resultant force =300 -200=100N

Step 2 Now use F=ma to calculate the car’s

acceleration:
F 100

=== —2
a m - 500 0.20ms

So the car’s acceleration is 0.20ms™.

Figure 3.13 The forces on an accelerating car.

6 The maximum forward force a car can provide
is 500N. The air resistance F which the car
experiences depends on its speed according to
F=0.2v2, where vis the speed in ms™. Determine
the top speed of the car.

Step 1 From the equation F=0.2v?, you can see
that the air resistance increases as the car goes
faster. Top speed is reached when the forward
force equals the air resistance. So, at top speed:

500 =0.2v?

Step 2 Rearranging gives:

V2= 2 2500
0.2

v=50ms?t

So the car’s top speed is 50 ms™ (this is about
180kmh™).
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Identifying forces

It is important to be able to identify the forces which act on an object. When we
know what forces are acting, we can predict how it will move. Figure 3.14 shows
some important forces, how they arise, and how we represent them in diagrams.

Diagram Force Important situations
push ‘HHHHH pull Pus_hes_and pulls. Y_ou can make an object accglerate by pushing angl ®m pushingand pulling
—_— - pulling it. Your force is shown by an arrow pushing (or pulling) the object. | m lifting
H‘HHHH The engine of a car provides a force to push backwards on the road. m forceof carengine
. forward | gictional forces from the road on the tyre push the car forwards. ®  attraction and
S push on .
Q. O cor repulsion by magnets
back <—>d H and by electric
ackward pus charges
on road
[T Weight. This is the force of gravity acting on the object. Itis usually shown | m anyobjectina
I by an arrow pointing vertically downwards from the object’s centre of gravitational field
weight gravity. m lesson the Moon
M ull Friction. This is the force which arises when two surfaces rub over one another. | m  pulling an object
friction 1] P If an object is sliding along the ground, friction acts in the opposite direction to along the ground
its motion. If an object is stationary, but tending to slide - perhaps becauseitis | m  vehicles cornering or
on a slope - the force of friction acts up the slope to stop it from sliding down. skidding
- Friction always acts along a surface, never at an angle to it. m sliding down aslope
riction
Drag. This force is similar to friction. When an object moves through air, m vehicles moving
there is friction between it and the air. Also, the object has to push aside m  aircraftflying
the air as it moves along. Together, these effects make up drag. ® parachuting
ﬂ“ f Similarly, when an object moves through a liquid, it experiences adrag | g objects falling
orce. :
through air or water
Drag acts to oppose the motion of an object; it acts in the opposite m shi s%ailin
direction to the object’s velocity. It can be reduced by giving the object a P &
streamlined shape.
upthrust, Upthrust. Any object placed in a fluid such as water or air experiences m boatsandicebergs
an upwards force. This is what makes it possible for something to float in floating
I | water. m people swimming
upthrust Upthrust arises from the pressure which a fluid exerts on an object. m diverssurfacing
weight The deeper you go, the greater the pressure. So there is more pressure on | o 4 hot air balloon
the lower surface of an object than on the upper surface, and this tends to fisin
push it upwards. If upthrust is greater than the object’s weight, it will float &
weight up to the surface.
Contact force. When you stand on the floor or sit on a chair, there is m standingonthe
contact contact . . . .
; usually a force which pushes up against your weight, and which supports ground
or‘ce forces you so that you do not fall down. The contact force is sometimes known | m  one object sitting on
as the normal reaction of the floor or chair. (In this context, normal means top of another
‘perpendicular’) ® leaning against a wall
] The contact force always acts at right angles to the surface which ® oneobiect bouncin
HH‘ HH‘ produces it. The floor pushes straight upwards; if you lean against a wall, it ﬁ Jth &
pushes back against you horizontally. off another
1 o Tension. This is the force in a rope or string when it is stretched. If you pull | m  pulling with a rope
T t n5|qr‘| ‘ on the ends of a string, it tends to stretch. The tension in the string pulls ®m squashingor
) Ttensio‘n \ back against you. It tries to shorten the string. stretching a spring
| Tension can also act in springs. If you stretch a spring, the tension pulls
‘ back to try to shorten the spring. If you squash (compress) the spring, the
| tension acts to expand the spring.

Figure 3.14 Some important forces.
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Contact forces and upthrust

We will now think about the forces which act when two
objects are in contact with each other. When two objects
touch each other, each exerts a force on the other. These
are called contact forces. For example, when you stand on
the floor (Figure 3.15), your feet push downwards on the
floor and the floor pushes back upwards on your feet. This
is a vital force - the upward push of the floor prevents you
from falling downwards under the pull of your weight.

contact force
of floor on foot

contact force
of foot on floor

Figure 3.15 Equal and opposite contact forces act when you
stand on the floor.

Where do these contact forces come from? When you
stand on the floor, the floor becomes slightly compressed.
Its atoms are pushed slightly closer together, and the
interatomic forces push back against the compressing
force. At the same time, the atoms in your feet are also
pushed together so that they push back in the opposite
direction. (It is hard to see the compression of the floor
when you stand on it, but if you stand on a soft material
such as foam rubber or a mattress you will be able to see
the compression clearly.)

You can see from Figure 3.15 that the two contact
forces act in opposite directions. They are also equal in
magnitude. As we will see shortly, this is a consequence of
Newton’s third law of motion.

When an object is immersed in a fluid (a liquid or a
gas), it experiences an upward force called upthrust. It is
the upthrust of water which keeps a boat floating (Figure
3.16) and the upthrust of air which lifts a hot air balloon
upwards.

The upthrust of water on a boat can be thought of as
the contact force of the water on the boat. It is caused by
the pressure of the water pushing upwards on the boat.
Pressure arises from the motion of the water molecules
colliding with the boat and the net effect of all these
collisions is an upward force.

An object in air, such as a ball, has a very small
upthrust acting on it, because the density of the air around

it is low. Molecules hit the top surface of the ball pushing
down, but only a few more molecules push upwards on
the bottom of the ball, so the resultant force upwards, or
the upthrust is low. If the ball is falling, air resistance is
greater than this small upthrust but both these forces are
acting upwards on the ball.

upthrust of water
on boat

Figure 3.16 Without sufficient upthrust from the water, the
boat would sink.

15 Name these forces:

a the upward push of water on a submerged
object

b the force which wears away two surfaces as
they move over one another

¢ theforce which pulled the apple off Isaac
Newton’s tree

d the force which stops you falling through the
floor

e theforcein astring which is holding up an
apple

f the force which makes it difficult to run
through shallow water.

16 Draw a diagram to show the forces which act
on a car as it travels along a level road at its top
speed.

17 Imagine throwing a shuttlecock straight up
in the air. Air resistance is more important for
shuttlecocks than for a tennis ball. Air resistance
always acts in the opposite direction to the
velocity of an object.

Draw diagrams to show the two forces, weight
and air resistance, acting on the shuttlecock:

a asitmoves upwards
b asit falls back downwards.



Newton’s third law of motion

For completeness, we should now consider Newton’s third
law of motion. (There is more about this in Chapter 6.)

When two objects interact, each exerts a force on the
other. Newton’s third law says that these forces are equal
and opposite to each other:

When two bodies interact, the forces they exert on each
other are equal in magnitude and opposite in direction.

(These two forces are sometimes described as action and
reaction, but this is misleading as it sounds as though one
force arises as a consequence of the other. In fact, the two
forces appear at the same time and we can’t say that one
caused the other.)

The two forces which make up a ‘Newton’s third law
pair” have the following characteristics:

m They act on different objects.

® They are equal in magnitude.

m They are opposite in direction.

m They are forces of the same type.

What does it mean to say that the forces are ‘of the same
type’? We need to think about the type of interaction
which causes the forces to appear.

m  Two objects may attract each other because of the gravity
of their masses - these are gravitational forces.

m Two objects may attract or repel because of their electrical
charges - electrical forces.

m  Two objects may touch - contact forces.

m  Two objects may be attached by a string and pull on each
other - tension forces.

m  Two objects may attract or repel because of their magnetic
fields - magnetic forces.

Figure 3.17 shows a person standing on the Earth’s surface.
The two gravitational forces are a Newton’s third law pair,
as are the two contact forces. Don’t be misled into thinking
that the person’s weight and the contact force of the floor
are a Newton’s third law pair. Although they are ‘equal and
opposite’, they do not act on different objects and they are
not of the same type.
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contact force

Earth on man
gravitational force ( )

(Earth on man)

contact force
(man on Earth)

gravitational force
(man on Earth)

Figure 3.17 For each of the forces that the Earth exerts on
you, an equal and opposite force acts on the Earth.

18 Describe one ‘Newton’s third law pair’ of forces
involved in the following situations. In each case,
state the object that each force acts on, the type
of force and the direction of the force.

a You step on someone’s toe.

b Acar hits a brick wall and comes to rest.
¢ Acarslows down by applying the brakes.
d You throw a ball upwards into the air.
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Summary

An object will remain at rest or in a state of uniform
motion unless it is acted on by an external force. This
is Newton'’s first law of motion.

For a body of constant mass, the acceleration is
directly proportional to the resultant force applied to
it. Resultant force F, mass m and acceleration a are
related by the equation:

resultant force = mass x acceleration
F=ma
This is a form of Newton’s second law of motion.

When two bodies interact, the forces they exert on
each other are equal in magnitude and opposite in
direction.

This is Newton’s third law of motion.

The acceleration produced by a force is in the same
direction as the force. Where there are two or more
forces, we must determine the resultant force.

A newton (N) is the force required to give a mass of
1kg an acceleration of 1 msin the direction of the
force.

The greater the mass of an object, the more it resists
changes in its motion. Mass is a measure of the
object’s inertia.

The weight of an object is a result of the pull of gravity
onit:

weight = mass x acceleration of free fall (W =mg)
weight = mass x gravitational field strength

An object falling freely under gravity has a constant
acceleration provided the gravitational field strength
is constant. However, fluid resistance (such as air
resistance) reduces its acceleration. Terminal velocity
is reached when the fluid resistance is equal to the
weight of the object.
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End-of-chapter questions

1

When a golfer hits a ball his club is in contact with the ball for about 0.0005s and the ball leaves the club
with a speed of 70ms™. The mass of the ball is 46 g.

a Determine the mean accelerating force.
b What mass, resting on the ball, would exert the same force asin a?

The mass of a spacecraft is 70 kg. As the spacecraft takes off from the Moon, the upwards force on the spacecraft
caused by the engines is 500 N. The gravitational field strength on the Moon is 1.6 Nkg™.

Determine:

a the weight of the spacecraft on the Moon

b the resultant force on the spacecraft

¢ theacceleration of the spacecraft.

A metal ball is dropped into a tall cylinder of oil. The ball initially accelerates but soon reaches a terminal velocity.
a By considering the forces on the metal ball bearing, explain why it first accelerates but then reaches
terminal velocity.

b Describe how you would show that the metal ball reaches terminal velocity.

Determine the speed in ms™ of an object that travels:
a 3pmin5ms
b 6kmin3Ms
¢ 8pmin4ns.

Figure 3.18 shows a man who is just supporting the weight of a box. Two of the forces acting are shown
in the diagram. According to Newton’s third law, each of these forces is paired with another force.

force of
ground on

Figure 3.18 For End-of-chapter Question 5.

For a the weight of the box and b the force of the ground on the man, state:
i thebody that the other force acts upon

ii thedirection of the other force

iii thetype of force involved.
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10

A car starts to move along a straight, level road. For the first 10s, the driver maintains a constant
acceleration of 1.5ms™. The mass of the caris 1.1 x 103kg.

a Calculate the driving force provided by the wheels, when:
i theforce opposing motion is negligible
ii the total force opposing the motion of the caris 600N.
b Calculate the distance travelled by the car in the first 10s.

Figure 3.19 shows the speed-time graphs for two falling balls.

3.0 I
metal

2.5 ball —+=——
Il/)
£ 2.0
S 15
g // plastic
a 1.0 =
%) / ball

0.5 L

0.0
0.00 0.04 0.08 0.12 016 0.20 0.24 0.28
Time/s
Figure 3.19 For End-of-chapter Question 7.

a Determine the terminal velocity of the plastic ball.

b Both balls are of the same size and shape but the metal ball has a greater mass. Explain, in terms
of Newton’s laws of motion and the forces involved, why the plastic ball reaches a constant
velocity but the metal ball does not.

¢ Explain why both balls have the same initial acceleration.

A car of mass 1200kg accelerates from rest to a speed of 8.0ms™in a time of 2.0s.
a Calculate the forward driving force acting on the car while it is accelerating. Assume that, at
low speeds, all frictional forces are negligible.
b At high speeds the resistive frictional force F produced by air on a body moving with velocity v is given
by the equation F= bv?, where b is a constant.
i Derive the base units of force in the Sl system.
ii Determine the base units of b in the Sl system.
iii The car continues with the same forward driving force and accelerates until it reaches a top speed
of 50ms™. At this speed the resistive force is given by the equation F= bv2. Determine the value
of b for the car.
iv Sketch a graph showing how the value of F varies with v over the range 0 to 50ms™. Use your
graph to describe what happens to the acceleration of the car during this time.

a Explain what is meant by the mass of a body and the weight of a body.

b State and explain one situation in which the weight of a body changes while its mass remains constant.

State the difference between the base units of mass and weight in the SI system.

a State Newton’s second law of motion.
When you jump from a wall on to the ground, it is advisable to bend your knees on landing.
i State how bending your knees affects the time it takes to stop when hitting the ground.
i Using Newton’s second law of motion, explain why it is sensible to bend your knees.

T E e
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Forces - vectors
and moments

Learning outcomes

You should be able to:

m add two or more coplanar forces

m resolve a force into perpendicular components

m define and apply the moment of a force and the torque of
acouple
apply the principle of moments
state the conditions for a body to be in equilibrium
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Sailing ahead

Force is a vector quantity. Sailors know a lot about the
vector nature of forces. For example, they can sail ‘into
the wind’. The sails of a yacht can be angled to provide
a component of force in the forward direction and

the boat can then sail at almost 45° to the wind. The
boat tends to ‘heel over’ and the crew sit on the side

of the boat to provide a turning effect in the opposite
direction (

Combining forces

You should recall that a vector quantity has both
magnitude and direction. An object may have two or more
forces acting on it and, since these are vectors, we must use
vector addition (Chapter 1) to find their combined effect
(their resultant).

There are several forces acting on the car (Figure 4.2) as
it struggles up the steep hill. They are:

| itsweight W (= mg)

m the contact force N of the road (its normal reaction)
m airresistance D
[

the forward force F caused by friction between the car tyres
and the road.

If we knew the magnitude and direction of each of these
forces, we could work out their combined effect on the car.
Will it accelerate up the hill? Or will it slide backwards
down the hill?

Figure 4.2 Four forces act on this car as it moves uphill.

Figure 4.1 Sailing into the wind.

The combined effect of several forces is known as the
resultant force. To see how to work out the resultant of
two or more forces, we will start with a relatively simple
example.

Two forces in a straight line

We saw some examples in Chapter 3 of two forces acting
in a straight line. For example, a falling tennis ball may be
acted on by two forces: its weight mg, downwards, and

air resistance D, upwards (Figure 4.3). The resultant force
is then:

resultant force =mg—D =1.0-0.2=0.8N

When adding two or more forces which act in a straight
line, we have to take account of their directions. A force
may be positive or negative; we adopt a sign convention to
help us decide which is which.

If you apply a sign convention correctly, the sign of
your final answer will tell you the direction of the resultant
force (and hence acceleration).

AD=0.2N

positive
direction

Ymg=1.0N

Figure 4.3 Two forces on a falling tennis ball.



Two forces at right angles

Figure 4.4 shows a shuttlecock falling on a windy day.

There are two forces acting on the shuttlecock: its weight
vertically downwards, and the horizontal push of the wind.
(It helps if you draw the force arrows of different lengths, to
show which force is greater.) We must add these two forces
together to find the resultant force acting on the shuttlecock.

6.0N
Direction
\ff travel 6
8.0N
6.0N R

8.0N

Figure 4.4 Two forces act on this shuttlecock as it travels
through the air; the vector triangle shows how to find the
resultant force.

We add the forces by drawing two arrows, end-to-end,
as shown on the right of Figure 4.4.

m First, a horizontal arrow is drawn to represent the 6.0N push
of the wind.

m  Next, starting from the end of this arrow, we draw a second
arrow, downwards, representing the weight of 8.0N.

m Now we draw a line from the start of the first arrow to
the end of the second arrow. This arrow represents the
resultant force R, in both magnitude and direction.

The arrows are added by drawing them end-to-end; the
end of the first arrow is the start of the second arrow. Now
we can find the resultant force either by scale drawing or
by calculation. In this case, we have a 3-4-5 right-angled
triangle, so calculation is simple:

R?=6.0+8.0>=36+64 =100

R=10N
tan@:ﬁ:@:i1
adj 6.0 3

4
0=tan!==53°
3

So the resultant force is 10N, at an angle of 53° below

the horizontal. This is a reasonable answer; the weight

is pulling the shuttlecock downwards and the wind is
pushing it to the right. The angle is greater than 45° because
the downward force is greater than the horizontal force.

Chapter 4: Forces - vectors and moments

If you draw a scale drawing be careful to:

m statethescale used
m draw a large diagram to reduce the uncertainty.

Three or more forces

The spider shown in Figure 4.5 is hanging by a thread. It is
blown sideways by the wind. The diagram shows the three
forces acting on it:

m  weight acting downwards
m thetensionin the thread
m the push of the wind.

The diagram also shows how these can be added together.
In this case, we arrive at an interesting result. Arrows are
drawn to represent each of the three forces, end-to-end.
The end of the third arrow coincides with the start of the
first arrow, so the three arrows form a closed triangle. This
tells us that the resultant force R on the spider is zero, that
is, R = 0. The closed triangle in Figure 4.5 is known as a
triangle of forces.

So there is no resultant force. The forces on the spider
balance each other out, and we say that the spider is in
equilibrium. If the wind blew a little harder, there would
be an unbalanced force on the spider, and it would move
off to the right.

We can use this idea in two ways:

m If we work out the resultant force on an object and find that
itis zero, this tells us that the object is in equilibrium.

m If we know that an object is in equilibrium, we know that the
forces on it must add up to zero. We can use this to work out
the values of one or more unknown forces.

tension in push of wind
thread
0
weight
push of wind .
tension

weight triangle of forces

Figure 4.5 Blowing in the wind - this spider is hangingin
equilibrium.
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1 Aparachutist weighs 1000N. When she opens her

parachute, it pulls upwards on her with a force of
2000N.

a Draw adiagram to show the forces acting on
the parachutist.

b Calculate the resultant force acting on her.
¢ What effect will this force have on her?
The ship shown in Figure 4.6 is travelling at a
constant velocity.

a Isthe shipin equilibrium (in other words, is the
resultant force on the ship equal to zero)? How
do you know?

b Whatis the upthrust U of the water?
¢ Whatis the drag D of the water?

upthrust U

m force of
mmmmm i engines

dragD

|

weight W= 1000 kN

Figure 4.6 For Question 2. The force D is the
frictional drag of the water on the boat. Like air
resistance, drag is always in the opposite direction to
the object’s motion.

Astone is dropped into a fast-flowing stream. It
does not fall vertically, because of the sideways
push of the water (Figure 4.7).

a Calculate the resultant force on the stone.
b Isthe stonein equilibrium?

upthrust U=0.5N

push of water
F=15N

weight W=2.5N

Figure 4.7 For Question 3.

Components of vectors

Look back to Figure 4.5. The spider is in equilibrium, even
though three forces are acting on it. We can think of the
tension in the thread as having two effects:

m itis pulling upwards, to counteract the downward effect of
gravity
m itis pulling to the left, to counteract the effect of the wind.

We can say that this force has two effects or components:
an upwards (vertical) component and a sideways
(horizontal) component. It is often useful to split up a
vector quantity into components like this, just as we did
with velocity in Chapter 2. The components are in two
directions at right angles to each other, often horizontal
and vertical. The process is called resolving the vector.
Then we can think about the effects of each component
separately; we say that the perpendicular components are
independent of one another. Because the two components
are at 90° to each other, a change in one will have no effect
on the other. Figure 4.8 shows how to resolve a force F into
its horizontal and vertical components. These are:

horizontal component of F, F, = Fcos 6

vertical component of F, F, = Fsin 0

R

X i
F,=Fsin0 F

F,=Fcosf
Figure 4.8 Resolving a vector into two components at right
angles.

Making use of components
When the trolley shown in Figure 4.9 is released, it
accelerates down the ramp. This happens because of the
weight of the trolley. The weight acts vertically downwards,
although this by itself does not determine the resulting
motion. However, the weight has a component which
acts down the slope. By calculating the component of
the trolley’s weight down the slope, we can determine its
acceleration.

Figure 4.10 shows the forces acting on the trolley. To
simplify the situation, we will assume there is no friction.
The forces are:

m W, the weight of the trolley, which acts vertically downwards

m N, the contact force of the ramp, which acts at right angles
to the ramp.



Figure 4.9 These students are investigating the acceleration
of a trolley down a sloping ramp.

Figure 4.10 Aforce diagram for a trolley on a ramp.

You can see at once from the diagram that the forces
cannot be balanced, since they do not act in the same
straight line.

To find the component of W down the slope, we need
to know the angle between W and the slope. The slope
makes an angle 6 with the horizontal, and from the
diagram we can see that the angle between the weight and
the ramp is (90° - 6). Using the rule for calculating the
component of a vector given above, we have:

component of W down the slope = W cos (90° - 6)
= Wsin 0
(It is helpful to recall that cos (90° - 8) = sin 0; you can see
this from Figure 4.10.)

Chapter 4: Forces - vectors and moments

Does the contact force N help to accelerate the trolley
down the ramp? To answer this, we must calculate its
component down the slope. The angle between N and the
slope is 90°. So:

component of N down the slope = Ncos90° =0

The cosine of 90° is zero, and so N has no component
down the slope. This shows why it is useful to think in
terms of the components of forces; we don’t know the
value of N, but, since it has no effect down the slope, we
can ignore it.

(There’s no surprise about this result. The trolley runs
down the slope because of the influence of its weight, not
because it is pushed by the contact force N.)

Changing the slope
If the students in Figure 4.9 increase the slope of their
ramp, the trolley will move down the ramp with greater
acceleration. They have increased 6, and so the component
of W down the slope will have increased.

Now we can work out the trolley’s acceleration. If the
trolley’s mass is m, its weight is mg. So the force F making
it accelerate down the slope is:

F=mgsin6
Since from Newton’s second law for constant mass we
have a = —, the trolley’s acceleration a is given by:
m

a=188n0_ o ng

We could have arrived at this result simply by saying that
the trolley’s acceleration would be the component of g
down the slope (Figure 4.11). The steeper the slope, the

greater the value of sin 8, and hence the greater the trolley’s
acceleration.

componentdown -.--.-
slope=gs%

-7 (90-0)

-
-

ramp\ .

-
-
-
-

Figure 4.11 Resolving g down the ramp.
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4 The personin Figure 4.12 is pulling a large box
using a rope. Use the idea of components of a
force to explain why they are more likely to get the
box to move if the rope is horizontal (as in a) than
if it is sloping upwards (as in b).

Figure 4.12 Why is it easier to move the box with the
rope horizontal? See Question 4.

5 Acrateissliding down a slope. The weight of the
crate is 500 N. The slope makes an angle of 30° with
the horizontal.

a Draw adiagram to show the situation. Include
arrows to represent the weight of the crate
and the contact force of the slope acting on
the crate.

b Calculate the component of the weight down
the slope.

¢ Explain why the contact force of the slope has
no component down the slope.

d What third force might act to oppose the
motion? In which direction would it act?

Solving problems by resolving forces
A force can be resolved into two components at

right angles to each other; these can then be treated
independently of one another. This idea can be used to
solve problems, as illustrated in Worked example 1.

6 Achild of mass 40kg is on a water slide. The
slide slopes down at 25° to the horizontal. The
acceleration of free fall is 9.81 ms™. Calculate the
child’s acceleration down the slope:

a when thereis no friction and the only force
acting on the child is his weight

b if africtional force of 80N acts up the slope.

1 Aboy of mass40kgis on a waterslide which slopes

at 30° to the horizontal. The frictional force up the
slope is 120 N. Calculate the boy’s acceleration down
the slope. Take the acceleration of free fall g to be
9.81ms™.

300 W

Figure 4.13 For Worked example 1.

Step 1 Draw a labelled diagram showing all the
forces acting on the object of interest (Figure 4.13).
This is known as a free-body force diagram. The
forces are:

the boy’s weight W=40x9.81 =392N
the frictional force up the slope F=120N
the contact force N at 90° to the slope.

Step 2 We are trying to find the resultant force on
the boy which makes him accelerate down the slope.
We resolve the forces down the slope, i.e. we find
their components in that direction.

component of W down the slope =392 x cos60°
=196N

component of F down the slope=-120N
(negative because Fis directed up the slope)

component of N down the slope =0
(becauseitis at 90° to the slope)

It is convenient that N has no component down the
slope, since we do not know the value of N.

Step 3 Calculate the resultant force on the boy:
resultant force =196 -120=76N

Step 4 Calculate his acceleration:

. resultant force _ 76 -
acceleration=———=-—=19ms
mass 40

So the boy’s acceleration down the slope is 1.9 ms™.
We could have arrived at the same result by resolving
vertically and horizontally, but that would have led
to two simultaneous equations from which we would
have had to eliminate the unknown force N. It often
helps to resolve forces at 90° to an unknown force.



Centre of gravity

We have weight because of the force of gravity of the
Earth on us. Each part of our body - arms, legs, head,

for example — experiences a force, caused by the force of
gravity. However, it is much simpler to picture the overall
effect of gravity as acting at a single point. This is our
centre of gravity.

The centre of gravity of an object is defined as the point
where all the weight of the object may be considered
to act.

For a person standing upright, the centre of gravity is
roughly in the middle of the body, behind the navel.
For a sphere, it is at the centre. It is much easier to solve
problems if we simply indicate an object’s weight by a
single force acting at the centre of gravity, rather than a
large number of forces acting on each part of the object.
Figure 4.14 illustrates this point. The athlete performs a
complicated manoeuvre. However, we can see that his
centre of gravity follows a smooth, parabolic path through
the air, just like the paths of projectiles we discussed in
Chapter 2.

——————

al ;
el e ——— | | Wl P

Figure 4.14 The dots indicate the athlete’s centre of gravity,
which follows a smooth trajectory through the air. With his
body curved like this, the athlete’s centre of gravity is actually
outside his body, just below the small of his back. At no time is
the whole of his body above the bar.
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The centre of gravity of a thin sheet, or lamina, of
cardboard or metal can be found by suspending it
freely from two or three points (Figure 4.15).

plumb line suspended
from pin

irregular object

O plumb line

Figure 4.15 The centre of gravity is located at the
intersection of the lines.

Small holes are made round the edge of the
irregularly shaped object. A pin is put through one
of the holes and held firmly in a clamp and stand
so the object can swing freely. A length of string is
attached to the pin. The other end of the string has
a heavy mass attached to it. This arrangement is
called a plumb line.

The object will stop swinging when its centre of
gravity is vertically below the point of suspension. A
line is drawn on the object along the vertical string
of the plumb line. The centre of gravity must lie on
this line. To find the position of the centre of gravity,
the process is repeated with the object suspended
from different holes. The centre of gravity will be at
the point of intersection of the lines drawn on the
object.

The turning effect of a force

Forces can make things accelerate. They can do something
else as well: they can make an object turn round. We say
that they can have a turning effect. Figure 4.16 shows how
to use a spanner to turn a nut.

To maximise the turning effect of his force, the
operator pulls close to the end of the spanner, as far as
possible from the pivot (the centre of the nut) and at 90° to
the spanner.
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Figure 4.16 A mechanicturnsa nut.

Moment of a force

The quantity which tells us about the turning effect of a

force is its moment. The moment of a force depends on

two quantities:

m the magnitude of the force (the bigger the force, the greater
its moment)

m the perpendicular distance of the force from the pivot (the
further the force acts from the pivot, the greater its moment).

The moment of a force is defined as follows:

The moment of a force = force x perpendicular distance of
the pivot from the line of action of the force.

Figure 4.17a shows these quantities. The force F, is pushing
down on the lever, at a perpendicular distance x; from the
pivot. The moment of the force F, about the pivot is then
given by:

moment = force x distance from pivot

=F xx;

The unit of moment is the newton metre (N m). This is
a unit which does not have a special name. You can also
determine the moment of a force in Ncm.

X1 _ d
@ 1 [ ) 6 1
l .
Fy
F
a 2 b

Figure 4.17 The quantities involved in calculating the
moment of a force.

Figure 4.17b shows a slightly more complicated
situation. F, is pushing at an angle 0 to the lever, rather
than at 90°. This makes it have less turning effect. There
are two ways to calculate the moment of the force.

Method 1

Draw a perpendicular line from the pivot to the line of the
force. Find the distance x,. Calculate the moment of the
force, F, x x,. From the right-angled triangle, we can see
that:

X, =dsinf
Hence:

moment of force = F,xdsin 0 = F,dsin

Method 2
Calculate the component of F, which is at 90° to the lever.
This is F, sin 6. Multiply this by d.
moment = F,sin0xd
We get the same result as Method 1:
moment of force = F,dsin 6

Note that any force (such as the component F, cos 8) which
passes through the pivot has no turning effect, because the
distance from the pivot to the line of the force is zero.

Note also that we can calculate the moment of a force
about any point, not just the pivot. However, in solving
problems, it is often most convenient to take moments
about the pivot as there is often an unknown force acting
through the pivot (its contact force on the object).

Balanced or unbalanced?

We can use the idea of the moment of a force to solve two
sorts of problem:

m  We can check whether an object will remain balanced or
start to rotate.

m  We can calculate an unknown force or distance if we know
that an object is balanced.

We can use the principle of moments to solve problems.
The principle of moments states that:

For any object that is in equilibrium, the sum of the
clockwise moments about any point provided by
the forces acting on the object equals the sum of the
anticlockwise moments about that same point.

Note that, for an object to be in equilibrium, we also
require that no resultant force acts on it. The Worked
examples that follow illustrate how we can use these ideas
to determine unknown forces.
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Is the see-saw shown in Figure 4.18 in equilibrium
(balanced), or will it start to rotate?

2.0m

i i
20N /N |
ON

Figure 4.18 Will these forces make the see-saw rotate,
or are their moments balanced?

The see-saw will remain balanced, because the 20N
force is twice as far from the pivot as the 40N force.

To prove this, we need to think about each force
individually. Which direction is each force trying to turn
the see-saw, clockwise or anticlockwise? The 20N force
is tending to turn the see-saw anticlockwise, while the
40N force is tending to turn it clockwise.

Step 1 Determine the anticlockwise moment:

moment of anticlockwise force=20x 2.0 =40Nm

Step 2 Determine the clockwise moment:
moment of clockwise force=40x1.0=40Nm
Step 3 We can see that:

clockwise moment = anticlockwise moment

So the see-saw is balanced and therefore does not
rotate. The see-saw is in equilibrium.

The beam shown in Figure 4.19 is in equilibrium.
Determine the force X.

1.0m

10N

Figure 4.19 For Worked example 3.

The unknown force X is tending to turn the beam
anticlockwise. The other two forces (10N and 20N) are
tending to turn the beam clockwise. We will start by
calculating their moments and adding them together.

Step 1 Determine the clockwise moments:

sum of moments of clockwise forces
= (10 1.0) + (20 X 0.5)

=10+10=20Nm
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Step 2 Determine the anticlockwise moment:

moment of anticlockwise force =X x 0.8

Step 3 Since we know that the beam must be balanced,
we can write:

sum of clockwise moments
= sum of anticlockwise moments

20=Xx0.8
X—E—ZSN
T 0.8

So a force of 25N at a distance of 0.8 m from the pivot
will keep the beam still and prevent it from rotating
(keep it balanced).

Figure 4.20 shows the internal structure of a human arm
holding an object. The biceps are muscles attached to
one of the bones of the forearm. These muscles provide
an upward force.

Figure 4.20 The human arm. For Worked example 4.

An object of weight 50N is held in the hand with the
forearm at right angles to the upper arm. Use the
principle of moments to determine the muscular force
F provided by the biceps, given the following data:

weight of forearm=15N
distance of biceps from elbow = 4.0cm

distance of centre of gravity
of forearm from elbow = 16cm

distance of object in the hand from elbow =35cm

Step 1 Thereis a lot of information in this question.

It is best to draw a simplified diagram of the forearm
that shows all the forces and the relevant distances
(Figure 4.21). All distances must be from the pivot, which
in this case is the elbow.
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sum of clockwise moments

elbow Step 2 Determine the clockwise moments:
F sum of moments of clockwise forces
T =(15x0.16) + (50 x 0.35)
arm
: : =19.9Nm
! : Step 3 Determine the anticlockwise moment:
i ! 15N moment of anticlockwise force = F x 0.04
:4.0cm: : Step 4 Since the armis in balance, according to the
f—> 1 o .
[ ' | principle of moments we have:
| 16cm X
C

| 50N . .
| 35cm , = sum of anticlockwise moments
i : 19.9=0.04 F
Figure 4.21 Simplified diagram showing forces on the 199 5
forearm. For Worked example 4. Note that another F= 004 = 49TSN=500N
force acts on the arm at the elbow; we do not know the
size or direction of this force but we can ignore it by The biceps provide a force of S00N - a force large
taking moments about the elbow. enough to lift 500 apples!
7 Awheelbarrow is loaded as shown in Figure 4.22. X ot
n a Calculate the force that the gardener needs to exert :,zoﬂ,: P 100 g
to hold the wheelbarrow’s legs off the ground. | 4/ T T T T
b Calculate the force exerted by the ground on the L m
legs of the wheelbarrow (taken both together) ! ! 10)g
when the gardener is not holding the handles. I—M_—I . S0CmEy :
| »!
~ 45cm ! ':

Figure 4.23 For Question 8.

9 Figure 4.24 shows a beam with four forces acting on it

a Foreach force, calculate the moment of the force
about point P.

b State whether each momentis clockwise or
anticlockwise.

¢ State whether or not the moments of the forces
are balanced.

Figure 4.22

. F,=10N F,=5N
For Question 7.

PI<_25 CM—><—25cm—><——50 cm—»T

8 Atraditional pair of scales uses sliding masses of l 30;)/
10g and 100 g to achieve a balance. A diagram of the F,=10N  F,=10N
arrangement is shown in Figure 4.23. The bar itself is ) )
supported with its centre of gravity at the pivot. Figure 4.24 For Question 9.

a Calculate the value of the mass M, attached at X.

b State one advantage of this method of measuring
mass.

¢ Determine the upward force of the pivot on the bar.



The torque of a couple

Figure 4.25 shows the forces needed to turn a car’s steering
wheel. The two forces balance up and down (15N up

and 15N down), so the wheel will not move up, down or
sideways. However, the wheel is not in equilibrium. The
pair of forces will cause it to rotate.

15N

0.20m

0.20m

Figure 4.25 Two forces act on this steering wheel to make it
turn.

A pair of forces like that in Figure 4.25 is known as a
couple. A couple has a turning effect, but does not cause
an object to accelerate. To form a couple, the two forces
must be:

m equalin magnitude
m parallel, but opposite in direction
m separated by a distanced.

The turning effect or moment of a couple is known as its
torque. We can calculate the torque of the couple in Figure
4.25 by adding the moments of each force about the centre
of the wheel:

torque of couple = (15x0.20) + (15x0.20)
=6.0Nm

We could have found the same result by multiplying one of
the forces by the perpendicular distance between them:

torque of a couple = 15x0.4 = 6.0Nm

The torque of a couple is defined as follows:

torque of a couple = one of the forces x perpendicular
distance between the forces

Chapter 4: Forces - vectors and moments

10 Thedriving wheel of a car travelling at a constant
velocity has a torque of 137N m applied to it by
the axle that drives the car (Figure 4.26). The
radius of the tyre is 0.18 m. Calculate the driving
force provided by this wheel.

Figure 4.26 For Question 10.

Pure turning effect

When we calculate the moment of a single force, the result
depends on the point or pivot about which the moment
acts. The further the force is from the pivot, the greater
the moment. A couple is different; the moment of a couple
does not depend on the point about which it acts, only

on the perpendicular distance between the two forces.

A single force acting on an object will tend to make the
object accelerate (unless there is another force to balance
it). A couple, however, is a pair of equal and opposite
forces, so it will not make the object accelerate. This means
we can think of a couple as a pure ‘turning effect’, the size
of which is given by its torque.

For an object to be in equilibrium, two conditions must be
met at the same time:

B Theresultant force acting on the object is zero.
® Theresultant moment is zero.
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Summary

Forces are vector quantities that can be added by
means of a vector triangle. Their resultant can be
determined using trigonometry or by scale drawing.

Vectors such as forces can be resolved into
components. Components at right angles to one

another can be treated independently of one another.

For a force F at an angle 0 to the x-direction, the
components are:

x-direction: Fcos
y-direction: Fsin6
The moment of a force = force x perpendicular

distance of the pivot from the line of action of
the force.

End-of-chapter questions

The principle of moments states that, for any object
that is in equilibrium, the sum of the clockwise
moments about any point provided by the

forces acting on the object equals the sum of the
anticlockwise moments about that same point.

A couple is a pair of equal, parallel but opposite forces
whose effect is to produce a turning effect on a body
without giving it linear acceleration.

torque of a couple = one of the forces x perpendicular
distance between the forces

For an object to be in equilibrium, the resultant force
acting on the object must be zero and the resultant
moment must be zero.

1 Ashipis pulled at a constant speed by two small boats, A and B, as shown in Figure 4.27. The engine of the

ship does not produce any force.

Figure 4.27 For End-of-chapter Question 1.

The tension in each cable between A and B and the ship is 4000 N.

a Draw afree-body diagram showing the three horizontal forces acting on the ship. [2]
b Draw avector diagram to scale showing these three forces and use your diagram to find the value

of the drag force on the ship.
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2 Ablock of mass 1.5kg is at rest on a rough surface which is inclined at 20° to the horizontal as shown
in Figure 4.28.

20°

Figure 4.28 For End-of-chapter Question 2.

Draw a free-body diagram showing the three forces acting on the block.
Calculate the component of the weight that acts down the slope.

Use your answer to b to determine the force of friction that acts on the block.
Determine the normal contact force between the block and the surface.

The free-body diagram (Figure 4.29) shows three forces that act on a stone hanging at rest from two strings.

tension in string 1

1.00 N tension in string 2

60° 0.58 N

horizontal

weight of stone

Figure 4.29 For End-of-chapter Question 3.

a Calculate the horizontal component of the tension in each string. Why should these two components
be equal in magnitude?
Calculate the vertical component of the tension in each string.
Use your answer to b to calculate the weight of the stone.
Draw a vector diagram of the forces on the stone. This should be a triangle of forces.
Use your diagram in d to calculate the weight of the stone.

The force F shown in Figure 4.30 has a moment of 40 N m about the pivot. Calculate the magnitude
of the force F.

F
Figure 4.30 For End-of-chapter Question 4.
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5 The asymmetric bar shown in Figure 4.31 has a weight of 7.6 N and a centre of gravity that is 0.040 m from the
wider end, on which thereis a load of 3.3N. It is pivoted a distance of 0.060 m from its centre of gravity.
Calculate the force P that is needed at the far end of the bar in order to maintain equilibrium. [4]

0.040 m 0.060 m 0.080 m

load

\/
load=3.3N

Figure 4.31 For End-of-chapter Question 5.

6 a Explainwhatis meant by:
i acouple 1

—
N
[l

i torque.
b The engine of a car produces a torque of 200N m on the axle of the wheel in contact with the road.
The car travels at a constant velocity towards the right (Figure 4.32).

Figure 4.32 For End-of-chapter Question 6.

i Copy Figure 4.32 and show the direction of rotation of the wheel, and the horizontal component

of the force that the road exerts on the wheel. [2]
ii State the resultant torque on the wheel. Explain your answer. 2]
iii The diameter of the car wheel is 0.58 m. Determine the value of the horizontal component of

the force of the road on the wheel. [1]

7 a Explain whatis meant by the centre of gravity of an object.
b Aflagpole of mass 25kg is held in a horizontal position by a cable
as shown in Figure 4.33. The centre of gravity of the flagpole is at
adistance of 1.5m from the fixed end.

i Write an equation to represent taking moments about the
left-hand end of the flagpole. Use your equation to find the
tension Tin the cable.

flagpole

ii Determine the vertical component of the force at the 1.5m
left-hand end of the flagpole.

weight  25m

Figure 4.33 For End-of-chapter Question 7.
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8 a Statethetwo conditions necessary for an object to be in equilibrium.

b Ametalrod of length 90cm has a disc of radius 24 cm fixed rigidly at its centre, as shown in
Figure 4.34 The assembly is pivoted at its centre.

90 cm

rope
Figure 4.34 For End-of-chapter Question 8.

Two forces, each of magnitude 30N, are applied normal to the rod at each end so as to

produce a turning effect on the rod. A rope is attached to the edge of the disc to prevent rotation.
Calculate:

i thetorque of the couple produced by the 30N forces
ii thetension Tintherope.

9 a Explainwhatis meant by the torque of a couple.
b Threestrings, A, B and C, are attached to a circular ring, as shown in Figure 4.35.

string A
string C

string B

Figure 4.35 For End-of-chapter Question 9.

The strings and the ring all lie on a smooth horizontal surface and are at rest. The tension in
string Ais 8.0N. Calculate the tension in strings Band C.
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10 Figure 4.36 shows a picture hanging symmetrically by two cords from a nail fixed to a wall.
The picture is in equilibrium.

nail

Figure 4.36 For End-of-chapter Question 10.

a Explain what is meant by equilibrium.

b Draw avector diagram to represent the three forces acting on the picture in the vertical plane.
Label each force clearly with its name and show the direction of each force with an arrow.

¢ Thetension in the cord is 45N and the angle that each end of the cord makes with the
horizontal is 50°. Calculate:
i thevertical component of the tension in the cord
ii the weight of the picture.




Work, energy
and power

(3]

Learning outcomes
You should be able to:

give examples of conversions of energy between
different forms

understand and use the concept of work

apply the principle of conservation of energy to simple
examples involving energy in different forms

derive and use the formulae for kinetic energy and
potential energy

define and use the equation for power
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The idea of energy

The Industrial Revolution started in the late
18th century in the British Isles. Today, many
other countries are undergoing the process of
industrialisation ( Industrialisation began
as engineers developed new machines which were
capable of doing the work of hundreds of craftsmen
and labourers. At first, they made use of the traditional
techniques of water power and wind power. Water
stored behind a dam was used to turn a wheel,
which turned many machines. By developing new
mechanisms, the designers tried to extract as much
as possible of the energy stored in the water. Steam
engines were developed, initially for pumping water
out of mines. Steam engines use a fuel such as coal;
there is much more energy stored in 1 kg of coal than in
1kg of water held behind a dam. Steam engines soon
powered the looms of the textile mills, and the British
industry came to dominate world trade in textiles.
Nowadays, most factories and mills rely on
electrical power, generated by burning coal or gas at
a power station. The fuel is burnt to release its store
of energy. High-pressure steam is generated, and this
turns a turbine which turns a generator. Even in the
most efficient coal-fired power station, only about
40% of the energy from the fuel is transferred to the
electrical energy that the station supplies to the grid.
Engineers strove to develop machines which made
the most efficient use of the energy supplied to them.
At the same time, scientists were working out the basic
ideas of energy transfer and energy transformations.
The idea of energy itself had to be developed; it was

— i‘
Figure 5.2 The jet engines of this aircraft are designed to
make efficient use of their fuel. If they were less efficient, their
thrust might only be sufficient to lift the empty aircraft, and
the passengers would have to be left behind.

not obvious at first that heat, light, electrical energy
and so on could all be thought of as being, in some
way, forms of the same thing. In fact, steam engines
had been in use for 150 years before it was realised
that their energy came from the heat supplied to them
from their fuel.

The earliest steam engines had very low efficiencies
- many converted less than 1% of the energy supplied
to them into useful work. The understanding of the
relationship between work and energy led to many
ingenious ways of making the most of the energy
supplied by fuel.

This improvement in energy efficiency has led to
the design of modern engines such as the jet engines
which have made long-distance air travel a commercial
possibility (

Figure 5.1 Anshan steel works, China.




Doing work, transferring energy

The weight-lifter shown in Figure 5.3 has powerful
muscles. They can provide the force needed to lift a large
weight above her head — about 2m above the ground. The
force exerted by the weight-lifter transfers energy from
her to the weights. We know that the weights have gained
energy because, when the athlete releases them, they come
crashing down to the ground.

Figure 5.3 Itis hard work being a weight-lifter.

As the athlete lifts the weights and transfers energy to
them, we say that her lifting force is doing work. ‘Doing
work’ is a way of transferring energy from one object to
another. In fact, if you want to know the scientific meaning
of the word ‘energy’, we have to say it is ‘that which is
transferred when a force moves through a distance’. So
work and energy are two closely linked concepts.

In physics, we often use an everyday word but with a
special meaning. Work is an example of this. Table 5.1
describes some situations which illustrate the meaning of
doing work in physics.

It is important to appreciate that our bodies sometimes
mislead us. If you hold a heavy weight above your head
for some time, your muscles will get tired. However,

Chapter 5: Work, energy and power

Doing work

Not doing work

Pushing a car to start it
moving: your force transfers
energy to the car. The car’s
kinetic energy (i.e. ‘movement
energy’) increases.

Pushing a car but it does
not budge: no energy is
transferred, because your
force does not move it. The
car’s kinetic energy does not
change.

Lifting weights: you are doing
work as the weights move
upwards. The gravitational
potential energy of the
weights increases.

Holding weights above your
head: you are not doing

work on the weights (even
though you may find it tiring)
because the force you apply
is not moving them. The
gravitational potential energy
of the weights is not changing.

Afalling stone: the force of
gravity is doing work. The
stone’s kinetic energy is
increasing.

The Moon orbiting the Earth:
the force of gravity is not doing
work. The Moon’s kinetic
energy is not changing.

Writing an essay: you are
doing work because you need
a force to move your pen
across the page, or to press
the keys on the keyboard.

Reading an essay: this may
seem like ‘hard work’, but no
force is involved, so you are
not doing any work.

Table 5.1 The meaning of ‘doing work’ in physics.

you are not doing any work on the weights, because you
are not transferring energy to the weights once they are
above your head. Your muscles get tired because they are
constantly relaxing and contracting, and this uses energy,
but none of the energy is being transferred to the weights.

Calculating work done

Because doing work defines what we mean by energy,

we start this chapter by considering how to calculate

work done. There is no doubt that you do work if you push
a car along the road. A force transfers energy from you to
the car. But how much work do you do? Figure 5.4 shows

the two factors involved:

m thesize of the force F - the bigger the force, the greater the

amount of work you do

m thedistance s you push the car - the further you push it, the
greater the amount of work done.

So, the bigger the force, and the further it moves, the
greater the amount of work done.

The work done by a force is defined as the product of the
force and the distance moved in the direction of the force:

W=Fxs

where s is the distance moved in the direction of the force.
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In the example shown in Figure 5.4,
F=300Nand s=5.0m, so:

work done W= Fxs=300x5.0=1500]

Figure 5.4 You have to do work to start the car moving.

Energy transferred

Doing work is a way of transferring energy. For both
energy and work the correct SI unit is the joule (J). The
amount of work done, calculated using W = Fxs, shows
the amount of energy transferred:

work done = energy transferred

Newtons, metres and joules

From the equation W = Fx s we can see how the unit of
force (the newton), the unit of distance (the metre) and the
unit of work or energy (the joule) are related.

1joule =1 newton x 1 metre

1J=1Nm

The joule is defined as the amount of work done when
a force of 1 newton moves a distance of 1 metre in

the direction of the force. Since work done = energy
transferred, it follows that a joule is also the amount of
energy transferred when a force of 1 newton moves a
distance of 1 metre in the direction of the force.

1 Ineach of the following examples, explain whether
or not any work is done by the force mentioned.
a You pull a heavy sack along rough ground.
b The force of gravity pulls you downwards when
you fall off a wall.
¢ Thetension in a string pulls on a stone when
you whirl it around in a circle at a steady speed.

d The contact force of the bedroom floor stops
you from falling into the room below.

2 A man of mass 70 kg climbs stairs of vertical height
2.5m. Calculate the work done against the force of
gravity. (Take g=9.81ms2)

3 Astone of weight 10N falls from the top of a250m
high cliff.

a Calculate how much work is done by the force

of gravity in pulling the stone to the foot of the
cliff.

b How much energy is transferred to the stone?

Force, distance and direction

It is important to appreciate that, for a force to do work,
there must be movement in the direction of the force. Both
the force F and the distance s moved in the direction of
the force are vector quantities, so you should know that
their directions are likely to be important. To illustrate
this, we will consider three examples involving gravity
(Figure 5.5). In the equation for work done, W = Fxs , the
distance moved s is thus the displacement in the direction
of the force.

Suppose that the force F moves through a distance
s which is at an angle 6 to F, as shown in Figure 5.6. To
determine the work done by the force, it is simplest to
determine the component of F in the direction of s. This
component is Fcos 8, and so we have:

work done = (Fcos0) x s
or simply:
work done = Fscos 6

Worked example 1 shows how to use this.
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Doing work Not doing work

1 Youdrop astoneweighing5.0N from |2 Astone weighing 5.0 Nrolls50 mdown | 3 Asatellite orbits the Earth at a constant

the top of a 50 m high cliff. What is the a slope. What is the work done by the height and at a constant speed. The
work done by the force of gravity? force of gravity? weight of the satellite at this height is
force on stone F force on stone F 500 N. What s the work done by the
= pull of gravity = weight of stone = pull of gravity = weight of stone force of gravity?
=5.0 N vertically downwards =5.0 N vertically downwards force on satellite F

= pull of gravity = weight of satellite
=500 N towards centre of Earth

Distance moved by stone is s =50 m Distance moved by stone down slope is Distance moved by satellite towards centre
vertically downwards. 50 m, but distance moved in direction of of Earth (i.e. in the direction of force) is
forceis 30 m. s=0.

Since Fand s are in the same direction, The work done by the force of gravity is: The satellite remains at a constant distance
there is no problem: work done =5.0x 30 from the Earth. It does not move in the
work done=Fxs =150 J direction of .

=5.0x50 The work done by the Earth’s pull on the

=250J satellite is zero because F =500 N but s =0:

work done =500 x 0
=0J

Figure 5.5 Three examples involving gravity.

F |
; ) Figure 5.6 The work done by a force
0 i distance travelled = s depends on the angle between the
Fcos 6 direction of motion force and the distance it moves.

1 Aman pulls a box along horizontal ground using a rope
(Figure 5.7). The force provided by the rope is 200N, at
an angle of 30° to the horizontal. Calculate the work 200}'
done if the box moves 5.0m along the ground.

Step 1 Calculate the component of the force in the
direction in which the box moves. This is the horizontal
component of the force: sodoobes

horizontal component of force =200c0s30° =~ 173N .
Figure 5.7 For Worked example 1.
Hint: Fcos 0 is the component of the force at an angle 6 to

the direction of motion. .
Hint: Note that we could have used the equation

Step 2 Now calculate the work done: work done = Fs cos 0 to combine the two steps into one.
work done =force x distance moved =173 x 5.0 = 865 J
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A gas doing work

Gases exert pressure on the walls of their container. If

a gas expands, the walls are pushed outwards - the gas
has done work on its surroundings. In a steam engine,
expanding steam pushes a piston to turn the engine, and
in a car engine, the exploding mixture of fuel and air does
the same thing, so this is an important situation.

Figure 5.8 When a gas expands, it does work on its
surroundings.

Figure 5.8 shows a gas at pressure p inside a cylinder
of cross-sectional area A. The cylinder is closed by a
moveable piston. The gas pushes the piston a distance s. If
we know the force F exerted by the gas on the piston, we
can deduce an expression for the amount of work done by
the gas.

From the definition of pressure (pressure = %), the

force exerted by the gas on the piston is given by:

force = pressure x area

F=pxA
and the work done is force x displacement:

W=pxAxs
But the quantity A x s is the increase in volume of the gas;
that is, the shaded volume in Figure 5.8. We call this AV,
where the A indicates that it is a change in V. Hence the
work done by the gas in expanding is:

W =pAV
Notice that we are assuming that the pressure p does not
change as the gas expands. This will be true if the gas is

expanding against the pressure of the atmosphere, which
changes only very slowly.

The crane shown in Figure 5.9 lifts its 500N load

to the top of the building from A to B. Distances
are as shown on the diagram. Calculate how much
work is done by the crane.
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Figure 5.9 For Question 4. The dotted line shows
the track of the load as it is lifted by the crane.

Figure 5.10 shows the forces acting on a box which
is being pushed up a slope. Calculate the work
done by each force if the box moves 0.50 m up the
slope.

100N

Figure 5.10 For Question 5.

When you blow up a balloon, the expanding
balloon pushes aside the atmosphere. How much
work is done against the atmosphere in blowing
up a balloon to a volume of 2 litres (0.002 m3)?
(Atmospheric pressure=1.0 x 10°Nm™2.)



Gravitational potential energy

If you lift a heavy object, you do work. You are providing
an upward force to overcome the downward force of
gravity on the object. The force moves the object upwards,
so the force is doing work.

In this way, energy is transferred from you to the
object. You lose energy, and the object gains energy. We
say that the gravitational potential energy E, of the object
has increased. Worked example 2 shows how to calculate a
change in gravitational potential energy - or g.p.e.
for short.

2 Aweight-lifter raises weights with a mass of 200 kg
from the ground to a height of 1.5m. Calculate how
much work he does. By how much does the g.p.e. of
the weights increase?

Step 1 Asshownin Figure 5.11, the downward force
on the weights is their weight, W=mg. An equal,
upward force Fis required to lift them.

Figure 5.11 For Worked example 2.

W=F=mg=200%9.81=1962N

Hint: /t helps to draw a diagram of the situation.

Step 2 Now we can calculate the work done by the

force F:

work done =force x distance moved
=1962x1.5%2940J

Note that the distance moved is in the same

direction as the force. So the work done on the

weights is about 2940 J. This is also the value of the
increase in their g.p.e.

Chapter 5: Work, energy and power

An equation for gravitational potential
energy

The change in the gravitational potential energy (g.p.e.) of
an object, E,,, depends on the change in its height, h. We
can calculate E, using this equation:

change in g.p.e. = weight x change in height

E,= (mg)xh
or simply
E,=mgh

It should be clear where this equation comes from. The
force needed to lift an object is equal to its weight mg,
where m is the mass of the object and g is the acceleration
of free fall or the gravitational field strength on the
Earth’s surface. The work done by this force is given by
force x distance moved, or weight x change in height. You
might feel that it takes a force greater than the weight of
the object being raised to lift it upwards, but this is not so.
Provided the force is equal to the weight, the object will
move upwards at a steady speed.

Note that / stands for the vertical height through
which the object moves. Note also that we can only use the
equation E,, = mgh for relatively small changes in height.
It would not work, for example, in the case of a satellite
orbiting the Earth. Satellites orbit at a height of at least
200km and g has a smaller value at this height.

Other forms of potential energy

Potential energy is the energy an object has because

of its position or shape. So, for example, an object’s
gravitational potential energy changes when it moves
through a gravitational field. (There is much more about
gravitational fields in Chapter 18.)

We can identify other forms of potential energy. An
electrically charged object has electric potential energy
when it is placed in an electric field (see Chapter 8).

An object may have elastic potential energy when it is
stretched, squashed or twisted - if it is released it goes back
to its original shape (see Chapter 7).




Cambridge International AS Level Physics

7 Calculate how much gravitational potential
energy is gained if you climb a flight of stairs.
Assume that you have a mass of 52 kg and that the
height you lift yourself is 2.5 m.

8 Aclimber of mass 100kg (including the equipment
she s carrying) ascends from sea level to the top
of a mountain 5500 m high. Calculate the change
in her gravitational potential energy.

9 a Atoy carworks by means of a stretched rubber
band. What form of potential energy does the
car store when the band is stretched?

b Abar magnetis lying with its north pole next
to the south pole of another bar magnet. A
student pulls them apart. Why do we say that
the magnets’ potential energy has increased?
Where has this energy come from?

Kinetic energy

As well as lifting an object, a force can make it accelerate.
Again, work is done by the force and energy is transferred
to the object. In this case, we say that it has gained kinetic
energy, E,. The faster an object is moving, the greater its
kinetic energy (k.e.).

For an object of mass m travelling at a speed v, we have:
kinetic energy = 3 x mass x speed?

Ek = 7mV2

Deriving the formula for kinetic energy
The equation for k.e., E, = 3mv?, is related to one of the
equations of motion. We imagine a car being accelerated
from rest (u = 0) to velocity v. To give it acceleration a, it
is pushed by a force F for a distance s. Since u = 0, we can
write the equation v? = u? + 2as as:

v2=2as
Multiplying both sides by 3m gives:

imv? = mas
Now, ma is the force F accelerating the car, and mas is the
force x the distance it moves, that is, the work done by the
force. So we have:

imv? = work done by force F

This is the energy transferred to the car, and hence its
kinetic energy.

3 Calculate the increase in kinetic energy of a car of
mass 800 kg when it accelerates from 20ms™ to
30ms™.

Step 1 Calculate the initial k.e. of the car:
E, = 3mv?=3x800 x (20)2=160000J
=160kJ

Step 2 Calculate the final k.e. of the car:
E,=3mv?=1x800x (30)2=360000J
=360kJ

Step 3 Calculate the changein the car’s k.e.:
change in k.e.=360 - 160 = 200 kJ

Hint: Take care! You can’t calculate the change in k.e.
by squaring the change in speed. In this example, the
change in speed is 10ms™, and this would give an
incorrect value for the change in k.e.

10 Which has more k.e., a car of mass 500 kg
travelling at 15ms™ or a motorcycle of mass
250kg travelling at 30ms™?

11 Calculate the change in kinetic energy of a ball of
mass 200 g when it bounces. Assume that it hits
the ground with a speed of 15.8 ms™ and leaves
itat12.2ms™.

g.p.e.-k.e. transformations

A motor drags the roller-coaster car to the top of the first
hill. The car runs down the other side, picking up speed
as it goes (see Figure 5.12). It is moving just fast enough
to reach the top of the second hill, slightly lower than the
first. It accelerates downhill again. Everybody screams!

The motor provides a force to pull the roller-coaster
car to the top of the hill. It transfers energy to the car. But
where is this energy when the car is waiting at the top of
the hill? The car now has gravitational potential energy;
as soon as it is given a small push to set it moving, it
accelerates. It gains kinetic energy and at the same time it
loses g.p.e.
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Down, up, down - energy
changes

When an object falls, it speeds up. Its g.p.e. decreases

and its k.e. increases. Energy is being transformed from
gravitational potential energy to kinetic energy. Some energy
is likely to be lost, usually as heat because of air resistance.
However, if no energy is lost in the process, we have:

decrease in g.p.e. = gain in k.e.

We can use this idea to solve a variety of problems, as
illustrated by Worked example 4.

Figure 5.12 The roller-coaster car accelerates as it comes WORKED EXAMPLE

downhill. It’s even more exciting if it runs through water.

4 Apendulum consists of a brass sphere of mass 5.0kg
As the car runs along the roller-coaster track (Figure hanging from a long string (see Figure 5.14). The
sphere is pulled to the side so that it is 0.15m above
its lowest position. It is then released. How fast will it
be moving when it passes through the lowest point
along its path?

5.13), its energy changes.

1 At the top of the first hill, it has the most g.p.e.

2 Asitruns downbhill, its g.p.e. decreases and its k.e.
increases.

3 At the bottom of the hill, all of its g.p.e. has been
changed to k.e. and heat and sound energy.

4 Asit runs back uphill, the force of gravity slows it
down. k.e. is being changed to g.p.e.

Inevitably, some energy is lost by the car. There is friction

with the track, and air resistance. So the car cannot return

to its original height. That is why the second hill must be

slightly lower than the first. It is fun if the car runs through

a trough of water, but that takes even more energy, and the

car cannot rise so high. There are many situations where

an object’s energy changes between gravitational potential

energy and kinetic energy. For example: Figure 5.14 For Worked example 4.

®m ahighdiver falling towards the water - g.p.e. changes to k.e.

m aballis thrown upwards - k.e. changes to g.p.e.

m achild on a swing - energy changes back and forth between
g.p.e.and k.e.

maximum g.p.e. — BRSO g.p.e.>ke.

g.p.e.=0
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Figure 5.13 Energy changes along aroller-coaster.
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Step 1 Calculate the lossin g.p.e. as the sphere falls
from its highest position:

Ep =mgh=5.0%x9.81x0.15=7.36J
Step 2 The gain in the sphere’s k.e. is 7.36 J. We

can use this to calculate the sphere’s speed. First
calculate v2, then v:

imv2=736
1x5.0%xv2=736

v2=2x— 6:2944
50 °

v=N2.944~172ms 1~ 17ms?

Note that we would obtain the same result in Worked
example 4 no matter what the mass of the sphere.
This is because both k.e. and g.p.e. depend on

mass m. If we write:

changein g.p.e. =change in k.e.
mgh = %mv2

we can cancel m from both sides. Hence:

V2
h=_
g 2

v2=2gh

Therefore:
v=\2gh

The final speed v only depends on g and h. The mass
m of the object is irrelevant. This is not surprising; we
could use the same equation to calculate the speed
of an object falling from height h. An object of small
mass gains the same speed as an object of large
mass, provided air resistance has no effect.

Energy transfers
Climbing bars

If you are going to climb a mountain, you will need

a supply of energy. This is because your gravitational
potential energy is greater at the top of the mountain than
at the base. A good supply of energy would be some bars of
chocolate. Each bar supplies 1200k]. Suppose your weight
is 600N and you climb a 2000 m high mountain. The work
done by your muscles is:

work done = Fs = 600 x 2000 = 1200k]

So one bar of chocolate will do the trick. Of course, in
reality, it would not. Your body is inefficient. It cannot
convert 100% of the energy from food into gravitational
potential energy. A lot of energy is wasted as your muscles
warm up, you perspire, and your body rises and falls as
you walk along the path. Your body is perhaps only 5%
efficient as far as climbing is concerned, and you will
need to eat 20 chocolate bars to get you to the top of the
mountain. And you will need to eat more to get you back
down again.

Many energy transfers are inefficient. That is, only part
of the energy is transferred to where it is wanted. The rest
is wasted, and appears in some form that is not wanted
(such as waste heat), or in the wrong place. You can
determine the efficiency of any device or system using the
following equation:
useful 'output eNergy  100%

total input energy

efficiency =

A car engine is more efficient than a human body, but not
much more. Figure 5.16 shows how this can be represented
by a Sankey diagram. The width of the arrow represents
the fraction of the energy which is transformed to each
new form. In the case of a car engine, we want it to provide

12 Re-work Worked example 4 for a brass sphere of mass 10kg, and
show that you get the same result. Repeat with any other value
of mass.

13 Calculate how much gravitational potential energy is lost by an
aircraft of mass 80000 kg if it descends from an altitude of 10000m
to an altitude of 1000 m. What happens to this energy if the pilot
keeps the aircraft’s speed constant?

Figure 5.15 A high
dive is an example
of converting
(transforming)
gravitational
potential energy to
kinetic energy.

14 Ahigh diver (see Figure 5.15) reaches the highest point in her jump
with her centre of gravity 10 m above the water. Assuming that all
her gravitational potential energy becomes kinetic energy during
the dive, calculate her speed just before she enters the water.
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Figure 5.16 We want a car engine to supply kinetic energy. This
Sankey diagram shows that only 20% of the energy supplied to
the engine ends up as kinetic energy - it is 20% efficient.

kinetic energy to turn the wheels. In practice, 80% of the
energy is transformed into heat: the engine gets hot, and
heat escapes into the surroundings. So the car engine is
only 20% efficient.

We have previously considered situations where an
object is falling, and all of its gravitational potential energy
changes to kinetic energy. In Worked example 5, we will
look at a similar situation, but in this case the energy
change is not 100% efficient.

Conservation of energy
Where does the lost energy from the water in the reservoir
go? Most of it ends up warming the water, or warming the
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pipes that the water flows through. The outflow of water is
probably noisy, so some sound is produced.

Here, we are assuming that all of the energy ends up
somewhere. None of it disappears. We assume the same
thing when we draw a Sankey diagram. The total thickness
of the arrow remains constant. We could not have an
arrow which got thinner (energy disappearing) or thicker
(energy appearing out of nowhere).

We are assuming that energy is conserved. This is
a principle, known as the principle of conservation of
energy, which we expect to apply in all situations.

Energy cannot be created or destroyed. It can only be
converted from one form to another.

We should always be able to add up the total amount of
energy at the beginning, and be able to account for it all at
the end. We cannot be sure that this is always the case, but
we expect it to hold true.

We have to think about energy changes within a closed
system; that is, we have to draw an imaginary boundary
around all of the interacting objects which are involved in
an energy transfer.

WORKED EXAMPLE

5 Figure 5.17 shows a dam which stores water. The outlet
of the dam is 20 m below the surface of the water in the
reservoir. Water leaving the dam is moving at 16 ms™.
Calculate the percentage of the gravitational potential
energy that is lost when converted into kinetic energy.

dam wall

Figure 5.17 Water stored behind the dam has
gravitational potential energy; the fast-flowing
water leaving the foot of the dam has kinetic energy.

Step 1 We will picture 1kg of water, starting at the
surface of the lake (where it has g.p.e., but no k.e.) and
flowing downwards and out at the foot (where it has k.e.,
but less g.p.e.). Then:

changein g.p.e. of water between surface and outflow

=mgh=1x9.81x20=196J
Step 2 Calculate the k.e. of 1 kg of water as it leaves the
dam:

k.e. of water leaving dam =

Step 3 For each kilogram of water flowing out of the
dam, the loss of energy is:

loss =196 - 128=68J

68
percentage loss = — x 100% = 35%

196
If you wanted to use this moving water to generate
electricity, you would have already lost more than a third
of the energy which it stores when it is behind the dam.
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Sometimes, applying the principle of conservation of
energy can seem like a scientific fiddle. When physicists
were investigating radioactive decay involving beta
particles, they found that the particles after the decay had
less energy in total than the particles before. They guessed
that there was another, invisible particle which was
carrying away the missing energy. This particle, named
the neutrino, was proposed by the theoretical physicist
Wolfgang Pauli in 1931. The neutrino was not detected by
experimenters until 25 years later.

Although we cannot prove that energy is always
conserved, this example shows that the principle of
conservation of energy can be a powerful tool in helping us
to understand what is going on in nature, and that it can help
us to make fruitful predictions about future experiments.

15 Astone falls from the top of a cliff, 80 m high. When
it reaches the foot of the cliff, its speed is 38 ms™.

a Calculate the proportion of the stone’s initial
g.p.e. thatis converted to k.e.

b What happens to the rest of the stone’s initial
energy?

Power

The word power has several different meanings — political
power, powers of ten, electrical power from power stations.
In physics, it has a specific meaning which is related to
these other meanings. Figure 5.18 illustrates what we mean
by power in physics.

The lift shown in Figure 5.18 can lift a heavy load of
people. The motor at the top of the building provides a
force to raise the lift car, and this force does work against
the force of gravity. The motor transfers energy to the lift
car. The power P of the motor is the rate at which it does
work. Power is defined as the rate of work done. As a word
equation, power is given by:

work done
power =—
time taken
or
p W
t

where W is the work done in a time t.

Units of power: the watt

Power is measured in watts, named after James Watt, the
Scottish engineer famous for his development of the steam

Figure 5.18 Alift needs a powerful motor to raise the car
when it has a full load of people. The motor does many
thousands of joules of work each second.

engine in the second half of the 18th century. The watt is
defined as a rate of working of 1 joule per second. Hence:
1 watt = 1 joule per second
or
IW=1Js!
In practice we also use kilowatts (kW) and megawatts (MW).
1000 watts = 1 kilowatt (1kW)

1000000 watts = 1 megawatt (1 MW)

You are probably familiar with the labels on light bulbs
which indicate their power in watts, for example 60 W or
10 W. The values of power on the labels tell you about the
energy transferred by an electrical current, rather than by
a force doing work.

16 Calculate how much work is done by a 50 kW car
engine in a time of 1.0 minute.

17 Acarengine does 4200 kJ of work in one minute.
Calculate its output power, in kilowatts.

18 A particular car engine provides a force of 700N
when the car is moving at its top speed of 40ms™.

a Calculate how much work is done by the car’s
engine in one second.

b State the output power of the engine.



6 The motor of the lift shown in Figure 5.18 provides a
force of 20 kN; this force is enough to raise the lift by
18min 10s. Calculate the output power of the motor.

Step 1 First, we must calculate the work done:

work done = force x distance moved
=20x18=360kJ

Step 2 Now we can calculate the motor’s output

power:

work done _ 360 x 10
timetaken 10

power = = 36kw

Hint: Take care not to confuse the two uses of the
letter ‘W

W = watt (a unit)

W =work done (a quantity)

So the lift motor’s power is 36 kW. Note that this is
its mechanical power output. The motor cannot
be 100% efficient since some energy is bound to
be wasted as heat due to friction, so the electrical
power input must be more than 36 kW.

Moving power

An aircraft is kept moving forwards by the force of its
engines pushing air backwards. The greater the force and
the faster the aircraft is moving, the greater the power
supplied by its engines.

Suppose that an aircraft is moving with velocity v. Its
engines provide the force F needed to overcome the drag
of the air. In time ¢, the aircraft moves a distance s equal to
vx t. So the work done by the engines is:

work done = force x distance

W=Fxvxt
work done, . .
and the power P (= m) is given by:
P:K: Fxvxt
t t
and we have:
P=Fxv

power = force x velocity
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It may help to think of this equation in terms of units.

The right-hand side is in N xms™, and Nm is the same

as J. So the right-hand side has units of Js1, or W, the unit
of power. If you look back to Question 18 above, you will
see that, to find the power of the car engine, rather than
considering the work done in 1s, we could simply have
multiplied the engine’s force by the car’s speed.

Human power

Our energy supply comes from our food. A typical diet
supplies 2000-3000kcal (kilocalories) per day. This is
equivalent (in SI units) to about 10 M] of energy. We need
this energy for our daily requirements — keeping warm,
moving about, brainwork and so on. We can determine
the average power of all the activities of our body:

average power = 10 MJ per day

106

=10x =116 W
86400

So we dissipate energy at the rate of about 100 W. We
supply roughly as much energy to our surroundings as a
100 W light bulb. Twenty people will keep a room as warm
as a 2kW electric heater.

Note that this is our average power. If you are doing
some demanding physical task, your power will be greater.
This is illustrated in Worked example 7.

Note also that the human body is not a perfectly
efficient system; a lot of energy is wasted when, for
example, we lift a heavy load. We might increase an
object's g.p.e. by 1000 J when we lift it, but this might
require five or ten times this amount of energy to be
expended by our bodies.

19 Inan experiment to measure a student’s power,
she times herself running up a flight of steps. Use
the data below to work out her useful power.

number of steps =28
height of each step =20cm
acceleration of free fall=9.81ms™
mass of student =55kg
time taken =5.4s
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7 Aperson who weighs 500N runs up a flight of stairs in
5.0s (Figure 5.19). Their gain in height is 3.0 m. Calculate
the rate at which work is done against the force of
gravity.

Figure 5.19 Running up stairs can require a high rate
of doing work. You may have investigated your own
power in this way.

Summary

m The work done W when a force F moves through a
displacement s in the direction of the force:

W=Fs or W=Fscos@

where 0 is the angle between the force and the
displacement.

m Ajouleis defined as the work done (or energy
transferred) when a force of 1 N moves a distance of
1m in the direction of the force.

m The work done W by a gas at pressure p when it
expands:

W=pAV
where AVis the increase in its volume.

= When an object of mass m rises through a height h,
its gravitational potential energy E, increases by an
amount:

E,=mgh

Step 1 Calculate the work done against gravity:
work done W=Fxs=500x3.0=1500J

Step 2 Now calculate the power:
1500

w
powerP—?—W—wOW

So, while the person is running up the stairs, they are
doing work against gravity at a greater rate than their
average power - perhaps three times as great. And,
since our muscles are not very efficient, they need to

be supplied with energy even faster, perhaps at a rate
of 1kW. This is why we cannot run up stairs all day long
without greatly increasing the amount we eat. The
inefficiency of our muscles also explains why we get hot
when we exert ourselves.

The kinetic energy E, of a body of mass m moving at
speed v is:

Ek = 7mV2

The principle of conservation of energy states that,
for a closed system, energy can be transformed to

other forms but the total amount of energy remains
constant.

The efficiency of a device or system is determined
using the equation:

useful output energy
total input energy

efficiency = x 100%

Power is the rate at which work is done (or energy is
transferred):

w
P:T and P=Fv

A watt is defined as a rate of transfer of energy of one
joule per second.
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End-of-chapter questions

1 Ineach case below, discuss the energy changes taking place:
a Anapplefalling towards the ground
b Acardecelerating when the brakes are applied
¢ Aspace probe falling towards the surface of a planet.

2 A120kg crate is dragged along the horizontal ground by a 200N force acting at an angle of 30° to the
horizontal, as shown in Figure 5.20. The crate moves along the surface with a constant velocity
of 0.5ms™. The 200N force is applied for a time of 16s.

200N

weight
Figure 5.20 For End-of-chapter Question 2.

a Calculate the work done on the crate by:
i the200N force
ii the weight of the crate
iii the normal contact force N.
b Calculate the rate of work done against the frictional force F.

3 Which of the following has greater kinetic energy?
m A20-tonnetruck travelling at a speed of 30ms™
m Al.2gdust particle travelling at 150 kms™ through space.

4 A950kg sack of cement is lifted to the top of a building 50 m high by an electric motor.
Calculate the increase in the gravitational potential energy of the sack of cement.
The output power of the motor is 4.0 kW. Calculate how long it took to raise the sack to the top
of the building.
The electrical power transferred by the motor is 6.9 kW. In raising the sack to the top of the building,
how much energy is wasted in the motor as heat?

Define power and state its unit.

Write a word equation for the kinetic energy of a moving object.

A car of mass 1100 kg starting from rest reaches a speed of 18 ms™in 25s. Calculate the average power
developed by the engine of the car.
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6 Acyclist pedals a long slope which is at 5.0° to the horizontal (Figure 5.21). The cyclist starts from rest
at the top of the slope and reaches a speed of 12 ms™ after a time of 67s, having travelled 40 m down
the slope. The total mass of the cyclist and bicycle is 90 kg.

40m

Figure 5.21 For End-of-chapter Question 6.

a Calculate:
i thelossin gravitational potential energy as he travels down the slope [3]
ii theincreasein kinetic energy as he travels down the slope. [2]
b i Useyouranswers to ato determine the useful power output of the cyclist. [3]
ii  Suggest one reason why the actual power output of the cyclist is larger than your valueini. 2]
7 a Explainwhatis meant by work. 2]
n b i Explain how the principle of conservation of energy applies to a man sliding from rest down a
vertical pole, if there is a constant force of friction acting on him. [2]
ii  The man slides down the pole and reaches the ground after falling a distance h=15m. His
potential energy at the top of the pole is 1000 J. Sketch a graph to show how his gravitational
potential energy £, varies with h. Add to your graph a line to show the variation of his kinetic
energy E, with h. [3]
8 a Usetheequations of motion to show that the kinetic energy of an object of mass m moving with
velocity vis 3mv2. [2]
b Acarof mass 800kg accelerates from rest to a speed of 20ms™ in a time of 6.0s.
i Calculate the average power used to accelerate the carin the first 6.0s. [2]
ii The power passed by the engine of the car to the wheels is constant. Explain why the
acceleration of the car decreases as the car accelerates. 2]
9 a i Definepotential energy. [1]
i Distinguish between gravitational potential energy and elastic potential energy. 2]
b Seawater is trapped behind a dam at high tide and then released through turbines. The level
of the water trapped by the dam falls 10.0m until it is all at the same height as the sea.
i Calculate the mass of seawater covering an area of 1.4 x 10m? and with a depth of 10.0m.
(Density of seawater = 1030 kgm™3) (1]
ii Calculate the maximum loss of potential energy of the seawater in i when passed through
the turbines. (2]

iii The potential energy of the seawater, calculated inii, is lost over a period of 6.0 hours.
Estimate the average power output of the power station over this time period, given that
the efficiency of the power station is 50%. [3]



Momentum

Learning outcomes
You should be able to:

m define linear momentum
m state and apply the principle of conservation of
momentum to collisions in one and two dimensions

relate force to the rate of change of momentum

m discuss energy changes in perfectly elastic and inelastic
collisions
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Understanding collisions

To improve the safety of cars the motion of a car

during a crash must be understood and the forces on

the driver minimised ( In this way safer cars

have been developed and many lives have been saved.
In this chapter, we will explore how the idea of

momentum can allow us to predict how objects

move after colliding (interacting) with each other.

We will also see how Newton’s laws of motion can be

expressed in terms of momentum.

The idea of momentum

Snooker players can perform some amazing moves on the
table, without necessarily knowing Newton’s laws of motion
- see Figure 6.2. However, the laws of physics can help us to
understand what happens when two snooker balls collide or
when one bounces off the side cushion of the table.

Here are some examples of situations involving collisions:

Two cars collide head-on.

Afast-moving car runs into the back of a slower car in front.
Afootballer runs into an opponent.

A hockey stick strikes a ball.

A comet or an asteroid collides with a planet as it orbits
the Sun.

m The atoms of the air collide constantly with each other, and
with the walls of their surroundings.

Figure 6.2 If you play pool often enough, you will be able to
predict how the balls will move on the table. Alternatively, you
can use the laws of physics to predict their motion.

Figure 6.1 A high-speed photograph of a crash test. The cars
collide head-on at 15ms™ with dummies as drivers.

m Electrons that form an electric current collide with the
vibrating ions that make up a metal wire.
m Two distant galaxies collide over millions of years.

From these examples, we can see that collisions are
happening all around us, all the time. They happen on the
microscopic scale of atoms and electrons, they happen in
our everyday world, and they also happen on the cosmic
scale of our Universe.

Modelling collisions

Springy collisions

Figure 6.3a shows what happens when one snooker ball
collides head-on with a second, stationary ball. The result
can seem surprising. The moving ball stops dead. The ball
initially at rest moves off with the same velocity as that of
the original ball. To achieve this, a snooker player must
observe two conditions:

m The collision must be head-on. (If one ball strikes a glancing
blow on the side of the other, they will both move off at
different angles.)

m The moving ball must not be given any spin. (Spin is an
added complication which we will ignore in our present
study, although it plays a vital part in the games of pool and
snooker.)

You can mimic the collision of two snooker balls in the
laboratory using two identical trolleys, as shown in Figure
6.3b. The moving trolley has its spring-load released, so
that the collision is springy. As one trolley runs into the



other, the spring is at first compressed, and then it pushes
out again to set the second trolley moving. The first trolley
comes to a complete halt. The ‘motion’ of one trolley has
been transferred to the other.

You can see another interesting result if two moving
identical trolleys collide head-on. If the collision is springy,
both trolleys bounce backwards. If a fast-moving trolley
collides with a slower one, the fast trolley bounces back at
the speed of the slow one, and the slow one bounces back
at the speed of the fast one. In this collision, it is as if the
velocities of the trolleys have been swapped.

Figure 6.3 a The red snooker ball, coming from the left, has
hit the yellow ball head-on. b You can do the same thing with
two trolleys in the laboratory.

Sticky collisions

Figure 6.4 shows another type of collision. In this case, the
trolleys have adhesive pads so that they stick together when
they collide. A sticky collision like this is the opposite of a
springy collision like the ones described above.

If a single moving trolley collides with an identical
stationary one, they both move oft together. After the
collision, the speed of the combined trolleys is half that of
the original trolley. It is as if the ‘motion’ of the original
trolley has been shared between the two. If a single moving
trolley collides with a stationary double trolley (twice the
mass), they move off with one-third of the original velocity.

From these examples of sticky collisions, you can see
that, when the mass of the trolley increases as a result of a
collision, its velocity decreases. Doubling the mass halves
the velocity, and so on.
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Figure 6.4 If a moving trolley sticks to a stationary trolley,
they both move off together.

1 Here are two collisions to picture in your mind.
Answer the question for each.

a Ball A, moving towards the right, collides with
stationary ball B. Ball A bounces back; B moves
off slowly to the right. Which has the greater
mass, A or B?

b Trolley A, moving towards the right, collides
with stationary trolley B. They stick together,
and move off at less than half A’s original
speed. Which has the greater mass, A or B?

Defining linear momentum

From the examples discussed above, we can see that two
quantities are important in understanding collisions:

m the mass m of the object
m thevelocity v of the object.

These are combined to give a single quantity, called the
linear momentum (or simply momentum) p of an object.
The momentum of an object is defined as the product of
the mass of the object and its velocity. Hence:

momentum = mass x velocity
p=mv

The unit of momentum is kgms™. There is no special
name for this unit in the SI system.

Momentum is a vector quantity because it is a product
of a vector quantity (velocity) and a scalar quantity (mass).
Momentum has both magnitude and direction. Its direction
is the same as the direction of the object’s velocity.
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In the earlier examples, we described how the ‘motion’
of one trolley appeared to be transferred to a second
trolley, or shared with it. It is more correct to say that it
is the trolley’s momentum that is transferred or shared.
(Strictly speaking, we should refer to linear momentum,
because there is another quantity called angular
momentum which is possessed by spinning objects.)

As with energy, we find that momentum is also
conserved. We have to consider objects which form a
closed system - that is, no external force acts on them. The
principle of conservation of momentum states that:

Within a closed system, the total momentum in any
direction is constant.

The principle of conservation of momentum can also be
expressed as follows:

For a closed system, in any direction:

total momentum of objects before collision
= total momentum of objects after collision

1 InFigure 6.5, trolley A of mass 0.80 kg travelling at a
velocity of 3.0ms™ collides head-on with a stationary
trolley B. Trolley B has twice the mass of trolley A. The
trolleys stick together and have a common velocity of
1.0ms™ after the collision. Show that momentum is
conserved in this collision.

before after

posi'tive
direction

Figure 6.5 The state of trolleys A and B, before and after
the collision.

A group of colliding objects always has as much
momentum after the collision as it had before the collision.
This principle is illustrated in Worked example 1.

2 Calculate the momentum of each of the following
objects:

a a0.50kg stone travelling at a velocity of 20ms™
b a25000kg bus travelling at20ms™ on aroad
¢ anelectron travelling at 2.0 x 10"'ms™.
(The mass of the electronis 9.1 x 1073 kg.)
3 Two balls, each of mass 0.50kg, collide as shown in

Figure 6.6. Show that their total momentum before
the collision is equal to their total momentum after

the collision.
before after
20ms?t 3.0ms? 20ms?t 1.0ms?

@ @ @ @

Figure 6.6 For Question 3.

Step 1 Make a sketch using the information given in the
question. Notice that we need two diagrams to show
the situations, one before and one after the collision.
Similarly, we need two calculations - one for the
momentum of the trolleys before the collision and one
for their momentum after the collision.
Step 2 Calculate the momentum before the collision:
momentum of trolleys before collision
=My X Upt Mg XU
=(0.80%3.0) +0
=2.4kgms™
Trolley B has no momentum before the collision,
because it is not moving.
Step 3 Calculate the momentum after the collision:
momentum of trolleys after collision
=(mp+mg) X vVpg
=(0.80+1.60) x 1.0
=2.4kgms™
So, both before and after the collision, the trolleys have

a combined momentum of 2.4kgms™. Momentum has
been conserved.



Understanding collisions

The cars in Figure 6.7 have been badly damaged by a
collision. The front of a car is designed to absorb the
impact of the crash. It has a ‘crumple zone’, which
collapses on impact. This absorbs most of the kinetic
energy that the car had before the collision. It is better
that the car’s kinetic energy should be transferred to the
crumple zone than to the driver and passengers.

Motor manufacturers make use of test labs to
investigate how their cars respond to impacts. When a car
is designed, the manufacturers combine soft, compressible
materials that absorb energy with rigid structures that
protect the car’s occupants. Old-fashioned cars had much
more rigid structures. In a collision, they were more likely
to bounce back and the violent forces involved were much
more likely to prove fatal.

Figure 6.7 The front of each car has crumpled in, as a result of
a head-on collision.

Two types of collision

When two objects collide, they may crumple and deform.
Their kinetic energy may also disappear completely as they
come to a halt. This is an example of an inelastic collision.
Alternatively, they may spring apart, retaining all of

their kinetic energy. This is a perfectly elastic collision.

In practice, in most collisions, some kinetic energy is
transformed into other forms (e.g. heat or sound) and the
collision is inelastic. Previously we described the collisions
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as being ‘springy’ or ‘sticky’. We should now use the
correct scientific terms, perfectly elastic and inelastic.

We will look at examples of these two types of collision
and consider what happens to linear momentum and
kinetic energy in each.

A perfectly elastic collision

Two identical objects A and B, moving at the same speed
but in opposite directions, have a head-on collision, as
shown in Figure 6.8. Each object bounces back with its
velocity reversed. This is a perfectly elastic collision.

before positive after
direction
% v i v v
A B i A B
m m : m
A /

Figure 6.8 Two objects may collide in different ways: this is an
elastic collision. An inelastic collision of the same two objects
is shown in Figure 6.9.

You should be able to see that, in this collision, both
momentum and kinetic energy are conserved. Before
the collision, object A of mass m is moving to the right
at speed v and object B of mass m is moving to the left at
speed v. Afterwards, we still have two masses m moving
with speed v, but now object A is moving to the left and
object B is moving to the right. We can express this
mathematically as follows:

Before the collision
object A: mass=m velocity =v
object B: mass=m velocity = —v

momentum = mv
momentum = —mv

Object B has negative velocity and momentum because it is
travelling in the opposite direction to object A. Therefore
we have:

total momentum before collision
= momentum of A + momentum of B
=mv+(-mv) =0

total kinetic energy before collision

=k.e. of A+k.e.of B

=imv?+ Imv? = my?
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The magnitude of the momentum of each object is the
same. Momentum is a vector quantity and we have to
consider the directions in which the objects travel. The
combined momentum is zero. On the other hand, kinetic
energy is a scalar quantity and direction of travel is
irrelevant. Both objects have the same kinetic energy and
therefore the combined kinetic energy is twice the kinetic
energy of a single object.

After the collision
Both objects have their velocities reversed, and we have:

total momentum after collision = (~mv)+mv =0
total kinetic energy after collision = §mv? + $mv? = my?

So the total momentum and the total kinetic energy are
unchanged. They are both conserved in a perfectly elastic
collision such as this.

In this collision, the objects have a relative speed of 2v
before the collision. After their collision, their velocities
are reversed so their relative speed is 2v again. This is a
feature of perfectly elastic collisions.

The relative speed of approach is the speed of one
object measured relative to another. If two objects are
travelling directly towards each other with speed v, as
measured by someone stationary on the ground, then each
object ‘sees’ the other one approaching with a speed of
2v. Thus if objects are travelling in opposite directions we
add their speeds to find the relative speed. If the objects
are travelling in the same direction then we subtract their
speeds to find the relative speed.

In a perfectly elastic collision,
relative speed of approach = relative speed of separation.

An inelastic collision
In Figure 6.9, the same two objects collide, but this time
they stick together after the collision and come to a halt.
Clearly, the total momentum and the total kinetic energy
are both zero after the collision, since neither mass is
moving. We have:

Before collision After collision
momentum 0 0

Kkinetic energy imy? 0

before positive after
direction
v, LA
A B

A

Figure 6.9 An inelastic collision between two identical
objects. The trolleys are stationary after the collision.

Again we see that momentum is conserved. However,
kinetic energy is not conserved. It is lost because work is
done in deforming the two objects.

In fact, momentum is always conserved in all
collisions. There is nothing else into which momentum
can be converted. Kinetic energy is usually not conserved
in a collision, because it can be transformed into other
forms of energy - sound energy if the collision is noisy,
and the energy involved in deforming the objects (which
usually ends up as internal energy - they get warmer). Of
course, the total amount of energy remains constant, as
prescribed by the principle of conservation of energy.

4 Copy Table 6.1 below, choosing the correct words
from each pair.

. . erfectl inelastic
Type of collision pertectly ' '
elastic
Momentum conserved / conserved /
not conserved | not conserved
.. conserved / conserved /
Kinetic energy
not conserved | not conserved
conserved conserved
Total energy ved / ved /
not conserved | not conserved

Table 6.1 For Question 4.

Solving collision problems

We can use the idea of conservation of momentum to solve

numerical problems, as illustrated by Worked example 2.




2

In the game of bowls, a player rolls a large ball
towards a smaller, stationary ball. A large ball of mass
5.0kg moving at 10.0ms™ strikes a stationary ball of
mass 1.0kg. The smaller ball flies off at 10.0ms™.

a Determine the final velocity of the large ball after
the impact.

b Calculate the kinetic energy ‘lost’ in the impact.

Step 1 Draw two diagrams, showing the situations
before and after the collision. Figure 6.10 shows the
values of masses and velocities; since we don’t know
the velocity of the large ball after the collision, this is
shown as v. The direction from left to right has been
assigned the ‘positive’ direction.

before : after
positive
direction _
10ms? ! v 10ms?
50kg  10kg |  50kg  1Okg

Figure 6.10 When solving problems involving
collisions, it is useful to draw diagrams showing the
situations before and after the collision. Include the
values of all the quantities that you know.

Step 2 Using the principle of conservation of
momentum, set up an equation and solve for the
value of v:
total momentum before collision

= total momentum after collision

(5.0 x 10) + (1.0 X 0) = (5.0 X v) + (1.0 x 10)
50+0=5.0v+10
40

= —= -1
50 8.0ms

v

So the speed of the large ball decreases to 8.0ms™
after the collision. Its direction of motion is
unchanged - the velocity remains positive.

Step 3 Knowing the large ball’s final velocity,
calculate the change in kinetic energy during the
collision:

total k.e. before collision = 3 x 5.0 x 102+ 0=250J

total k.e. after collision = 3 x 5.0 x 8.02 + 3 x 1.0 x 102
=210J

k.e. ‘lost’ in the collision=250J -210J=40J

This lost kinetic energy will appear as internal

energy (the two balls get warmer) and as sound
energy (we hear the collision between the balls).
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5 Figure 6.11 shows two identical ballsAand B
about to make a head-on collision. After the
collision, ball A rebounds at a speed of 1.5ms™
and ball B rebounds at a speed of 2.5ms™. The
mass of each ball is 4.0 kg.

a Calculate the momentum of each ball before
the collision.

b Calculate the momentum of each ball after the
collision.

Is the momentum conserved in the collision?

d Show that the total kinetic energy of the two
balls is conserved in the collision.

e Show that the relative speed of the balls is the
same before and after the collision.

25ms?t  15ms!

_— .

O -

6 Atrolley of mass 1.0kgis moving at2.0ms™. It
collides with a stationary trolley of mass 2.0 kg.
This second trolley moves off at 1.2ms™.

Figure 6.11
For Question 5.

a Draw ‘before’ and ‘after’ diagrams to show the
situation.

b Use the principle of conservation of
momentum to calculate the speed of the first
trolley after the collision. In what direction
does it move?

Explosions and crash-landings

There are situations where it may appear that momentum
is being created out of nothing, or that it is disappearing
without trace. Do these contradict the principle of
conservation of momentum?

The rockets shown in Figure 6.12 rise high into the sky.
As they start to fall, they send out showers of chemical
packages, each of which explodes to produce a brilliant
sphere of burning chemicals. Material flies out in all
directions to create a spectacular effect.

Does an explosion create momentum out of nothing?
The important point to note here is that the burning
material spreads out equally in all directions. Each tiny
spark has momentum, but for every spark, there is another
moving in the opposite direction, i.e. with opposite
momentum. Since momentum is a vector quantity, the
total amount of momentum created is zero.
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Figure 6.12 These exploding rockets produce a spectacular
display of bright sparks in the night sky.

At the same time, kinetic energy is created in an
explosion. Burning material flies outwards; its kinetic
energy has come from the chemical potential energy
stored in the chemical materials before they burn.

More fireworks

A roman candle fires a jet of burning material up into the
sky. This is another type of explosion, but it doesn’t send
material in all directions. The firework tube directs the
material upwards. Has momentum been created out of
nothing here?

Again, the answer is no. The chemicals have
momentum upwards, but at the same time, the roman
candle pushes downwards on the Earth. An equal amount
of downwards momentum is given to the Earth. Of course,
the Earth is massive, and we don’t notice the tiny change
in its velocity which results.

Down to Earth

If you push a large rock over a cliff, its speed increases as it
falls. Where does its momentum come from? And when it
lands, where does its momentum disappear to?

The rock falls because of the pull of the Earth’s
gravity on it. This force is its weight and it makes the
rock accelerate towards the Earth. Its weight does work
and the rock gains kinetic energy. It gains momentum
downwards. Something must be gaining an equal amount
of momentum in the opposite (upward) direction. It is
the Earth, which starts to move upwards as the rock falls
downwards. The mass of the Earth is so great that its
change in velocity is small - far too small to be noticeable.

When the rock hits the ground, its momentum
becomes zero. At the same instant, the Earth also stops
moving upwards. The rock’s momentum cancels out the
Earth’s momentum. At all times during the rock’s fall and
crash-landing, momentum has been conserved.

If a rock of mass 60kg is falling towards the Earth ata
speed of 20m 7!, how fast is the Earth moving towards it?
Figure 6.13 shows the situation. The mass of the Earth is
6.0 x 10**kg. We have:

total momentum of Earth and rock =0
Hence:

(60x20)+(6.0x10*xv) =0

y=-20x1022ms!

The minus sign shows that the Earth’s velocity is in the
opposite direction to that of the rock. The Earth moves very
slowly indeed. In the time of the rock’s fall, it will move
much less than the diameter of the nucleus of an atom!

mass of Earth = 6.0 x 10%* kg

Figure 6.13 The rock and Earth gain momentum in opposite
directions.



7 Discuss whether momentum is conserved in each
of the following situations.

a Astarexplodesin all directions - a supernova.
b You jump up from a trampoline. As you go

up, your speed decreases; as you come down
again, your speed increases.

8 Aball of mass 0.40kg is thrown at a wall. It strikes
the wall with a speed of 1.5ms™ perpendicular to
the wall and bounces off the wall with a speed of
1.2ms™. Explain the changes in momentum and
energy which happen in the collision between the
ball and the wall. Give numerical values where
possible.

Collisions in two dimensions

It is rare that collisions happen in a straight line - in one
dimension. Figure 6.14 shows a two-dimensional collision
between two snooker balls. From the multiple images, we
can see how the velocities of the two balls change:

m  Atfirst, the white ball is moving straight forwards. When
it hits the red ball, it moves off to the right. Its speed
decreases; we can see this because the images get closer
together.

m Thered ball moves off to the left. It moves off at a bigger
angle than the white ball, but more slowly - the images are
even closer together.

How can we understand what happens in this collision,
using the ideas of momentum and kinetic energy?

At first, only the white ball has momentum, and this
is in the forward direction. During the collision, this
momentum is shared between the two balls. We can
see this because each has a component of velocity in the
forward direction.

Figure 6.14 The white ball strikes the red ball a glancing blow.
The two balls move off in different directions.
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At the same time, each ball gains momentum in
the sideways direction, because each has a sideways
component of velocity - the white ball to the right, and the
red ball to the left. These must be equal in magnitude and
opposite in direction, otherwise we would conclude that
momentum had been created out of nothing. The red ball
moves at a greater angle, but its velocity is less than that of
the white ball, so that the component of its velocity at right
angles to the original track is the same as the white ball’s.
Figure 6.15a shows the momentum of each ball before
and after the collision. We can draw a vector triangle to
represent the changes of momentum in this collision
(Figure 6.15b). The two momentum vectors after the collision
add up to equal the momentum of the white ball before
the collision. The vectors form a closed triangle because
momentum is conserved in this two-dimensional collision.

MVyhite (after)

MVieq (after)

MVyeqy (after)
<N
MVyhite (before)
mv,, ni
white (after]
MVyhite (before) ( )
a b

Figure 6.15 a These vectors represent the momenta of the
colliding balls shown in Figure 6.14. b The closed vector
triangle shows that momentum is conserved in the collision.

Components of momentum

Momentum is a vector quantity and so we can split it into
components in order to solve problems.

Worked example 3 shows how to find an unknown
velocity.

Worked example 4 shows how to demonstrate that
momentum has been conserved in a two-dimensional
collision.
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3 Awhite ball of mass m = 1.0kg and moving with initial
speed u= 0.5ms™ collides with a stationary red ball of
the same mass. They move off so that each has the same
speed and the angle between their paths is 90°. What is
their speed?

Step 1 Draw a diagram to show the velocity vectors of
the two balls, before and after the collision (Figure 6.16).
We will show the white ball initially travelling along the

y-direction.
y
AN
1
Vred (after) : . Viwhite (after)
45° 45
1
<N
Viwhite (before)

Figure 6.16 Velocity vectors for the white and red balls.

Because we know that the two balls have the same final
speed v, their paths must be symmetrical about the
y-direction. Since their paths are at 90° to one other,
each must be at 45° to the y-direction.

Step 2 We know that momentum is conserved in the
y-direction. Hence we can say:

initial momentum of white ball in y-direction
=final component of momentum of white ball
in y-direction
+final component of momentum of red ball
in y-direction

This is easier to understand using symbols:

= ar
mu mvy mvy

where v, is the component of v in the y-direction. The
right-hand side of this equation has two identical
terms, one for the white ball and one for the red. We can
simplify the equation to give:

mu=2mv,

Step 3 The component of vin the y-direction is vcos45°.
Substituting this, and including values of m and u, gives

0.5=2vcos45°

and hence
V—L“*O 354ms!
" 2cos45° S

So each ball moves off at 0.354 ms™ at an angle of 45° to
the initial direction of the white ball.

particle 1

Figure 6.17 shows the momentum vectors for particles
1 and 2, before and after a collision. Show that
momentum is conserved in this collision.

particle 1
3.0kgms™?

5.0kgms™

\%

: 40kgms
: particle 2

Figure 6.17 Momentum vectors: particle 1 has come
from the left and collided with particle 2.

Step 1 Consider momentum changes in the y-direction.

Before collision:

momentum =0

(because particle 1 is moving in the x-direction and
particle 2 is stationary).

After collision:

component of momentum of particle 1
=3.0€0536.9°~2.40kgms™ upwards

component of momentum of particle 2
=4.0c0s53.1° = 2.40kgms* downwards

These components are equal and opposite and hence
their sum is zero. Hence momentum is conserved in the
y-direction.

Step 2 Consider momentum changes in the x-direction.
Before collision: momentum =5.0kgms™ to the right
After collision:

component of momentum of particle 1
=3.0c0s53.1°~ 1.80 kgms™ to the right

component of momentum of particle 2
=4.0c0536.9°~3.20kgms™ to the right

total momentum to the right=5.0kgms™
Hence momentum is conserved in the x-direction.

Step 3 An alternative approach would be to draw a
vector triangle similar to Figure 6.15b. In this case,
the numbers have been chosen to make this easy; the
vectors form a 3-4-5 right-angled triangle.

Because the vectors form a closed triangle, we can
conclude that:

momentum before collision = momentum after collision
i.e. momentum is conserved.



9 Asnooker ball strikes a stationary ball. The
second ball moves off sideways, at 60° to the
initial path of the first ball.

Use the idea of conservation of momentum to
explain why the first ball cannot travel in its
initial direction after the collision. Illustrate your
answer with a diagram.

10 Look back to Worked example 4 above. Draw the
vector triangle which shows that momentum
is conserved in the collision described in the
question. Show the value of each angle in the
triangle.

11 Figure 6.18 shows the momentum vectors for two
particles, 1 and 2, before and after a collision.
Show that momentum is conserved in this
collision.

particle 1

particle 1

7

2.40kgms

2.40kgms™

particle 2
Figure 6.18 For Question 11.

12 Asnooker ball collides with a second identical
ball as shown in Figure 6.19.

a Determine the components of the velocity of
the first ball in the x- and y-directions.

b Hence determine the components of the
velocity of the second ball in the x- and
y-directions.

¢ Hence determine the velocity (magnitude and
direction) of the second ball.

ball 1

Y

u=1.00ms?

Figure 6.19 For Question 12.
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Momentum and Newton’s laws

The big ideas of physics are often very simple; that is to
say, it takes only a few words to express them and they can
be applied in many situations. However, ‘simple’ does not
usually mean ‘easy’. Concepts such as force, energy and
voltage, for example, are not immediately obvious. They
usually took someone to make a giant leap of imagination
to first establish them. Then the community of physicists
spent decades worrying away at them, refining them until
they are the fundamental ideas which we use today.

Take Isaac Newton’s work on motion. He published
his ideas in a book commonly known as the Principia
(see Figure 6.20); its full title translated from Latin is
Mathematical Principles of Natural Philosophy.

PHILOSOPHI A

NATURALIS

PRINCIPIA
MATHEMATICA

Autore TS NEWTON, Trin. Call, Cantab, S, Mathelzos
Profeifore Lwcafians, 8 Socictaris Regalin Sodali.

IMPRIMATUR:
S PEPYS ReSe PRESES
| Fulii 5. 1686,

i s LONDINL
s Soctetatic Regie ae Typin Jojephs Stresver, Proftant Vena-
Yrapud Sy, Somithad inli._mi?PriMilv'u Walle in Ceciterio

i 2. Faut, alinkiy; nonnuflas Bibiopolzs, 4ms MDCLXXXVIL

Figure 6.20 The title page of Newton’s Principia, in which he
outlined his theories of the laws that govern the motion of
objects.

The Principia represents the results of 20 years of
thinking. Newton was able to build on Galileo’s ideas and
he was in correspondence with many other scientists and
mathematicians. Indeed, there was an ongoing feud with
Robert Hooke as to who was the first to come up with
certain ideas. Among scientists, this is known as ‘priority’,
and publication is usually taken as proof of priority.

Newton wanted to develop an understanding of the
idea of ‘force’. You may have been told in your early
studies of science that ‘a force is a push or a pull’. That
doesn’t tell us very much. Newton’s idea was that forces
are interactions between bodies and that they change the
motion of the body that they act on. Forces acting on an
object can produce acceleration. For an object of constant
mass, this acceleration is directly proportional to the
resultant force acting on the object. That is much more like
a scientific definition of force.
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Understanding motion

In Chapter 3, we looked at Newton’s laws of motion. We
can get further insight into these laws by thinking about
them in terms of momentum.

Newton’s first law of motion

In everyday speech, we sometimes say that something has
momentum when we mean that it has a tendency to keep

on moving of its own free will. An oil tanker is difficult

to stop at sea, because of its momentum. We use the same
word in a figurative sense: “The election campaign is gaining
momentum.’ This idea of keeping on moving is just what we
discussed in connection with Newton’s first law of motion:

An object will remain at rest or keep travelling at constant
velocity unless it is acted on by a resultant force.

An object travelling at constant velocity has constant
momentum. Hence the first law is really saying that the
momentum of an object remains the same unless the
object experiences an external force.

Newton’s second law of motion
Newton’s second law of motion links the idea of the
resultant force acting on an object and its momentum.
A statement of Newton’s second law is:

The resultant force acting on an object is directly
proportional to the rate of change of the linear
momentum of that object. The resultant force and the
change in momentum are in the same direction.

Hence:
resultant force o< rate of change of momentum

This can be written as:

Foc 2P

At

where F is the resultant force and Ap is the change
in momentum taking place in a time interval of At.
(Remember that the Greek letter delta, A, is a shorthand for
‘change in ..., so Ap means ‘change in momentum’.) The
changes in momentum and force are both vector quantities,
hence these two quantities must be in the same direction.

The unit of force (the newton, N) is defined to make the
constant of proportionality equal to one, so we can write
the second law of motion mathematically as:

Ap
F=-EF
At

If the forces acting on an object are balanced, there

is no resultant force and the object’s momentum will
remain constant. If a resultant force acts on an object, its
momentum (velocity and/or direction) will change. The
equation above gives us another way of stating Newton’s
second law of motion:

The resultant force acting on an object is equal to the rate
of change of its momentum. The resultant force and the
change in momentum are in the same direction.

This statement effectively defines what we mean by a force;
it is an interaction that causes an object’s momentum to
change. So, if an object’s momentum is changing, there
must be a force acting on it. We can find the size and
direction of the force by measuring the rate of change of
the object’s momentum:

force = rate of change of momentum

_4p

F=
At

Worked example 5 shows how to use this equation.

5 Calculate the average force acting on a 900 kg car
when its velocity changes from 5.0ms™ to 30 ms™ in
atimeof 12s.

Step 1 Write down the quantities given:
m=900kg

initial velocity u=5.0ms™

At=12s

Step 2 Calculate the initial momentum and the final
momentum of the car:

momentum = mass x velocity

initial momentum = mu =900 x 5.0 =4500kgms™
final momentum =mv =900 x30=27000kgms*
Step 3 Use Newton’s second law of motion to
calculate the average force on the car:

_ Ay

At

_ 27500-4500
- 12

F

=1875N=1900 N

The average force acting on the car is about 1.9 kN.



A special case of Newton’s second law of
motion

Imagine an object of constant mass m acted upon by a
resultant force F. The force will change the momentum of
the object. According to Newton’s second law of motion,
we have:

Ap mv—-mu

At t

where u is the initial velocity of the object, v is the final
velocity of the object and ¢ is the time taken for the change
in velocity. The mass m of the object is a constant; hence

F=

the above equation can be rewritten as:
Fe my—u) _ m(v— )
t t
The term in brackets on the right-hand side is the
acceleration a of the object. Therefore a special case of
Newton’s second law is:

F=ma

We have already met this equation in Chapter 3. In
Worked example 5, you could have determined the average
force acting on the car using this simplified equation for
Newton’s second law of motion. Remember that the

Ap

equation F = ma is a special case of F = Af which only

applies when the mass of the object is constant. There are
situations where the mass of an object changes as it moves,
for example a rocket, which burns a phenomenal amount
of chemical fuel as it accelerates upwards.

13 A carof mass 1000kg is travelling at a velocity of
10ms™. It accelerates for 155, reaching a velocity of
24ms™. Calculate:

a thechangeinthe momentum of the carin the 15s
period

b the average force acting on the car asit
accelerates.

14 Aballis kicked by a footballer. The average force
on the ball is 240N and the impact lasts for a time
interval of 0.25s.

a Calculate the change in the ball’s momentum.
b State the direction of the change in momentum.
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Newton’s third law of motion

Newton’s third law of motion is about interacting objects.
These could be two magnets attracting or repelling each
other, two electrons repelling each other, etc. Newton’s
third law states:

When two bodies interact, the forces they exert on each
other are equal and opposite.

How can we relate this to the idea of momentum? Picture
holding two magnets, one in each hand. You gradually
bring them towards each other (Figure 6.21) so that they
start to attract each other. Each feels a force pulling it
towards the other. The two forces are the same size, even if
one magnet is stronger than the other. Indeed, one magnet
could be replaced by an unmagnetised piece of steel and
they would still attract each other equally.

If you release the magnets, they will gain momentum
as they are pulled towards each other. One gains
momentum to the left while the other gains equal
momentum to the right.

Each is acted on by the same force, and for the same
time. Hence momentum is conserved.

B
force of A or}@

A forceof Bon A

Figure 6.21 Newton’s third law states that the forces these two
magnets exert one each other must be equal and opposite.

15 Water pouring from a broken pipe lands on a flat
roof. The water is moving at 5.0 ms™ when it strikes
the roof. The water hits the roof at a rate of 10kgs™.
Calculate the force of the water hitting the roof.
(Assume that the water does not bounce as it hits
the roof. If it did bounce, would your answer be
greater or smaller?)

16 Agolf ball has a mass of 0.046 kg. The final velocity
of the ball after being struck by a golf club is 50ms™.
The golf club is in contact with the ball for a time of
1.3ms. Calculate the average force exerted by the
golf club on the ball.
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Summary

Linear momentum is the product of mass and velocity:
momentum = mass x velocity or p=mv
The principle of conservation of momentum:

For a closed system, in any direction the total
momentum before an interaction (e.g. collision) is
equal to the total momentum after the interaction.

In all interactions or collisions, momentum and total
energy are conserved.

Kinetic energy is conserved in a perfectly elastic
collision; relative speed is unchanged in a perfectly
elastic collision.

In an inelastic collision, kinetic energy is not conserved.
It is transferred into other forms of energy (e.g. heat or
sound). Most collisions are inelastic.

End-of-chapter questions

Newton’s first law of motion: An object will remain at
rest or keep travelling at constant velocity unless it is
acted on by a resultant force.

Newton’s second law of motion: The resultant force
acting on a body is equal to the rate of change of its
momentum:

resultant force = rate of change of momentum

or
_4p

F
At

Newton’s third law of motion: When two bodies
interact, the forces they exert on each other are equal
and opposite.

The equation F=ma is a special case of Newton’s
second law of motion when mass m remains constant.

1 Anobjectisdropped and its momentum increases as it falls toward the ground. Explain how the
law of conservation of momentum and Newton’s third law of motion can be applied to this situation. [2]

2 Aball of mass 2kg, moving at 3.0ms™, strikes a wall and rebounds with the same speed. State and

explain whether there is a change in:
a the momentum of the ball
b the kinetic energy of the ball.

3 a Definelinear momentum.

b Determine the base units of linear momentum in the Sl system.

=
—

A car of mass 900kg starting from rest has a constant acceleration of 3.5ms™. Calculate its momentum

after it has travelled a distance of 40 m.

d Figure 6.22 shows two identical objects about to make a head-on collision. The objects stick together
during the collision. Determine the final speed of the objects. State the direction in which they move. [3]

4.0kg 4.0kg

2.0ms™ 3.0ms™?

Figure 6.22 For End-of-chapter Question 3.
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4 a Explainwhatis meant by an:
i elastic collision

—
=
—

i inelastic collision. 1]
b Asnooker ball of mass 0.35kg hits the side of a snooker table at right angles and bounces off also
at right angles. Its speed before collision is 2.8 ms™ and its speed after is 2.5ms™. Calculate
the change in the momentum of the ball.
¢ Explain whether or not momentum is conserved in the situation described in b.

— —
LN

5 Acarof mass 1100kg is travelling at 24 ms™. The driver applies the brakes and the car decelerates
uniformly and comes to restin 20s.
a Calculate the change in momentum of the car.
b Calculate the braking force on the car.

CORISIS)

¢ Determine the braking distance of the car.

6 Amarble of mass 100g is moving at a speed of 0.40ms™ in the x-direction.
a Calculate the marble’s momentum. [
The marble strikes a second, identical marble. Each moves off at an angle of 45° to the x-direction.

b Use the principle of conservation of momentum to determine the speed of each marble after the collision.

N

—_
SN

¢ Show that kinetic energy is conserved in this collision.

7 Acricket bat strikes a ball of mass 0.16 kg travelling towards it. The ballinitially hits the bat at a speed
of 25ms and returns along the same path with the same speed. The time of impact is 0.0030s.

a Determine the change in momentum of the cricket ball. [2]
b Determine the force exerted by the bat on the ball. [2]
¢ Describe how the laws of conservation of energy and momentum apply to this impact and state

whether the impact is elastic or inelastic. [4]

8 a Statethe principle of conservation of momentum and state the conditions under which it is valid. [2]

b Anarrow of mass 0.25kg is fired horizontally towards an apple of mass 0.10 kg which is hanging

on astring (Figure 6.23).

30ms!

)

Figure 6.23 For End-of-chapter Question 8.

The horizontal velocity of the arrow as it enters the apple is 30ms™. The apple was initially at rest
and the arrow sticks in the apple.
i Calculate the horizontal velocity of the apple and arrow immediately after the impact.

CORS)

ii Calculate the change in momentum of the arrow during the impact.
iii Calculate the change in total kinetic energy of the arrow and apple during the impact.

iv Anidentical arrow is fired at the centre of a stationary ball of mass 0.25kg. The collision is
perfectly elastic. Describe what happens and state the relative speed of separation of the
arrow and the ball. [2]

S
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9 a Statewhatis meantby:
i aperfectly elastic collision

—
=
—

ii acompletely inelastic collision. [1]

b Astationary uranium nucleus disintegrates, emitting an alpha-particle of mass 6.65x1072" kg and
another nucleus X of mass 3.89x102°kg (Figure 6.24).

X
alpha-particle Q
/

O uranium nucleus
before decay

Figure 6.24 For End-of-chapter Question 9.

i  Explain why the alpha-particle and nucleus X must be emitted in exactly opposite directions. [2]
i Using the symbols v, and vy for velocities, write an equation for the conservation of momentum
in this disintegration. [1]
iii Using your answer toii, calculate the ratio v, /v after the disintegration. [1]
10 a Statetwo quantities that are conserved in an elastic collision. 1]
b Amachine gun fires bullets of mass 0.014 kg at a speed of 640ms™.
n i Calculate the momentum of each bullet as it leaves the gun. [1]
ii Explain why a soldier holding the machine gun experiences a force when the gun is firing. 2]
iii The maximum steady horizontal force that a soldier can exert on the gun is 140N. Calculate the
maximum number of bullets that the gun can fire in one second. [2]
11 Two railway trucks are travelling in the same direction 5
and collide. The mass of truck X is 2.0 x 10*kg and the X
mass of truck Y is 3.0 x 10*kg. Figure 6.25 shows how - 4
the velocity of each truck varies with time. E 3. Y
z L
S 24
3 Y X
=1
0 T T
0 2.0 3.6
Time/s
Figure 6.25 For End-of-chapter Question 11.
a Copy and complete the table. [6]
Change in momen- Initial kinetic | Final kinetic
tum/kgms™ energy/J energy/J
truck X
truck Y
b State and explain whether the collision of the two trucks is an example of an elastic collision. 2]

¢ Determine the force that acts on each truck during the collision. [2]
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Learning outcomes

You should be able to:

m define density

m define pressure and calculate the pressure in a fluid
understand how tensile and compressive forces cause
deformation

m describe the behaviour of springs and understand
Hooke’s law

m distinguish between elastic and plastic deformation
define and use stress, strain and the Young modulus
m describe an experiment to measure the Young modulus
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Springy stuff

In everyday life, we make great use of elastic
materials. The term elastic means springy; that is, the
material deforms when a force is applied and returns
to its original shape when the force is removed. Rubber
is an elastic material. This is obviously important for
a bungee jumper ( The bungee rope must
have the correct degree of elasticity. The jumper must
be brought gently to a halt. If the rope is too stiff, the
jumper will be jerked violently so that the deceleration
is greater than their body can withstand. On the other
hand, if the rope is too stretchy, they may bounce up
and down endlessly, or even strike the ground.

In this chapter we will look at how forces can change
the shape of an object. Before that, we will look at two
important quantities, density and pressure.

Figure 7.1 The stiffness and elasticity of rubber
are crucial factors in bungee jumping.

Density

Density is a property of matter. It tells us about how

concentrated the matter is in a particular material. Density

is a constant for a given material under specific conditions.
Density is defined as the mass per unit volume of a

substance:
. mass
density =
volume
p= m
v

The symbol used here for density, p, is the Greek letter rho.

The standard unit for density in the SI system is kgm™,
but you may also find values quoted in gem™. It is useful
to remember that these units are related by:

1000kgm™ =1gcm™
and that the density of water is approximately 1000 kg m>.

1 Acube of copper has a mass of 240 g. Each side of
the cube is 3.0cm long. Calculate the density of
copperingcmSandin kgm™.

2 Thedensity of steel is 7850 kgm™3. Calculate the
mass of a steel sphere of radius 0.15m. (First
calculate the volume of the sphere using the

formula V = $r3 and then use the density equation.)

Pressure

A fluid (liquid or gas) exerts pressure on the walls of its
container, or on any surface with which it is in contact. A
big force on a small area produces a high pressure.

Pressure is defined as the normal force acting per unit
cross-sectional area.
We can write this as a word equation:
normal force
cross-sectional area

pressure =

P=Z

Force is measured in newtons and area is measured in
square metres. The units of pressure are thus newtons per
square metre (N m2), which are given the special name of
pascals (Pa).

1Pa=1Nm>

3 Achairstands on four feet, each of area 10cm?.
The chair weighs 80 N. Calculate the pressure it
exerts on the floor.

4 Estimate the pressure you exert on the floor when
you stand on both feet. (You could draw a rough
rectangle around both your feet placed together to
find the area in contact with the floor. You will also
need to calculate your weight from your mass.)



Pressure in a fluid
The pressure in a fluid (a liquid or gas) increases with
depth. Divers know this: the further down they dive, the
greater the water pressure acting on them. Pilots know
this: the higher they fly, the lower is the pressure of the
atmosphere. The atmospheric pressure we experience
down here on the surface of the Earth is due to the weight
of the atmosphere above us, pressing downwards. It is
pulled downwards by gravity.

The pressure in a fluid depends on three factors:

m the depth h below the surface
m thedensity p of the fluid
m the acceleration due to gravity, g.

In fact, pressure p is proportional to each of these and we
have:

pressure = density x acceleration due to gravity x depth

p=pgh
We can derive this relationship using Figure 7.2. The
force acting on the shaded area A on the bottom of the
tank is caused by the weight of water above it, pressing
downwards. We can calculate this force and hence the
pressure as follows:

volume of water = Ax h

mass of water = density x volume = px A x h

1 Acube of side 0.20m floats in water with 0.15m
below the surface of the water. The density of water
is 1000 kg m™3. Calculate the pressure of the water
acting on the bottom surface of the cube and the force
upwards on the cube caused by this pressure. (This force
is the upthrust on the cube.)

Step 1 Use the equation for pressure:
p= pxgxh=1000x9.81x 0.15=1470Pa
Step 2 Calculate the area of the base of the cube, and
use this area in the equation for force.
area of base of cube =0.2 x 0.2 =0.04 m?
force = pressurexarea = 1470 x 0.04=58.8N
2 Figure 7.3 shows a manometer used to measure
the pressure of a gas supply. Calculate the pressure

difference between the gas inside the pipe and
atmospheric pressure.

Step 1 Determine the difference in height h of the water
on the two sides of the manometer.

h=60-30=30cm

Chapter 7: Matter and materials

density of
liquid p

Figure 7.2 The weight of water in a tank exerts pressure on its
base.

weight of water = massxg=pxAxhxg

force g
pressure =——-=p XAxh Y

=pxgxh

5 Calculate the pressure of water on the bottom of
a swimming pool if the depth of water in the pool
varies between 0.8 m and 2.4 m. (Density of
water = 1000kgm=3.) If atmospheric pressure is
1.01 x 10° Pa, calculate the maximum total
pressure at the bottom of the swimming pool.

6 Estimate the height of the atmosphere if
atmospheric density at the Earth’s surface is
1.29kgm™3. (Atmospheric pressure = 101 kPa.)

scale
incm L atmosphere
gas -80|
pipe Lol | L---
— | .
40
20
—F  water of density

1000 kg m=3
Figure 7.3 For Worked example 2.

Step 2 Because the level of water on the side of the
tube next to the gas pipe is lower than on the side open
to the atmosphere, the pressure in the gas pipe is above
atmospheric pressure.

pressure difference =p x g x h=1000 x 9.81 x 0.30 =2940Pa
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Compressive and tensile forces

A pair of forces is needed to change the shape of a spring.
If the spring is being squashed and shortened, we say
that the forces are compressive. More usually, we are
concerned with stretching a spring, in which case the
forces are described as tensile (Figure 7.4).

. 1

b — «—— compressive
forces
¢ <~ — tensile
forces

Figure 7.4 The effects of compressive and tensile forces.

When a wire is bent, some parts become longer and
are in tension while other parts become shorter and are in
compression. Figure 7.5 shows that the line AA becomes
longer when the wire is bent and the line BB becomes
shorter. The thicker the wire, the greater the compression
and tension forces along its edges.

A
B ..

B = el B

Figure 7.5 Bending a straight wire or beam results in tensile
forces along the upper surface (the outside of the bend) and
compressive forces on the inside of the bend.

It is simple to investigate how the length of a helical
spring is affected by the applied force or load. The spring
hangs freely with the top end clamped firmly (Figure 7.6).
A load is added and gradually increased. For each value of
the load, the extension of the spring is measured. Note that
it is important to determine the increase in length of the
spring, which we call the extension. We can plot a graph of
force against extension to find the stiffness of the spring, as
shown in Figure 7.7.

Hooke’s law

The conventional way of plotting the results would be to
have the force along the horizontal axis and the extension
along the vertical axis. This is because we are changing
the force (the independent variable) and this results in

a change in the extension (the dependent variable). The
graph shown in Figure 7.7 has extension on the horizontal

Figure 7.6 Stretching a spring.

A
A
/?gradient-k

0 >
0 Extension, x

4

Force, F

Figure 7.7 Force-extension graph for a spring.

axis and force on the vertical axis. This is a departure from
the convention because the gradient of the straight section
of this graph turns out to be an important quantity,
known as the force constant of the spring. For a typical
spring, the first section of this graph OA is a straight line
passing through the origin. The extension x is directly
proportional to the applied force (load) F. The behaviour
of the spring in the linear region OA of the graph can be
expressed by the following equation:

xo< F
or F=kx
where k is the force constant of the spring (sometimes
called either the stiffness or the spring constant of the
spring). The force constant is the force per unit extension.
The force constant k of the spring is given by the equation:

k==
X

The SI unit for the force constant is newtons per metre or
Nm™. We can find the force constant k from the gradient
of section OA of the graph:

k = gradient
A stiffer spring will have a larger value for the force
constant k. Beyond point A, the graph is no longer a
straight line; its gradient changes and we can no longer use
the equation F = kx.



If a spring or anything else responds to a pair of tensile
forces in the way shown in section OA of Figure 7.7, we say

that it obeys Hooke’s law:

A material obeys Hooke’s law if the extension produced in
it is proportional to the applied force (load).

If you apply a small force to a spring and then release

it, it will return to its original length. This behaviour is
described as ‘elastic’. However, if you apply a large force,
the spring may not return to its original length. It has
become permanently deformed. The force beyond which
the spring becomes permanently deformed is known as
the elastic limit.

7 Figure 7.8 shows the force-extension graphs for
four springs, A, B, C and D.

a State which spring has the greatest value of
force constant.

b State which is the least stiff.
¢ State which of the four springs does not obey

Hooke’s law.
C
D B

Q

2
2 A

0

0 Extension

Figure 7.8 Force-extension graphs for four
different springs.

Stretching materials

When we determine the force constant of a spring, we
are only finding out about the stiffness of that particular

spring. However, we can compare the stiffness of different

materials. For example, steel is stiffer than copper, but
copper is stiffer than lead.

Stress and strain

Figure 7.10 shows a simple way of assessing the stiffness of
a wire in the laboratory. As the long wire is stretched, the

position of the sticky tape pointer can be read from the
scale on the bench.

Chapter 7: Matter and materials

Springs can be combined in different ways

(Figure 7.9): end-to-end (in series) and side-by-

side (in parallel). Using identical springs, you can
measure the force constant of a single spring, and of
springs in series and in parallel. Before you do this,
predict the outcome of such an experiment. If the
force constant of a single spring is k, what will be the
equivalent force constant of:

two springs in series?
two springs in parallel?
This approach can be applied to combinations of

three or more springs.

a b

Figure 7.9 Two ways to combine a pair of springs:
ain series; b in parallel.

Why do we use a long wire? Obviously, this is because
a short wire would not stretch as much as a long one. We
need to take account of this in our calculations, and we
do this by calculating the strain produced by the load.
The strain is defined as the fractional increase in the
original length of the wire. That is:

extension

strain= ———M——
original length

clamp metrerule sticky tape

\ / pointer
= )

L I A ™ | [ I O

. pulley

— wire

é load

Figure 7.10 Stretching a wire in the laboratory. WEAR EYE
PROTECTION and be careful not to overload the wire.
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This may be written as:
X
strain = =

where x is the extension of the wire and L is its original
length.

Note that both extension and original length must be
in the same units, and so strain is a ratio, without units.
Sometimes strain is given as a percentage. For example, a
strain of 0.012 is equivalent to 1.2%.

Why do we use a thin wire? This is because a thick
wire would not stretch as much for the same force. Again,
we need to take account of this in our calculations, and
we do this by calculating the stress produced by the load.
The stress is defined as the force applied per unit cross-
sectional area of the wire. That is:

force
cross-sectional area

stress =
This may be written as:
stress = E
A

where F is the applied force on a wire of cross-sectional
area A.

The units of stress are newtons per square metre
(N'm™) or pascals (Pa), the same as the units of pressure:

1Pa=1Nm>

The Young modulus

We can now find the stiffness of the material we are
stretching. Rather than calculating the ratio of force to
extension as we would for a spring or a wire, we calculate
the ratio of stress to strain. This ratio is a constant for

a particular material and does not depend on its shape
or size. The ratio of stress to strain is called the Young
modulus of the material. That is:

stress
Young modulus = -
strain
o
or =—
€

where E is the Young modulus of the material, o (Greek
letter sigma) is the stress and ¢ (epsilon) is the strain.

The unit of the Young modulus is the same as that for
stress, Nm™ or Pa. In practice, values may be quoted in
MPa or GPa. These units are related as:

1MPa = 10°Pa
1GPa=10°Pa

Usually, we plot a graph with stress on the vertical axis
and strain on the horizontal axis (Figure 7.11). It is drawn
like this so that the gradient is the Young modulus of

the material. It is important to consider only the first,
linear section of the graph. In the linear section stress
is proportional to strain and the wire under test obeys
Hooke’s law.

Table 7.1 gives some values of the Young modulus for
different materials.

A Hooke’s law obeyed |
in this linear region 1

gradient = Young modulus

Stress

0 Strain
Figure 7.11 Stress-strain graph, and how to deduce the
Young modulus. Note that we can only use the first, straight-
line section of the graph.

Material Young modulus/GPa
aluminium 70

brass 90-110

brick 7-20
concrete 40

copper 130

glass 70-80

iron (wrought) 200

lead 18
Perspex® 3
polystyrene 2.7-4.2
rubber 0.01
steel 210

tin 50

wood 10 approx.

Table 7.1 The Young modulus of various materials. Many
of these values depend on the precise composition of the
material concerned. (Remember, 1 GPa=10°Pa.)

8 Listthe metalsin Table 7.1 from stiffest to least
stiff.

9 Which of the non-metals in Table 7.1 is the stiffest?



10 Figure 7.12 shows stress-strain graphs for two
materials, A and B. Use the graphs to determine the
Young modulus of each material.

= =
o (&)
| |

(6]
|

Stress / 10° Pa

0 T T T T
0 01 02 03 04

Strain / %

Figure 7.12 Stress-strain graphs for two different
materials.

11 A piece of steel wire, 200.0cm long and having
cross-sectional area of 0.50 mm?, is stretched by a
force of 50N. Its new length is found to be 200.1cm.
Calculate the stress and strain, and the Young
modulus of steel.

12 Calculate the extension of a copper wire of length
1.00m and diameter 1.00 mm when a tensile force
of 10N is applied to the end of the wire. (Young
modulus E of copper =130GPa.)

Metals are not very elastic. In practice, they can only be
stretched by about 0.1% of their original length. Beyond
this, they become permanently deformed. As a result,
some careful thought must be given to getting results
that are good enough to give an accurate value of the
Young modulus.

First, the wire used must be long. The increase in
length is proportional to the original length, and so a
longer wire gives larger and more measurable extensions.
Typically, extensions up to 1 mm must be measured for
a wire of length 1 m. To get suitable measurements of
extension there are two possibilities: use a very long wire,
or use a method that allows measurement of extensions
that are a fraction of a millimetre.

The apparatus shown in Figure 7.10 can be used
with a travelling microscope placed above the wire and
focused on the sticky tape pointer. When the pointer
moves, the microscope is adjusted to keep the pointer

Chapter 7: Matter and materials

13 Inan experiment to measure the Young modulus of
glass, a student draws out a glass rod to form a fibre
0.800m in length. Using a travelling microscope, she
estimates its diameter to be 0.40 mm. Unfortunately
it proves impossible to obtain a series of readings for
load and extension. The fibre snaps when a load of
1.00N is hung on
the end. The student judges that the fibre extended
by no more than 1 mm before it snapped.

Use these values to obtain an estimate for the Young
modulus of the glass used. Explain how the actual or
accepted value for the Young modulus might differ
from this estimate.

14 For each of the materials whose stress-strain graphs
are shown in Figure 7.13, deduce the values of the
Young modulus.

150 - a
b
&
< 100 .
2
2 50+
(7p)

0 01 02 03 04
Strain / %

Figure 7.13 Stress-strain graphs for three materials.

at the middle of the cross-hairs on the microscope.
The distance that the pointer has moved can then be
measured accurately from the scale on the microscope.
Second, the cross-sectional area of the wire must
be known accurately. The diameter of the wire is
measured using a micrometer screw gauge. This is
reliable to within £0.01 mm. Once the wire has been
loaded in increasing steps, the load must be gradually
decreased to ensure that there has been no permanent
deformation of the wire.

Other materials such as glass and many plastics
are also quite stiff, and so it is difficult to measure their
Young modulus. Rubber is not as stiff, and strains of
several hundred per cent can be achieved. However, the
stress-strain graph for rubber is not a straight line. This
means the value of the Young modulus found is not very
precise, because it only has a very small linear region on
a stress-strain graph.
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Elastic potential energy

Whenever you stretch a material, you are doing work.
This is because you have to apply a force and the material
extends in the direction of the force. You will know this
if you have ever used an exercise machine with springs
intended to develop your muscles (Figure 7.14). Similarly,
when you push down on the end of a springboard before
diving, you are doing work. You transfer energy to the
springboard, and you recover the energy when it pushes
you up into the air.

Figure 7.14 Using an exercise machine is hard work.

We call the energy in a deformed solid the elastic
potential energy or strain energy. If the material has
been strained elastically (the elastic limit has not been
exceeded), the energy can be recovered. If the material
has been plastically deformed, some of the work done has
gone into moving atoms past one another, and the energy
cannot be recovered. The material warms up slightly.

We can determine how much elastic potential energy is
involved from a force—extension graph: see Figure 7.15. We
need to use the equation that defines the amount of work
done by a force. That is:

work done
= force x distance moved in the direction of the force

area =work done

Force

0 X
Extension

Figure 7.15 Elastic potential energy is equal to the area under
the force-extension graph.

First, consider the linear region of the graph where
Hooke’s law is obeyed, OA. The graph in this region is a
straight line through the origin. The extension x is directly
proportional to the applied force F. There are two ways to
find the work done.

Method 1

We can think about the average force needed to produce
an extension x. The average force is half the final force F,
and so we can write:

elastic potential energy = work done

final force

elastic potential energy = x extension

elastic potential energy = § Fx

or E=%Fx

Method 2

The other way to find the elastic potential energy is to
recognise that we can get the same answer by finding the
area under the graph. The area shaded in Figure 7.15is a
triangle whose area is given by:

area = 3 x base x height
This again gives:
elastic potential energy = 3 Fx

or E=1Fx

The work done in stretching or compressing a material

is always equal to the area under the graph of force

against extension. This is true whatever the shape of the
graph, provided we draw the graph with extension on the
horizontal axis. If the graph is not a straight line, we cannot
use the Fx relationship, so we have to resort to counting
squares or some other technique to find the answer.



3 Figure 7.16 shows a simplified version of a force-
extension graph for a piece of metal. Find the elastic
potential energy when the metal is stretched to its
elastic limit, and the total work that must be done to
break the metal.

Chapter 7: Matter and materials

Step 1 The elastic potential energy when the metal
is stretched to its elastic limit is given by the area
under the graph up to the elastic limit. The graphis a
straight line up to x=5.0mm, F=20N, so the elastic
potential energy is the area of triangle OAB:

elastic potential energy = %Fx
A D =3x20x50x107
20 - | =0.050
= Step 2 To find the work done to break the metal, we
8 104 need to add on the area of the rectangle ABCD:
i :B e work done = total area under the graph
0 I

. . . . =0.05+ (20 x 25 x 1073)

=0.05+0.50=0.55J
Extension /103m

Figure 7.16 For Worked example 3.

Note that the elastic potential energy relates to the elastic
part of the graph (i.e. up to the elastic limit), so we can only
consider the force—extension graph up to the elastic limit.

15 Aforce of 12N extends a length of rubber band by
There is an alternative equation for elastic potential

18.cm. Estimate the energy stored in this rubber
energy. We know that, according to Hooke’s law (page band. Explain why your answer can only be an
104), applied force F and extension x are related by F = kx, estimate.

where k is the force constant. Substituting for F gives:

16 Aspring has a force constant of 4800Nm™.
elastic potential energy = 2 Fx = 3 x kxx x Calculate the elastic potential energy when it is

. . 1 compressed by 2.0mm.
elastic potential energy = 5 kx?

17 Figure 7.17 shows force-extension graphs for
two materials. For each of the following
questions, explain how you deduce your answer
from the graphs.

a State which polymer has the greater stiffness.

b State which polymer requires the greater
force to break it.

¢ State which polymer requires the greater
amount of work to be done in order to break it.

A

Force

0

0 Extension

Figure 7.17 Force-extension graph for two polymers.
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Summary

m Density is defined as the mass per unit volume of a
substance:
mass
volume

density =

m Pressureis defined as the normal force acting per unit
cross-sectional area:

force
pressure =
area

m Pressure in a fluid increases with depth:

p=pgh

m Hooke’s law states that the extension of a material is
directly proportional to the applied force. For a spring
or a wire, F=kx, where k is the force constant. The
force constant has units of Nm™.

m Stressis defined as:

force
stress = :
cross-sectional area
F
0= —
A

Strain is defined as:

. extension
strain = ——————-
original length
X
or &=-—
L

To describe the behaviour of a material under tensile
and compressive forces, we have to draw a

graph of stress against strain. The gradient of the
initial linear section of the graph is equal to the
Young modulus. The Young modulus is an indication
of the stiffness of the material.

The Young modulus E is given by:
_stress _ ¢

" strain ¢

The unit of the Young modulus is pascal (Pa) or Nm™.

The area under a force-extension graph is equal to the
work done by the force.

For a spring or a wire obeying Hooke’s law, the elastic
potential energy E is given by:

E=3kx  F,=%kq?
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End-of-chapter questions

Define density.

State the base units in the Sl system in which density is measured.
Define pressure.

State the base units in the SI system in which pressure is measured.

Sketch a force-extension graph for a spring which has a spring constant of 20N m™ and which obeys
Hooke’s law for forces up to 5N. Your graph should cover forces between 0 and 6N and show values
on both axes.

Two springs, each with a spring constant 20N m™, are connected in series. Draw a diagram of the two
springs connected in series and determine the total extension if a mass, with weight 2.0N, is hung
on the combined springs.

A sample of fishing line is 1.0m long and is of circular cross-section of radius 0.25 mm. When a weight
is hung on the line, the extension is 50 mm and the stress is 2.0 x 108 Pa. Calculate:

the cross-sectional area of the line

the weight added

the strain in the line

the Young modulus.

Figure 7.18 shows the force-extension graph for a metal wire of length 2.0m and cross-sectional area 1.5 x 107" m?,

02 04 06 08 10
Extension / mm
Figure 7.18 For End-of-chapter Question 5.

Calculate the Young modulus.
Determine the energy stored in the wire when the extension is 0.8 mm.
Calculate the work done in stretching the wire between 0.4mm and 0.8 mm.

Explain how a manometer may be adapted to measure large pressures.

Explain why the pressure measured by a manometer does not depend on the cross-sectional area of
the tube used in the manometer.
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7 a Figure 7.19 shows the stress-strain curves for three different materials, P,Q and R.
State and explain which material has the greatest Young modulus.

Stress
e}

0
0
Strain

Figure 7.19 For End-of-chapter Question 7.

b Describe an experiment to determine the Young modulus for a material in the form of a wire.
Include a labelled diagram and explain how you would make the necessary measurements.
Show how you would use your measurements to calculate the Young modulus.

8 a Statethe meaning of tensile stress and tensile strain.
b Avertical steel wire of length 1.6 m and cross-sectional area 1.3 x 10°°m? carries a weight of 60 N.
The Young modulus for steel is 2.1 x 10'* Pa. Calculate:
i thestressinthe wire
i thestrain in the wire
iii the extension produced in the wire by the weight.

9 To allow for expansion in the summer when temperatures rise, a steel railway line laid in cold weather is
pre-stressed by applying a force of 2.6 x 10°N to the rail of cross-sectional area 5.0 x 10 m?2, If the railway
line is not pre-stressed then a strain of 1.4 x 107° is caused by each degree Celsius rise in temperature.
The Young modulus of the steel is 2.1 x 10'! Pa.

a State and explain whether the force applied to the rail when it is laid should be tensile or compressive.

b Calculate:
i thestrain produced when the rail is laid
ii thetemperature rise when the rail becomes unstressed.

“
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10 Figure 7.20 shows the stress-strain graph for a metal wire.

1.6

1.4

1.2

1.0

0.8

Stress / GPa

0.6

0.4

2.0 4.0 6.0
Strain /1073
Figure 7.20 For End-of-chapter Question 10.

The wire has a diameter of 0.84mm and a natural length of 3.5m. Use the graph to determine:
the Young modulus of the wire
the extension of the wire when the stress is 0.6 GPa
the force which causes the wire to break, assuming that the cross-sectional area of the wire remains constant
the energy stored when the wire has a stress of 0.6 GPa.

Figure 7.21 shows the force-extension graph for a spring.

A

0

0 Extension

Figure 7.21 For End-of-chapter Question 11.

a State whatis represented by:
i thegradient of the graph
ii theareaunderthe graph.
The spring has force constant k=80Nm™. The spring is compressed by 0.060 m and placed between
two trolleys that run on a friction-free, horizontal track. Each trolley has a mass of 0.40 kg. When
the spring is released the trolleys fly apart with equal speeds but in opposite directions.
i How much energy is stored in the spring when it is compressed by 0.060m?
ii  Explain why the two trolleys must fly apart with equal speeds.
i Calculate the speed of each trolley.




Cambridge International AS Level Physics

12 a Liquid of density p fills a cylinder of base area A and height h.
i Usingthe symbols provided, state the mass of liquid in the container. 1]
ii Usingyour answer toi, derive a formula for the pressure exerted on the base of the cylinder. [2]
b Aboy stands on a platform of area 0.050 m? and a manometer measures the pressure created in
a flexible plastic container by the weight I of the boy (Figure 7.22).

90
platform ' 80 manometer
area 0.050 m? weight W 70
60
metre rule
50 showing
flexible l/wﬁ 40 distances in
plastic 30 cm
container
20
10 water
0
Figure 7.22 For End-of-chapter Question 12.
n The density of water is 1000 kgm™3. Determine:
i the pressure difference between the inside of the plastic container and the atmosphere outside [2]
i the weight W of the boy. 2]

13 Figure 7.23 shows water in a container filled to a depth of 0.50 m. The density of water is 1000 kgm™3,

0.50m

X Y
Figure 7.23 For End-of-chapter Question 13.

a Calculate the pressure at X on the base of the container. [2]
b Explain why the pressure at X must be equal to the pressure at Y. 1
Explain why the force downwards on the base of the container is larger than the weight of the
liquid in the container. [2]
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14 a Describe why the pressure of the atmosphere is less at the top of a mountain than at the bottom.

liquid X

liquid Y

Figure 7.24 For End-of-chapter Question 14.

Figure 7.24 shows a U-tube, open at both ends, which contains two different liquids, X and Y, that do
not mix. The numbers on the metre rule are distances in centimetres. The density of liquid Y is 800 kgm™.

i Explain how Figure 7.24 shows that liquid Y has a greater density than liquid X.

i Calculate the density of liquid X.

iii Explain why the pressure in the U-tube is the same on both sides of the manometer at level L.
iv Calculate the pressure caused by liquid in the U-tube at level L.
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Electric fields

Learning outcomes

You should be able to:

show an understanding of the concept of an electric field
define electric field strength

draw field lines to represent an electric field

calculate the strength of a uniform electric field
calculate the force on a charge in a uniform electric field

describe how charged particles move in a uniform
electricfield



Electricity in nature

The lower surface of a thundercloud is usually
negatively charged. When lightning strikes (

an intense electric current is sent down to the ground
below. You may have noticed a ‘strobe’ effect - this is
because each lightning strike usually consists of four
or five flashes at intervals of 50 milliseconds or so. You
will already know a bit about electric (or electrostatic)
fields, from your experience of static electricity in
everyday life, and from your studies in science. In this
chapter, you will learn how we can make these ideas
more formal. We will look at how electric forces are
caused, and how we can represent their effects in
terms of electric fields. Then we will find mathematical
ways of calculating electric forces and field strengths.

Attraction and repulsion

Static electricity can be useful - it is important in the
process of photocopying, in dust precipitation to clean up
industrial emissions, and in crop-spraying, among many
other applications. It can also be a nuisance. Who hasn’t
experienced a shock, perhaps when getting out of a car or
when touching a door handle? Static electric charge has
built up and gives us a shock when it discharges.

We explain these effects in terms of electric charge.
Simple observations in the laboratory give us the following
picture:

m Objects are usually electrically neutral (uncharged), but
they may become electrically charged, for example when
one material is rubbed against another.

m There are two types of charge, which we call positive and
negative.

m  Opposite types of charge attract one another; like charges
repel (Figure 8.2).

m Acharged object may also be able to attract an uncharged
one; this is a result of electrostatic induction.

Vodh

Figure 8.2 Attraction and repulsion between electric charges.

These observations are macroscopic. They are
descriptions of phenomena that we can observe in the
laboratory, without having to consider what is happening
on the microscopic scale, at the level of particles such as
atoms and electrons. However, we can give a more subtle
explanation if we consider the microscopic picture of static
electricity.
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Figure 8.1 Lightning flashes, dramatic evidence of natural
electric fields.

Using a simple model, we can consider matter to be
made up of three types of particles: electrons (which have
negative charge), protons (positive) and neutrons (neutral).
An uncharged object has equal numbers of protons and
electrons, whose charges therefore cancel out.

When one material is rubbed against another, there is
friction between them, and electrons may be rubbed off
one material onto the other (Figure 8.3). The material that
has gained electrons is now negatively charged, and the
other material is positively charged.

plastic

cloth

Figure 8.3 Friction can transfer electrons between materials.

If a positively charged object is brought close to an
uncharged one, the electrons in the second object may be
attracted. We observe this as a force of attraction between
the two objects. (This is known as electrostatic induction.)

It is important to appreciate that it is usually electrons
that are involved in moving within a material, or from
one material to another. This is because electrons, which
are on the outside of atoms, are less strongly held within a
material than are protons. They may be free to move about
within a material (like the conduction electrons in a metal),
or they may be relatively weakly bound within atoms.
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If you rub a strip of plastic so that it becomes charged,

and then hold it close to your hair, you feel your hair
being pulled upwards. The influence of the charged
plastic spreads into the space around it; we say
that there is an electric field around the charge. To

produce an electric field, we need unbalanced charges
(as with the charged plastic). To observe the field, we

need to put something in it that will respond to the
field (as your hair responds). There are two simple
ways in which you can do this in the laboratory. The
first uses a charged strip of gold foil, attached to an

insulating handle (Figure 8.4). The second uses grains

of a material such as semolina; these line up in an
electric field (Figure 8.5), rather like the way in which
iron filings line up in a magnetic field (Figure 8.5).

charged
gold foil

charged
metal
plates

Figure 8.4 Investigating the electric field between two

charged metal plates.

Figure 8.5 Apparatus showing a uniform electric field
between two parallel charged plates.

The concept of an electric field

A charged object experiences a force in an electric
field. This is what an electric field is. We say that there
is an electric field anywhere where an electric charge
experiences a force. An electric field is a field of force.

This is a rather abstract idea. You will be more familiar
with the idea of a ‘field of force” from your experience of
magnets. There is a magnetic field around a permanent
magnet; another magnet placed nearby will experience
a force. You have probably plotted the field lines used to
represent the field around a magnet. There is a third type of
force field which we are all familiar with, because we live in
it - a gravitational field. Our weight is the force exerted on
us by the gravitational field of the Earth. So we have:

m electricfields - act on objects with electric charge

m  magnetic fields - act on magnetic materials, magnets and
moving charges (including electric currents)

m gravitational fields - act on objects with mass.

Later we will see that the electric force and the magnetic
force are closely linked. They are generally considered as a
single entity, the electromagnetic force.

Representing electric fields

We can draw electric fields in much the same way that

we can draw magnetic fields, by showing field lines
(sometimes called lines of force). The three most important
field shapes are shown in Figure 8.6.

As with magnetic fields, this representation tells us two
things about the field: its direction (from the direction of
the lines), and how strong it is (from the separation of the
lines). The arrows go from positive to negative; they tell us
the direction of the force on a positive charge in the field.

m Auniform field has the same strength at all points. Example:
the electric field between oppositely charged parallel
plates.

m Aradial field spreads outwards in all directions. Example:
the electric field around a point charge or a charged sphere.

Figure 8.6 Field lines are drawn to represent an electric field.
They show the direction of the force on a positive charge
placed at a pointin the field. a A uniform electric field is
produced between two oppositely charged plates. b A radial
electric field surrounds a charged sphere. ¢ The electric field
between a charged sphere and an earthed plate.



1 Which of the three field diagrams in Figure 8.7
represents:

a two positive charges repelling each other?
b two negative charges?
¢ two opposite charges?

LS
€

Figure 8.7 Electric fields between charges -
see Question 1.

2 Many molecules are described as polar; that is, they
have regions that are positively or negatively charged,
though they are neutral overall. Draw a diagram to
show how sausage-shaped polar molecules like those
shown in Figure 8.8 might realign themselves in a
solid.

We can draw electric fields for other arrangements. Note
the symbol for an earth, which is assumed to be uncharged
(i.e. at zero volts).

Electric field strength

For an electric field, we define electric field strength E as
follows:

The electric field strength at a point is the force per unit
charge exerted on a stationary positive charge at that
point.

Chapter 8: Electric fields

%% o

Figure 8.8 Polar molecules - see Question 2.

3 Figure 8.9 shows the electric field pattern between a
thundercloud and a building. State and explain where
the electric field strength is greatest.

s e s
. ) o e T e

Figure 8.9 Predict where the electric field will be
strongest - that’s where lightning may strike.

So, to define electric field strength, we imagine putting

a positive test charge +Q in the field and measuring the
electric force F that it feels (Figure 8.10). (If you have used
a charged gold leaf to investigate a field, this illustrates the
principle of testing the field with a charge.)

/

electricfield lines

-
A 4 @ 4 4
™

Figure 8.10 Afield of strength E exerts force F on charge +Q.
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From this definition, we can write an equation for E:

F
E=—
Q

It follows that the units of electric field strength are
newtons per coulomb (NC™).

The strength of a uniform field

You can set up a uniform field between two parallel metal

plates by connecting them to the terminals of a high-

voltage power supply (Figure 8.11). The strength of the field

between them depends on two factors:

m thevoltage Vbetween the plates - the higher the voltage,
the stronger the field: E o< V

m theseparation d between the plates - the greater their
separation, the weaker the field: £ < —

d
These factors can be combined to give an equation for E:
\4
E=--~
d

Worked example 1 shows a derivation of this. Note that the
minus sign is necessary because, in Figure 8.11, the voltage
Vincreases towards the right while the force F acts in the
opposite direction, towards the left. E is a vector quantity.
In calculations, we are often interested in the magnitude
of the electric field strength, hence we can write:

Vv
E=3

4 Figure 8.12 shows an arrangement of parallel plates,
each at a different voltage. The electric field lines are
shown in the space between the first pair. Copy and
complete the diagram to show the electric field lines
in the other two spaces.

oV +2.0kV +6.0kV OV

[

Figure 8.12 An arrangement of parallel plates -
see Question 4.

high-voltage
power supply

Figure 8.11 There is a uniform field between two parallel,
charged plates.

From this equation, we can see that we can write the units
of electric field strength as volts per metre (V m™). Note:

IVm!=1NC!

Worked example 2 shows how to solve problems involving
uniform fields.

5 Calculate the electric field strength at a point where
a charge of 20 mC experiences a force vertically
downwards of 150 N.

6 Calculate the electric field strength between two
parallel charged plates, separated by 40 cm and with
a potential difference between them of 1000V.

7 An electron is situated in a uniform electric field. The
electric force that acts on it is 8x 10™®N. What is the
strength of the electric field?

(Electron chargee=1.6 x1071°C.)
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8 Airisusually a good insulator. However, a spark

can jump through dry air when the electric field

strength is greater than about 40000Vcm™. This is

called electrical breakdown. The spark shows that

electrical charge is passing through the air - a current

is flowing. (Do not confuse this with a chemical spark

such as you might see when watching fireworks; in

that case, small particles of a chemical substance are

burning quickly.)

a AVande Graaff generator (Figure 8.13) is able to
make sparks jump across a 4cm gap. What is the
voltage produced by the generator?

b The highest voltage reached by the live wire of a
conventional mains supply is 325V. In theory (but
DO NOT try this), how close would you have to get
to a live wire to get a shock from it? Figure 8.13 AVan de Graaff generator produces voltages

sufficient to cause sparks in air.

¢ Estimate the voltage of a thundercloud from which
lightning strikes the ground 100 m below.

1 Two metal plates are separated by a distance d. The 2 Two parallel metal plates separated by 2.0cm have a
potential difference between the plates is V. A positive potential difference of 5.0 kV. Calculate the electric force
charge Qis pulled at a constant speed with a constant acting on a dust particle between the plates that has a
force F from the negative plate all the way to the positive charge of 8.0 x 1071°C.

plate. Using the definition for electric field strength and

. Step 1 Write down the quantities given in the question:
the concept of work done, show that the magnitude of 8 q & g

= -2
the electric field strength E is given by the equation: d=2.0x10"m
FY V=5.0x103V
d 0=8.0x10719¢C
Step 1 We have: Hint: When you write down the quantities it is important
work done on charge = energy transformed to include the units and to change them into base units.

. . . We have used powers of ten to do this.
From their definitions, we can write:

Step 2 To calculate the force F, you first need to
determine the strength of the electric field:

work done = forcexdistance or W=Fd
energy transformed = VQ

4
Step 2 Substituting gives: E=d
Fd =V 50 x 103
Q EZWZZ.SXIOSVm_l
and rearranging gives: ’
F_V Step 3 Now calculate the force on the dust particle:
Q d F=EQ
Step 3 The left-hand side of the equation is the electric F=2.5x10°%x8.0x107%°
field strength E. Hence: =20x10° 13N

E=

Ql<
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Force on a charge

Now we can calculate the force F on a charge Q in the
uniform field between two parallel plates. We have to

combine the general equation for field strength E = g with

the equation for the strength of a uniform field E = _‘El'
This gives:
Qv
F=QE=--*_
Q d
For an electron with charge —e, this becomes:
eV
F=%
d

Figure 8.14 shows a situation where this force is important.

A beam of electrons is entering the space between two
charged parallel plates. How will the beam move?

We have to think about the force on a single electron.
In the diagram, the upper plate is negative relative to the
lower plate, and so the electron is pushed downwards.
(You can think of this simply as the negatively charged
electron being attracted by the positive plate, and repelled
by the negative plate.)

If the electron were stationary, it would accelerate
directly downwards. However, in this example, the
electron is moving to the right. Its horizontal velocity will
be unaffected by the force, but as it moves sideways it will
also accelerate downwards. It will follow a curved path, as
shown. This curve is a parabola.

electricfield lines

Figure 8.14 The parabolic path of a moving electronina
uniform electric field.

Note that the force on the electron is the same at all
points between the plates, and it is always in the same
direction (downwards, in this example).

This situation is equivalent to a ball being thrown
horizontally in the Earth’s uniform gravitational field
(Figure 8.15). It continues to move at a steady speed

horizontally, but at the same time it accelerates downwards.

The result is the familiar curved trajectory shown. For
the electron described above, the force of gravity is tiny -
negligible compared to the electric force on it.

g ,,Lg\

gravitational
field lines

Figure 8.15 Aball, thrown in the uniform gravitational field
of the Earth, follows a parabolic path.

9 InFigure 8.16, two parallel plates are shown,

separated by 25cm.

a Copy the diagram and draw field lines to
represent the field between the plates.

b Whatis the potential difference between
points A and B?

¢ Whatis the electric field strength at C, and
atD?

d Calculate the electric force on a charge of

+5uC placed at C. In which direction does the
force act?

ov +2 kV

eartrLI: - >

25cm

Figure 8.16 Two parallel, charged plates.

10 A particle of charge +2 uC is placed between two
parallel plates, 10cm apart and with a potential
difference of 5kV between them. Calculate the
field strength between the plates, and the force
exerted on the charge.



11 We are used to experiencing accelerations that are
usually less than 10m s, For example, when we
fall, our acceleration is about 9.81 ms2. When a car
turns a corner sharply at speed, its acceleration is
unlikely to be more than 5ms™2. However, if you
were an electron, you would be used to experiencing
much greater accelerations than this. Calculate the
acceleration of an electron in a television tube where
the electric field strength is 50000 Vcm™.
(Electron charge -e =-1.6 x 1071°C;
electron mass m,=9.11 x 1031 kg.)

Summary

An electric field is a field of force, created by electric
charges, and can be represented by electric field lines.

The strength of the field is the force acting per unit

positive charge at a point in the field, E= F

6.
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12 a Useadiagram to explain how the electric force
on a charged particle could be used to separate
a beam of electrons (e”) and positrons (e*) into
two separate beams. (A positron is a positively
charged particle that has the same mass as an
electron but opposite charge. Positron-electron
pairs are often produced in collisions in a particle
accelerator.)

b Explain how this effect could be used to separate
ions that have different masses and charges.

In a uniform field (e.g. between two parallel charged
plates), the force on a charge is the same at all points;

the strength of the field is given by E = —g.

An electric charge moving initially at right-angles to a
uniform electric field follows a parabolic path.
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End-of-chapter questions

1 Figure 8.4 on page 118 shows apparatus used to investigate the field between a pair of charged,
parallel plates.
a Explain why the piece of gold foil deflects in the manner shown. [1]
b State and explain what would be observed if the gold foil momentarily touched the negatively
charged plate. [2]

2 Acharged dust particle in an electric field experiences a force of 4.4 x 10™3N. The charge on the
particle is 8.8 x 10717 C. Calculate the electric field strength. 2]

3 Calculate the potential difference that must be applied across a pair of parallel plates, placed
4cm apart, to produce an electric field of 4000 Vm™., [2]

4 Apotential difference of 2.4kV is applied across a pair of parallel plates. The electric field strength
between the platesis 3.0 x 10*Vm™.

a Calculate the separation of the plates. [2]
b The plates are now moved so that they are 2.0cm apart. Calculate the electric field strength
produced in this new position. [2]

5 Avariable power supply is connected across a pair of parallel plates. The potential difference
across the plates is doubled and the distance between the plates is decreased to one-third of the
n original. State by what factor the electric field changes. Explain your reasoning. [3]

6 Figure 8.17 shows a positively charged sphere hanging by an insulating thread close to an earthed metal plate.

metal

—_—

plate positively charged

sphere

I

Figure 8.17 For End-of-chapter Question 6.

a Copy Figure 8.17 and draw five lines to show the electric field near the plate and the sphere. [3]
b Explain why the sphere is attracted towards the metal plate. 2]
The sphere is now replaced with a similar negatively charged sphere.
i Explain what would be observed when the sphere is brought near to the earthed metal plate. [2]

ii Describe any changes to the electric field that would occur. [1]
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7 Figure 8.18 shows a proton as it moves between two charged parallel plates. The charge on the
proton is +1.6 x 10719C,

proton

Figure 8.18 For End-of-chapter Question 7.

a Copy Figure 8.18 and draw the electric field between the parallel plates.

The force on the proton when it is at position Bis 6.4 x 1074N.

b Inwhich direction does the force on the proton act when it is at position B?
What will be the magnitude of the force on the proton when it is at position C?

c
d Calculate the electric field strength between the plates.
e

Calculate the potential difference between the plates.

Define what is meant by the electric field strength at a point.

In a particle accelerator a proton, initially at rest, is accelerated between two metal plates, as shown
in Figure 8.19.

plate A

proton

N
£ -5.0 MV

Figure 8.19 For End-of-chapter Question 8.

Calculate the force on the proton due to the electric field.
Calculate the work done on the proton by the electric field when it moves from plate A to plate B.
State the energy gained by the proton.

Assuming that all this energy is converted to kinetic energy of the proton, calculate the speed of the
proton when it reaches plate B.

(Charge on a proton =+1.6 x 1072°C; mass of a proton = 1.7 x 102" kg.)




Cambridge International AS Level Physics

9 a Figure 8.20 shows the structure of a spark plug in an internal combustion engine. Figure 8.21 is
an enlarged version of the end of the spark plug, showing some of the lines of force representing
the electric field.

insulator

inner electrode

outer electrode
(screws into engine
block)

n gap between inner/{"

and other electrodes

Figure 8.20 Figure 8.21

a i Copythefield lines from Figure 8.21. On your copy, draw arrows on the lines of force to show the
direction of the field.
ii What evidence does the diagram give that the field is strongest near the tip of the inner electrode?
b The gap between the inner and outer electrodes is 1.25mm and a field strength of 5.0 x 106 NC is
required for electrical breakdown. Estimate the minimum potential difference that must be applied
across the inner and outer electrodes for a spark to be produced. (You may treat the two electrodes
as a pair of parallel plates.) [2]
¢ When an electron is accelerated through a potential drop of approximately 20 V it will have sufficient
energy to ionise a nitrogen atom. Show that an electron must move 4.0 um to gain this energy. 2]

—
= =
[ —
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i‘E\
\_" Learning outcomes
You should be able to:

m show an understanding of the nature of electric current
define charge and the coulomb
solve problems using the equation Q =1t
derive /= nAve
solve problems involving the mean drift velocity of
charge carriers

m define potential difference, e.m.f. and the volt

B use energy considerations to distinguish between p.d.
and em.f.

m define resistance and the ohm

m solve problems using V=IR

m solve problems concerning energy and power in
electric circuits
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Developing ideas

Electricity plays a vital part in our lives. We use
electricity as a way of transferring energy from place
to place - for heating, lighting and making things
move. For people in a developing nation, the arrival
of a reliable electricity supply marks a great leap
forward. In Kenya, a micro-hydroelectric scheme
has been built on Kabiri Falls, on the slopes of Mount
Kenya. Although this produces just 14 kW of power,

it has given work to a number of people, as shown in
Figures 9.1,9.2 and 9.3.

T —

L 3 A
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Figure 9.1 An operator controls the water inlet at the Kabiri
Falls power plant. The generator is on the right.

Circuit symbols and diagrams

Before we go on to study electricity we need to introduce
the concept of circuit diagrams. It is impossible to draw
anything but the simplest circuits in a pictorial manner.
To make it possible to draw complex circuits, a shorthand
method using standard circuit symbols is used. You will
have met many circuit components and their symbols in

your previous studies. Some are shown in Table 9.1 and
Figure 9.4.

Figure 9.2 A metal workshop uses electrical welding
equipment. This allows rapid repairs to farmers’ machinery.

Figure 9.3 A hairdresser can now work in the evenings, thanks
to electrical lighting.

The symbols in Table 9.1 are a small part of a set of
internationally agreed conventional symbols for electrical
components. It is essential that scientists, engineers,
manufacturers and others around the world use the same
symbol for a particular component. In addition, many
circuits are now designed by computers and these need a
universal language in which to work and to present their
results.
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Component name

connecting lead

cell

battery of cells

fixed resistor

power supply

junction of conductors

crossing conductors (no connection)

filament lamp

—{—
|-
—o0o—
_|_
Q-
—@— voltmeter

=O=

=
o
—]
L

ammeter

switch

variable resistor

microphone

loudspeaker

fuse

earth

Figure 9.4 Aselection of electrical components, including

— o~ O—— alternating signal resistors, fuses, capacitors and microchips.
capacitor
thermistor Electric Current
light-dependent resistor (LDR) You will have carried out many practical activities

involving electric current. For example, if you connect a

semiconductor diode wire to a cell (Figure 9.5), there will be current in the wire.

i

light-emitting diode (LED) And of course you make use of electric currents every day
of your life - when you switch on a lamp or a computer, for
Table 9.1 Electrical components and their circuit symbols. example.

The International Electrotechnical Commission (IEC) In the circuit of Figure 9.5, the direction of the current
is the body which establishes agreements on such things is from the positive terminal of the cell, around the circuit
as electrical symbols, as well as safety standards, working to the negative terminal. This is a scientific convention: the
practices and so on. The circuit symbols used here form direction of current is from positive to negative, and hence
part of an international standard known as IEC 60617. the current may be referred to as conventional current.
Because this is a shared ‘language’, there is less likelihood But what is going on inside the wire?
that misunderstandings will arise between people working
in different organisations and different countries. N cell

What’s in a word?

Electricity is a rather tricky word. In everyday life, its
meaning may be rather vague — sometimes we use it

to mean electric current; at other times, it may mean
electrical energy or electrical power. In this chapter
and the ones which follow, we will avoid using the word
electricity and try to develop the correct usage of these Figure 9.5 There s currentin the wire when it is connected to
more precise scientific terms. acell.

wire
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A wire is made of metal. Inside a metal, there are
negatively charged electrons which are free to move about.
We call these conduction or free electrons, because they
are the particles which allow a metal to conduct an electric
current. The atoms of a metal bind tightly together; they
usually form a regular array, as shown in Figure 9.6.In a
typical metal, such as copper or silver, one electron from
each atom breaks free to become a conduction electron.
The atom remains as a positively charged ion. Since there
are equal numbers of free electrons (negative) and ions
(positive), the metal has no overall charge - it is neutral.

ions electrons

@ @, @6/@\9@@@
®® 0 @ @°@_
® @ @ @@@@@

Figure 9.6 In a metal, conduction electrons are free to move
among the fixed positive ions. A cell connected across the
ends of the metal causes the electrons to drift towards its
positive terminal.

When the cell is connected to the wire, it exerts an
electrical force on the conduction electrons that makes
them travel along the length of the wire. Since electrons
are negatively charged, they flow away from the negative
terminal of the cell and towards the positive terminal. This
is in the opposite direction to conventional current. This
may seem a bit odd; it comes about because the direction
of conventional current was chosen long before anyone
had any idea what was going on inside a piece of metal
carrying a current. If the names positive and negative had
originally been allocated the other way round, we would
now label electrons as positively charged, and conventional
current and electron flow would be in the same direction.

Note that there is a current at all points in the circuit
as soon as the circuit is completed. We do not have to wait
for charge to travel around from the cell. This is because
the charged electrons are already present throughout the
metal before the cell is connected.

We can use the idea of an electric field to explain why
charge flows almost instantly. Connect the terminals of
a cell to the two ends of a wire and we have a complete
circuit. The cell produces an electric field in the wire; the
field lines are along the wire, from the positive terminal
to the negative. This means that there is a force on each
electron in the wire, so each electron starts to move and
the current exists almost instantly.

Charge carriers

Sometimes a current is a flow of positive charges - for
example, a beam of protons produced in a particle
accelerator. The current is in the same direction as the
particles. Sometimes a current is due to both positive and
negative charges - for example, when charged particles
flow through a solution. A solution which conducts is
called an electrolyte and it contains both positive and
negative ions. These move in opposite directions when the
solution is connected to a cell (Figure 9.7). Any charged
particles which contribute to an electric current are known
as charge carriers; these can be electrons, protons or ions.

P

+ _
e <o |
@ electrolyte
negative ion —_ | | @ - - Y
<o
@—> \\\ o .
_@**@ ) | positive ion
__~® Cas J

Figure 9.7 Both positive and negative charges are free to
move in a solution. Both contribute to the electric current.

1 Look at Figure 9.7 and state the direction of the
conventional current in the electrolyte (towards
the left, towards the right or in both directions at
the same time).

2 Figure 9.8 shows a circuit with a conducting
solution having both positive and negative ions.

a Copythediagram and draw in a cell between
points A and B. Clearly indicate the positive
and negative terminals of the cell.

b Add an arrow to show the direction of the
conventional current in the solution.

¢ Add arrows to show the direction of the
conventional current in the connecting wires.

movement of

—@® positive ions

~—@ movement of
o negative ions

solution

Figure 9.8 For Question 2.
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Current and charge
When charged particles flow past a point in a circuit, we
say that there is a current in the circuit. Electrical current
is measured in amperes (A). So how much charge is
moving when there is a current of 1 A? Charge is measured
in coulombs (C). For a current of 1 A, the rate at which
charge passes a point in a circuit is 1 C in a time of 1s.
Similarly, a current of 2 A gives a charge of 2C in a time of
Is. A current of 3 A gives a charge of 6 C in a time of 25,
and so on. The relationship between charge, current and
time may be written as the following word equation:
charge

time

current =

This equation explains what we mean by current.

Electric current is the rate of flow of electric charge past
a point.

The equation for current can be rearranged to give an
equation for charge:

charge = current x time

This gives us the definition of the unit of charge, the
coulomb.

One coulomb is the charge which flows past a pointin a
circuit in a time of 1s when the currentis 1A.

In symbols, the charge flowing past a point is given by the
relationship:

AQ = IAt
where AQ is the charge which flows during a time At and I
is the current.

Note that the ampere and the coulomb are both SI
units; the ampere is a base unit while the coulomb is a
derived unit (see page 40).

1 Thereisa current of 10A through a lamp for 1.0 hour.
Calculate how much charge flows through the lamp in
this time.

Step 1 We need to find the time t in seconds:
At=60x60=3600s

Step 2 We know the currentI=10A, so the charge
which flows is:
AQ=1IAt=10%3600=36000C=3.6x10*C

3 Thecurrentin acircuitis 0.40A. Calculate the
charge that passes a point in the circuit in a period
of 15s.

4 Calculate the current that gives a charge flow of
150Cin atime of 30s.

5 Inacircuit, a charge of 50 C passes a point in 20s.
Calculate the current in the circuit.

6 Acarbatteryis labelled ‘50Ah’. This means that it
can supply a current of 50A for one hour.

a For how long could the battery supply a
continuous current of 200 A needed to start
the car?

b Calculate the charge which flows past a point
in the circuit in this time.

Charged particles

As we have seen, current is the flow of charged particles
called charge carriers. But how much charge does each
particle carry?

Electrons each carry a tiny negative charge of
approximately —1.6 x 107° C. This charge is represented
by —e. The magnitude of the charge is known as the
elementary charge. This charge is so tiny that you would
need about six million million million electrons - that’s
6000000000000000000 of them - to have a charge
equivalent to one coulomb.

elementary charge e=1.6x107°C

Protons are positively charged, with a charge +e. This
is equal and opposite to that of an electron. Ions carry
charges that are multiples of +e and —e.

2 Calculate the current in a circuit when a charge of 180C
passes a point in a circuit in 2.0 minutes.

Step 1 Rearranging Q=1It gives:

charge

A
I=—Q (or current=—; )
time

At
Step 2 With time in seconds, we then have:

rri ntI-@-15A
curre =10 L
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Because electric charge is carried by particles, it
must come in amounts which are multiples of e. So, for
example, 3.2 x 10712 C is possible, because this is +2e,
but 2.5x 107 C is impossible, because this is not an
integer multiple of e.

We say that charge is ‘quantised’; this means that it
can only come in amounts which are integer multiples
of the elementary charge. If you are studying chemistry,
you will know that ions have charges of te, +2e, etc. The
only exception is in the case of the fundamental particles
called quarks, which are the building blocks from which
particles such as protons and neutrons are made. These
have charges of +1e or +2¢. However, quarks always appear
in twos or threes in such a way that their combined charge
is zero or a multiple of e.

7 Calculate the number of protons which would
have a charge of one coulomb.
(Proton charge =+1.6x107%°C.)

8 Which of the following quantities of electric charge
is possible? Explain how you know.

6.0x1071°C,8.0x1071°C, 10.0 x 1071°C

An equation for current

Copper, silver and gold are good conductors of electric
current. There are large numbers of conduction electrons
in a copper wire - as many conduction electrons as there
are atoms. The number of conduction electrons per unit
volume (e.g. in 1 m? of the metal) is called the number
density and has the symbol n. For copper, the value of n is
about 10 m™3.

Figure 9.9 shows a length of wire, with cross-sectional
area A, along which there is a current I. How fast do the
electrons have to travel? The following equation allows us
to answer this question:

I=nAvq
Here, v is called the mean drift velocity of the electrons
and q is the charge of each particle carrying the current.
Since these are usually electrons, we can replace g by

e, where e is the elementary charge. The equation then
becomes:

I=nAve

cross-sectional area A

wire (length () I

electrons
current I
Figure 9.9 Acurrentlin a wire of cross-sectional area A. The

charge carriers are mobile conduction electrons with mean
drift velocity v.

Deriving I = nAve

Look at the wire shown in Figure 9.9. Its length is . We
imagine that all of the electrons shown travel at the same
speed v along the wire.

Now imagine that you are timing the electrons to
determine their speed. You start timing when the first
electron emerges from the right-hand end of the wire. You
stop timing when the last of the electrons shown in the
diagram emerges. (This is the electron shown at the left-
hand end of the wire in the diagram.) Your timer shows
that this electron has taken time t to travel the distance I.

In the time t, all of the electrons in the length / of wire
have emerged from the wire. We can calculate how many
electrons this is, and hence the charge that has flowed in
time t:

number of electrons = number density x volume of wire
=nxAxl
charge of electrons = number X electron charge
=nxAxlIxe

We can find the current I because we know that this is the
charge that flows in time ¢, and current = charge/time:

I=nxAxlxe/t
Substituting v for 1/ t gives

I=nAve
The moving charge carriers that make up a current are
not always electrons. They might, for example, be ions
(positive or negative) whose charge g is a multiple of e.

Hence we can write a more general version of the equation
as

I=nAvg

Worked example 3 shows how to use this equation to
calculate a typical value of v.
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3 Calculate the mean drift velocity of the electronsin
a copper wire of cross-sectional area 5.0 x 1076 m?
carrying a current of 1.0A. The electron number
density for copper is 8.5 x 1026 m=3,

Step 1 Rearrange the equation I =nAve to make v
the subject:

I

nAe

Step 2 Substitute values and calculate v:

1.0
Y 85x10%8x50x10°6x1.6x101°

=147%x10°mst
=0.015mms?

Slow flow

It may surprise you to find that, as suggested by the result
of Worked example 3, electrons in a copper wire drift at

a fraction of a millimetre per second. To understand this
result fully, we need to closely examine how electrons
behave in a metal. The conduction electrons are free

to move around inside the metal. When the wire is
connected to a battery or an external power supply, each
electron within the metal experiences an electrical force
that causes it to move towards the positive end of the
battery. The electrons randomly collide with the fixed
but vibrating metal ions. Their journey along the metal

is very haphazard. The actual velocity of an electron
between collisions is of the order of magnitude 10°ms™,
but its haphazard journey causes it to have a drift velocity
towards the positive end of the battery. Since there are
billions of electrons, we use the term mean drift velocity v
of the electrons.

9 Calculate the currentin a gold wire of cross-sectional
area 2.0 mm? when the mean drift velocity of the
electrons in the wire is 0.10mms™. The electron
number density for gold is
5.9x108m™3,

10 Calculate the mean drift velocity of electronsin a
copper wire of diameter 1.0 mm with a current
of 5.0A. The electron number density for copper is
8.5x108m™3,

Figure 9.10 shows how the mean drift velocity of
electrons varies in different situations. We can understand
this using the equation:

T

" nAe

m Ifthe currentincreases, the drift velocity v must increase.
Thatis:
Vel

v

m Ifthe wireis thinner, the electrons move more quicklyfor a
given current. That is:
1

Vo —

A

There are fewer electrons in a thinner piece of wire, so an
individual electron must travel more quickly.

® Inamaterial with a lower density of electrons (smaller n),
the mean drift velocity must be greater for a given current.
Thatis:

double the current,
double the speed [

21 v '

half the area,
double the speed

smaller electron number
density, increased speed

Figure 9.10 The mean drift velocity of electrons depends on
the current, the cross-sectional area and the electron density
of the material.

11 Alength of copper wire is joined in series to a length
of silver wire of the same diameter. Both wires have
a current in them when connected to a battery.
Explain how the mean drift velocity of the electrons
will change as they travel from the copper into the
silver. Electron number densities:

coppern=8.5x102%¢m3

silver n =5.9 x 1028 m=3.




Cambridge International AS Level Physics

It may help you to picture how the drift velocity of
electrons changes by thinking about the flow of water in

a river. For a high rate of flow, the water moves fast - this
corresponds to a greater current I. If the course of the river
narrows, it speeds up - this corresponds to a smaller cross-
sectional area A.

Metals have a high electron number density - typically
of the order of 1028 or 102 m~3. Semiconductors, such as
silicon and germanium, have much lower values of n -
perhaps 10**m=. In a semiconductor, electron mean drift
velocities are typically a million times greater than those
in metals for the same current. FElectrical insulators, such
as rubber and plastic, have very few conduction electrons
per unit volume to act as charge carriers.

The meaning of voltage

The term voltage is often used in a rather casual way.
In everyday life, the word is used in a less scientific and
often incorrect sense - for example, ‘A big voltage can go
through you and kill you.” In this section, we will consider
a bit more carefully just what we mean by voltage and
potential difference in relation to electric circuits.

Look at the simple circuit in Figure 9.11. Assume
the power supply has negligible internal resistance. (We
look at internal resistance later in Chapter 11). The three
voltmeters are measuring three voltages or potential
differences. With the switch open, the voltmeter placed
across the supply measures 12'V. With the switch closed,
the voltmeter across the power supply still measures 12V
and the voltmeters placed across the resistors measure 8 V
and 4 V. You will not be surprised to see that the voltage
across the power supply is equal to the sum of the voltages
across the resistors.

Earlier in this chapter we saw that electric current is
the rate of flow of electric charge. Figure 9.12 shows the

V=12V
©
+ _
O (e,
12V
N
R=200Q R=10Q
V=8V V=4V

Figure 9.11 Measuring voltages in a circuit. Note that each
voltmeter is connected across the component.

same circuit as in Figure 9.11, but here we are looking

at the movement of one coulomb (1 C) of charge round

the circuit. Electrical energy is transferred to the charge
by the power supply. The charge flows round the circuit,
transferring some of its electrical energy to heat in the first
resistor, and the rest to heat in the second resistor.

+12J
/+ -
= QO O =
12V
1CYy Al1C
R=200 R=10Q
-8J -4

Figure 9.12 Energy transfers as 1C of charge flows round a
circuit. This circuit is the same as that shown in Figure 9.11.

The voltmeter readings indicate the energy transferred
to the component by each unit of charge. The voltmeter
placed across the power supply measures the e.m.f. of the
supply, whereas the voltmeters placed across the resistors
measure the potential difference (p.d.) across these
components. The terms e.m.f. and potential difference
have different meanings — so you have to be very vigilant.

The term potential difference is used when charges
lose energy by transferring electrical energy to other
forms of energy in a component. Potential difference, V; is
defined as the energy transferred per unit charge.

The potential difference between two points, Aand B, is
the energy per unit charge as charge moves from point A
to point B.

A power supply or a battery transfers energy to electrical
charges in a circuit. The e.m.f., E, of the supply is also
defined as the energy transferred per unit charge.

e.m.f. is defined as the total work done per unit charge
when charge flows round a complete circuit.

Note that e.m.f. stands for electromotive force. This is a
misleading term. It has nothing at all to do with force. This
term is a legacy from the past and we are stuck with it! It is
best to forget where it comes from and simply use the term
e.m.f.



Chapter 9: Electric current, potential difference and resistance

Electrical resistance

If you connect a lamp to a battery, a current in the lamp
causes it to glow. But what determines the size of the
current? This depends on two factors:

m the potential difference or voltage V across the lamp - the
greater the potential difference, the greater the current for a
given lamp

m theresistance R of the lamp - the greater the resistance, the
smaller the current for a given potential difference.

Now we need to think about the meaning of electrical
resistance. The resistance of any component is defined as
the ratio of the potential difference to the current. As a
word equation, this is written as:
potential difference

current

resistance =

or
RV
I
where R is the resistance of the component, V is the
potential difference across the component and I is the
current in the component. You can rearrange the equation

above to give:
V=1IR

Table 9.2 summarises these quantities and their units.

Quantity Symbol for | Unit Symbol
quantity for unit
current I ampere (@amp) | A
voltage (p.d.,e.m.f) | V volt V
resistance R ohm Q

Table 9.2 Basic electrical quantities, their symbols and

Sl units. Take care to understand the difference between

V (in italics) meaning the quantity voltage and V meaning the
unit volt.

Defining the ohm
The unit of resistance, the ohm, can be determined from
the equation that defines resistance:

potential difference

resistance =
current

The ohm is equivalent to ‘1 volt per ampere’. That is:
1Q=1VA"

The ohm is the resistance of a component when a
potential difference of 1 volt drives a current of 1 ampere
through it.

4

12

13

14

15

Calculate the current in a lamp given that its
resistance is 15Q and the potential difference across
its ends is 3.0V.

Step 1 Herewe have V=3.0Vand R=15Q.
v
Step 2 SubstitutinginI = ? gives:
rr ntl—ﬁ—o 20A
current] =——=0.

So the current in the lamp is 0.20A.

A car headlamp bulb has a resistance of
36 Q). Calculate the current in the lamp when
connected to a ‘12V’ battery.

You can buy lamps of different brightness to
fitin light fittings at home (Figure 9.13). A ‘100
watt’ lamp glows more brightly than a ‘60 watt’
lamp. Explain which of the lamps has the higher
resistance.

Figure 9.13 Both of these lamps work from
the 230V mains supply, but one has a higher
resistance than the other. For Question 13.

a Calculate the potential difference across a
motor carrying a current of 1.0A and having a
resistance of 50Q).

b Calculate the potential difference across the
same motor when the current is doubled.
Assume its resistance remains constant.

Calculate the resistance of a lamp carrying a
current of 0.40A when connected to a 230V

supply.
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where P is the power and W is the energy transferred in a
time At. Take care not to confuse W for energy transferred

As we have seen, the equation for resistance is:

To determine the resistance of a component, we
therefore need to measure both the potential
difference Vacross it and the current I through

it. To measure the current, we need an ammeter.

To measure the potential difference, we need a
voltmeter. Figure 9.14 shows how these meters
should be connected to determine the resistance of
a metallic conductor, such as a length of wire.

or work done with W for watts.
The rate at which energy is transferred in an electrical
component is related to two quantities:

m thecurrentlinthe component
m the potential difference V across the component.

We can derive an equation for electrical power from
the equations we have met so far. The amount of energy
W transferred by a charge AQ when it moves through a
potential difference V is given by:

W =VAQ

Hence:

The ammeter is connected in series with the W VAQ AQ

conductor, so that there is the same current in both. pP= At Af 14 (A_t)
The voltmeter is connected across (in parallel
with) the conductor, to measure the potential
difference across it.

. . AQ . .
The ratio of charge to time, —? , is the current I in the
component. Therefore:

pP=VI

I |“{ I As a word equation, we have:

. power = potential difference x current
metallic

conductor and in units:

watts = amps X volts

Figure 9.14 Connecting an ammeter and a voltmeter
to determine the resistance of a metallic conductor in

acircuit.

5 Calculate the rate at which energy is transferred by a
230V mains supply which provides a current of 8.0A
to an electric heater.

Step 1 Use the equation for power:
16 InFigure 9.14 the reading on the ammeter p=vI

is 2.4A and the reading on the voltmeter is
6.0V. Calculate the resistance of the metallic
conductor.

with V=230V and I=8.0A.

Step 2 Substitute values:
P=8x230=1840W (1.84kW)

Electrical power

The rate at which energy is transferred is known as power.
Power P is measured in watts (W). (If you are not sure
about this, refer back to Chapter 5, where we looked at the
concept of power in relation to forces and work done.)

17 Calculate the currentin a 60 W light bulb when it
is connected to a 230V power supply.

18 Alarge power station supplies electrical energy

ower = Energy transferred to the grid at a voltage of 25kV. Calculate the
p - time taken output power of the station when the current it
" supplies is 40 kA.
pP=—

At
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Fuses

A fuse is a device which is fitted in an electric circuit; it is
usually there to protect the wiring from excessive currents.
For example, the fuses in a domestic fuse box will ‘blow’

if the current is too large. High currents cause wires to

get hot, and this can lead to damaged wires, fumes from
melting insulation, and even fires.

Fuses (Figure 9.15) are usually marked with their
current rating; that is, the maximum current which they
will permit. Inside the fuse cartridge is a thin wire which
gets hot and melts if the current exceeds this value. This
breaks the circuit and stops any hazardous current. Worked
example 7 shows how an appropriate fuse is chosen.

5 Amp fuse wire

15 Amp fuse wire

Figure 9.15 Fuses of different current ratings.

19 An electric cooker is usually connected to the
mains supply in a separate circuit from other
appliances, because it draws a high current. A
particular cooker is rated at 10 kW, 230V.

a Calculate the currentin the cooker when it is
fully switched on.

b Suggest a suitable current rating for the fuse
for this cooker.

a Apower station produces 20 MW of power at a
voltage of 200kV. Calculate the current supplied
to the grid cables.

Step 1 Here we have P and Vand we have to
find I, so we can use P=VI.

Step 2 Rearranging the equation and

substituting the values we know gives:
P 20x10°

current] = V = m= 100A

Hint: Remember to convert megawatts into watts
and kilovolts into volts.
So the power station supplies a current of 100A.

b The grid cables are 15km long, with a resistance
per unit length of 0.20Qkm™. How much power is
wasted as heat in these cables?

Step 1 First we must calculate the resistance of
the cables:

resistance R=15km x0.20Qkm=1=3.0Q

Step 2 Now we know I and R and we want to
find P. We can use P=1I2R:

power wasted as heat, P=I?R=(100)? x 3.0
=3.0x10*W
=30kw

Hence, of the 20 MW of power produced by the
power station, 30 kW is wasted - just 0.15%.

7 Anelectric kettle is rated at 2.5 kW, 230V. Determine

a suitable current rating of the fuse to put in the
three-pin plug. Choose from 1A, 5A, 13A, 30A.

Step 1 Calculate the current in the kettle in normal
operation. Rearranging P = VI to make I the subject
gives:

Step 2 Now we know that the normal current in the
kettle is 10.9A. We must choose a fuse with a slightly
higher rating than this. Therefore the value of the
fuse ratingis 13 A.

Hint: A 5A fuse would not be suitable because it would
melt as soon as the kettle is switched on. A 30A fuse
would allow more than twice the normal current
before blowing, which would not provide suitable
protection.




Cambridge International AS Level Physics

Power and resistance

A current I in a resistor of resistance R transfers energy

to it. The resistor dissipates the energy as heat. The p.d. V/
across the resistor is given by V = IR. Combining this with
the equation for power, P = VI, gives us two further forms
of the equation for power dissipated in the resistor:

P=1I°R
V2
"R
Which form of the equation we use in any particular

p

situation depends on the information we have available
to us. This is illustrated in Worked examples 6a and 6b,
which relate to a power station and to the grid cables
which lead from it (Figure 9.16).

Figure 9.16 A power station and electrical transmission lines.
How much electrical power is lost as heat in these cables?
(See Worked examples 6a and 6b.)

20 Acalculatoris powered by a 3.0V battery. The
calculator’s resistance is 20 kQ. Calculate the
power transferred to the calculator.

21 An energy-efficient light bulb is labelled 230V,
15W’. This means that when connected to the
230V mains supply it is fully lit and changes
electrical energy to heat and light at the rate of
15W. Calculate:

a the current which flows through the bulb when
fully lit

b its resistance when fully lit.

22 Calculate the resistance of a 100W light bulb that
draws a current of 0.43 A from a power supply.

Calculating energy
We can use the relationship for power as energy
transferred per unit time and the equation for electrical
power to find the energy transferred in a circuit.
Since:
power = current x voltage
and:
energy = power X time
we have:

energy transferred = current x voltage x time

W =IVAt

Working in SI units, this gives energy transferred in joules.

23 A 12V carbattery can supply a current of 10A for
5.0 hours. Calculate how many joules of energy
the battery transfers in this time.

24 Alampisoperated for 20s. The currentin the
lampis 10A. In this time, it transfers 400 J of
energy to the lamp. Calculate:

a how much charge flows through the lamp

b how much energy each coulomb of charge
transfers to the lamp

¢ the p.d. across the lamp.



Chapter 9: Electric current, potential difference and resistance

Summary

Electric current is the rate of flow of charge. In a
metal this is due to the flow of electrons. In an
electrolyte, the flow of positive and negative ions
produces the current.

The direction of conventional current is from positive
to negative; the direction of electron flow is from
negative to positive.

The Sl unit of charge is the coulomb (C). One coulomb
is the charge which passes a point when a current of
1A flows for 1s.

charge = current x time  (AQ =IAt)

The elementary chargee=1.6 x 107°C.

The current Iin a conductor of cross-sectional area
A depends on the mean drift velocity v of the charge
carriers and their number density n.

I=nAvq

The term potential difference (p.d.) is used when
charges lose energy in a component. It is defined as
the energy transferred per unit charge.

w
V=—— or

g W=VAQ

The term electromotive force (e.m.f.) is used when
charges gain electrical energy from a battery or
similar device. It is also defined as the energy
transferred per unit charge.

w
E=— or

Avoltis a joule per coulomb. Thatis, 1V=1JC™.

W=EAQ

Power is the rate of energy transfer. In electrical
terms, power is the product of voltage and current.
That is, P=VI.

Resistance is defined as the ratio of voltage to
current. That is:

voltage %

resistance = (R==)
current

I
The resistance of a component is 1 ohm when a
potential difference of 1 volt is produced per ampere.

For a resistance R, the power dissipated is given by:

2

v
=2 = =
P=PR or P=—

Energy transferred in a circuit in a time At is given by:

W=IVAt
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End-of-chapter questions

1 Calculate the charge which passes through a lamp when there is a current of 150 mA for 40 minutes. [3]
2 Agenerator produces a current of 40A. How long will it take for a total of 2000 C to flow through the output? 2]
3 Inalightningstrike there is an average current of 30 kA, which lasts for 2000 ps. Calculate the charge which
is transferred in this process. [3]
4 a Alamp of resistance 15Q is connected to a battery of e.m.f. 4.5V. Calculate the current in the lamp. [2]
b Calculate the resistance of the filament of an electric heater which takes a current of 6.5A when itis
connected across a mains supply of 230V. [2]
¢ Calculate the voltage which is require to drive a current of 2.4 A through a wire of resistance 3.5Q. [2]

5 Abattery of e.m.f. 6V produces a steady current of 2.4 A for 10 minutes. Calculate:

a the charge which it supplied [2]
b theenergythatittransferred. 2]
6 Calculate the energy gained by an electron when it is accelerated through a potential difference of 50kV.
(Charge on the electron=-1.6 x 107°C.) 2]
7 Awoman has available 1A,3A,5A, 10A and 13A fuses. Explain which fuse she should use for a 120V,
450W hairdryer. [3]
n 8 Figure 9.17 shows the electrolysis of copper chloride.

-4

anode—« | T cathode

7 & 0'\

Cl-ions Cu?*ions

Figure 9.17 For End-of-chapter Question 8.

a i Onacopy ofthe diagram, mark the direction of the conventional current in the electrolyte.
Label it conventional current. [1]
ii Mark the direction of the electron flow in the connecting wires. Label this electron flow. [1]

b Inatime period of 8 minutes, 3.6 x 10'¢ chloride (Cl) ions are neutralised and liberated at the
anode and 1.8 x 10 copper (Cu?*) ions are neutralised and deposited on the cathode.

i Calculate the total charge passing through the electrolyte in this time. [2]
ii Calculate the currentin the circuit. [2]
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9 Figure 9.18 shows an electron tube. Electrons moving from the cathode to the anode constitute a current.
The current in the ammeter is 4.5 mA.

cathode electrons

+ -

e ®

Figure 9.18 For End-of-chapter Question 9.

Calculate the charge passing through the ammeter in 3 minutes.
Calculate the number of electrons which hit the anode in 3 minutes.

The potential difference between the cathode and the anode is 75V. Calculate the energy gained by
an electron as it travels from the cathode to the anode.

10 Alength of copper track on a printed circuit board has a cross-sectional area of 5.0 x 1078 m?,
The currentin the track is 3.5mA. You are provided with some useful information about copper:
1m3 of copper has a mass of 8.9 x 103kg
54kg of copper contains 6.0x 102 atoms
In copper, there is roughly one electron liberated from each copper atom.

Show that the electron number density n for copper is about 102°m3,
Calculate the mean drift velocity of the electrons.

Explain the difference between potential difference and e.m.f.

Abattery has negligible internal resistance, an e.m.f. of 12.0V and a capacity of 100Ah (ampere-hours).
Calculate:

i thetotal charge that it can supply
i thetotal energy that it can transfer.
The battery is connected to a 27W lamp. Calculate the resistance of the lamp.
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12 Some electricity-generating companies use a unit called the kilowatt-hour (kW h) to calculate energy bills.
1kWh is the energy a kilowatt appliance transfersin 1 hour.

a Showthat 1kWhis equalto 3.6 MJ.
b Anelectric shower heater is rated at 230V, 9.5 kW.
i Calculate the current it will take from the mains supply.
i Suggest why the shower requires a separate circuit from other appliances.
iii Suggest a suitable current rating for the fuse in this circuit.
Calculate the energy transferred when a boy uses the shower for 5 minutes.




Kirchhoff’s laws

Learning outcomes
You should be able to:

m recall and apply Kirchhoff’s laws
m use Kirchhoff’s laws to derive the formulae for the

combined resistance of two or more resistors in series
and in parallel

recognise that ammeters are connected in series within
a circuit and therefore should have low resistance
recognise that voltmeters are connected in parallel
across a component, or components, and therefore
should have high resistance
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Circuit design

Over the years, electrical circuits have become
increasingly complex, with more and more
components combining to achieve very precise results
( Such circuits typically include power
supplies, sensing devices, potential dividers and
output devices. At one time, circuit designers would
start with a simple circuit and gradually modify it until
the desired result was achieved. This is impossible
today when circuits include many hundreds or
thousands of components.

Instead, electronics engineers ( rely on
computer-based design software which can work out

Figure 10.1 A complex electronic circuit - this is the circuit
board which controls a computer’s hard drive.

Kirchhoff’s first law

You should be familiar with the idea that current may
divide up where a circuit splits into two separate branches.
For example, a current of 5.0 A may split at a junction

or a point in a circuit into two separate currents of 2.0 A
and 3.0 A. The total amount of current remains the same
after it splits. We would not expect some of the current to
disappear, or extra current to appear from nowhere. This is
the basis of Kirchhoft’s first law, which states that:

The sum of the currents entering any point in a circuit is
equal to the sum of the currents leaving that same point.

This is illustrated in Figure 10.3. In the first part, the
current into point P must equal the current out, so:

I=1,

In the second part of the figure, we have one current
coming into point Q, and two currents leaving. The
current divides at Q. Kirchhoff’s first law gives:

I =L+,

the effect of any combination of components. This is
only possible because computers can be programmed
with the equations that describe how current and
voltage behave in a circuit. These equations, which
include Ohm’s law and Kirchhoff’s two laws, were
established in the 18th century, but they have come
into their own in the 21st century through their use in
computer-aided design (CAD) systems.

Figure 10.2 A computer engineer uses a computer-aided
design (CAD) software tool to design a circuit which will form
part of a microprocessor, the device at the heart of every
computer.

Figure 10.3 Kirchhoff’s first law: current is conserved because
charge is conserved.

Kirchhoff’s first law is an expression of the conservation of
charge. The idea is that the total amount of charge entering
a point must exit the point. To put it another way, if a
billion electrons enter a point in a circuit in a time interval
of 1.0s, then one billion electrons must exit this point in
1.0s. The law can be tested by connecting ammeters at
different points in a circuit where the current divides. You
should recall that an ammeter must be connected in series
so the current to be measured passes through it.
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Kirchhoff’s second law

This law deals with e.m.f.s and voltages in a circuit. We
will start by considering a simple circuit which contains a
cell and two resistors of resistances R, and R, (Figure 10.8).
3.0A Since this is a simple series circuit, the current I must be
oA the same all the way around, and we need not concern
ourselves further with Kirchhoff’s first law. For this circuit,
we can write the following equation:

E=IR,+IR,

1 Use Kirchhoff’s first law to deduce the value of the
currentlin Figure 10.4.

I
Figure 10.4 For Question 1.

2 InFigure 10.5, calculate the currentin the wire X.
State the direction of this current (towards P or
away from P).

e.m.f. of battery = sum of p.d.s across the resistors

E
wire X I:
3.QA P 25A

loop
+7.0A I Q I
Rl RZ
—

Figure 10.5 For Question 2.

Figure 10.8 Asimple series circuit.

Formal statement of Kirchhoff’s first law

We can write Kirchhoff’s first law as an equation: You should not find these equations surprising.
SI=3I, However, you may not realise that they are a consequence
. ; of applying Kirchhoff’s second law to the circuit. This law
Here, the symbol X (Greek letter sigma) means ‘the sum PPyIng
> ¢ L states that:
of all’, so ZI;, means ‘the sum of all currents entering into
a point’ and I, means ‘the sum of all currents leaving
that point’. This is the sort of equation which a computer The sum of the e.m.f.s around any loop in a circuit is equal
program can use to predict the behaviour of a complex to the sum of the p.d.s around the loop.
circuit.
3 Calculate X1, and 21, in Figure 10.6. Is Kirchhoff’s first 4 Use Kirchhoff’s first law to deduce the value and
law satisfied? direction of the current I'in Figure 10.7.
7.0A
3.0A , !
7P
2.0A

Figure 10.7 For Question 4.
Figure 10.6 For Question 3.
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1 UseKirchhoff’s laws to find the current in the circuitin
Figure 10.9.

6.0V 2.0V

Figure 10.9 A circuit with two opposing batteries.

This is a series circuit so the current is the same all the
way round the circuit.

You will see later (page 148) that Kirchhoft’s second law is
an expression of the conservation of energy. We shall look
at another example of how this law can be applied, and
then look at how it can be applied in general.

5 Use Kirchhoff’s second law to deduce the p.d.
across the resistor of resistance R in the circuit
shown in Figure 10.10, and hence find the value
of R. (Assume the battery of e.m.f. 10V has
negligible internal resistance.)

0.1A
200 R
1 1
| |

Figure 10.10 Circuit for Question 5.

An equation for Kirchhoff’s second law

In a similar manner to the formal statement of the first
law, the second law can be written as an equation:

SE=2V
where 2E is the sum of the e.m.f.s and XV is the sum of the
potential differences.

Step 1 We calculate the sum of the e.m.f.s:
sumofe.m.f.s=6.0V-2.0V=4.0V

The batteries are connected in opposite directions so we
must consider one of the e.m.f.s as negative.

Step 2 We calculate the sum of the p.d.s.
sum of p.d.s = (I x 10) + (I x30) =401

Step 3 We equate these:
4.0=401I
andsoI=0.1A

No doubt, you could have solved this problem without
formally applying Kirchhoff’s second law, but you will
find that in more complex problems the use of these
laws will help you to avoid errors.

Applying Kirchhoff’s laws

Figure 10.11 shows a more complex circuit, with more than
one ‘loop’. Again there are two batteries and two resistors.
The problem is to find the current in each resistor. There
are several steps in this; Worked example 2 shows how
such a problem is solved.

[t

2.0V

Figure 10.11 Kirchhoff’s laws are needed to determine the
currents in this circuit.

Signs and directions

Caution is necessary when applying Kirchhoff’s second
law. You need to take account of the ways in which the
sources of e.m.f. are connected and the directions of
the currents. Figure 10.12 shows one loop from a larger
complicated circuit to illustrate this point. Only the
components and currents in this particular are shown.



2 Calculate the current in each of the resistors in the
circuit shown in Figure 10.11.

Step 1 Mark the currents flowing. The diagram
shows I;, I, and .

Hint: /t does not matter if we mark these flowing in the
wrong directions, as they will simply appear as negative
quantities in the solutions.

Step 2 Apply Kirchhoff’s first law. At point P, this gives:
L+L=I (1)
Step 3 Choose a loop and apply Kirchhoff’s second law.
Around the upper loop, this gives:

6.0= (I, % 30)+(I; x 10) )
Step 4 Repeat step 3 around other loops until there are

the same number of equations as unknown currents.
Around the lower loop, this gives:

2.0= I;x30 @3)

i

E, L

I R,

Ry

L I

R, R,
I}
I"E,

Figure 10.12 Aloop extracted from a complicated circuit.

e.m.f.s

Starting with the cell of e.m.f. E; and working
anticlockwise around the loop (because E, is ‘pushing
current’ anticlockwise):

sum of em.f.s = E, +E, - E;

Note that E, is opposing the other two e.m.fs.

p.d.s
Starting from the same point, and working anticlockwise
again:

sum of p.d.s =I,R,—-LR,-LR;+I|R,
Note that the direction of current I, is clockwise, so the
p.d.s that involve I, are negative.

Chapter 10: Kirchhoff’s laws

We now have three equations with three unknowns (the
three currents).

Step 5 Solve these equations as simultaneous
equations. In this case, the situation has been chosen to
give simple solutions. Equation 3 gives I;=0.067A, and
substituting this value in equation 2 gives I; =0.400A. We
can now find I, by substituting in equation 1:

I,= I~ I, =0.067-0.400 =—0.333A
~-0.33A

Thus L, is negative - it is in the opposite direction to the
arrow shown in Figure 11.11.

Note that there is a third ‘loop’ in this circuit; we could
have applied Kirchhoff’s second law to the outermost
loop of the circuit. This would give a fourth equation:

6-2=I1,x10
However, this is not an independent equation; we

could have arrived at it by subtracting equation 3 from
equation 2.

6 You can use Kirchhoff’s second law to find the
current I'in the circuit shown in Figure 10.13.
Choosing the best loop can simplify the problem.

a Which loop in the circuit should you choose?
b Calculate the current L.

2.0V

— 5.0V

10Q
|
I

Figure 10.13 Careful choice of a suitable loop
can make it easier to solve problems like this.
For Question 6.
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7 Use Kirchhoff’s second law to deduce the
resistance R of the resistor shown in the circuit
loop of Figure 10.14.

—R _ 05A
|
30V 100
200 10Q
I: N
| 0.2A
10V

Figure 10.14 For Question 7.

Conservation of energy

Kirchhoft’s second law is a consequence of the principle of
conservation of energy. If a charge, say 1 C, moves around
the circuit, it gains energy as it moves through each source
of eem.f. and loses energy as it passes through each p.d. If
the charge moves all the way round the circuit, so that it
ends up where it started, it must have the same energy at
the end as at the beginning. (Otherwise we would be able
to create energy from nothing simply by moving charges
around circuits.) So:

energy gained passing through sources of e.m.f.
= energy lost passing through components with p.d.s

You should recall that an e.m.f. in volts is simply the
energy gained per 1 C of charge as it passes through a
source. Similarly, a p.d. is the energy lost per 1 C as it
passes through a component.

1 volt = 1 joule per coulomb
Hence we can think of Kirchhoff’s second law as:

energy gained per coulomb around loop
= energy lost per coulomb around loop

Here is another way to think of the meaning of e.m.f.

A 1.5V cell gives 1.5] of energy to each coulomb of charge
which passes through it. The charge then moves round
the circuit, transferring the energy to components in the
circuit. The consequence is that, by driving 1C of charge
around the circuit, the cell transfers 1.5] of energy.

Hence the e.m.f. of a source simply tells us the amount of
energy (in joules) transferred by the source in driving unit
charge (1C) around a circuit.

8 Usetheidea of the energy gained and lostbya1C
charge to explain why two 6V batteries connected
together in series can give an e.m.f. of 12V or 0V,
but connected in parallel they give an e.m.f. of 6V.

9 Apply Kirchhoff’s laws to the circuit shown in
Figure 10.15 to determine the current that will be
shown by the ammeters A}, A, and A,.

20 Q)
— 1
| S|

10V — ®

®

50V— 200

®

Figure 10.15 Kirchhoff’s laws make it possible to
deduce the ammeter readings.

Resistor combinations

You are already familiar with the formulae used to
calculate the combined resistance R of two or more
resistors connected in series or in parallel. To derive these
formulae we have to make use of Kirchhoff’s laws.

Resistors in series

Take two resistors of resistances R, and R, connected in
series (Figure 10.16). According to Kirchhoff’s first law, the
current in each resistor is the same. The p.d. V across the
combination is equal to the sum of the p.d.s across the
two resistors:

V=V+V,

Since V=1IR, V; = IR, and V, = IR,, we can write:
IR=1IR,+IR,

Cancelling the common factor of current I gives:
R=R,+R,

For three or more resistors, the equation for total
resistance R becomes:

R=R,+R,+R;+-

I R, R, I
— —
| S| | S|
<~V,— <V,—

Figure 10.16 Resistorsin series.



10 Calculate the combined resistance of two 5Q
resistors and a 10 Q) resistor connected in series.

11 The cell shown in Figure 10.17 provides an
e.m.f. of 2.0V. The p.d. across one lamp is 1.2 V.
Determine the p.d. across the other lamp.

I
Iy ‘ ‘ ‘ NI
—V— -V,
®——®
.
N ‘ ‘ >
< % >

Figure 10.17 A series circuit for Question 11.

12 You have five 1.5V cells. How would you connect
all five of them in series to give an e.m.f. of:

a 7.5V? b 15Vv? c 45V?

Resistors in parallel
For two resistors of resistances R, and R, connected in
parallel (Figure 10.18), we have a situation where the
current divides between them. Hence, using Kirchhoft’s
first law, we can write:

I=I+1,
If we apply Kirchhoff’s second law to the loop that
contains the two resistors, we have:

LR, -LR,=0V
(because there is no source of e.m.f. in the loop).

Rl

| —|
| S|

I N\

1
| S|

R,

Figure 10.18 Resistors connected in parallel.

Chapter 10: Kirchhoff’s laws

This equation states that the two resistors have the same
p.d. Vacross them. Hence we can write:

1=Y
R
14
I=—
1 R1
v
L=—

Substituting in I = I, + I, and cancelling the common
factor V gives:

1_1. 1

R R, R,
For three or more resistors, the equation for total
resistance R becomes:

1 1 1 1
—_— =t — 4+ — 4
R R, R, R4
To summarise, when components are connected
in parallel:
m all have the same p.d. across their ends
m thecurrentis shared between them

m we use the reciprocal formula to calculate their
combined resistance.

3 Two 10Q resistors are connected in parallel.
Calculate the total resistance.

Step1 WehaveR;=R,=10Q, so:

1
R-10710 10 5
Step 2 Inverting both sides of the equation gives:
R=5Q
Hint: Take care not to forget this step! Nor should

ekl
you write o = = =

You can also determine the resistance as follows:
R=(Ry 1+ RyY)?
=(101+10)1=50

1
5Q), as then you are saying T 5).
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13 Calculate the total resistance of four 10Q :
resistors connected in parallel. \

14 Calculate the resistances of the following
combinations:

a 100Q and 200Q)in series
b 100Q and200Q in parallel

¢ 100Q and 200Q in series and this in parallel
with 200 Q).

15 Calculate the current drawn from a 12V battery ._
of negligible internal resistance connected to the |

ends of the following: )
a 5000 resistor

b 500Q and 1000 Q resistors in series = b _/ N \J g
¢ 500Q and 1000 Q resistors in parallel. (___ ;

16 You are given one 200 Q) resistor and two 100 Q)
resistors. What total resistances can you obtain
by connecting some, none, or all of these
resistors in various combinations?

n Solving problems with parallel circuits

Here are some useful ideas which may prove helpful

J kwg’@ g J

when you are solving problems with parallel circuits
(or checking your answers to see whether they seem
reasonable).

Figure 10.19 a Correct use of an electrical socket b Here, too
many appliances (resistances) are connected in parallel. This

reduces the total resistance and increases the current drawn,
to the point where it becomes dangerous.

m  When two or more resistors are connected in parallel, their
combined resistance is smaller than any of their individual
resistances. For example, three resistors of 2Q,3Q and 6 Q
connected together in parallel have a combined resistance
of 1Q. This is less than the smallest of the individual
resistances. This comes about because, by connecting the
resistors in parallel, you are providing extra pathways for
the current. Since the combined resistance is lower than
the individual resistances, it follows that connecting two
or more resistors in parallel will increase the current drawn
from a supply. Figure 10.19 shows a hazard which can arise
when electrical appliances are connected in parallel.

17 Three resistors of resistances 202, 30 and 60 Q)
are connected together in parallel. Select which
of the following gives their combined resistance:

. 110Q, 500, 20Q, 10Q
m  When components are connected in parallel, they all have
the same p.d. across them. This means that you can often (No need to do the calculation!)
ignore parts of the circuit which are not relevant to your
calculation.
m Similarly, for resistors in parallel, you may be able to
calculate the current in each one individually, then add
them up to find the total current. This may be easier than
working out their combined resistance using the reciprocal
formula. (This is illustrated in Question 19.)



18 Inthecircuitin Figure 10.20 the battery of e.m.f.
10V has negligible internal resistance. Calculate the
current in the 20 Q resistor shown in the circuit.

19 Determine the current drawn from the battery in
Figure 10.20.

Figure 10.20 Circuit diagram for Questions 18 and 19.

Ammeters and voltmeters are connected differently in
circuits (Figure 10.22). Ammeters are always connected
in series, since they measure the current in a circuit.

For this reason, an ammeter should have as low a
resistance as possible so that as little energy as possible
is dissipated in the ammeter itself. Inserting an ammeter
with a higher resistance could significantly reduce the
current flowing in the circuit. The ideal resistance of

an ammeter is zero. Digital ammeters have very low
resistances.

ammeter

®

® Figure 10.22 How to
(V) connect up an ammeter
/

voltmeter and a voltmeter.

Chapter 10: Kirchhoff’s laws

20 What value of resistor must be connected in
parallel with a 20 Q resistor so that their combined
resistance is 10Q)?

21 You are supplied with a number of 100 Q) resistors.
Describe how you could combine the minimum
number of these to make a 250 Q resistor.

22 Calculate the current at each point (A-E) in the
circuit shown in Figure 10.21.

soa | :
c 3000

5 1p 600

Figure 10.21 For Question 22.

Voltmeters measure the potential difference
between two points in the circuit. For this reason, they
are connected in parallel (i.e. between the two points),
and they should have a very high resistance to take
as little current as possible. The ideal resistance of a
voltmeter would be infinite. In practice, voltmeters have
typical resistance of about 1 MQ. A voltmeter with a
resistance of 10 MQ measuring a p.d. of 2.5V will take a
current of 2.5 x 1077 A and dissipate just 0.625 uJ of heat
energy from the circuit every second.

Figure 10.23 shows some measuring instruments.

Figure 10.23 Electrical measuring instruments:
an ammeter, a voltmeter and an oscilloscope. The
oscilloscope can display rapidly changing voltages.
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23 a A10Vpowersupply of negligible internal
resistance is connected to a 100 Q resistor.
Calculate the current in the resistor.

b Anammeter is now connected in the circuit,
to measure the current. The resistance of
the ammeteris 5.0 Q). Calculate the ammeter
reading.

Summary

m Kirchhoff’s first law states that the sum of the current
currents entering any point in a circuit is equal to the
sum of the currents leaving that point.

m Kirchhoff’s second law states that the sum of the
e.m.f.s around any loop in a circuit is equal to the sum
of the p.d.s around the loop.

m The combined resistance of resistors in series is given
by the formula:

R:R1+R2+...

End-of-chapter questions

The combined resistance of resistors in parallel is
given by the formula:

Ammeters have a low resistance and are connected in
series in a circuit.

Voltmeters have a high resistance and are connected
in parallel in a circuit.

1 Use Kirchhoff’s first law to calculate the unknown currents in the examples in Figure 10.24. In each

example state the direction of the current.

a b

3.6A 43A

Figure 10.24 For End-of-chapter Question 1.
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2 Figure 10.25 shows a part of a circuit.

2.0 mA

Figure 10.25 For End-of-chapter Question 2.
Copy the circuit and write in the currents at X and at Y, and show their directions.

3 Figure 10.26 shows four circuits. Find the unknown potential difference (or differences) in each case.

b 5oV kx>

: - 5 iik—{:

1.4V —>
I<6.0V> €24V

: I——~|IE 5:}—4|§

1

Figure 10.26 For End-of-chapter Question 3.

4 Afilament lamp and a 220 Q resistor are connected in series to a battery of e.m.f. 6.0V. The battery has
negligible internal resistance. A high-resistance voltmeter placed across the resistor measures 1.8 V.

Calculate:
the current drawn from the battery
the p.d. across the lamp
the total resistance of the circuit
the number of electrons passing through the battery in a time of 1.0 minute.

The elementary chargeis 1.6 x 1071°C.)
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5 Thecircuitdiagramin Figure 10.27 shows a 12V power supply connected to some resistors.

—L

X

Figure 10.27 For End-of-chapter Question 5.

The current in the resistor X is 2.0A and the current in the 6.0 Q resistor is 0.5A. Calculate:
the currentin resistorY
the resistance of resistor Y
the resistance of resistor X.

Explain the difference between the terms e.m.f. and potential difference.

Figure 10.28 shows a circuit containing batteries and resistors. You may assume that the batteries
have negligible internal resistance.

&

y

> 4.00Q—8.00Q

Figure 10.28 For End-of-chapter Question 6b.

i UseKirchhoff’s first law to find the current in the 4.00 Q and 8.00 Q resistors.
i Calculate the e.m.f. of £,.

iii Calculate the value of E,.

iv Calculate the currentin the 12.00 Q resistor.
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7 a Explain why an ammeter is designed to have a low resistance.

A student builds the circuit in Figure 10.29, using a battery of negligible internal resistance.
The reading on the voltmeteris 9.0 V.

-

—{400Q]

O,

Figure 10.29 For End-of-chapter Question 7a.

b i Thevoltmeter has aresistance of 1200 Q. Calculate the e.m.f. of the battery.

The student now repeats the experiment using a voltmeter of resistance 12 kQ). Show that the
reading on this voltmeter would be 9.5 V.

i Refertoyouranswerstoiand ii and explain why a voltmeter should have as high a resistance
as possible.

Explain what is meant by the resistance of a resistor.
Figure 10.30 shows a network of resistors connected to a cell of e.m.f. 6.0 V.

6.0

\Y
|——{|—

| 40Q —] 200 | —

Figure 10.30 For End-of-chapter Question 8b.

Show that the resistance of the network of resistors is 40 Q.
¢ Calculate the currentin the 60 Q resistor.
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Resistance and
resistivity

Learning outcomes

You should be able to:

m state Ohm’s law

m sketch and explain the I-V characteristics for various
components
sketch the temperature characteristic for an NTC
thermistor

solve problems involving the resistivity of a material



Superconductivity

As metals are cooled, their resistance decreases. It was
discovered as long ago as 1911 that when mercury was
cooled using liquid helium to 4.1K (4.1 degrees above
absolute zero), its resistance suddenly fell to zero.
This phenomenon was named superconductivity.
Other metals, such as lead at 7.2 K, also become
superconductors.

When charge flows in a superconductor it can
continue in that superconductor without the need
for any potential difference and without dissipating
any energy. This means that large currents can occur
without the unwanted heating effect that would occur
in a normal metallic or semiconducting conductor.

Initially superconductivity was only of scientific
interest and had little practical use, as the liquid
helium that was required to cool the superconductors
is very expensive to produce. In 1986 it was discovered
that particular ceramics became superconducting at
much higher temperatures - above 77K, the boiling
point of liquid nitrogen. This meant that liquid
nitrogen, which is readily available, could be used to
cool the superconductors and expensive liquid helium
was no longer needed. Consequently superconductor
technology became a feasible proposition.

Uses of superconductors

The JR-Maglev train in Japan’s Yamanashi province
floats above the track using superconducting magnets
( This means that not only is the heating
effect of the current in the magnet coils reduced to
zero - it also means that the friction between the train
and the track is eliminated and that the train can reach
incredibly high speeds of up to 581kmh™.

The I-V characteristic for a
metallic conductor

In Chapter 9 we saw how we could measure the resistance
of a resistor using a voltmeter and ammeter. In this section
we are going to investigate the variation of the current,
and hence resistance, as the potential difference across a
conductor changes.

The potential difference across a metal conductor can

be altered using a variable power supply or by placing a

variable resistor in series with the conductor. This allows
us to measure the current at different potential differences

Chapter 11: Resistance and resistivity

Figure 11.1 The Japanese JR-Maglev train, capable of speeds
approaching 600 kmh™.

Particle accelerators, such as the Large Hadron
Collider (LHC) at the CERN research facility in
Switzerland, accelerate beams of charged particles
to very high energies by making them orbit around a
circular track many times. The particles are kept moving
in the circular path by very strong magnetic fields
produced by electromagnets whose coils are made
from superconductors. Much of our understanding
of the fundamental nature of matter is from doing
experiments in which beams of these very high speed
particles are made to collide with each other.

Magnetic resonance imaging (MRI) was developed
in the 1940s. It is used by doctors to examine internal
organs without invasive surgery. Superconducting
magnets can be made much smaller than conventional
magnets, and this has enabled the magnetic fields
produced to be much more precise, resulting in better
imaging. You will find out more about MRI in

across the conductor. The results of such a series of
measurements shown graphically in Figure 11.2.

Look at the graph of Figure 11.2. Such a graph is known
as an I-V characteristic. The points are slightly scattered,
but they clearly lie on a straight line. A line of best fit has
been drawn. You will see that it passes through the origin
of the graph. In other words, the current I is directly
proportional to the voltage V.

157
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metallic
conductor

4

Figure 11.2 To determine the resistance of a component, you
need to measure both current and potential difference.

The straight-line graph passing through the origin
shows that the resistance of the conductor remains
constant. If you double the current, the voltage will also
double. However, its resistance, which is the ratio of the
voltage to the current, remains the same. Instead of using:

R=Y
I

to determine the resistance, for a graph of I against V
which is a straight line passing through the origin you can
also use:
1
gradient of graph

resistance =

(This will give a more accurate value for R than if you were
to take a single experimental data point. Take care! You
can only find resistance from the gradient if the I-V graph
is a straight line through the origin.)

By reversing the connections to the resistor, the p.d.
across it will be reversed, i.e. negative. The current will
flow in the opposite direction - it is also negative. The
graph is symmetrical, showing that if a p.d. of, say, 2.0V
produces a current of 0.5 A, then a p.d. of —2.0V will
produce a current of —0.5 A. This is true for most simple
metallic conductors but is not true for some electronic
components, such as diodes.

You get results similar to those shown in Figure 11.2
for a commercial resistor. Resistors have different
resistances, hence the gradient of the I-V graph will be
different for different resistors.

1 Table 11.1 shows the results of an experiment to
measure the resistance of a carbon resistor
whose resistance is given by the manufacturer as
470 +10%.

a Plot a graph to show the I-V characteristic of
this resistor.

b Do the points appear to fall on a straight line
which passes through the origin of the graph?

¢ Usethe graph to determine the resistance of
the resistor.

d Does the value of the resistance fall within the
range given by the manufacturer?

Potential difference/V | Current/A
2.1 0.040
4.0 0.079
6.3 0.128
7.9 0.192
10.0 0.202
12.1 0.250

Table 11.1 Potential difference Vand current I data
for Question 1.

Ohm’s law

For the metallic conductor whose I-V characteristic
is shown in Figure 11.2, the current in it is directly
proportional to the p.d. across it. This means that its
resistance is independent of both the current and

the p.d. This is because the ratio LI/is a constant. Any

component which behaves like this is described as an
ohmic component, and we say that it obeys Ohm’s law.
The statement of Ohm’s law is very precise and you must

not confuse this with the equation “—I/ =R.

Ohm'’s law

A conductor obeys Ohm’s law if the current in it is directly
proportional to the potential difference across its ends.



2 Anelectrical component allows a current of 10 mA
through it when a voltage of 2.0V is applied.
When the voltage is increased to 8.0V, the current
becomes 60 mA. Does the component obey Ohm’s
law? Give numerical values for the resistance to
justify your answer.

Resistance and temperature

A conductor that does not obey Ohm’s law is described as
non-ohmic. An example is a filament lamp. Figure 11.3
shows such a lamp; you can clearly see the wire filament
glowing as the current passes through it. Figure 11.4 shows
the I-V characteristic for a similar lamp.

Figure 11.3 The metal filamentin a lamp glows as the current
passes through it. It also feels warm. This shows that the lamp
produces both heat and light.

A

\

Figure 11.4 The I-V characteristic for a filament lamp.
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There are some points you should notice about the
graph in Figure 11.4:

m Theline passes through the origin (as for an ohmic
component).

m  Forverysmall currents and voltages, the graph is roughly a
straight line.

m At higher voltages, the line starts to curve. The currentis a
bit less than we would have expected from a straight line.
This suggests that the lamp’s resistance has increased. You
can also tell that the resistance has increased because the

"4
ratio 7 is larger for higher voltages than for low voltages.

The fact that the graph of Figure 11.4 is not a straight

line shows that the resistance of the lamp depends on the
temperature of its filament. Its resistance may increase by a
factor as large as ten between when it is cold and when it is
brightest (when its temperature may be as high as 1750°C).

Thermistors

Thermistors are components that are designed to have

a resistance which changes rapidly with temperature.
Thermistors (‘thermal resistors’) are made from metal
oxides such as those of manganese and nickel. There are
two distinct types of thermistor:

m Negative temperature coefficient (NTC) thermistors -
the resistance of this type of thermistor decreases with
increasing temperature. Those commonly used for physics
teaching may have a resistance of many thousands of ohms
at room temperature, falling to a few tens of ohms at 100°C.
You should become familiar with the properties of NTC
thermistors.

m Positive temperature coefficient (PTC) thermistors - the
resistance of this type of thermistor rises abruptly at a
definite temperature, usually around 100-150°C.

The change in their resistance with temperature gives
thermistors many uses:

m  Water temperature sensors in cars and ice sensors on
aircraft wings - if ice builds up on the wings, the thermistor
‘senses’ this temperature drop and a small heater is
activated to melt theiice.

m Baby alarms - the baby rests on an air-filled pad, and
as he or she breathes, air from the pad passes over a
thermistor, keeping it cool; if the baby stops breathing, the
air movement stops, the thermistor warms up and an alarm
sounds.

m Firesensors - arise in temperature activates an alarm.

m Overload protection in electric razor sockets - if the razor
overheats, the thermistor’s resistance rises rapidly and cuts
off the circuit.
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3 Thetwo graphsin Figure 11.5 3 3
show the I-V characteristics of I/A I/A
a metal wire at two different § 6, 0,
temperatures, 6; and 6,. 5. 5.
a Calculate the resistance of
the wire at each temperature. 7 7
b State which is the higher 1 1
temperature, 0, or 6,.
0 T T T I 0 T T T T
0 10 20 30 0 5 10 15
V/V V/V

Figure 11.5 I-V graphs for a wire at two different temperatures. For Question 3.

4 The graph of Figure 11.6 shows the I-V characteristics
of two electrical components, a filament lamp and a
length of steel wire.

a ldentify which curve relates to each component.
b State the voltage at which both have the same
resistance.

c¢ Determine the resistance at the voltage stated
inb.

Diodes

The semiconductor diode is another example of a non-ohmic
conductor. A diode is any component that allows electric
current in only one direction. Nowadays, most diodes are
made of semiconductor materials. One type, the light-
emitting diode or LED, gives out light when it conducts.
Figure 11.7 shows the I-V characteristic for a diode.
There are some points you should notice about this graph.

m  We have included positive and negative values of current
and voltage. This is because, when connected one way
round (positively biased), the diode conducts and has
a fairly low resistance. Connected the other way round
(negatively biased), it allows only a tiny current and has
almost infinite resistance.

m  For positive voltages less than about 0.6V, the current
is almost zero and hence the diode has almost infinite
resistance. It starts to conduct suddenly at its threshold
voltage. The resistance of the diode decreases dramatically
for voltages greater than 0.6V.

The resistance of a diode depends on the potential
difference across it. From this we can conclude that it does
not obey Ohm’s law; it is a non-ohmic component.

I/A 47

0 T T 1 T T
0 2 4 6 8§ 10 V/V

Figure 11.6 For Question 4.

Figure 11.7 The current against potential difference (I-V)
characteristic for a diode. The graph is not a straight line. A
diode does not obey Ohm’s law.

Diodes are used as rectifiers. They allow current to
pass in one direction only and so can be used to convert
alternating current into direct current. (There is more
about this in Chapter 29.) Most modern diodes are made
from silicon and will start conducting when there is a
potential difference of about 0.6 V across them. You need
to remember this key 0.6 V value.



LEDs have traditionally been used as indicator lamps
to show when an appliance is switched on. Newer versions,
some of which produce white light, are replacing filament
lamps, for example in traffic lights and torches (flashlights)
- see Figure 11.8. Although they are more expensive to
manufacture, they are more energy-efficient and hence
cheaper to run, so that the overall cost is less.

The threshold voltage at which an LED starts to
conduct and emit light is higher than 0.6 V and depends
on the colour of light it emits, but may be taken to be
about 2'V.

Figure 11.8 This torch has seven white LEDs, giving a brighter,
whiter light than a traditional filament lamp.

5 Thegraphin Figure 11.10 was obtained by measuring
the resistance R of a particular thermistor as its
temperature 6 changed.

a Determineits resistance at:
i 20°C
ii 45°C.
b Determine the temperature when its resistance is:
i 5000Q
i 2000Q).
6 Astudent connects a circuit with an NTC thermistor,
afilament lamp and a battery in series. The lamp
glows dimly. The student warms the thermistor with a

hair dryer. What change will the student notice in the
brightness of the lamp? Explain your answer.
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Understanding the origin of resistance

To understand a little more about the origins of resistance,
it is helpful to look at how the resistance of a pure metal
wire changes as its temperature is increased. This is shown
in the graph of Figure 11.9. You will see that the resistance
of the pure metal increases linearly as the temperature
increases from 0°C to 100°C. Compare this with the graph
of Figure 11.10 for an NTC thermistor; the thermistor’s
resistance decreases very dramatically over a narrow
temperature range.
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Figure 11.9 The resistance of a metal increases gradually
as its temperature is increased. The resistance of an impure
metal wire is greater than that of a pure metal wire of the
same dimensions.

0 T T T T T T T
0 10 20 30 40 50 60 70
0/°C
Figure 11.10 The resistance of an NTC thermistor decreases
as the temperature increases. For Question 5.
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Figure 11.10 also shows how the resistance of the
metal changes if it is slightly impure. The resistance of an
impure metal is greater than that of the pure metal and
follows the same gradual upward slope. The resistance
of a metal changes in this gradual way over a wide range
of temperatures - from close to absolute zero up to its
melting point, which may be over 2000°C.

This suggests that there are two factors which affect the
resistance of a metal:

m thetemperature
m the presence of impurities.

Figure 11.11 shows a simple model which explains what
happens in a metal when electrons flow through it.
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Figure 11.11 A model of the origins of resistance in a metal.
a At low temperatures, electrons flow relatively freely.

b At higher temperatures, the electrons are obstructed by the
vibrating ions and they make very frequent collisions with
the ions. ¢ Impurity atoms can also obstruct the free flow of
electrons.

In a metal, a current is due to the movement of free
electrons. At low temperatures, they can move easily
past the positive ions (Figure 11.11a). However, as the
temperature is raised, the ions vibrate with larger
amplitudes. The electrons collide more frequently with the
vibrating ions, and this decreases their mean drift velocity.
They lose energy to the vibrating ions (Figure 11.11b).

If the metal contains impurities, some of the atoms will
be of different sizes (Figure 11.11c). Again, this disrupts the
free flow of electrons. In colliding with impurity atoms,
the electrons lose energy to the vibrating atoms.

You can see that electrons tend to lose energy when
they collide with vibrating ions or impurity atoms. They
give up energy to the metal, so it gets hotter. The resistance
of the metal increases with the temperature of the wire
because of the decrease in the mean drift velocity of the
electrons.

Conduction in semiconductors is different. At low
temperatures, there are few delocalised, or free, electrons.
For conduction to occur, electrons must have sufficient
energy to free themselves from the atom they are bound to.
As the temperature increases, a few electrons gain enough
energy to break free of their atoms to become conduction
electrons. The number of conduction electrons thus
increases and so the material becomes a better conductor.
At the same time, there are more electron-ion collisions,
but this effect is small compared with the increase in the
number of conduction electrons.

7 The resistance of a metal wire changes with
temperature. This means that a wire could be
used to sense changes in temperature, in the
same way that a thermistor is used.

a Suggestone advantage a thermistor has over a
metal wire for this purpose.

b Suggest one advantage a metal wire has overa
thermistor.

Resistivity

The resistance of a particular wire depends on its size and
shape. A long wire has a greater resistance than a short
one, provided it is of the same thickness and material. A
thick wire has less resistance than a thin one. For a metal
in the shape of a wire, R depends on the following factors:

m lengthlL

m cross-sectional area A

m the material the wire is made from
m thetemperature of the wire.

At a constant temperature, the resistance is directly
proportional to the length of the wire and inversely
proportional to its cross-sectional area. That is:

resistance o< length

and
1

resistance o< -
cross-sectional area




We can see how these relate to the formulae for adding
resistors in series and in parallel:

m If we double the length of a wire it is like connecting two
identical resistors in series; their resistances add to give
double the resistance. The resistance is proportional to
the length.

m Doubling the cross-sectional area of a wire is like connecting
two identical resistors in parallel; their combined resistance

-1 + l) Hence the resistance is
Rtotal B R R”

inversely proportional to the cross-sectional area.

is halved (since

Combining the two proportionalities for length and cross-
sectional area, we get:
length

cross-sectional area

resistance o<

or
L

Roe =
A

But the resistance of a wire also depends on the material

it is made of. Copper is a better conductor than steel, steel
is a better conductor than silicon, and so on. So if we are
to determine the resistance R of a particular wire, we need
to take into account its length, its cross-sectional area and
the material. The relevant property of the material is its
resistivity, for which the symbol is p (Greek letter rho).

The word equation for resistance is:

resistivity x length

resistance = -
cross-sectional area
R PL
A

We can rearrange this equation to give an equation for

resistivity. The resistivity of a material is defined by the

following word equation:

resistance x cross-sectional area
length

resistivity =

_RA
L
Values of the resistivities of some typical materials are
shown in Table 11.2. Notice that the units of resistivity are
ohm metres ((Q m); this is not the same as ohms per metre.
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Material Resistivity / Material Resistivity /
Om Om
silver 1.60x 1078 mercury 69.0x 1078
copper 1.69x 1078 graphite 800x 1078
nichrome@ | 1.30x 1078 germanium | 0.65
aluminium | 3.21x10°® silicon 2.3x103
lead 20.8x1078 Pyrex glass | 10%
manganin® | 44.0x 107 PTFEW 1013-1016
eurekal 49.0x 1078 quartz 5x 1016

(a) Nichrome - an alloy of nickel, copper and aluminium used in electric
heaters because it does not oxidise at 1000 °C.

(b) Manganin - an alloy of 84% copper, 12% manganese and 4% nickel.
(c) Eureka (constantan) - an alloy of 60% copper and 40% nickel.

(d) Poly(tetrafluoroethene) or Teflon.

Table 11.2 Resistivities of various materials at 20°C.

1 Find the resistance of a 2.6 m length of eureka wire
with cross-sectional area 2.5 x 107" m?.

Step 1 Use the equation for resistance:
resistivity x length
area

resistance =

oL
R_A

Step 2 Substitute values from the question and use
the value for p from Table 11.2:

_49.0x108%2.6

25x107 10

So the wire has a resistance of 5.1 Q).

Resistivity and temperature

Resistivity, like resistance, depends on temperature. For

a metal, resistivity increases with temperature. As we saw
above, this is because there are more frequent collisions
between the conduction electrons and the vibrating ions of
the metal.
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8 Use the resistivity value quoted in Table 11.2
to calculate the lengths of 0.50 mm diameter
manganin wire needed to make resistance coils with
resistances of:

a 1.0Q
b 5.0Q
c 10Q.
9 1.0cm?3 of copper is drawn out into the form of a long
wire of cross-sectional area 4.0 x 107 m2. Calculate

its resistance. (Use the resistivity value for copper
from Table 11.2.)

Summary

m Aconductor obeys Ohm’s law if the current in it is
directly proportional to the potential difference across
its ends.

m Ohmic components include a wire at constant
temperature and a resistor.

= Non-ohmic components include a filament lamp and
a light-emitting diode.

m Asemiconductor diode allows current in one direction
only.

10 A1.0m length of copper wire has a resistance

of 0.50 Q).

a Calculate the resistance of a 5.0 m length of the
same wire.

b What will be the resistance of a 1.0 m length
of copper wire having half the diameter of the
original wire?

11 A piece of steel wire has a resistance of 10 Q. Itis

stretched to twice its original length. Compare its
new resistance with its original resistance.

As the temperature of a metal increases, so does its
resistance.

A thermistor is a component which shows a rapid
change in resistance over a narrow temperature range.
The resistance of an NTC thermistor decreases as its
temperature is increased.

RA
The resistivity p of a material is defined as p = R

where R is the resistance of a wire of that material,
Alis its cross-sectional area and L is its length. The unit
of resistivity is the ohm metre (Qm).
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End-of-chapter questions

1 ThegraphinFigure 11.12 shows the I-V characteristic of an electrical component.

I/A

Figure 11.12 For End-of-chapter Question 1.

a Calculate the resistance of the component when the potential difference across it is:
i 2.0V
i 5.0V.

b Suggest what the componentis.

2 Astudent connects an NTC thermistor to a battery and an ammeter. He places the thermistor in a beaker
of water and gradually heats the water from 10°C to its boiling point, recording the value of the current as
he does so. He then plots a graph of the current in the thermistor against the temperature of the water.

Sketch the graph you would expect the student to obtain from the experiment.
Explain how the student could now use the thermistor as a thermometer.

Describe the difference between the conduction processes in copper and in silicon, a semiconductor.

Explain why the resistance of a metallic conductor increases with temperature while that of a
semiconductor decreases.

4 Anichrome wire has a length of 1.5m and a cross-sectional area of 0.080 mmZ.The resistivity of nichrome
is1.30x 1078 Qm.

a Calculate the resistance of the wire.

b Calculate the length of this wire which would be needed to make an element of an electric heater of
resistance 30 Q).
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5 Figure 11.13 shows a circuit.

S

—3 — 640 -]

Figure 11.13 For End-of-chapter Question 5.

a

When switch Sis open the current in ammeter Ais 0.48A. Calculate the e.m.f. of the battery.
You may assume the battery has negligible internal resistance.

When switch S is closed the current in the ammeter increases to 0.72 A.
i Deduce the currentin the 6.4Q resistor.
ii State the currentin the thermistor.

State and explain how the reading on the ammeter changes when the temperature of the thermistor
isincreased.

Explain why the resistance of a metal increases when its temperature increases.
State two other factors which determine the resistance of a stated length of wire.

When a potential difference of 1.5V is applied across a 5.0m length of insulated copper wire, a current
of 0.24Ais measured in it.

i Calculate the resistance of the length of wire.
i Theresistivity of copperis 1.69 x 10" O m. Calculate the diameter of the wire.

The wire is now made into a tight bundle. State and explain how you would expect the current in
it to change.

7 Figure 11.14 shows a piece of silicon of width 32 mm and length 36 mm. The resistance of the silicon
between the points P and Q is 1.1MQ. Silicon has a resistivity of 2.3 x 103Qm.

%mm Q

36 mm

Figure 11.14 For End-of-chapter Question 7.

Calculate the thickness of the piece of silicon.

Calculate the current which would pass through the silicon if a potential difference of 12V were
applied across P and Q.

Discuss how the current would change if it were large enough to cause the silicon to become
significantly warmer.

CORS)

EORS)
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8 Astudentisinvestigating the properties of a semiconducting diode. Figure 11.15 shows the circuit
she builds.

variable power supply

o

o I,
%_‘
safety resistor

Figure 11.15 For End-of-chapter Question 8.

Sketch a graph to show how the current in the diode would vary as the voltage across
itisincreased from 0V to 1.0V.

The supply is now connected in the reverse direction and once more the potential difference
across the diode is increased from 0V to 1.0V. Complete the I-V graph.
Suggest why the safety resistor is required.

When the potential difference across the safety resistor is 1.4V, the currentin it is 20mA.
Calculate the resistance of the safety resistor.

Explain what is meant by an ohmic conductor.

i Sketch agraph of resistance R against voltage V for a wire of pure iron kept at constant
temperature. Label this line X.

i Sketch a graph of resistance R against voltage Vfor a second wire of impure iron, of the same
diameter and the same length, which is kept at the same temperature. Label this line Y.

iii Explain how the graphs would change if the wires were kept at a higher, but still constant,
temperature.

Deduce how the resistance of a wire made of pure iron would change if both the diameter and

the length were doubled.




Practical circuits

Learning outcomes

You should be able to:

m explain the effects of internal resistance on terminal p.d.
and power output of a source of e.m.f.
explain the use of potential divider circuits
solve problems involving the potentiometer as a means
of comparing voltages




The first electrical cell - an
historical mystery

The Italian Alessandro Volta (Figure 12.1a) is generally
credited with inventing the first battery. He devised
it after his friend and rival Luigi Galvani had shown
that a (dead) frog’s leg could be made to twitch if an
electrically charged plate was connected to it. Volta’s
battery consisted of alternate discs of copper and zinc,
separated by felt soaked in brine - see Figure 12.1b.

However, there is evidence that earlier technologists
may have beaten him by over 1000 years. In 1936 a
small pot was discovered during an archaeological
dig near Baghdad. The pot was sealed with pitch, and
inside the pot there was a copper cylinder surrounding
an iron rod. When filled with an acid, perhaps vinegar,
a potential difference of around 1.5 volts could be
produced between the copper and the iron.

It has been suggested that this battery might have
been used to electroplate metal objects with gold.
So did Volta really invent the battery, or did he just
rekindle an art that had been lost for more than a
millennium?

Internal resistance

You will be familiar with the idea that, when you use

a power supply or other source of e.m.f,, you cannot
assume that it is providing you with the exact voltage
across its terminals as suggested by the value of its e.m.f.
There are several reasons for this. For example, the

supply may not be made to a high degree of precision,
batteries become flat, and so on. However, there is a more
important factor, which is that all sources of e.m.f. have
an internal resistance. For a power supply, this may be
due to the wires and components inside, whereas for a cell
the internal resistance is due to the chemicals within it.
Experiments show that the voltage across the terminals

of the power supply depends on the circuit of which it is
part. In particular, the voltage across the power supply
terminals decreases if it is required to supply more current.

Figure 12.2 shows a circuit you can use to investigate
this effect, and a sketch graph showing how the voltage
across the terminals of a power supply might decrease as
the supplied current increases.

The charges moving round a circuit have to pass
through the external components and through the internal
resistance of the power supply. These charges gain electrical
energy from the power supply. This energy is lost as heat

Chapter 12: Practical circuits

Figure 12.1 aAlessandro

Volta demonstrating his newly
invented pile (battery) to the
French Emperor Napoleon.

b Volta’s pile, showing (top to
bottom) discs of copper, wet felt
and zinc.

169

4
07 >
rheostat 0 I
(variable resistor)
a b

Figure 12.2 a Acircuit for determining the e.m.f. and internal
resistance of a supply; b typical form of results.

as the charges pass through the external components and
through the internal resistance of the power supply. Power
supplies and batteries get warm when they are being used.
(Try using a cell to light a small torch bulb; feel the cell
before connecting to the bulb, and then feel it again after
the bulb has been lit for about 15 seconds.)

The reason for this heating effect is that some of the
electrical potential energy of the charges is transformed
to internal energy as they do work against the internal
resistance of the cell.
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It can often help to solve problems if we show the
internal resistance r of a source of e.m.f. explicitly in
circuit diagrams (Figure 12.3). Here, we are representing
a cell as if it were a ‘perfect’ cell of e.m.f. E, together with a
separate resistor of resistance r. The dashed line enclosing
E and r represents the fact that these two are, in fact, a
single component.

Figure 12.3 It can be helpful to show the internal resistance r
of a cell (or a supply) in a circuit diagram.

Now we can determine the current when this cell is
connected to an external resistor of resistance R. You can
see that R and r are in series with each other. The current
Iis the same for both of these resistors. The combined
resistance of the circuit is thus R +r, and we can write:

E=IR+71) or E=IR+Ir
We cannot measure the e.m.f. E of the cell directly, because
we can only connect a voltmeter across its terminals. This

terminal p.d. V across the cell is always the same as the
p.d. across the external resistor. Therefore, we have:

V=1IR
This will be less than the e.m.f. E by an amount Ir. The
quantity Ir is the potential difference across the internal

resistor and is referred to as the lost volts. If we combine
these two equations, we get:

V=E-Ir
or
terminal p.d. = e.m.f. - ‘lost volts’

The ‘lost volts’ indicates the energy transferred to the
internal resistance of the supply. If you short-circuit a
battery with a piece of wire, a large current will flow, and
the battery will get warm as energy is transferred within it.
This is also why you may damage a power supply by trying
to make it supply a larger current than it is designed to give.

1 Abattery of em.f. 5.0V and internal resistance
2.0Q is connected to an 8.0 Q) resistor. Draw a
circuit diagram and calculate the current in the
circuit.

2 a Calculatethe currentin each circuitin
Figure 12.4.
b Calculate also the ‘lost volts’ for each cell, and
the terminal p.d.

i E=3.0V,r=4.0Q

¥
||
100 100

ii E=3.0V,r=4.0Q

Figure 12.4 For Question 2.

3 Fouridentical cells, each of e.m.f. 1.5V and
internal resistance 0.10Q), are connected in series.
A lamp of resistance 2.0 Q is connected across the
four cells. Calculate the current in the lamp.

1 Thereis acurrent of 0.40A when a battery of e.m.f.
6.0V is connected to a resistor of 13.5 Q). Calculate
the internal resistance of the cell.

Step 1 Substitute values from the question in the
equation fore.m.f.:
E=6.0V, I=0.40A, R=13.5Q
E=IR+Ir
6.0=0.40x13.5+0.40 xr
=5.4+0.40r
Step 2 Rearrange the equation to make r the subject
and solve:
6.0 -5.4=0.40r
0.60=0.40r

0.60
r= m— 1.5Q



You can get a good idea of the e.m.f. of an isolated power
supply or a battery by connecting a digital voltmeter
across it. A digital voltmeter has a very high resistance
(~107 Q), so only a tiny current will pass through it. The
‘lost volts’ will then only be a tiny fraction of the e.m.f.
If you want to determine the internal resistance r as well
as the e.m.f. E; you need to use a circuit like that shown
in Figure 12.2. When the variable resistor is altered, the
current in the circuit changes, and measurements can
be recorded of the circuit current I and terminal p.d. V.
The internal resistance r can be found from a graph of V
againstI (Figure 12.5).

Compare the equation V= E - Ir with the equation of
a straight line y = mx + c. By plotting V on the y-axis and I
on the x-axis, a straight line should result. The intercept
on the y-axis is £, and the gradient is —r.

4 When a high-resistance voltmeter is placed across
an isolated battery, its readingis 3.0V. When a
10Q resistor is connected across the terminals of
the battery, the voltmeter reading drops to 2.8V.
Use this information to determine the internal
resistance of the battery.

5 The results of an experiment to determine the
e.m.f. E and internal resistance r of a power supply
are shown in Table 12.1. Plot a suitable graph and
useittofind Eandr.

v/iv 143 1.33 1.18 1.10 0.98
I/A 0.10 0.30 0.60 0.75 1.00

Table 12.1 Results for Question 5.

The effects of internal resistance

You cannot ignore the effects of internal resistance.
Consider a battery of e.m.f. 3.0 V and of internal resistance
1.0 Q. The maximum current that can be drawn from this
battery is when its terminals are shorted-out. (The external
resistance R = 0.) The maximum current is given by:

maximum current = E = 30 =3.0A
r 1.0
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intercept=E

gradient=-r

0 >
0 I

Figure 12.5 E and r can be found from this graph.

The terminal p.d. of the battery depends on the resistance
of the external resistor. For an external resistor of
resistance 1.0 Q, the terminal p.d. is 1.5V - half of the
e.m.f. The terminal p.d. approaches the value of the e.m.f.

when the external resistance R is very much greater

than the internal resistance of the battery. For example,

a resistor of resistance 1000 Q2 connected to the battery
gives a terminal p.d. of 2.997 V. This is almost equal to the
e.m.f. of the battery. The more current a battery supplies,
the more its terminal p.d. will decrease. An example of
this can be seen when a driver tries to start a car with the
headlamps on. The starter motor requires a large current
from the battery, the battery’s terminal p.d. drops, and the
headlamps dim.

6 Acarbatteryhasane.m.f.of 12V and an internal
resistance of 0.04 Q). The starter motor draws a
current of 100A.

a Calculate the terminal p.d. of the battery when
the starter motor is in operation.

b Each headlampisrated as ‘12V, 36 W’. Calculate
the resistance of a headlamp.

¢ To what value will the power output of each
headlamp decrease when the starter motor is

in operation? (Assume that the resistance of
the headlamp remains constant.)
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Potential dividers

How can we get an output of 3.0V from a battery of e.m.f.
6.0 V? Sometimes we want to use only part of the e.m.f.
of a supply. To do this, we use an arrangement of resistors
called a potential divider circuit.

Figure 12.6 shows two potential divider circuits, each
connected across a battery of e.m.f. 6.0V and of negligible

;

R;=200 Q)

=3.0V

=200 O o

—1_ 9+
O=ro

|__

Figure 12.6 Two potential divider circuits.

internal resistance. The high-resistance voltmeter
measures the voltage across the resistor of resistance R,.
We refer to this voltage as the output voltage, V,,, of
the circuit. The first circuit, a, consists of two resistors
of values R, and R,. The voltage across the resistor of
resistance R, is half of the 6.0V of the battery. The second
potential divider, b, is more useful. It consists of a single
variable resistor. By moving the sliding contact, we can
achieve any value of V_ between 0.0V (slider at the
bottom) and 6.0V (slider at the top).

The output voltage V, ,, depends on the relative values

using the

ut
of R, and R,. You can calculate the value of V/

out
following potential divider equation:

R,
Vou = (m) X Vin
In this equation, V;,, is the total voltage across the two

resistors.

7 Determine the range of V, for the circuitin Figure
12.7 as the variable resistor R, is adjusted over its
full range from 0 Q to 40 Q. (Assume the supply of
e.m.f. 10 V has negligible internal resistance.)

lOQ|:

10V O

L 1

out
RZ

O

Figure 12.7 For Question 7.

Potentiometer circuits

A potentiometer is a device used for comparing potential
differences. For example, it can be used to measure the
e.m.f. of a cell, provided you already have a source whose
e.m.f. is known accurately. As we will see, a potentiometer
can be thought of as a type of potential divider circuit.

A potentiometer consists of a piece of resistance wire,
usually 1 m in length, stretched horizontally between two
points. In Figure 12.8, the ends of the wire are labelled A
and B. A driver cell is connected across the length of wire.
Suppose this cell has an e.m.f. E of 2.0 V. We can then
say that point A is at a voltage of 2.0V, B is at 0V, and the
midpoint of the wire is at 1.0 V. In other words, the voltage
decreases steadily along the length of the wire.

E

o driver cell
=
A Y \ B
jockey potentiometer
wire

—
/ Ey \
cell X sensitive

(unknown e.m.f.) galvanometer

Figure 12.8 A potentiometer connected to measure the e.m.f.
of cell X.



Now, suppose we wish to measure the e.m.f. Ex
of cell X (this must have a value less than that of the
driver cell). The positive terminal of cell X is connected
to point A. (Note that both cells have their positive
terminals connected to A.) A lead from the negative
terminal is connected to a sensitive galvanometer (e.g. a
microammeter), and a lead from the other terminal of the
galvanometer ends with a metal jockey. This is a simple
connecting device with a very sharp edge that allows very
precise positioning on the wire.

If the jockey is touched onto the wire close to point A,
the galvanometer needle will deflect in one direction. If
the jockey is touched close to B, the galvanometer needle
will deflect in the opposite direction. Clearly there must be
some point Y along the wire which, when touched by the
jockey, gives zero deflection — the needle moves neither to
the left nor the right.

In finding this position, the jockey must be touched
gently and briefly onto the wire; the deflection of the
galvanometer shows whether the jockey is too far to the
left or right. It is important not to slide the jockey along
the potentiometer wire as this may scrape its surface,
making it non-uniform so that the voltage does not vary
uniformly along its length.

When the jockey is positioned at Y, the galvanometer
gives zero deflection, showing that there is no current
through it. This can only happen if the potential difference
across the length of wire AY is equal to the e.m.f. of cell
X. We can say that the potentiometer is balanced. If the
balance point was exactly half-way along the wire, we
would be able to say that the e.m.f. of X was half that of the
driver cell.

To calculate the unknown e.m.f. Ex we measure the
length AY. Then we have:

Ey= % xE,
where E_ is the e.m.f. of the driver cell.

The potentiometer can be thought of as a potential
divider because the point of contact Y divides the
resistance wire into two parts, equivalent to the two

resistors of a potential divider.
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Comparing e.m.f.s with a potentiometer
When a potentiometer is balanced, no current flows from
the cell being investigated. This means that its terminal
p.d. is equal to its e.m.f.; we do not have to worry about any
‘lost volts’. This is a great advantage that a potentiometer
has over a voltmeter, which must draw a small current in
order to work.

However, there is a problem: the driver cell is supplying
current to the potentiometer, and so the p.d. between
A and B will be less than the e.m.f. of the driver cell
(some volts are lost because of its internal resistance).
To overcome this problem, we use the potentiometer to
compare p.d.s. Suppose we have two cells whose e.m.f.s Ex
and Ey we want to compare. Each is connected in turn to
the potentiometer, giving balance points at C and D - see
Figure 12.9. (In the diagram, you can see immediately that
E, must be greater than Ey because D is further to the
right than C.)

_'T%)J

Ey
—®

Figure 12.9 Comparing two e.m.f.s using a potentiometer.

The ratio of the e.m.f.s of the two cells will be equal to
the ratio of the two lengths AC and AD:

Exy AC

E,~AD
If one of the cells used has an accurately known e.m.f, the
other can be calculated with the same degree of accuracy.
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Comparing p.d.s

The same technique can be used to compare potential

differences. For example, two resistors could be connected 8 To make a potentiometer, a driver cell of

in series with a cell (Figure 12.10). The p.d. across one e.m.f. 4.0Vis connected across a 1.00m length

resistor is first connected to the potentiometer and the of resistance wire.

balance length found. This is repeated with the other a Whatis the potential difference across each
1cm length of the wire? What length of wire has

resistor and the new balance point is found. The ratio of \
ap.d.of 1.0V across it?

the lengths is the ratio of the p.d.s.

Since both resistors have the same current flowing
through them, the ratio of the p.d.s is also the ratio of their
resistances.

b Acell of unknown e.m.f. E is connected to the
potentiometer and the balance point is found
at a distance of 37.0cm from the end of the
wire to which the galvanometer is connected.
Estimate the value of E. Explain why this can

0 only be an estimate.

¢ Astandard cell of e.m.f. 1.230V gives a balance
length of 31.2cm. Use this value to obtain a
more accurate value for E.

Figure 12.10 Comparing two potential differences using a

174 potentiometer.

Summary

m Asource of e.m.f,, such as a battery, has an internal m A potential divider circuit consists of two or more
resistance. We can think of the source as having an resistors connected in series to a supply. The output
internal resistance rin series with an e.m.f. E. voltage V,,; across the resistor of resistance R, is given

m The terminal p.d. of a source of e.m.f. is less than by: R
the e.m.f. because of ‘lost volts’ across the internal Vout = (ﬁ) xV,

gl?

resistor:
m A potentiometer can be used to compare potential

terminal p.d. = e.m.f.—‘lost volts’ )
differences.

V=E-1Ir
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End-of-chapter questions

1 Asingle cell of em.f. 1.5Vis connected across a 0.30 Q) resistor. The current in the circuit is 2.5A.
a Calculate the terminal p.d. and explain why it is not equal to the e.m.f. of the cell.
b Show that the internal resistance r of the cellis 0.30 Q.

¢ ltissuggested that the power dissipated in the external resistor is a maximum when its resistance R
is equal to the internal resistance r of the cell.

i Calculate the power dissipated whenR=r.
ii Show that the power dissipated when R=0.50Q and R=0.20Q is less than that dissipated when R=r,
as the statement above suggests.

2 Astudentis asked to compare the e.m.f.s of a standard cell and a test cell. He sets up the
circuit shown in Figure 12.11 using the test cell.

driving cell

o/

test cell

B

Figure 12.11 For End-of-chapter Question 2.

a i Explain why heis unable to find a balance point and state the change he must make
in order to achieve balance.

ii State how he would recognise the balance point.

He achieves balance when the distance AB is 22.5cm. He repeats the experiment with a
standard cell of e.m.f. of 1.434V. The balance point using this cell is at 34.6 cm. Calculate the
e.m.f. of the test cell.

Explain what is meant by the internal resistance of a cell.

When a cellis connected in series with a resistor of 2.00 Q) there is a current of 0.625A.
If a second resistor of 2.00 Q is put in series with the first, the current falls to 0.341A.
Calculate:

i theinternal resistance of the cell

ii thee.m.f. of the cell.

A car battery needs to supply a current of 200A to turn over the starter motor. Explain why
a battery made of a series of cells would not be suitable for a car battery.

State what is meant by the term e.m.f. of a cell.

A student connects a high-resistance voltmeter across the terminals of a battery and
observes a reading of 8.94V. He then connects a 12 Q) resistor across the terminals and
finds that the potential difference falls to 8.40V.

Explain why the measured voltage falls.

i Calculate the currentin the circuit.

ii Calculate the internal resistance of the cell.

iii State any assumptions you made in your calculations.
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5 Figure 12.12 shows two circuits which could be used to act as a dimmer switch for a lamp.

Circuit 1 Circuit 2
Figure 12.12 For End-of-chapter Question 5.

a Explain one advantage circuit 1 has over circuit 2.
b i Thelampisratedat60W at240V. Calculate the resistance of the lamp filament at its
normal operating temperature.
ii State and explain how the resistance of the filament at room temperature would compare
with the value calculated in bi.

Figure 12.13 shows a potential divider. The battery has negligible internal resistance and the voltmeter
has infinite resistance.

|

Figure 12.13 For End-of-chapter Question 6.

State and explain how the reading on the voltmeter will change when the resistance of the
variable resistor is increased.

Resistor R, has a resistance of 470 Q). Calculate the value of the variable resistor when the reading
on the voltmeteris 2.0V.

The voltmeter is now replaced with one of resistance 2 kQ. Calculate the reading on this voltmeter.
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7 Figure 12.14 shows a potentiometer circuit.

E,=2.2V
[
|I

[

-—

\ \

jockey uniform
resistance wire

Figure 12.14 For End-of-chapter Question 7.

a i Sketchagraph of the reading on the voltmeter against I as the jockey is moved from point A
to point B.
State the readings on the voltmeter when the jockey is connected to A and when it is connected
to B. (You may assume that the driver cell has negligible internal resistance.)
i Draw a circuit diagram to show how the potentiometer could be used to compare the e.m.f.s of
two batteries.
When a pair of 4 Q) resistors are connected in series with a battery, there is a current of 0.60A current
through the battery. When the same two resistors are connected in parallel and then connected
across the battery, there is a current of 1.50A through it. Calculate the e.m.f. and the internal resistance
of the battery.




Waves

Learning outcomes

You should be able to:

describe the motion of transverse and longitudinal waves
describe waves in terms of their wavelength, amplitude,
frequency, speed and intensity

determine the frequency of sound waves using a
cathode-ray oscilloscope

state the wavelengths of the principal radiations of the
electromagnetic spectrum




Vibrations making waves

The wind blowing across the surface of the sea
produces waves. The surface of the water starts to
move up and down, and these vibrations spread
outwards - big waves may travel thousands of
kilometres across the ocean before they break on a
beach (

Describing waves

When you pluck the string of a guitar, it vibrates. The
vibrations create a wave in the air which we call sound. In
fact, all vibrations produce waves of one type or another
(Figure 13.2). Waves that move through a material (or a
vacuum) are called progressive waves. A progressive wave
transfers energy from one position to another.

At the seaside, a wave is what we see on the surface of
the sea. The water moves around and a wave travels across
the surface. In physics, we extend the idea of a wave to
describe many other phenomena, including light, sound,
etc. We do this by imagining an idealised wave, as shown
in Figure 13.3 - you will never see such a perfect wave on
the sea!

wavelength, A

amplitude, A
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= -

Figure 13.1 This photograph shows a wave breaking on the
shore and dissipating the energy it has drawn from the wind

in its journey across the ocean. The two scientists are ‘storm
chasers’ who are recording the waves produced by a hurricane
in the Gulf of Mexico.

Figure 13.2 Radio telescopes detect radio waves from distant
stars and galaxies; a rainbow is an effect caused by the
reflection and refraction of light waves by water droplets in
the atmosphere.

wave

o Displacement

/ displacement, x

positions

J line of undisturbed

Distance Figure 13.3 Adisplacement-

distance graphillustrating the
terms displacement, amplitude
and wavelength.
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Figure 13.3 or a similar graph of displacement against
time illustrates the following important definitions about
waves and wave motion:

m Thedistance of a point on the wave from its undisturbed

position or equilibrium position is called the displacement x.

® The maximum displacement of any point on the wave
from its undisturbed position is called the amplitude A.
The amplitude of a wave on the sea is measured in units
of distance, e.g. metres. The greater the amplitude of the
wave, the louder the sound or the rougher the sea!

m Thedistance from any point on a wave to the next exactly
similar point (e.g. crest to crest) is called the wavelength A
(the Greek letter lambda). The wavelength of a wave on the
sea is measured in units of distance, e.g. metres.

m Thetime taken for one complete oscillation of a pointin a
wave is called the period T. It is the time taken for a point to
move from one particular position and return to that same
position, moving in the same direction. It is measured in
units of time, e.g. seconds..

m The number of oscillations per unit time of a pointin a
wave is called its frequency f. For sound waves, the higher
the frequency of a musical note, the higher is its pitch.
Frequency is measured in hertz (Hz), where 1Hz=one
oscillation per second (1kHz =10%Hz and 1 MHz = 10°Hz).
The frequency fof a wave is the reciprocal of the period T:

Waves are called mechanical waves if they need a
substance (medium) through which to travel. Sound is one
example of such a wave. Other cases are waves on strings,
seismic waves and water waves (Figure 13.4).

Some properties of typical waves are given on page 183
in Table 13.1.

Figure 13.4 The impact of a droplet on the surface of a liquid
creates a vibration, which in turn gives rise to waves on the
surface.

1 Determine the wavelength and amplitude of each
of the two waves shown in Figure 13.5.

€ 6

L 4l a

52 AV SQN

E O T T T T
g 2] 1015 ~20 25 30~\3
54 .

2 6| Distance / cm

Figure 13.5 Two waves - for Question 1.

You can measure the frequency of sound waves
using a cathode-ray oscilloscope (c.r.0.). Figure 13.6
shows how.

A microphone is connected to the input of the
c.r.o. Sound waves are captured by the microphone
and converted into a varying voltage which has the
same frequency as the sound waves. This voltage is
displayed on the c.r.o. screen.

Itis best to think of a c.r.o. as a voltmeter which
is capable of displaying a rapidly varying voltage. To
do this, its spot moves across the screen at a steady
speed, set by the time-base control. At the same
time, the spot moves up and down according to the
voltage of the input.

Hence the display on the screen is a graph of the
varying voltage, with time on the (horizontal) x-axis.
If we know the horizontal scale, we can determine
the period and hence the frequency of the sound
wave. Worked example 1 shows how to do this. (In
Chapter 15 we will look at one method of measuring
the wavelength of sound waves.)

Figure 13.6 Measuring the frequency of sound waves
from a tuning fork.



1 Figure 13.7 shows the trace on an oscilloscope screen

when sound waves are detected by a microphone.
The time-base is set at 1 msdiv. Determine the
frequency of the sound waves.

Figure 13.7 Ac.r.o. trace - what is the frequency of
these waves?

Step 1 Determine the period of the waves on the
screen, in scale divisions. From Figure 13.7, you can
see that one complete wave occupies three scale
divisions (div).

period T=3.0div

Step 2 Determine the time interval represented by

each scale division. The time-base control is set at
1msdiv, so:

scale factor=1msdiv!

Step 3 Convert the period in divisions to ms:

period T=3.0div x 1 msdiv?
=3.0ms=3.0x1073s

Hint: Notice how div and div! cancel out.

Step 4 Calculate the frequency from the period:

f R P
requency =7 =309x103

So the wave frequency is approximately 330 Hz.

=333Hz

When a sound wave is displayed on a c.r.o. screen,
two complete waves occupy five scale divisions.
The calibrated time-base is set on 0.005s per
division. Determine the frequency of the waves.
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Longitudinal and transverse
waves

There are two distinct types of wave, longitudinal and
transverse. Both can be demonstrated using a slinky
spring lying along a bench.

Push the end of the spring back and forth; the segments
of the spring become compressed and then stretched out,
along the length of the spring. Wave pulses run along the
spring. These are longitudinal waves.

Waggle the end of the slinky spring from side to side.
The segments of the spring move from side to side as the
wave travels along the spring. These are transverse waves.

So the distinction between longitudinal and transverse
waves is as follows:

®m Inlongitudinal waves, the particles of the medium vibrate
parallel to the direction of the wave velocity.

®m Intransverse waves, the particles of the medium vibrate at
right angles to the direction of the wave velocity.

Sound waves are an example of a longitudinal wave. Light
and all other electromagnetic waves are transverse waves.
Waves in water are quite complex. Particles of the water
may move both up and down and from side to side as a
water wave travels through the water. You can investigate
water waves in a ripple tank. There is more about water
waves in Table 13.1 (page 183) and in Chapter 14.

Representing waves

Figure 13.8 shows how we can represent longitudinal

and transverse waves. The longitudinal wave shows how
the material through which it is travelling is alternately
compressed and expanded. This gives rise to high and low
pressure regions, respectively.

a

« A rarefaction compression

Distance

b
- A
e < >
(O]
) >
) \/ W Distance
2

Figure 13.8 aLongitudinal waves and b transverse waves.
A=amplitude, A = wavelength.
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However, this is rather difficult to draw, so you will
often see a longitudinal wave represented as if it were a
sine wave. The displacement referred to in the graph is the
displacement of the particles in the wave.

We can compare the compressions and rarefactions
(or expansions) of the longitudinal wave with the peaks
and troughs of the transverse wave.

Phase and phase difference

All points along a wave have the same pattern of vibration.
However, different points do not necessarily vibrate in
step with one another. As one point on a wave vibrates,
the point next to it vibrates slightly out-of-step with it. We
say that they vibrate out of phase with each other - there
is a phase difference between them. This is the amount by
which one oscillation leads or lags behind another.

Phase difference is measured in degrees. As you can see
from Figure 13.9, two points A and B, with a separation of
one whole wavelength A, vibrate in phase with each other.
The phase difference between these two points is 360°.
(You can also say it is 0°.) The phase difference between
any other two points between A and B can have any value
between 0° and 360°. A complete cycle of the wave is
thought of as 360°. In Chapter 14 we will see what it means
to say that two waves are ‘in phase’ or ‘out of phase’ with
one another.

- >
Distance

Displacement
o

Points A and B are vibrating; they have a phase
difference of 360° or 0°. They are ‘in phase’

Points C and D have a phase difference of 90°.

Figure 13.9 Different points along a wave have different
phases.

3 Using axes of displacement and distance, sketch
two waves A and B such that A has twice the
wavelength and half the amplitude of B.

Wave energy

It is important to realise that, for both types of mechanical
wave, the particles that make up the material through
which the wave is travelling do not move along - they only
oscillate about a fixed point. It is energy that is transmitted
by the wave. Each particle vibrates; as it does so, it pushes
its neighbour, transferring energy to it. Then that particle
pushes its neighbour, which pushes its neighbour. In this
way, energy is transmitted from one particle to the next, to
the next, and so on down the line.

Intensity

The term intensity has a very precise meaning in physics. The

intensity of a wave is defined as the rate of energy transmitted

(i.e. power) per unit area at right angles to the wave velocity.
power

cross-sectional area

intensity =

Intensity is measured in watts per square metre (W m™).
For example, when the Sun is directly overhead, the
intensity of its radiation is about 1.0 kW m™ (1 kilowatt per
square metre). This means that energy arrives at the rate of
about 1kW (1000]s™!) on each square metre of the surface
of the Earth. At the top of the atmosphere, the intensity of
sunlight is greater, about 1.37kW m™.

4 A100W lamp emits electromagnetic radiation in
all directions. Assuming the lamp to be a point
source, calculate the intensity of the radiation:

a atadistance of 1.0m from the lamp

b ata distance of 2.0m from the lamp.

Hint: Think of the area of a sphere at each of the
two radii.

Intensity and amplitude
The intensity of a wave generally decreases as it travels
along. There are two reasons for this:

m The wave may ‘spread out’ (as in the example of light
spreading out from a light bulb in Question 4).

m The wave may be absorbed or scattered (as when light
passes through the Earth’s atmosphere).

As a wave spreads out, its amplitude decreases. This
suggests that the intensity I of a wave is related to its
amplitude A. In fact, intensity is proportional to the
square of the amplitude:

intensity o< amplitude? (I < A?)



The relationship also implies that, for a particular wave:
intensity
—————" = constant
amplitude
So, if one wave has twice the amplitude of another, it has
four times the intensity. This means that it is carrying

energy at four times the rate.

5 Waves from a source have an amplitude of 5.0cm
and an intensity of 400Wm™.

a The amplitude of the waves is increased to
10.0cm. What is their intensity now?

b The intensity of the waves is decreased to
100Wm™. What is their amplitude?

Wave speed

The speed with which energy is transmitted by a wave is
known as the wave speed v. This is measured in ms™. The
wave speed for sound in air at a pressure of 10°Pa and a
temperature of 0°C is about 340 ms™!, while for light in a

vacuum it is almost 300000000ms~".

The wave equation

An important equation connecting the speed v of a wave
with its frequency fand wavelength A can be determined
as follows. We can find the speed of the wave using:

distance
speed = ———
time
But a wave will travel a distance of one whole wavelength

in a time equal to one period T. So:

wavelength
wave speed = ————2—
period
or
A
v==
T
1
=(=)xA
y (T) X

However, f= % and so:

wave speed = frequency x wavelength
v=Ffx\

A numerical example may help to make this clear. Imagine
a wave of frequency 5 Hz and wavelength 3 m going past
you. In 1s, five complete wave cycles, each of length 3m,
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go past. So the total length of the waves going past in 1sis
15m. The distance covered by the wave in one second is its
speed, therefore the speed of the wave is 15ms™.

Clearly, for a given speed of wave, the greater the
wavelength, the smaller the frequency and vice versa. The
speed of sound in air is constant (for a given temperature
and pressure). The wavelength of sound can be made
smaller by increasing the frequency of the source of sound.

Table 13.1 gives typical values of speed (v), frequency
(f) and wavelength (1) for some mechanical waves. You
can check for yourself that v = fA is satisfied.

Water Waves on
. Sound waves .
wavesina |, . a slinky
. in air .
ripple tank spring
Speed/ms™ about 0.12 about 300 about 1
Frequency/Hz | about6 20t0 20000 about 2
(limits of
human hearing)
Wavelength [m | about 0.2 15t00.015 about 0.5

Table 13.1 Speed (v), frequency (f) and wavelength (1)
data for some mechanical waves readily investigated in the
laboratory.

2 Middle C on a piano tuned to concert pitch should
have a frequency of 264 Hz (Figure 13.10). If the
speed of sound is 330ms™, calculate the wavelength
of the sound produced when this key is played.

Step 1 We use the above equation in slightly
rewritten form:
speed

wavelength = frequency

Step 2 Substituting the values for middle C we get:
330
wavelength = 264" 1.25m

The human ear can detect sounds of frequencies
between 20Hz and 20kHz, i.e. with wavelengths
between 15m and 15mm.

Figure 13.10 Each stringin a piano produces a
different note.
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6 Sound is a mechanical wave that can be
transmitted through a solid. Calculate the
frequency of sound of wavelength 0.25m that
travels through steel at a speed of 5060 ms™.

7 Acello string vibrates with a frequency of 64 Hz.
Calculate the speed of the transverse waves on
the string given that the wavelength is 140 cm.

8 Anoscillatoris used to send waves along a cord.
Four complete wave cycles fit on a 20cm length
of the cord when the frequency of the oscillator is
30Hz. For this wave, calculate:

a itswavelength
b itsfrequency
c itsspeed.

9 Copy and complete Table 13.2. (You may assume
that the speed of radio waves is 3.0 x 108 ms™.)

Station Wavelength/m | Frequency/MHz
Radio A (FM) 97.6

Radio B (FM) 94.6

Radio B (LW) 1515

Radio C (MW) 693

Table 13.2 For Question 9.

The Doppler effect

You may have noticed a change in pitch of the note heard
when an emergency vehicle passes you while sounding its
siren. The pitch is higher as it approaches you, and lower
as it recedes into the distance. This is an example of the
Doppler effect; you can hear the same thing if a train
passes at speed while sounding its whistle.

Figure 13.11 shows why this change in frequency is
observed. It shows a source of sound emitting waves with a
constant frequency f,, together with two observers A and B.

m Ifthe sourceis stationary (Figure 13.11a), waves arrive at A
and B at the same rate, and so both observers hear sounds
of the same frequency f,.

m Ifthe source is moving towards A and away from B (Figure
13.11b), the situation is different. From the diagram you can
see that the waves are squashed together in the direction of
Aand spread apart in the direction of B.

Observer A will observe waves whose wavelength is
shortened. More waves per second arrive at A, and so A
observes a sound of higher frequency than f,. Similarly,

a source stationary

B

®
/H\

b waves stretched

A B

® ®
/H\ /H\
waves squashed source moving

Figure 13.11 Sound waves, represented by wavefronts,
emitted at constant frequency by a a stationary source, and
b a source moving with speed v,.

the waves arriving at B have been stretched out and B will
observe a frequency lower than f..

An equation for observed frequency

There are two different speeds involved in this situation.
The source is moving with speed v,. The sound waves
travel through the air with speed v, which is unaffected by
the speed of the source. (Remember, the speed of a wave
depends only on the medium it is travelling through.)

The frequency and wavelength observed by an observer
will change according to the speed v at which the source
is moving. Figure 13.12 shows how we can calculate the
observed wavelength A and the observed frequency f,.

The wave trains shown in Figure 13.12 represent the
f, waves emitted by the source in 1s. Provided the source
is stationary (Figure 13.12a), the length of this train is
equal to the wave speed v since this is the distance the first
wave travels away from the source in 1s. The wavelength
observed by the observer is simply A, = 2.

The situation is different when the source is moving
away from the observer (Figure 13.12b). In 1s, the source
moves a distance v,. Now the train of f, waves will have a
length equal to v+ v,
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Figure 13.12 Sound waves, emitted at constant frequency
by a a stationary source, and b a source moving with speed v,
away from the observer.

v+vy)
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The observed wavelength is now given by A, =

The observed frequency is given by:
_ v _ fxv

oo T
This tells us how to calculate the observed frequency when
the source is moving away from the observer. If the source
is moving towards the observer, the train of f, waves will
be compressed into a shorter length equal to v— v, and the
observed frequency will be given by:

_v_ fixv
fo_/\ v-v)

o

o

We can combine these two equations to give a single
equation for the Doppler shift in frequency due to a
moving source:

fixv

(vxvy)

where the plus sign applies to a receding source and
the minus sign to an approaching source. Note these
important points:

observed frequency f, =

m Thefrequency f, of the source is not affected by the
movement of the source - it still emits f, waves per second.

m The speed v of the waves as they travel through the air (or
other medium) is also unaffected by the movement of the
source.

Note that a Doppler effect can also be heard when an
observer is moving relative to a stationary source, and also
when both source and observer are moving. There is more
about the Doppler effect and light later in this chapter.
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3 Atrain with a whistle that emits a note of frequency
800Hz is approaching an observer at a speed of
60ms . What frequency of note will the observer
hear? (Speed of sound in air=330ms™.)

Step 1 Select the appropriate form of the Doppler
equation. Here the source is approaching the
observer so we choose the minus sign:

= fo v
fo= (v-vy)

Step 2 Substitute values from the question and
solve:
_800x330 800x330

° (330-60) 270

=978Hz

So the observer hears a note whose pitch is raised
significantly, because the train is travelling at a
speed which is an appreciable fraction of the speed
of sound.

10 A plane’s engine emits a note of constant
frequency 120 Hz. It is flying away from an
observer at a speed of 80 ms. Determine:

a the observed wavelength of the sound
received by the observer

b itsobserved frequency.
(Speed of sound in air=330ms™.)

Electromagnetic waves

You should be familiar with the idea that light is a region
of the electromagnetic spectrum. It is not immediately
obvious that light has any connection at all with electricity,
magnetism and waves. These topics had been the subject
of study by physicists for centuries before the connections
between them became apparent.

An electric current always gives rise to a magnetic field
(this is known as electromagnetism). A magnetic field is
created by any moving charged particles such as electrons.
Similarly, a changing magnetic field will induce a current
in a nearby conductor. These observations led to the
unification of the theories of electricity and magnetism by
Michael Faraday in the mid-19th century. A vast technology
based on the theories of electromagnetism developed
rapidly, and continues to expand today (Figure 13.13).
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Faraday’s studies were extended by James Clerk
Maxwell. He produced mathematical equations that
predicted that a changing electric or magnetic field would
give rise to waves travelling through space. When he
calculated the speed of these waves, it turned out to be
the known speed of light. He concluded that light is a
wave, known as an electromagnetic wave, that can travel
through space (including a vacuum) as a disturbance of
electric and magnetic fields.

Faraday had unified electricity and magnetism; now
Maxwell had unified electromagnetism and light. In the
20th century, Abdus Salam (Figure 13.14) managed to
unify electromagnetic forces with the weak nuclear force,
responsible for radioactive decay. Physicists continue
to strive to unify the big ideas of physics; you may
occasionally hear talk of a theory of everything. This
would not truly explain everything, but it would explain
all known forces, as well as the existence of the various
fundamental particles of matter.

Figure 13.13 These telecommunications masts are situated
4500 metres above sea level in Ecuador. They transmit
microwaves, a form of electromagnetic radiation, across the
mountain range of the Andes.

Figure 13.14 Abdus Salam, the Pakistani physicist, won the
1979 Nobel Prize for Physics for his work on unification of the
fundamental forces.

Electromagnetic radiation

By the end of the 19th century, several types of
electromagnetic wave had been discovered:

m radio waves - these were discovered by Heinrich Hertz
when he was investigating electrical sparks

m infrared and ultraviolet waves - these lie beyond either end
of the visible spectrum

m  X-rays - these were discovered by Wilhelm Rontgen and
were produced when a beam of electrons collided with a
metal target such as tungsten

m y-rays - these were discovered by Henri Becquerel when he
was investigating radioactive substances.

We now regard all of these types of radiation as parts of
the same electromagnetic spectrum, and we know that
they can be produced in a variety of different ways.

The speed of light

James Clerk Maxwell showed that the speed ¢ of
electromagnetic radiation in a vacuum (free space) was
independent of the frequency of the waves. In other words,
all types of electromagnetic wave travel at the same speed
in a vacuum. In the SI system of units, ¢ has the value:

€=299792458ms™!

The approximate value for the speed of light in a vacuum
(often used in calculations) is 3.0 x 103 msL.

The wavelength A and frequency f of the radiation are
related by the equation:

c=fA
When light travels from a vacuum into a material medium
such as glass, its speed decreases but its frequency
remains the same, and so we conclude that its wavelength
must decrease. We often think of different forms of
electromagnetic radiation as being characterised by
their different wavelengths, but it is better to think of
their different frequencies as being their fundamental
characteristic, since their wavelengths depend on the
medium through which they are travelling.

Light waves show the Doppler effect in the same way
that sound waves do. So, for example, if an astronomer
looks at the light from a distant star which is receding
from Earth at speed v,, its wavelength will be increased
and its frequency will be decreased. The change in
wavelength A is simply given by AA/A = v /c.

Since longer wavelengths are towards the red end of the
visible spectrum, the light from the star will look redder
than if it were stationary. This is the origin of the ‘red shift’
which allows astronomers to determine the speed at which
stars and galaxies are moving away from us, and which
first provided evidence that the Universe is expanding.



The observed frequency of light from a moving source
can be calculated using the same equation as for sound,

_ fxc
b (cxyy)
speed of the source v, must be small compared to the speed
of light c. For speeds approaching ¢, the equation must be

altered to take account of the theory of relativity.

but there is an important condition. The

11 Red light of wavelength 700nm in a vacuum
travels into glass, where its speed decreases to
2.0 x 108 ms™. Determine:
a thefrequency of the light in a vacuum

b its frequency and wavelength in the glass.

12 An astronomer observes light from a distant star.
A particular line in its spectrum has a wavelength
of 550 nm. When measured in the laboratory, the
same spectral line has a wavelength of 535nm.
Determine:

a the change in wavelength of the spectral line

b the speed of the star

¢ thedirection of movement of the star
(towards or away from the observer).

(Speed of light in free space =3.0 x 103ms™)

Orders of magnitude

Table 13.3 shows the approximate ranges of wavelengths
in a vacuum of the principal bands which make up the
electromagnetic spectrum. This information is shown as a
diagram in Figure 13.15.

Here are some points to note:

m There are no clear divisions between the different ranges
or bands in the spectrum. The divisions shown in Table 13.3
are somewhat arbitrary.

m The naming of subdivisions is also arbitrary. For example,
microwaves are sometimes regarded as a subdivision of
radio waves.

m Theranges of X-rays and y-rays overlap. The distinction is
that X-rays are produced when electrons decelerate rapidly

visible

ultraviolet infrared

X-rays

y-rays

microwaves
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or when they hit a target metal at high speeds. y-rays are
produced by nuclear reactions such as radioactive decay. There
is no difference whatsoever in the radiation between an X-ray
and a y-ray of wavelength, say, 107 m.

Radiation Wavelength range/m

radio waves >10°t0 107!

microwaves 10 to 1073

infrared 103to7x 107"

visible 7x107 (red) to 4 x 1077 (violet)
ultraviolet 4x107t0 1078

X-rays 108t0 10713

y-rays 1070to0 10716

Table 13.3 Wavelengths (in a vacuum) of the electromagnetic
spectrum.

13 Copy Table 13.3. Add a third column showing the
range of frequencies of each type of radiation.
14 Study Table 13.3 and answer the questions.

a Which type of radiation has the narrowest
range of wavelengths?

b Which has the second narrowest range?

¢ Whatis the range of wavelengths of
microwaves, in millimetres?

d What is the range of wavelengths of visible
light, in nanometres?

e Whatis the frequency range of visible light?
15 Foreach of the following wavelengths measured

in a vacuum, state the type of electromagnetic
radiation to which it corresponds.

a lkm ¢ 5000nm
b 3cm d 500nm

e 50nm
f 102m

16 For each of the following frequencies, state the
type of electromagnetic radiation to which it

1071 10712 1010 10°8 10°° 107 1072
Wavelength / m

corresponds.
a 200kHz ¢ 5x10%Hz
b 100MHz d 10%¥Hz
Figure13.15 Wavelengths
radio waves of the electromagnetic
— spectrum. The boundaries
1 102 10* 10°

between some regions are
fuzzy.
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The nature of electromagnetic
waves

An electromagnetic wave is a disturbance in the electric
and magnetic fields in space. Figure 13.16 shows how we
can represent such a wave. In this diagram, the wave is
travelling from left to right.

The electric field is shown oscillating in the vertical
plane. The magnetic field is shown oscillating in the
horizontal plane. These are arbitrary choices; the point is
that the two fields vary at right angles to each other, and
also at right angles to the direction in which the wave
is travelling. This shows that electromagnetic waves are
transverse waves.

Summary

= Mechanical waves are produced by vibrating objects.

m A progressive wave carries energy from one place to
another.

= Two points on a wave separated by a distance of one
wavelength have a phase difference of 0° or 360°.

m There are two types of wave - longitudinal and
transverse. Longitudinal waves have vibrations parallel
to the direction in which the wave travels, whereas
transverse waves have vibrations at right angles to
the direction in which the wave travels.

m The frequency f of a wave is related to its period T by
the equation:

m The frequency of a sound wave can be measured using
a calibrated cathode-ray oscilloscope.

m The speed of all waves is given by the wave equation:
wave speed = frequency x wavelength
v=1fA

wave speed =c/v

Distance
Electric field strength

A

Magnetic field strength

Figure 13.16 An electromagnetic wave is a periodic variation
in electric and magnetic fields.

The Doppler effect is the change in an observed wave
frequency when a source moves with speed v,. The
observed frequency is given by:

= fS xv

° (vxv,)

The intensity of a wave is defined as the wave power
transmitted per unit area at right angles to the wave
velocity. Hence:

power
cross-sectional area

intensity =

Intensity has units of Wm™.

The intensity I of a wave is proportional to the square
of the amplitude A (I =< A?).

All electromagnetic waves travel at the same speed
of 3.0 x 108 m st in a vacuum, but have different
wavelengths and frequencies.

The regions of the electromagnetic spectrum in order
of increasing wavelength are: y-rays, X-rays, ultraviolet,
visible, infrared, microwaves and radio waves.
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End-of-chapter questions

1 Figure 13.17 shows the screen of an oscilloscope. The time-base of the oscilloscope is set at 500 ps divL.
Calculate the time period of the signal and hence its frequency.

Figure 13.17 For End-of-chapter Question 1.

a State two main properties of electromagnetic waves.
b State one major difference between microwaves and radio waves.
¢ i Estimate the wavelength in metres of X-rays.

ii Useyouranswer to i to determine the frequency of the X-rays.

3 Astudentissitting on the beach, observing a power boat moving at speed on the sea. The boat has a
siren emitting a constant sound of frequency 420 Hz.

The boat moves around in a circular path with a speed of 25ms™. The student notices that the pitch
of the siren changes with a regular pattern.
a Explain why the pitch of the siren changes, as observed by the student.
b Determine the maximum and minimum frequencies that the student will hear.
¢ Atwhich pointin the boat’s motion will the student hear the most high-pitched note?
(Speed of sound in air=330ms™)

Figure 13.18 shows some air particles as a sound wave passes.

P
Figure 13.18 For End-of-chapter Question 4.

a On acopy of the diagram, mark:
i aregion of the wave which shows a compression - label it C
ii aregion of the wave which shows a rarefaction - label it R.
Describe how the particle labelled P moves as the wave passes.

The sound wave has a frequency of 240Hz. Explain, in terms of the movement of an individual particle,
what this means.

The wave speed of the sound is 320ms™. Calculate the wavelength of the wave.
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5 The diagram represents a wave on the surface of water at one instant of time. The speed of the wave is 7.0cms™.
Calculate the amplitude, wavelength and time period for one oscillation.

12 mm o

A

20 mm
9.0cm

Y

Figure 13.19 For End-of-chapter Question 5.

6 a Lightisreferredto as atype of electromagnetic wave. Explain what is meant by the term

electromagnetic wave. [2]
b i Two starsemitradiation with the same power. Star A is twice as far from the Earth as star B.
Explain how the intensities of the radiations compare to an observer on the Earth. [2]
ii State how the amplitudes of the two signals received by the observer compare. [2]
¢ The main signal from star Ais in the ultraviolet region of the spectrum with a wavelength
n of 7.5x 108 m. Calculate the wavelength of this radiation. [2]

7 Figure 13.20 shows a loudspeaker producing a sound and a microphone connected to a
cathode-ray oscilloscope.

|

loudspeaker microphone

f‘:q d/\ °
Figure 13.20 For End-of-chapter Question 7.

a Sound is described as a longitudinal wave. Explain how the trace on the oscilloscope relates
to the movements of the air particles in the sound wave. [3]
b Thetime-base on the oscilloscope is set at 5msdivL. Calculate the frequency of the wave. [2]
The wavelength of the wave is found to be 1.98 m. Calculate the speed of the wave. [2]
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8 Figure 13.21 shows the traces of two sound waves displayed on an oscilloscope screen.

Figure 13.21 For End-of-chapter Question 8.

State and explain how the wavelengths of the two waves compare.

Explain the meaning of the term phase difference. Illustrate your answer by estimating the
phase difference between the two waves shown on the screen.

Calculate the ratio of the intensities of the two waves.

a State what is meant by the Doppler effect.

b Astaris moving away from the Earth at a speed of 6.4 x 10°ms™. Light of frequency 6.500x 10%*Hz
emitted by the star is received on Earth. Calculate the change in frequency caused by the
Doppler effect. Give your answer to 2 significant figures.
When looking at distant stars and galaxies, the further a star or galaxy is from Earth, the
more the light emitted from the star is shifted towards the red end of the spectrum.
i State and explain whether the stars and galaxies are moving towards or away from the Earth.
i Explain what the greater shift in frequency for stars that are further away implies.

The Doppler effect can be used to measure the speed of blood. Ultrasound, which is sound of high
frequency, is passed from a transmitter into the body, where it reflects off particles in the blood.
The shiftin frequency is measured by a stationary detector, placed outside the body and close

to the transmitter.

In one patient, particles in the blood are moving at a speed of 30cms™ in a direction directly
away from the transmitter. The speed of ultrasound in the body is 1500cms™.

This situation is partly modelled by considering the particles to be emitting sound of frequency
4,000 MHz as they move away from the detector. This sound passes to the detector outside the
body and the frequency measured by the detector is not 4.000 MHz.

a i State whetherthe frequency received by the stationary detector is higher or lower than the
frequency emitted by the moving particles.

ii  Explain your answertoi.

b Calculate the difference between the frequency emitted by the moving particles and the frequency
measured by the detector.

¢ Suggest why there is also a frequency difference between the sound received by the particles and
the sound emitted by the transmitter.




Superposition of
waves

Learning outcomes
You should be able to:

m explain and use the principle of superposition of waves
m explain experiments that show diffraction and
interference

solve problems involving two-slit and multiple-slit
interference




Combining waves

Light travels as waves and can produce beautiful,
natural effects such as the iridescent colours of a
butterfly’s wing ( However, these colours
do not come from pigments in the wing. Instead, they
arise when light waves, scattered from different points
on the wing, meet in your eye and combine to produce
the colours that we see.

The principle of superposition
of waves

In Chapter 13, we studied the production of waves and the
difference between longitudinal and transverse waves. In
this chapter we are going to consider what happens when
two or more waves meet at a point in space and combine
together (Figure 14.2).

So what happens when two waves arrive together at
the same place? We can answer this from our everyday
experience. What happens when the beams of light waves
from two torches cross over? They pass straight through
one another. Similarly, sound waves pass through one
another, apparently without affecting each other. This is

Figure 14.2 Here we see ripples produced when drops
of water fall into a swimming pool. The ripples overlap to
produce a complex pattern of crests and troughs.

Chapter 14: Superposition of waves

Figure 14.1 The iridescent colours on a butterfly’s wing
demonstrate the beauty of nature. In this chapter we will
study the effect known as interference, which leads to the
production of these glorious colours.

very different from the behaviour of particles. Two bullets
meeting in mid-air would ricochet off one another in a
very un-wave-like way. If we look carefully at how two sets
of waves interact when they meet, we find some surprising
results.

When two waves meet they combine, with the
displacements of the two waves adding together. Figure
14.3 shows the displacement-distance graphs for two
sinusoidal waves (blue and green) of different wavelengths.
It also shows the resultant wave (red), which comes from
combining these two. How do we find this resultant
displacement shown in red?

Consider position A. Here the displacement of both
waves is zero, and so the resultant must also be zero.

At position B, both waves have positive displacement. The
resultant displacement is found by adding these together.

o Displacement

>—»
oo—

wvmsta nce
t
C

Figure 14.3 Adding two waves by the principle of
superposition - the red line is the resultant wave.




Cambridge International AS Level Physics

At position C, the displacement of one wave is positive
while the other is negative. The resultant displacement
lies between the two displacements. In fact, the resultant
displacement is the algebraic sum of the displacements of
waves A and B; that is, their sum, taking account of their
signs (positive or negative).

We can work our way along the distance axis in
this way, calculating the resultant of the two waves by
algebraically adding them up at intervals. Notice that, for
these two waves, the resultant wave is a rather complex
wave with dips and bumps along its length.

The idea that we can find the resultant of two
waves which meet at a point simply by adding up the
displacements at each point is called the principle of
superposition of waves. This principle can be applied to
more than two waves and also to all types of waves. A
statement of the principle of superposition is shown below:

When two or more waves meet at a point, the resultant
displacement is the algebraic sum of the displacements
of the individual waves.

1 Ongraph paper, draw two ‘triangular’ waves like
those shown in Figure 14.4. (These are easier to
work with than sinusoidal waves.) One should
have wavelength 8 cm and amplitude 2 cm; the
other wavelength 16 cm and amplitude 3cm.

Use the principle of superposition of waves to
determine the resultant displacement at suitable
points along the waves, and draw the complete
resultant wave.

A

; /
\>/D|stance

Figure 14.4 Two triangular waves - for Question 1.

Displacement

Diffraction of waves

You should be aware that all waves (such as sound and light)
can be reflected and refracted. Another wave phenomenon
that applies to all waves is that they can be diffracted.
Diffraction is the spreading of a wave as it passes through a
gap or around an edge. It is easy to observe and investigate
diffraction effects using water waves, as shown in Box 14.1.

Diffraction of sound and light
Diffraction effects are greatest when waves pass through a
gap with a width roughly equal to their wavelength. This
is useful in explaining why we can observe diffraction
readily for some waves, but not for others. For example,
sound waves in the audible range have wavelengths from a
few millimetres to a few metres. Thus we might expect to
observe diffraction effects for sound in our environment.
Sounds, for example, diffract as they pass through
doorways. The width of a doorway is comparable to the
wavelength of a sound and so a noise in one room spreads
out into the next room.

Visible light has much shorter wavelengths (about
5x 10~ m). It is not diffracted noticeably by doorways
because the width of the gap is a million times larger
than the wavelength of light. However, we can observe
diffraction of light by passing it through a very narrow
slit or a small hole. When laser light is directed onto a
slit whose width is comparable to the wavelength of the
incident light, it spreads out into the space beyond to form
a smear on the screen (Figure 14.5). An adjustable slit
allows you to see the effect of gradually narrowing the gap.

You can see the effects of diffraction for yourself by
making a narrow slit with your two thumbs and looking
through the slit at a distant light source (Figure 14.8). By
gently pressing your thumbs together to narrow the gap
between them, you can see the effect of narrowing the slit.

Figure 14.5 Lightis diffracted as it passes through aslit.



Aripple tank can be used to show diffraction. Plane
waves are generated using a vibrating bar, and move
towards a gap in a barrier (Figure 14.6). Where the
ripples strike the barrier, they are reflected back. Where

Figure 14.6 Ripples, initially straight, spread out into the
space beyond the gap in the barrier.

a b

Chapter 14: Superposition of waves

they arrive at the gap, however, they pass through and
spread out into the space beyond. It is this spreading
out of waves as they travel through a gap (or past the
edge of a barrier) that is called diffraction.

The extent to which ripples are diffracted depends
on the width of the gap. This is illustrated in Figure 14.6.
The lines in this diagram show the wavefronts. It is as
if we are looking down on the ripples from above, and
drawing lines to represent the tops of the ripples at
some instant in time. The separation between adjacent
wavefronts is equal to the wavelength A of the ripples.

When the waves encounter a gap in a barrier, the
amount of diffraction depends on the width of the gap.
There is hardly any noticeable diffraction when the gap
is very much larger than the wavelength. As the gap
becomes narrower, the diffraction effect becomes more
pronounced. It is greatest when the width of the gap is
roughly equal to the wavelength of the ripples.

Y
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Figure 14.7 The extent to which ripples spread out depends on the relationship between their wavelength and
the width of the gap. In a, the width of the gap is very much greater than the wavelength and there is hardly any
noticeable diffraction. In b, the width of the gap is greater than the wavelength and there is limited diffraction.
In ¢, the gap width is approximately equal to the wavelength and the diffraction effect is greatest.

Figure 14.8 You can see the effects of diffraction by looking
through a narrow slit. What happens when you make the slit
narrower? What happens to the amount of diffraction when
you put different coloured filters in front of the lamp? What
does this tell you about the wavelengths of the different
colours?
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Diffraction of radio and microwaves

Radio waves can have wavelengths of the order of a
kilometre. These waves are easily diffracted by gaps in

the hills and by the tall buildings around our towns and
cities. Microwaves, used by the mobile phone network,
have wavelengths of about 10 cm. These waves are not
easily diffracted (because their wavelengths are much
smaller than the dimensions of the gaps) and mostly travel
through space in straight lines.

Cars need external radio aerials because radio waves
have wavelengths longer than the size of the windows, so
they cannot diffract into the car. If you try listening to a
radio in a train without an external aerial, you will find
that FM signals can be picked up weakly (their wavelength
is about 3 m), but AM signals, with longer wavelengths,
cannot get in at all.

2 A microwave oven (Figure 14.9) uses microwaves
with a wavelength of 12.5cm. The front door of
the oven is made of glass with a metal grid inside;
the gapsin the grid are a few millimetres across.
Explain how this design allows us to see the food
inside the oven, while the microwaves are not
allowed to escape into the kitchen (where they
might cook us).

Figure 14.9 A microwave oven has a metal grid in
the door to keep microwaves in and let light out.

Explaining diffraction

Diffraction is a wave effect that can be explained by the
principle of superposition. We have to think about what
happens when a plane ripple reaches a gap in a barrier
(Figure 14.10). Each point on the surface of the water in the
gap is moving up and down. Each of these moving points
can be thought of as a source of new ripples spreading out
into the space beyond the barrier. Now we have a lot of
new ripples, and we can use the principle of superposition
to find their resultant effect. Without trying to calculate

the effect of an infinite number of ripples, we can say that
in some directions the ripples add together while in other
directions they cancel out.

ripples from A
ripples from B
Ae
Be

ripples from C

\

Ce

Figure 14.10 Ripples from all points across the gap contribute
to the pattern in the space beyond.

Interference

Adding waves of different wavelengths and amplitudes
results in complex waves. We can find some interesting
effects if we consider what happens when two waves of the
same wavelength overlap at a point. Again, we will use the
principle of superposition to explain what we observe.

Interference of sound waves

A simple experiment shows what happens when
two sets of sound waves meet. Two loudspeakers
are connected to a single signal generator (Figure
14.11). They each produce sound waves of the same
wavelength. Walk around in the space in front of
the loudspeakers; you will hear the resultant effect.

signal generator

_\\\\@

Figure 14.11 The sound waves from two loudspeakers
combine to give an interference pattern. This
experiment is best done outside so that reflections of
sounds (or echoes) do not affect the results.



A naive view might be that we would hear a sound
twice as loud as that from a single loudspeaker.
However, this is not what we hear. At some points,
the sound is louder than for a single speaker. At
other points, the sound is much quieter. The space
around the two loudspeakers consists of a series
of loud and quiet regions. We are observing the
phenomenon known as interference.

Interference in a ripple tank

The two dippers in the ripple tank (Figure 14.12)
should be positioned so that they are just touching
the surface of the water. When the bar vibrates, each
dipper acts as a source of circular ripples spreading
outwards. Where these sets of ripples overlap, we
observe an interference pattern. Another way to
observe interference in a ripple tank is to use plane
waves passing through two gaps in a barrier. The
water waves are diffracted at the two gaps and then
interfere beyond the gaps. Figure 14.13 shows the
interference pattern produced by two vibrating
sources in a ripple tank.

Figure 14.12 Aripple tank can be used to show how
two sets of circular ripples combine.

Figure 14.13 Ripples from two point sources produce
an interference pattern.

Chapter 14: Superposition of waves

Explaining interference

Figure 14.14 shows how interference arises. The
loudspeakers in Figure 14.11 (Box 14.2) are emitting
waves that are in phase because both are connected

to the same signal generator. At each point in front

of the loudspeakers, waves are arriving from the two
loudspeakers. At some points, the two waves arrive in
phase (in step) with one another and with equal amplitude
(Figure 14.14a). The principle of superposition predicts
that the resultant wave has twice the amplitude of a single
wave. We hear a louder sound.
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Figure 14.14 Adding waves by the principle of superposition.
Blue and green waves of the same amplitude may give

a constructive or b destructive interference, according to

the phase difference between them. ¢ Waves of different
amplitudes can also interfere constructively.

At other points, something different happens. The
two waves arrive completely out of phase or in antiphase
(phase difference is 180°) with one another (Figure 14.14b).
There is a cancelling out, and the resultant wave has zero
amplitude. At this point, we would expect silence. At other
points again, the waves are neither perfectly out of step nor
perfectly in step, and the resultant wave has amplitude less
than that at the loudest point.

Where two waves arrive at a point in phase with one
another so that they add up, we call this effect constructive
interference. Where they cancel out, the effect is known as
destructive interference. Where two waves have different
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amplitudes but are in phase (Figure 14.14c), constructive
interference results in a wave whose amplitude is the sum
of the two individual amplitudes.

3 Explain why the two loudspeakers must produce
sounds of precisely the same frequency if we are
to hear the effects of interference.

How can we explain the interference pattern observed
in a ripple tank (Box 14.2)? Look at Figure 14.15 and
compare it to Figure 14.13. Figure 14.15 shows two sets of
waves setting out from their sources. At a position such
as A, ripples from the two sources arrive in phase with
one another, and constructive interference occurs. At B,
the two sets of ripples arrive out of phase, and there is
destructive interference. Although waves are arriving at B,
the surface of the water remains approximately flat.

A B

Figure 14.15 The result of interference depends on the path
difference between the two waves.

Whether the waves combine constructively or
destructively at a point depends on the path difference
of the waves from the two sources. The path difference is
defined as the extra distance travelled by one of the waves
compared with the other.

At point A in Figure 14.15, the waves from the red
source have travelled 3 whole wavelengths. The waves

from the yellow source have travelled 4 whole wavelengths.

The path difference between the two sets of waves is
1 wavelength. A path difference of 1 wavelength is
equivalent to a phase difference of zero. This means that
they are in phase, so they interfere constructively.

Now think about destructive interference. At
point B, the waves from the red source have travelled
3 wavelengths; the waves from the yellow source have
travelled 2.5 wavelengths. The path difference between the
two sets of waves is 0.5 wavelengths, which is equivalent

to a phase difference of 180°. The waves interfere
destructively because they are in antiphase. In general, the
conditions for constructive interference and destructive
interference are outlined below. These conditions apply
to all waves (water waves, light, microwaves, radio waves,
sound, etc.) that show interference effects. In the equations
below, n stands for any integer (any whole number,
including zero).
m For constructive interference the path difference is a whole

number of wavelengths:

path difference =0, 1, 21, 31, etc.
or pathdifference=nA

m Fordestructive interference the path difference is an odd
number of half wavelengths:

path difference = 31, 