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Introduction
This book covers the entire syllabus of Cambridge 
International Examinations AS and A Level Physics. It is 
designed to work with the syllabus that will be examined 
from 2016. It is in three parts:

■■ Chapters 1–16 and P1: the AS level content, covered in the 
first year of the course, including a chapter (P1) dedicated to 
the development of your practical skills

■■ Chapters 17–32 and P2: the remaining A level content, 
including a chapter (P2) dedicated to developing your ability 
to plan, analyse and evaluate practical investigations

■■ Appendices of useful formulae, a Glossary and an Index.

The main tasks of a textbook like this are to explain the 
various concepts of physics that you need to understand 
and to provide you with questions that will help you to test 
your understanding and prepare for your examinations. 
You will find a visual guide to the structure of each chapter 
and the features of this book on the next two pages.

When tackling questions, it is a good idea to make 
a first attempt without referring to the explanations in 
this Coursebook or to your notes. This will help to reveal 
any gaps in your understanding. By working out which 
concepts you find most challenging, and by spending more 
time to understand these concepts at an early stage, you 
will progress faster as the course continues.

The CD-ROM that accompanies this Coursebook 
includes answers with workings for all the questions in 
the book, as well as suggestions for revising and preparing 
for any examinations you take. There are also lists of 
recommended further reading, which in many cases will 
take you beyond the requirements of the syllabus, but 
which will help you deepen your knowledge and explain 
more of the background to the physics concepts covered in 
this Coursebook.

In your studies, you will find that certain key concepts 
come up again and again, and that these concepts form 
‘themes’ that link the different areas of physics together. It 
will help you to progress and gain confidence in tackling 
problems if you take note of these themes. For this 
Coursebook, these key concepts include:

■■ Models of physical systems
■■ Testing predictions against evidence
■■ Mathematics as a language and problem-solving tool
■■ Matter, energy and waves
■■ Forces and fields

In this Coursebook, the mathematics has been kept to 
the minimum required by the Cambridge International 
Examinations AS and A Level Physics syllabus. If you 
are also studying mathematics, you may find that more 
advanced techniques such as calculus will help you with 
many aspects of physics.

Studying physics can be a stimulating and worthwhile 
experience. It is an international subject; no single 
country has a monopoly on the development of the ideas. 
It can be a rewarding exercise to discover how men and 
women from many countries have contributed to our 
knowledge and well-being, through their research into 
and application of the concepts of physics. We hope not 
only that this book will help you to succeed in your future 
studies and career, but also that it will stimulate your 
curiosity and fire your imagination. Today’s students 
become the next generation of physicists and engineers, 
and we hope that you will learn from the past to take 
physics to ever-greater heights.

vii
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Each chapter begins with a short list of the 
facts and concepts that are explained in it.

There is a short context at the beginning of each chapter, containing an example of 
how the material covered in the chapter relates to the ‘real world’.

Questions throughout the text 
give you a chance to check that 
you have understood the topic 
you have just read about. You 
can find the answers to these 
questions on the CD-ROM.

Important equations and other 
facts are shown in highlight boxes.

This book does not contain 
detailed instructions for doing 
particular experiments, but you 
will find background information 
about the practical work you 
need to do in these Boxes. There 
are also two chapters, P1 and 
P2, which provide detailed 
information about the practical 
skills you need to develop during 
your course. 

1

Learning outcomes
You should be able to:

 ■ define displacement, speed and velocity
 ■ draw and interpret displacement–time graphs
 ■ describe laboratory methods for determining speed
 ■ use vector addition to add two or more vectors

Chapter 1:
Kinematics – 
describing motion

2

AS Level Physics

Describing movement
Our eyes are good at detecting movement. We notice 
even quite small movements out of the corners of 
our eyes. It’s important for us to be able to judge 
movement – think about crossing the road, cycling or 
driving, or catching a ball.

Figure 1.1 shows a way in which movement can 
be recorded on a photograph. This is a stroboscopic 
photograph of a boy juggling three balls. As he juggles, 
a bright lamp flashes several times a second so that 
the camera records the positions of the balls at equal 
intervals of time.

If we knew the time between flashes, we could 
measure the photograph and calculate the speed of a 
ball as it moves through the air.

If you look at the speedometer in a car, it doesn’t 
tell you the car’s average speed; rather, it tells you its 
speed at the instant when you look at it. This is the car’s 
instantaneous speed.

Speed
We can calculate the average speed of something moving if 
we know the distance it moves and the time it takes:

average speed = distance
time

In symbols, this is written as: 

v = d
t

where v is the average speed and d is the distance travelled 
in time t. The photograph (Figure 1.2) shows Ethiopia’s 
Kenenisa Bekele posing next to the scoreboard after 
breaking the world record in a men’s 10 000  metres race. 
The time on the clock in the photograph enables us to 
work out his average speed.

If the object is moving at a constant speed, this 
equation will give us its speed during the time taken. If its 
speed is changing, then the equation gives us its average 
speed. Average speed is calculated over a period of time.

Figure 1.1 This boy is juggling three balls. A stroboscopic 
lamp flashes at regular intervals; the camera is moved to one 
side at a steady rate to show separate images of the boy.

Figure 1.2 Ethiopia’s Kenenisa Bekele set a new world record 
for the 10 000 metres race in 2005. 

Units
In the Système Internationale d’Unités (the SI system), 
distance is measured in metres (m) and time in seconds (s). 
Therefore, speed is in metres per second. This is written as 
m s−1 (or as m/s). Here, s−1 is the same as 1/s, or ‘per second’.

There are many other units used for speed. The choice of 
unit depends on the situation. You would probably give the 
speed of a snail in different units from the speed of a racing 
car. Table 1.1 includes some alternative units of speed.

Note that in many calculations it is necessary to work 
in SI units (m s−1).

m s−1 metres per second

cm s−1 centimetres per second

km s−1 kilometres per second

km h−1 or km/h kilometres per hour

mph miles per hour

Table 1.1 Units of speed.

1 Look at Figure 1.2. The runner ran 10 000 m, and 
the clock shows the total time taken. Calculate his 
average speed during the race.

QUESTION

180
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Figure 13.3 or a similar graph of displacement against 
time illustrates the following important definitions about 
waves and wave motion:

■■ The distance of a point on the wave from its undisturbed 
position or equilibrium position is called the displacement x. 

■■ The maximum displacement of any point on the wave 
from its undisturbed position is called the amplitude A. 
The amplitude of a wave on the sea is measured in units 
of distance, e.g. metres. The greater the amplitude of the 
wave, the louder the sound or the rougher the sea! 

■■ The distance from any point on a wave to the next exactly 
similar point (e.g. crest to crest) is called the wavelength λ 
(the Greek letter lambda). The wavelength of a wave on the 
sea is measured in units of distance, e.g. metres.

■■ The time taken for one complete oscillation of a point in a 
wave is called the period T. It is the time taken for a point to 
move from one particular position and return to that same 
position, moving in the same direction. It is measured in 
units of time, e.g. seconds..

■■ The number of oscillations per unit time of a point in a 
wave is called its frequency f. For sound waves, the higher 
the frequency of a musical note, the higher is its pitch. 
Frequency is measured in hertz (Hz), where 1 Hz = one 
oscillation per second (1 kHz = 103 Hz and 1 MHz = 106 Hz). 
The frequency f of a wave is the reciprocal of the period T:

f  =  
1
T

Waves are called mechanical waves if they need a 
substance (medium) through which to travel. Sound is one 
example of such a wave. Other cases are waves on strings, 
seismic waves and water waves (Figure 13.4).

Some properties of typical waves are given on page 183 
in Table 13.1.

Figure 13.4 The impact of a droplet on the surface of a liquid 
creates a vibration, which in turn gives rise to waves on the 
surface.

1 Determine the wavelength and amplitude of each 
of the two waves shown in Figure 13.5.
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Figure 13.5 Two waves – for Question 1.

BOX 13.1: Measuring frequency

You can measure the frequency of sound waves 
using a cathode-ray oscilloscope (c.r.o.). Figure 13.6 
shows how.

A microphone is connected to the input of the 
c.r.o. Sound waves are captured by the microphone 
and converted into a varying voltage which has the 
same frequency as the sound waves. This voltage is 
displayed on the c.r.o. screen.

It is best to think of a c.r.o. as a voltmeter which 
is capable of displaying a rapidly varying voltage. To 
do this, its spot moves across the screen at a steady 
speed, set by the time-base control. At the same 
time, the spot moves up and down according to the 
voltage of the input.

Hence the display on the screen is a graph of the 
varying voltage, with time on the (horizontal) x-axis. 
If we know the horizontal scale, we can determine 
the period and hence the frequency of the sound 
wave. Worked example 1 shows how to do this. (In 
Chapter 15 we will look at one method of measuring 
the wavelength of sound waves.)

Figure 13.6 Measuring the frequency of sound waves 
from a tuning fork.

QUESTION
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g.p.e.–k.e. transformations
A motor drags the roller-coaster car to the top of the first 
hill. The car runs down the other side, picking up speed 
as it goes (see Figure 5.12). It is moving just fast enough 
to reach the top of the second hill, slightly lower than the 
first. It accelerates downhill again. Everybody screams!

The motor provides a force to pull the roller-coaster 
car to the top of the hill. It transfers energy to the car. But 
where is this energy when the car is waiting at the top of 
the hill? The car now has gravitational potential energy; 
as soon as it is given a small push to set it moving, it 
accelerates. It gains kinetic energy and at the same time it 
loses g.p.e.

Kinetic energy
As well as lifting an object, a force can make it accelerate. 
Again, work is done by the force and energy is transferred 
to the object. In this case, we say that it has gained kinetic 
energy, Ek. The faster an object is moving, the greater its 
kinetic energy (k.e.).

For an object of mass m travelling at a speed v, we have:
 kinetic energy =   1

2 × mass × speed2

 Ek =  12  mv2

Deriving the formula for kinetic energy
The equation for k.e., Ek = 12mv2, is related to one of the 
equations of motion. We imagine a car being accelerated 
from rest (u = 0) to velocity v. To give it acceleration a, it 
is pushed by a force F for a distance s. Since u = 0, we can 
write the equation v2 = u2 + 2as as:

v2 = 2as
Multiplying both sides by 12m gives:

1
2 mv2 = mas

Now, ma is the force F accelerating the car, and mas is the 
force × the distance it moves, that is, the work done by the 
force. So we have:

1
2mv 2 = work done by force F

This is the energy transferred to the car, and hence its 
kinetic energy.

3 Calculate the increase in kinetic energy of a car of 
mass 800 kg when it accelerates from 20 m s−1 to 
30 m s−1.

 Step 1 Calculate the initial k.e. of the car:
Ek =  1

2 mv2  =  12 × 800 × (20)2 = 160 000 J
 =  160 kJ

 Step 2 Calculate the final k.e. of the car:
Ek =  1

2 mv2  =  12 × 800 × (30)2 = 360 000 J
 =  360 kJ

 Step 3 Calculate the change in the car’s k.e.:
change in k.e. = 360 − 160 = 200 kJ

 Hint: Take care! You can’t calculate the change in k.e. 
by squaring the change in speed. In this example, the 
change in speed is 10 m s−1, and this would give an 
incorrect value for the change in k.e.

7 Calculate how much gravitational potential 
energy is gained if you climb a flight of stairs. 
Assume that you have a mass of 52 kg and that the 
height you lift yourself is 2.5 m.

8 A climber of mass 100 kg (including the equipment 
she is carrying) ascends from sea level to the top 
of a mountain 5500 m high. Calculate the change 
in her gravitational potential energy.

9 a  A toy car works by means of a stretched rubber 
band. What form of potential energy does the 
car store when the band is stretched?

b A bar magnet is lying with its north pole next 
to the south pole of another bar magnet. A 
student pulls them apart. Why do we say that 
the magnets’ potential energy has increased? 
Where has this energy come from?

 10 Which has more k.e., a car of mass 500 kg 
travelling at 15 m s−1 or a motorcycle of mass 
250 kg travelling at 30 m s−1?

 11 Calculate the change in kinetic energy of a ball of 
mass 200 g when it bounces. Assume that it hits 
the ground with a speed of 15.8 m s−1 and leaves 
it at 12.2 m s−1.

QUESTIONS

QUESTIONS

WORKED EXAMPLE

How to use this book

The text and illustrations describe and explain all of the facts and concepts 
that you need to know. The chapters, and oft en the content within them as 
well, are arranged in a similar sequence to your syllabus, but with AS and 
A Level content clearly separated into the two halves of the book.



ix

How to use this book

Wherever you need to know how to use a formula to carry out a calculation, 
there are worked example boxes to show you how to do this.

Key words are highlighted in the text 
when they are first introduced. 

You will also find definitions of 
these words in the Glossary.

There is a summary of 
key points at the end 
of each chapter. You 
might find this helpful 
when you are revising.

Questions at the end of each chapter begin with shorter answer questions, then move on to  more 
demanding exam-style questions, some of which may require use of knowledge from previous 
chapters. Answers to these questions can be found on the CD–ROM.
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Summary
 ■ Forces are vector quantities that can be added by 

means of a vector triangle. Their resultant can be 
determined using trigonometry or by scale drawing.

 ■ Vectors such as forces can be resolved into 
components. Components at right angles to one 
another can be treated independently of one another. 
For a force F at an angle θ to the x-direction, the 
components are:
x-direction: F cos θ
y-direction: F sin θ

 ■ The moment of a force = force × perpendicular 
distance of the pivot from the line of action of 
the force.

 ■ The principle of moments states that, for any object 
that is in equilibrium, the sum of the clockwise 
moments about any point provided by the 
forces acting on the object equals the sum of the 
anticlockwise moments about that same point.

 ■ A couple is a pair of equal, parallel but opposite forces 
whose e� ect is to produce a turning e� ect on a body 
without giving it linear acceleration.

torque of a couple = one of the forces × perpendicular 
distance between the forces

 ■ For an object to be in equilibrium, the resultant force 
acting on the object must be zero and the resultant 
moment must be zero.

End-of-chapter questions
1 A ship is pulled at a constant speed by two small boats, A and B, as shown in Figure 4.27. The engine of the 

ship does not produce any force.

Figure 4.27 For End-of-chapter Question 1. 

 The tension in each cable between A and B and the ship is 4000 N.
a Draw a free-body diagram showing the three horizontal forces acting on the ship. [2]
b Draw a vector diagram to scale showing these three forces and use your diagram to find the value 

of the drag force on the ship. [2]
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A group of colliding objects always has as much 
momentum after the collision as it had before the collision. 
This principle is illustrated in Worked example 1.

In the earlier examples, we described how the ‘motion’ 
of one trolley appeared to be transferred to a second 
trolley, or shared with it. It is more correct to say that it 
is the trolley’s momentum that is transferred or shared. 
(Strictly speaking, we should refer to linear momentum, 
because there is another quantity called angular 
momentum which is possessed by spinning objects.)

As with energy, we find that momentum is also 
conserved. We have to consider objects which form a 
closed system – that is, no external force acts on them. The 
principle of conservation of momentum states that:

Within a closed system, the total momentum in any 
direction is constant.

The principle of conservation of momentum can also be 
expressed as follows:

For a closed system, in any direction:
total momentum of objects before collision 
 = total momentum of objects after collision

A

before a�er

B A B

2.0 m s–1 2.0 m s–1 1.0 m s–13.0 m s–1

1 In Figure 6.5, trolley A of mass 0.80 kg travelling at a 
velocity of 3.0 m s−1 collides head-on with a stationary 
trolley B. Trolley B has twice the mass of trolley A. The 
trolleys stick together and have a common velocity of 
1.0 m s−1 after the collision. Show that momentum is 
conserved in this collision.

 Step 1 Make a sketch using the information given in the 
question. Notice that we need two diagrams to show 
the situations, one before and one after the collision. 
Similarly, we need two calculations – one for the 
momentum of the trolleys before the collision and one 
for their momentum after the collision.

 Step 2 Calculate the momentum before the collision:
momentum of trolleys before collision
 = mA × uA + mB × uB

 = (0.80 × 3.0) + 0
 = 2.4 kg m s−1

 Trolley B has no momentum before the collision, 
because it is not moving.

 Step 3 Calculate the momentum after the collision:
momentum of trolleys after collision
 = (mA + mB) × vA+B

 = (0.80 + 1.60) × 1.0
 = 2.4 kg m s−1

 So, both before and after the collision, the trolleys have 
a combined momentum of 2.4 kg m s−1. Momentum has 
been conserved.

uA = 3.0 m s–1 uB = 0 vA+B = 1.0 m s–1

0.80 kg 0.80 kg
0.80kg

positive
direction

before a�er

A B A B
0.80 kg 0.80 kg

0.80kg

Figure 6.5 The state of trolleys A and B, before and after 
the collision.

2 Calculate the momentum of each of the following 
objects:
a a 0.50 kg stone travelling at a velocity of 20 m s−1

b a 25 000 kg bus travelling at 20 m s−1 on a road
c an electron travelling at 2.0 × 107 m s−1.
 (The mass of the electron is 9.1 × 10−31 kg.)

3 Two balls, each of mass 0.50 kg, collide as shown in 
Figure 6.6. Show that their total momentum before 
the collision is equal to their total momentum after 
the collision.

Figure 6.6 For Question 3.
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Chapter 15: Stationary waves

End-of-chapter questions
1 Figure 15.19 shows a stationary wave on a string.

Figure 15.19 For End-of-chapter Question 1.

a On a copy of Figure 15.19, label one node (N) and one antinode (A). [1]
b Mark on your diagram the wavelength of the standing wave and label it λ. [1]
c The frequency of the vibrator is doubled. Describe the changes in the standing wave pattern. [1]

2 A tuning fork which produces a note of 256 Hz is placed above a tube which is nearly filled with water. 
The water level is lowered until resonance is first heard.
a Explain what is meant by the term resonance. [1]
b The length of the column of air above the water when resonance is first heard is 31.2 cm.
 Calculate the speed of the sound wave. [2]

3 a  State two similarities and two di� erences between progressive waves and stationary waves. [4]
b Figure 15.20 shows an experiment to measure the speed of a sound in a string. The frequency of the 

vibrator is adjusted until the standing wave shown in Figure 15.20 is formed.

Figure 15.20 For End-of-chapter Question 3.

i On a copy of the diagram, mark a node (label it N) and an antinode (label it A). [2]
ii The frequency of the vibrator is 120 Hz. Calculate the speed at which a progressive wave would 

travel along the string. [3]
c The experiment is now repeated with the load on the string halved. In order to get a similar standing 

wave the frequency has to be decreased to 30 Hz. Explain, in terms of the speed of the wave in the 
string, why the frequency must be adjusted. [2]

vibrator

vibrator pulley

slotted masses

75 cm
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Other SI units
Using only seven base units means that only this number 
of quantities have to be defined with great precision. There 
would be confusion and possible contradiction if more 
units were also defined. For example, if the density of water 
were defined as exactly 1 g cm−3, then 1000 cm3 of a sample 
of water would have a mass of exactly 1 kg. However, it is 
unlikely that the mass of this volume of water would equal 
exactly the mass of the standard kilogram. The standard 
kilogram, which is kept in France, is the one standard from 
which all masses can ultimately be measured.

All other units can be derived from the base units. This 
is done using the definition of the quantity. For example, 
speed is defined as  distance

time  
, and so the base units of 

speed in the SI system are m s−1.
Since the defining equation for force is F  = ma, the base 

units for force are kg m s−2.
Equations that relate different quantities must have the 

same base units on each side of the equation. If this does 
not happen the equation must be wrong.

When each term in an equation has the same base units 
the equation is said to be homogeneous.

Base units, derived units
The metre, kilogram and second are three of the seven SI 
base units. These are defined with great precision so that 
every standards laboratory can reproduce them correctly.

Other units, such as units of speed (m s−1) and 
acceleration (m s−2) are known as derived units because 
they are combinations of base units. Some derived units, 
such as the newton and the joule, have special names 
which are more convenient to use than giving them in 
terms of base units. The definition of the newton will show 
you how this works.

Defining the newton
Isaac Newton (1642–1727) played a significant part 
in developing the scientific idea of force. Building on 
Galileo’s earlier thinking, he explained the relationship 
between force, mass and acceleration, which we now write 
as F = ma. For this reason, the SI unit of force is named 
after him.

We can use the equation F = ma to define the newton (N).

One newton is the force that will give a 1 kg mass an 
acceleration of 1 m s−2 in the direction of the force.
1 N = 1 kg × 1 m s−2 or 1 N = 1 kg m s−2

The seven base units
In mechanics (the study of forces and motion), the units 
we use are based on three base units: the metre, kilogram 
and second. As we move into studying electricity, we will 
need to add another base unit, the ampere. Heat requires 
another base unit, the kelvin (the unit of temperature).

Table 3.2 shows the seven base units of the SI system. 
Remember that all other units can be derived from these 
seven. The equations that relate them are the equations 
that you will learn as you go along (just as F = ma relates 
the newton to the kilogram, metre and second). The unit 
of luminous intensity is not part of the A/AS course.

Base unit Symbol Base unit
length x, l, s etc. m (metre)

mass m kg (kilogram)

time t s (second)

electric current I A (ampere)

thermodynamic temperature T K (kelvin)

amount of substance n mol (mole)

luminous intensity I cd (candela)

Table 3.2 SI base quantities and units. In this course, you will 
learn about all of these except the candela.

4 The pull of the Earth’s gravity on an apple (its 
weight) is about 1 newton. We could devise a new 
international system of units by defining our unit 
of force as the weight of an apple. State as many 
reasons as you can why this would not be a very 
useful definition.

5 Determine the base units of:

a pressure (  = 
force
area  )

b energy ( = force × distance )

c density ( = 
mass

volume )

6 Use base units to prove that the following 
equations are homogeneous.
a pressure  

 = density × acceleration due to gravity × depth
b distance travelled  

 = initial speed × time +   12 acceleration × time2  
 (s = ut + 1

2  at2)

QUESTIONS
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absolute scale of temperature; see thermodynamic scale.
absolute zero The temperature at which a system has 
minimum internal energy; equivalent to −273.15 °C.
absorption line spectrum A dark line of a unique 
wavelength seen in a continuous spectrum.
acceleration The rate of change of an object’s velocity:

a = Δv
Δt

Unit: m s−2.

accuracy An accurate value of a measured quantity is one 
which is close to the true value of the quantity.
acoustic impedance Acoustic impedance Z is the product 
of the density ρ of a substance and the speed c of sound in 
that substance (Z = ρc). Unit: kg m−2 s−1.
activity The rate of decay or disintegration of nuclei in a 
radioactive sample.
ampere The SI unit of electric current (abbreviated A).
amplitude The maximum displacement of a particle from 
its equilibrium position.
amplitude modulation A form of modulation in which 
the signal causes variations in the amplitude of a carrier 
wave.
analogue signal A signal that is continuously variable, 
having a continuum of possible values.
analogue-to-digital conversion (ADC) Conversion of a 
continuous analogue signal to discrete digital numbers.
angular displacement The angle through which an object 
moves in a circle.
angular frequency The frequency of a sinusoidal 
oscillation expressed in radians per second:

angular frequency ω = 2π
T

angular velocity The rate of change of the angular 
position of an object as it moves along a curved path.
antinode A point on a stationary wave with maximum 
amplitude.
atomic mass unit A unit of mass (symbol u) 
approximately equal to 1.661 × 10−27 kg. The mass of an 
atom of 12

6 C = 12.000 u exactly.
attenuation The gradual loss in strength or intensity of a 
signal.
average speed The total distance travelled by an object 
divided by the total time taken.

Avogadro constant The number of particles in one 
mole of any substance approximately (6.02 × 1023 mol−1), 
denoted NA.
band theory The idea that electrons in a solid or liquid 
can have energies within certain ranges or bands, between 
which are forbidden values.
bandwidth (communications) A measure of the width of 
a range of frequencies being transmitted.
base units Defined units of the SI system from which all 
other units are derived.
best fit line A straight line drawn as closely as possible to 
the points of a graph so that similar numbers of points lie 
above and below the line.
binding energy The minimum external energy required 
to separate all the neutrons and protons of a nucleus.
bit A basic unit of information storage, the amount of 
information stored by a device that exists in only two 
distinct states, usually given as the binary digits 0 and 1.
Boltzmann constant A fundamental constant given by 
k = R

NA
, where R is the ideal gas constant and NA is the 

Avogadro constant.
Boyle’s law The pressure exerted by a fixed mass of gas 
is inversely proportional to its volume, provided the 
temperature of the gas remains constant.
braking radiation X-rays produced when electrons are 
decelerated (also called Bremsstrahlung radiation).
capacitance The ratio of charge stored by a capacitor to 
the potential difference across it.
carrier wave A waveform (usually sinusoidal) which is 
modulated by an input signal to carry information.
centre of gravity The point where the entire weight of an 
object appears to act.
centripetal force The resultant force acting on an object 
moving in a circle; it is always directed towards the centre 
of the circle.
characteristic radiation Very intense X-rays produced in 
an X-ray tube, having specific wavelengths that depend on 
the target metal.
charge carrier Any charged particle, such as an electron, 
responsible for a current.
Charles’s law The volume occupied by a gas at constant 
pressure is directly proportional to its thermodynamic 
(absolute) temperature.

Glossary
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Learning outcomes
You should be able to:

■■ define displacement, speed and velocity
■■ draw and interpret displacement–time graphs
■■ describe laboratory methods for determining speed
■■ use vector addition to add two or more vectors

Chapter 1:
Kinematics – 
describing motion
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Describing movement
Our eyes are good at detecting movement. We notice 
even quite small movements out of the corners of 
our eyes. It’s important for us to be able to judge 
movement – think about crossing the road, cycling or 
driving, or catching a ball.

Figure 1.1 shows a way in which movement can 
be recorded on a photograph. This is a stroboscopic 
photograph of a boy juggling three balls. As he juggles, 
a bright lamp flashes several times a second so that 
the camera records the positions of the balls at equal 
intervals of time.

If we knew the time between flashes, we could 
measure the photograph and calculate the speed of a 
ball as it moves through the air.

If you look at the speedometer in a car, it doesn’t 
tell you the car’s average speed; rather, it tells you its 
speed at the instant when you look at it. This is the car’s 
instantaneous speed.

Speed
We can calculate the average speed of something moving if 
we know the distance it moves and the time it takes:

average speed = distance
time

In symbols, this is written as: 

v = d
t

where v is the average speed and d is the distance travelled 
in time t. The photograph (Figure 1.2) shows Ethiopia’s 
Kenenisa Bekele posing next to the scoreboard after 
breaking the world record in a men’s 10 000  metres race. 
The time on the clock in the photograph enables us to 
work out his average speed.

If the object is moving at a constant speed, this 
equation will give us its speed during the time taken. If its 
speed is changing, then the equation gives us its average 
speed. Average speed is calculated over a period of time.

Figure 1.1  This boy is juggling three balls. A stroboscopic 
lamp flashes at regular intervals; the camera is moved to one 
side at a steady rate to show separate images of the boy.

Figure 1.2  Ethiopia’s Kenenisa Bekele set a new world record 
for the 10 000 metres race in 2005. 

Units
In the Système Internationale d’Unités (the SI system), 
distance is measured in metres (m) and time in seconds (s). 
Therefore, speed is in metres per second. This is written as 
m s−1 (or as m/s). Here, s−1 is the same as 1/s, or ‘per second’.

There are many other units used for speed. The choice of 
unit depends on the situation. You would probably give the 
speed of a snail in different units from the speed of a racing 
car. Table 1.1 includes some alternative units of speed.

Note that in many calculations it is necessary to work 
in SI units (m s−1).

m s−1 metres per second

cm s−1 centimetres per second

km s−1 kilometres per second

km h−1 or km/h kilometres per hour

mph miles per hour

Table 1.1  Units of speed.

1	 Look at Figure 1.2. The runner ran 10 000 m, and 
the clock shows the total time taken. Calculate his 
average speed during the race.

QUESTION
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2	 Here are some units of speed:
	 m s−1  mm s−1  km s−1  km h−1

�	 Which of these units would be appropriate when 
stating the speed of each of the following?
a	 a tortoise
b	 a car on a long journey
c	 light
d	 a sprinter.

3	 A snail crawls 12 cm in one minute. What is its 
average speed in mm s−1?

Determining speed
You can find the speed of something moving by measuring 
the time it takes to travel between two fixed points. For 
example, some motorways have emergency telephones 
every 2000 m. Using a stopwatch you can time a car over 
this distance. Note that this can only tell you the car’s 
average speed between the two points. You cannot tell 
whether it was increasing its speed, slowing down, or 
moving at a constant speed.

BOX 1.1: Laboratory measurements of speed

Here we describe four different ways to measure the 
speed of a trolley in the laboratory as it travels along a 
straight line. Each can be adapted to measure the speed 
of other moving objects, such as a glider on an air track, 
or a falling mass.

Measuring speed using two light gates
The leading edge of the card in Figure 1.3 breaks the light 
beam as it passes the first light gate. This starts the timer. 
The timer stops when the front of the card breaks the 
second beam. The trolley’s speed is calculated from the 
time interval and the distance between the light gates.

 Measuring speed using a ticker-timer
The ticker-timer (Figure 1.5) marks dots on the tape at 
regular intervals, usually s (i.e. 0.02 s). (This is because 
it works with alternating current, and in most countries 
the frequency of the alternating mains is 50 Hz.) 
The pattern of dots acts as a record of the trolley’s 
movement.

Measuring speed using one light gate
The timer in Figure 1.4 starts when the leading edge 
of the card breaks the light beam. It stops when the 
trailing edge passes through. In this case, the time 
shown is the time taken for the trolley to travel a 
distance equal to the length of the card. The computer 
software can calculate the speed directly by dividing 
the distance by the time taken.

Figure 1.3  Using two light gates to find the average speed 
of a trolley. 

stop

timer

light
gates

start

Figure 1.4  Using a single light gate to find the average 
speed of a trolley.

stop
start

light
gatetimer

Figure 1.5  Using a ticker-timer to investigate the motion 
of a trolley.

ticker-timer

power supply

0 1 2 3 4 5

starttrolley

QUESTIONS
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Distance and displacement, 
scalar and vector
In physics, we are oft en concerned with the distance 
moved by an object in a particular direction. Th is is called 
its displacement. Figure 1.8 illustrates the diff erence 
between distance and displacement. It shows the route 
followed by walkers as they went from town A to town C. 
Th eir winding route took them through town B, so that 
they covered a total distance of 15 km. However, their 
displacement was much less than this. Th eir fi nishing 
position was just 10 km from where they started. To give a 
complete statement of their displacement, we need to give 
both distance and direction:

displacement = 10 km 30° E of N
Displacement is an example of a vector quantity. A 
vector quantity has both magnitude (size) and direction. 
Distance, on the other hand, is a scalar quantity. Scalar 
quantities have magnitude only.

4 A trolley with a 5.0 cm long card passed through 
a single light gate. The time recorded by a digital 
timer was 0.40 s. What was the average speed of 
the trolley in m s−1?

5 Figure 1.7 shows two ticker-tapes. Describe the 
motion of the trolleys which produced them.

6 Four methods for determining the speed of a 
moving trolley have been described. Each could 
be adapted to investigate the motion of a falling 
mass. Choose two methods which you think 
would be suitable, and write a paragraph for each 
to say how you would adapt it for this purpose.

start

a

b

Figure 1.7 Two ticker-tapes; for Question 5. 

BOX 1.1: Laboratory measurements of speed (continued)

Start by inspecting the tape. This will give you a 
description of the trolley’s movement. Identify the start 
of the tape. Then look at the spacing of the dots:

■■ even spacing – constant speed
■■ increasing spacing – increasing speed.

Now you can make some measurements. Measure the 
distance of every fift h dot from the start of the tape. 
This will give you the trolley’s distance at intervals 
of 0.1 s. Put the measurements in a table and draw a 
distance–time graph.

Measuring speed using a motion sensor
The motion sensor (Figure 1.6) transmits regular pulses 
of ultrasound at the trolley. It detects the reflected 
waves and determines the time they took for the trip 
to the trolley and back. From this, the computer can 
deduce the distance to the trolley from the motion 
sensor. It can generate a distance–time graph. You can 
determine the speed of the trolley from this graph.

Choosing the best method
Each of these methods for finding the speed of a trolley 
has its merits. In choosing a method, you might think 
about the following points:

■■ Does the method give an average value of speed 
or can it be used to give the speed of the trolley at 
diff erent points along its journey?

■■ How precisely does the method measure time – to the 
nearest millisecond?

■■ How simple and convenient is the method to set up in 
the laboratory?

motion
sensor

trolley

computer

Figure 1.6 Using a motion sensor to investigate the motion 
of a trolley.

QUESTIONS
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7	 Which of these gives speed, velocity, distance or 
displacement? (Look back at the definitions of 
these quantities.)
a	 The ship sailed south-west for 200 miles.
b	 I averaged 7 mph during the marathon.
c	 The snail crawled at 2 mm s−1 along the straight 

edge of a bench.
d	 The sales representative’s round trip was 

420 km.

CB

A

7 km

8 km

10 km N

S

W E

Figure 1.8  If you go on a long walk, the distance you travel 
will be greater than your displacement. In this example, the 
walkers travel a distance of 15 km, but their displacement is 
only 10 km, because this is the distance from the start to the 
finish of their walk. 

Speed and velocity calculations
We can write the equation for velocity in symbols:

v = s
t

v = Δs
Δt

The word equation for velocity is:

velocity = change in displacement
time taken

Note that we are using Δs to mean ‘change in displace-
ment s’. The symbol Δ, Greek letter delta, means ‘change 
in’. It does not represent a quantity (in the way that s does); 
it is simply a convenient way of representing a change in a 
quantity. Another way to write Δs would be s2 − s1, but this 
is more time-consuming and less clear.

The equation for velocity, v = Δs
Δt 

, can be rearranged 
as follows, depending on which quantity we want to 
determine:

change in displacement Δs = v × Δt

change in time Δt = Δs
v

Note that each of these equations is balanced in 
terms of units. For example, consider the equation 
for displacement. The units on the right-hand side are 
m s−1 × s, which simplifies to m, the correct unit for 
displacement.

Note also that we can, of course, use the same 
equations to find speed and distance, that is:

v = d
t

distance d = v × t

time t = d
v

Speed and velocity
It is often important to know both the speed of an 
object and the direction in which it is moving. Speed 
and direction are combined in another quantity, called 
velocity. The velocity of an object can be thought of as 
its speed in a particular direction. So, like displacement, 
velocity is a vector quantity. Speed is the corresponding 
scalar quantity, because it does not have a direction. So, 
to give the velocity of something, we have to state the 
direction in which it is moving. For example, an aircraft 
flies with a velocity of 300 m s−1 due north. Since velocity is 
a vector quantity, it is defined in terms of displacement:

velocity =  change in displacement
time taken

Alternatively, we can say that velocity is the rate of change 
of an object’s displacement. From now on, you need to be 
clear about the distinction between velocity and speed, 
and between displacement and distance. Table 1.2 shows 
the standard symbols and units for these quantities.

Quantity Symbol for 
quantity Symbol for unit

distance d m

displacement s, x m

time t s

speed, velocity v m s−1

Table 1.2  Standard symbols and units. (Take care not to 
confuse italic s for displacement with s for seconds. Notice 
also that v is used for both speed and velocity.)

QUESTION
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Making the most of units
In Worked example 1 and Worked example 2, units have 
been omitted in intermediate steps in the calculations. 
However, at times it can be helpful to include units as this 
can be a way of checking that you have used the correct 
equation; for example, that you have not divided one 
quantity by another when you should have multiplied 
them. The units of an equation must be balanced, just as the 
numerical values on each side of the equation must be equal.

If you take care with units, you should be able to carry 
out calculations in non-SI units, such as kilometres per 
hour, without having to convert to metres and seconds.

For example, how far does a spacecraft travelling at 
40 000 km h−1 travel in one day? Since there are 24 hours in 
one day, we have:

distance travelled = 40 000 km h−1 × 24 h

	 = 960 000 km

1	 A car is travelling at 15 m s−1. How far will it travel in  
1 hour?

	 Step 1  It is helpful to start by writing down what you 
know and what you want to know:
v  = 15 m s−1

t  = 1 h = 3600 s
d  = ?

	 Step 2  Choose the appropriate version of the 
equation and substitute in the values. Remember  
to include the units:
	d  = v × t
	 = 15 × 3600
	 = 5.4 × 104 m
	 = 54 km
The car will travel 54 km in 1 hour.

2	 The Earth orbits the Sun at a distance of 
150 000 000 km. How long does it take light from  
the Sun to reach the Earth?  
(Speed of light in space = 3.0 × 108 m s−1.)

	 Step 1  Start by writing what you know. Take care 
with units; it is best to work in m and s. You need to 
be able to express numbers in scientific notation 
(using powers of 10) and to work with these on your 
calculator.
	v  = 3.0 × 108 m s−1

	d  = 150 000 000 km
	 = 150 000 000 000 m
	 = 1.5 × 1011 m

	 Step 2  Substitute the values in the equation for 
time:

t  =  
d
v

  =  
1.5 × 1011 

3.0 × 108   = 500 s

	 Light takes 500 s (about 8.3 minutes) to travel from 
the Sun to the Earth.

	 Hint: When using a calculator, to calculate the time t, 
you press the buttons in the following sequence:

	 [1.5] [EXP] [11] [÷] [3] [EXP] [8]

	 or

	 [1.5] [×10n] [11] [÷] [3] [×10n] [8]

8	 A submarine uses sonar to measure the depth of 
water below it. Reflected sound waves are detected 
0.40 s after they are transmitted. How deep is the 
water? (Speed of sound in water = 1500 m s−1.)

9	 The Earth takes one year to orbit the Sun at a 
distance of 1.5 × 1011 m. Calculate its speed. Explain 
why this is its average speed and not its velocity.

Displacement–time graphs
We can represent the changing position of a moving object 
by drawing a displacement–time graph. The gradient 
(slope) of the graph is equal to its velocity (Figure 1.9). 
The steeper the slope, the greater the velocity. A graph 
like this can also tell us if an object is moving forwards or 
backwards. If the gradient is negative, the object’s velocity 
is negative – it is moving backwards.

Deducing velocity from a displacement–
time graph
A toy car moves along a straight track. Its displacement at 
different times is shown in Table 1.3. This data can be used 
to draw a displacement–time graph from which we can 
deduce the car’s velocity.

Displacement / m 1.0 3.0 5.0 7.0 7.0 7.0

Time / s 0.0 1.0 2.0 3.0 4.0 5.0

Table 1.3  Displacement (s) and time (t) data for a toy car. 

WORKED EXAMPLES

QUESTIONS
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It is useful to look at the data first, to see the pattern 
of the car’s movement. In this case, the displacement 
increases steadily at first, but after 3.0 s it becomes 
constant. In other words, initially the car is moving at a 
steady velocity, but then it stops.

Now we can plot the displacement–time graph  
(Figure 1.11).

We want to work out the velocity of the car over the 
first 3.0 seconds. We can do this by working out the 
gradient of the graph, because:

velocity = gradient of displacement−time graph

s

t
0

0

s

t

low v

high v

0
0

s

t
0

0

s

t
0

0 T

s

t
0

0

The straight line shows that the
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Figure 1.9  The slope of a displacement–time (s–t) graph tells 
us how fast an object is moving.

s / m 

     t / s

8

6

4

2

0
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∆s

gradient = velocity

∆t

Figure 1.11  Displacement–time graph for a toy car; data as 
shown in Table 1.3.

We draw a right-angled triangle as shown. To find the 
car’s velocity, we divide the change in displacement by the 
change in time. These are given by the two sides of the 
triangle labelled Δs and Δt.

	velocity v = change in displacement
time taken

	 v = Δs
Δt

	 v = (7.0 − 1.0)
(3.0 − 0)

 = 6.0
3.0

 = 2.0 ms−1

If you are used to finding the gradient of a graph, you may 
be able to reduce the number of steps in this calculation.
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Combining displacements
The walkers shown in Figure 1.12 are crossing difficult 
ground. They navigate from one prominent point to the 
next, travelling in a series of straight lines. From the map, 
they can work out the distance that they travel and their 
displacement from their starting point:

distance travelled = 25 km
(Lay thread along route on map; measure thread against 
map scale.)

displacement = 15 km north-east
(Join starting and finishing points with straight line; 
measure line against scale.)

A map is a scale drawing. You can find your displacement 
by measuring the map. But how can you calculate your 
displacement? You need to use ideas from geometry and 
trigonometry. Worked examples 3 and 4 show how.

Displacement / m 0 85 170 255 340

Time / s 0 1.0 2.0 3.0 4.0

Table 1.4  Displacement (s) and time (t) data for 
Question 12.

	13	 An old car travels due south. The distance it 
travels at hourly intervals is shown in Table 1.5.
a	 Draw a distance–time graph to represent the 

car’s journey.
b	 From the graph, deduce the car’s speed in 

km h−1 during the first three hours of the 
journey.

c	 What is the car’s average speed in km h−1 
during the whole journey?

Time / h Distance / km
0 0

1 23

2 46

3 69

4 84

Table 1.5  Data for Question 13.

START

FINISH

1 2 3 4 5 km

river
ridge bridge

valley

cairn

Figure 1.12  In rough terrain, walkers head straight for a 
prominent landmark. 

	10	 The displacement–time sketch graph in Figure 
1.10 represents the journey of a bus. What does 
the graph tell you about the journey?

	11	 Sketch a displacement–time graph to show your 
motion for the following event. You are walking at 
a constant speed across a field after jumping off a 
gate. Suddenly you see a bull and stop. Your friend 
says there’s no danger, so you walk on at a reduced 
constant speed. The bull bellows, and you run back 
to the gate. Explain how each section of the walk 
relates to a section of your graph.

	12	 Table 1.4 shows the displacement of a racing car at 
different times as it travels along a straight track 
during a speed trial.
a	 Determine the car’s velocity.
b	 Draw a displacement–time graph and use it to 

find the car’s velocity.

s

t
0

0
Figure 1.10  For Question 10.

QUESTIONS
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3	 A spider runs along two sides of a table (Figure 1.13). 
Calculate its final displacement.

	 Here, the two displacements are not at 90° to one 
another, so we can’t use Pythagoras’s theorem. We 
can solve this problem by making a scale drawing, and 
measuring the final displacement. (However, you could 
solve the same problem using trigonometry.)

	 Step 1  Choose a suitable scale. Your diagram should 
be reasonably large; in this case, a scale of 1 cm to 
represent 5 km is reasonable.

	 Step 2  Draw a line to represent the first vector. North is 
at the top of the page. The line is 6 cm long, towards the 
east (right).

	 Step 3  Draw a line to represent the second vector, 
starting at the end of the first vector. The line is 10 cm 
long, and at an angle of 45° (Figure 1.15).

	 Step 4  To find the final displacement, join the start to 
the finish. You have created a vector triangle. Measure 
this displacement vector, and use the scale to convert 
back to kilometres:
length of vector = 14.8 cm
final displacement = 14.8 × 5 = 74 km

	 Step 5  Measure the angle of the final displacement 
vector:
angle = 28° N of E

	 Therefore the aircraft’s final displacement is 74 km at  
28° north of east.

	 Step 1  Because the two sections of the spider’s run 
(OA and AB) are at right angles, we can add the two 
displacements using Pythagoras’s theorem:
	OB2 = OA2 + AB2

	 = 0.82 + 1.22 =  2.08

	 OB =     2.08   = 1.44 m ≈ 1.4 m

	 Step 2  Displacement is a vector. We have found the 
magnitude of this vector, but now we have to find its 
direction. The angle θ is given by:

	tan θ  =  
opp 
adj   =  

0.8
1.2

	 =  0.667
	 θ  =  tan−1 (0.667)
	 =  33.7° ≈ 34°

	 So the spider’s displacement is 1.4 m at an angle of 34° 
north of east.

4	 An aircraft flies 30 km due east and then 50 km north-
east (Figure 1.14). Calculate the final displacement of 
the aircraft.

north

east

A B

O

1.2 m

0.8 m

θ

θ

Figure 1.13  The spider runs a distance of 2.0 m, but 
what is its displacement?

Figure 1.15  Scale drawing for Worked example 4. 
Using graph paper can help you to show the vectors 
in the correct directions. 

Figure 1.14  What is the aircraft’s final displacement?

N

E

45°

final displacement

30 km

45°

50 km
1 cm

1 cm

WORKED EXAMPLES
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This process of adding two displacements together 
(or two or more of any type of vector) is known as vector 
addition. When two or more vectors are added together, 
their combined effect is known as the resultant of the 
vectors.

Combining velocities
Velocity is a vector quantity and so two velocities can be 
combined by vector addition in the same way that we have 
seen for two or more displacements.

Imagine that you are attempting to swim across a river. 
You want to swim directly across to the opposite bank, but 
the current moves you sideways at the same time as you 
are swimming forwards. The outcome is that you will end 
up on the opposite bank, but downstream of your intended 
landing point. In effect, you have two velocities:

■■ the velocity due to your swimming, which is directed 
straight across the river

■■ the velocity due to the current, which is directed 
downstream, at right angles to your swimming velocity.

These combine to give a resultant (or net) velocity, which 
will be diagonally downstream. In order to swim directly 
across the river, you would have to aim upstream. Then 
your resultant velocity could be directly across the river.

	14	 You walk 3.0 km due north, and then 4.0 km due 
east.
a	 Calculate the total distance in km you have 

travelled.
b	 Make a scale drawing of your walk, and use it 

to find your final displacement. Remember to 
give both the magnitude and the direction.

c	 Check your answer to part b by calculating 
your displacement.

	15	 A student walks 8.0 km south-east and then 
12 km due west.
a	 Draw a vector diagram showing the route. Use 

your diagram to find the total displacement. 
Remember to give the scale on your diagram 
and to give the direction as well as the 
magnitude of your answer.

b	 Calculate the resultant displacement. Show 
your working clearly.

WORKED EXAMPLE

5	 An aircraft is flying due north with a velocity of 200 m s−1. 
A side wind of velocity 50 m s−1 is blowing due east. What 
is the aircraft’s resultant velocity (give the magnitude 
and direction)?

	 Here, the two velocities are at 90°. A sketch diagram and 
Pythagoras’s theorem are enough to solve the problem.

	 Step 1  Draw a sketch of the situation – this is shown in 
Figure 1.16a.

	 Step 2  Now sketch a vector triangle. Remember that 
the second vector starts where the first one ends. This is 
shown in Figure 1.16b.

	 Step 3  Join the start and end points to complete the 
triangle.

	 Step 4  Calculate the magnitude of the resultant vector v 
(the hypotenuse of the right-angled triangle).
	 v  2 = 2002 + 502 = 40 000 + 2500 =  42 500

	 v =     42 500 ≈ 206 m s−1

	 Step 5  Calculate the angle θ  :

	tan θ  =  
50

200

	 =  0.25
	 θ  =  tan−1 (0.25) ≈ 14°

	 So the aircraft’s resultant velocity is 206 m s−1 at 14° east 
of north.

Figure 1.16  Finding the resultant of two velocities – 
for Worked example 5.

v

200 m s–1 200 m s–1

50 m s–1

50 m s–1a b

Not to
scale

θ

QUESTIONS
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	16	 A swimmer can swim at 2.0 m s−1 in still water. 
She aims to swim directly across a river which 
is flowing at 0.80 m s−1. Calculate her resultant 
velocity. (You must give both the magnitude and 
the direction.)

	17	 A stone is thrown from a cliff and strikes the 
surface of the sea with a vertical velocity of 
18 m s−1 and a horizontal velocity v. The resultant 
of these two velocities is 25 m s−1.
a	 Draw a vector diagram showing the two 

velocities and the resultant.
b	 Use your diagram to find the value of v.
c	 Use your diagram to find the angle between 

the stone and the vertical as it strikes the 
water.

Summary
■■ Displacement is the distance travelled in a particular 

direction.

■■ Velocity is defined by the word equation

velocity  =  
change in displacement

time taken

The gradient of a displacement–time graph is equal  
to velocity:

velocity  =  
Δs
Δt

■■ Distance and speed are scalar quantities. A scalar 
quantity has only magnitude.

■■ Displacement and velocity are vector quantities.  
A vector quantity has both magnitude and direction.

■■ Vector quantities may be combined by vector addition 
to find their resultant.

QUESTIONS
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End-of-chapter questions
1 A car travels one complete lap around a circular track at a constant speed of  120 km h−1.

a If one lap takes 2.0 minutes, show that the length of the track is  4.0 km. [2]
b Explain why values for the average speed and average velocity are diff erent.  [1]
c Determine the magnitude of the displacement of the car in a time of 1.0 minute.  [2]
 (The circumference of a circle = 2πR, where R is the radius of the circle.)

2 A boat leaves point A and travels in a straight line to point B (Figure 1.17). 
The journey takes 60 s.

 Calculate:
a the distance travelled by the boat [2]
b the total displacement of the boat  [2]
c the average velocity of the boat. [2]

 Remember that each vector quantity must be given a direction as well 
as a magnitude.

3 A boat travels at 2.0 m s−1 east towards a port, 2.2 km away. When the boat reaches the port, the passengers 
travel in a car due north for 15 minutes at 60 km h−1.

 Calculate:
a the total distance travelled  [2]
b the total displacement  [2]
c the total time taken [2]
d the average speed in m s−1 [2]
e the magnitude of the average velocity. [2]

4 A river flows from west to east with a constant velocity of 1.0 m s−1. A boat leaves the south bank heading 
due north at 2.40 m s−1. Find the resultant velocity of the boat. [2]

5 a Define displacement. [1]
b Use the definition of displacement to explain how it is possible for an athlete to run round a track yet 

have no displacement. [2]

6 A girl is riding a bicycle at a constant velocity of 3.0 m s−1 along a straight road. At time t  = 0, she passes 
a boy sitting on a stationary bicycle. At time t  = 0, the boy sets off  to catch up with the girl. His velocity 
increases from time t  = 0 until t  = 5.0 s, when he has covered a distance of 10 m. He then continues at a 
constant velocity of 4.0 m s−1.
a Draw the displacement–time graph for the girl from t  = 0 to 12 s. [1]
b On the same graph axes, draw the displacement–time graph for the boy. [2]
c Using your graph, determine the value of t when the boy catches up with the girl. [1]

12

B

600 m

800 m

A

Figure 1.17 For End-of-chapter 
Question 2. 
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7 A student drops a small black sphere alongside a vertical scale marked in centimetres. 
A number of flash photographs of the sphere are taken at 0.1 s intervals, as shown in 
Figure 1.18. The first photograph is taken with the sphere at the top at time t  = 0 s.
a Explain how Figure 1.18 shows that the sphere reaches a constant speed. [2]
b Determine the constant speed reached by the sphere. [2]
c Determine the distance that the sphere has fallen when t  = 0.8 s. [2]

8 a  State one diff erence between a scalar quantity and a vector quantity and give an example of each. [3]
b A plane has an air speed of 500 km h−1 due north. A wind blows at 100 km h−1 from east to west. Draw 

a vector diagram to calculate the resultant velocity of the plane. Give the direction of travel of the 
plane with respect to north. [4]

c The plane flies for 15 minutes. Calculate the displacement of the plane in this time. [1]

9 A small aircraft  for one person is used on a short horizontal flight. On its journey from A to B, the resultant 
velocity of the aircraft  is 15 m s−1 in a direction 60° east of north and the wind velocity is 7.5 m s−1 due 
north (Figure 1.19).

Figure 1.19 For End-of-chapter Question 9. 

a Show that for the aircraft  to travel from A to B it should be pointed due east. [2]
b Aft er flying 5 km from A to B, the aircraft  returns along the same path from B to A with a resultant 

velocity of 13.5 m s−1. Assuming that the time spent at B is negligible, calculate the average speed 
for the complete journey from A to B and back to A. [3]
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Figure 1.18 For End-of-
chapter Question 7.
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Accelerated 
motion

Learning outcomes
You should be able to:

■■ define acceleration
■■ draw and interpret velocity–time graphs
■■ derive and use the equations of uniformly accelerated 

motion
■■ describe a method for determining the acceleration due 

to gravity, g
■■ explain projectile motion in terms of horizontal and 

vertical components of motion
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Quick off the mark
The cheetah (Figure 2.1) has a maximum speed of over 
30 m s−1 (108 km/h). From a standing start a cheetah 
can reach 20 m s−1 in just three or four strides, taking 
only two seconds.

A car cannot increase its speed as rapidly but on 
a long straight road it can easily travel faster than a 
cheetah.

Figure 2.1  The cheetah is the world’s fastest land animal.  
Its acceleration is impressive, too. 

The meaning of acceleration
In everyday language, the term accelerating means 
‘speeding up’. Anything whose speed is increasing is 
accelerating. Anything whose speed is decreasing is 
decelerating.

To be more precise in our definition of acceleration, we 
should think of it as changing velocity. Any object whose 
speed is changing or which is changing its direction has 
acceleration. Because acceleration is linked to velocity in 
this way, it follows that it is a vector quantity.

Some examples of objects accelerating are shown in 
Figure 2.2.

Calculating acceleration
The acceleration of something indicates the rate at which 
its velocity is changing. Language can get awkward here. 
Looking at the sprinter in Figure 2.3, we might say, ‘The 
sprinter accelerates faster than the car.’ However, ‘faster’ 
really means ‘greater speed’. It is better to say, ‘The sprinter 
has a greater acceleration than the car.’

Acceleration is defined as follows:

	 acceleration = rate of change of velocity

	average acceleration =  
change in velocity

time taken

So to calculate acceleration a, we need to know two 
quantities – the change in velocity Δv and the time taken Δt :

a = Δv
Δt

Sometimes this equation is written differently. We write u 
for the initial velocity and v for the final velocity (because 
u comes before v in the alphabet). The moving object 

A car speeding up as 
it leaves the town. The
driver presses on the
accelerator pedal to
increase the car’s velocity.

A car setting o� from
the tra�ic lights. There is 
an instant when the car
is both stationary and
accelerating. Otherwise it
would not start moving.

A car travelling round a
bend at a steady speed. 
The car’s speed is 
constant, but its velocity 
is changing as it changes
direction.

A ball being hit by a
tennis racket. Both the 
ball’s speed and direction 
are changing. The ball’s 
velocity changes.

A stone dropped over
a cli�. Gravity makes the
stone go faster and faster.
The stone accelerates
as it falls.

Figure 2.2  Examples of objects accelerating. 
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Units of acceleration
The unit of acceleration is m s−2 (metres per second squared). 
The sprinter might have an acceleration of 5 m s−2; her 
velocity increases by 5 m s−1 every second. You could express 
acceleration in other units. For example, an advertisement 
might claim that a car accelerates from 0 to 60 miles per 
hour (mph) in 10 s. Its acceleration would then be 6 mph s−1 
(6 miles per hour per second). However, mixing together 
hours and seconds is not a good idea, and so acceleration is 
almost always given in the standard SI unit of m s−2.

accelerates from u to v in a time t (this is the same as the 
time represented by Δt above). Then the acceleration is 
given by the equation:

a = v − u
t

You must learn the definition of acceleration. It can be put 
in words or symbols. If you use symbols you must state 
what those symbols mean.

START time = 1 s

time = 2 s time = 3 s

Figure 2.3  The sprinter has a greater acceleration than the 
car, but her top speed is less. 

1	 Leaving a bus stop, a bus reaches a velocity of 8.0 m s−1 
after 10 s. Calculate the acceleration of the bus.

	 Step 1  Note that the bus’s initial velocity is 0 m s−1. 
Therefore:
change in velocity Δv  = (8.0 − 0) m s−1

time taken Δt  = 10 s

	 Step 2  Substitute these values in the equation for 
acceleration:
	acceleration =  

Δv
Δt

  =  
8.0
10

	 =  0.80 m s−2

2	 A sprinter starting from rest has an acceleration of 
5.0 m s−2 during the first 2.0 s of a race. Calculate her 
velocity after 2.0 s.

	 Step 1  Rearranging the equation a  =  
v − u

t
 gives:

v  =  u + at

	 Step 2  Substituting the values and calculating gives:
v  =  0 + (5.0 × 2.0) = 10 m s−1

3	 A train slows down from 60 m s−1 to 20 m s−1 in 50 s. 
Calculate the magnitude of the deceleration of the train.

	 Step 1  Write what you know:
u  =  60 m s−1  v  =  20 m s−1  t  =  50 s

	 Step 2  Take care! Here the train’s final velocity is less 
than its initial velocity. To ensure that we arrive at the 
correct answer, we will use the alternative form of the 
equation to calculate a.

	a =  
v − u

t

	 =  
20 − 60

50   =  
−40
50   =  −0.80 m s−2

	 The minus sign (negative acceleration) indicates that the 
train is slowing down. It is decelerating. The magnitude 
of the deceleration is 0.80 m s−2.

1	 A car accelerates from a standing start and 
reaches a velocity of 18 m s−1 after 6.0 s. Calculate 
its acceleration.

2	 A car driver brakes gently. Her car slows down 
from 23 m s−1 to 11 m s−1 in 20 s. Calculate the 
magnitude (size) of her deceleration. (Note that, 
because she is slowing down, her acceleration is 
negative.)

3	 A stone is dropped from the top of a cliff. Its 
acceleration is 9.81 m s−2. How fast is it moving:
a	 after 1 s?
b	 after 3 s?

QUESTIONS

WORKED EXAMPLES
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Deducing acceleration
The gradient of a velocity–time graph tells us whether the 
object’s velocity has been changing at a high rate or a low 
rate, or not at all (Figure 2.4). We can deduce the value of 
the acceleration from the gradient of the graph:

acceleration = gradient of velocity–time graph
The graph (Figure 2.5) shows how the velocity of a cyclist 
changed during the start of a sprint race. We can find his 
acceleration during the first section of the graph (where 
the line is straight) using the triangle as shown.

v

t0
0

v

t

low a

high a

0
0

v

t0
0

v

t
0

0

v

t0
0

A straight line with a
positive slope shows 
constant acceleration.

The greater the slope, the
greater the acceleration. 

The velocity is constant.
Therefore acceleration a = 0.

A negative slope shows 
deceleration (a is negative).

The slope is changing; 
the acceleration is changing.

Figure 2.4  The gradient of a velocity–time graph is equal to 
acceleration. 

v / m s–1

t / s

30

20

10

5 10

Δv

Δt
0

0
Figure 2.5  Deducing acceleration from a velocity–time graph.

The change in velocity Δv is given by the vertical side of 
the triangle. The time taken Δt is given by the horizontal 
side.

	acceleration = change in displacement
time taken

	 = 20 − 0
5

	 = 4.0 m s−2

A more complex example where the velocity–time graph is 
curved is shown on page 24.

Deducing displacement
We can also find the displacement of a moving object from 
its velocity–time graph. This is given by the area under the 
graph:

displacement = area under velocity–time graph
It is easy to see why this is the case for an object moving 
at a constant velocity. The displacement is simply 
velocity × time, which is the area of the shaded rectangle 
(Figure 2.6a).

For changing velocity, again the area under the graph 
gives displacement (Figure 2.6b). The area of each square 
of the graph represents a distance travelled: in this case, 
1 m s−1 × 1 s, or 1 m. So, for this simple case in which the 
area is a triangle, we have:

	displacement = 12  × base × height

	 = 12  × 5.0 × 10 = 25 m

It is easy to confuse displacement–time graphs and 
velocity–time graphs. Check by looking at the quantity 
marked on the vertical axis.

For more complex graphs, you may have to use other 
techniques such as counting squares to deduce the area, 
but this is still equal to the displacement.
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(Take care when counting squares: it is easiest when the 
sides of the squares stand for one unit. Check the axes, as 
the sides may represent 2 units, or 5 units, or some other 
number.)

Measuring velocity and 
acceleration
In a car crash, the occupants of the car may undergo a very 
rapid deceleration. This can cause them serious injury, but 
can be avoided if an air-bag is inflated within a fraction 
of a second. Figure 2.7 shows the tiny accelerometer at the 
heart of the system, which detects large accelerations and 
decelerations.

The acceleration sensor consists of two rows of 
interlocking teeth. In the event of a crash, these move 
relative to one another, and this generates a voltage which 
triggers the release of the air-bag.

20

10

0
5 100 15

10

5

0
5

area under graph
= displacement

0

v / m s–1

v / m s–1

a

b

t / s

t / s

area = 20 × 15 = 300 m

Figure 2.6  The area under the velocity–time graph is equal to 
the displacement of the object.

4	 A lorry driver is travelling at the speed limit on 
a motorway. Ahead, he sees hazard lights and 
gradually slows down. He sees that an accident 
has occurred, and brakes suddenly to a halt. 
Sketch a velocity–time graph to represent the 
motion of this lorry.

5	 Table 2.1 shows how the velocity of a motorcyclist 
changed during a speed trial along a straight road.
a	 Draw a velocity–time graph for this motion.
b	 From the table, deduce the motorcyclist’s 

acceleration during the first 10 s.
c	 Check your answer by finding the gradient of 

the graph during the first 10 s.
d	 Determine the motorcyclist’s acceleration 

during the last 15 s.
e	 Use the graph to find the total distance 

travelled during the speed trial.

Velocity / m s−1 0 15 30 30 20 10 0

Time / s 0 5 10 15 20 25 30

Table 2.1  Data for a motorcyclist.

At the top of the photograph, you can see a second 
sensor which detects sideways accelerations. This is 
important in the case of a side impact.

These sensors can also be used to detect when a car 
swerves or skids, perhaps on an icy road. In this case, they 
activate the car’s stability-control systems.

Determining velocity and 
acceleration in the laboratory
In Chapter 1, we looked at ways of finding the velocity of a 
trolley moving in a straight line. These involved measuring 
distance and time, and deducing velocity. Box 2.1 below 
shows how these techniques can be extended to find the 
acceleration of a trolley.

Figure 2.7  A micro-mechanical acceleration sensor is used to 
detect sudden accelerations and decelerations as a vehicle 
travels along the road. This electron microscope image shows 
the device magnified about 1000 times.

QUESTIONS
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BOX 2.1: Laboratory measurements of acceleration

Measurements using light gates
The computer records the time for the first ‘interrupt’ 
section of the card to pass through the light beam of the 
light gate (Figure 2.8). Given the length of the interrupt, 
it can work out the trolley’s initial velocity u. This is 
repeated for the second interrupt to give final velocity v.  
The computer also records the time interval t 3 − t1 
between these two velocity measurements. Now it can 
calculate the acceleration a as shown below:

u  =  
l1

t2 − t1
 

(l1 = length of first section of the interrupt card)

and

v  =  
l2

t4 − t3
 

(l2 = length of second section of the interrupt card)

Therefore:

a  =  
change in velocity

time taken

	 =  
v − u

t3 − t1
 

(Note that this calculation gives only an approximate 
value for a. This is because u and v are average speeds 
over a period of time; for an accurate answer we would 
need to know the speeds at times t1 and t3.)

Sometimes two light gates are used with a card 
of length l. The computer can still record the times as 
shown above and calculate the acceleration in the same 
way, with l1 =  l2 = l.

Measurements using a ticker-timer
The practical arrangement is the same as for measuring 
velocity. Now we have to think about how to interpret the 
tape produced by an accelerating trolley (Figure 2.9).

The tape is divided into sections, as before, every 
five dots. Remember that the time interval between 
adjacent dots is 0.02 s. Each section represents 0.10 s.

By placing the sections of tape side by side, you can 
picture the velocity–time graph.

The length of each section gives the trolley’s 
displacement in 0.10 s, from which the average velocity 
during this time can be found. This can be repeated 
for each section of the tape, and a velocity–time 
graph drawn. The gradient of this graph is equal to 
the acceleration. Table 2.2 and Figure 2.10 show some 
typical results.

The acceleration is calculated to be:

	a  =  
Δv
Δt

  =  
0.93
0.20 

 ≈  4.7 m s−2

Section 
of tape

Time at 
start / s

Time 
interval / s

Length of 
section / cm

Velocity / 
m s−1

1 0.0 0.10 2.3 0.23

2 0.10 0.10 7.0 0.70

3 0.20 0.10 11.6 1.16

Table 2.2  Data for Figure 2.10.

Figure 2.8  Determining acceleration using a single 
light gate. 

light gate
l1 l2

t1 t2 t3 t4

interrupt
card

start

start
Figure 2.9  Ticker-tape for an 
accelerating trolley.

Figure 2.10   
Deducing 
acceleration from 
measurements of 
a ticker-tape.t / s

1.0

0.5

0
0.1 0.20

v / m s–1
1.5

Δt = 0.20 s

Δv = 0.93 m s–1
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There is a set of equations which allows us to calculate 
the quantities involved when an object is moving with a 
constant acceleration. The quantities we are concerned 
with are:

s	 displacement	 a	 acceleration
u	 initial velocity	 t	 time taken
v	 final velocity

Here are the four equations of motion.

equation 1:	 v  =  u  +  at

equation 2:	 s  =  
(u + v)

2   ×  t

equation 3:	 s  =  ut  +  
1
2  at2

equation 4:	 v2  =  u2 + 2as

Take care using these equations. They can only be used:

■■ for motion in a straight line
■■ for an object with constant acceleration.

To get a feel for how to use these equations, we will 
consider some worked examples. In each example, we will 
follow the same procedure:
Step 1	 We write down the quantities which we know, 

and the quantity we want to find.
Step 2	 Then we choose the equation which links these 

quantities, and substitute in the values.
Step 3	 Finally, we calculate the unknown quantity.
We will look at where these equations come from in the 
next section.

The equations of motion
As a space rocket rises from the ground, its velocity 
steadily increases. It is accelerating (Figure 2.12).

Eventually it will reach a speed of several kilometres 
per second. Any astronauts aboard find themselves pushed 
back into their seats while the rocket is accelerating.

The engineers who planned the mission must be able to 
calculate how fast the rocket will be travelling and where it 
will be at any point in its journey. They have sophisticated 
computers to do this, using more elaborate versions of the 
equations given below.

BOX 2.1: Laboratory measurements of acceleration 
(continued)

Measurements using a motion sensor
The computer software which handles the data 
provided by the motion sensor can calculate the 
acceleration of a trolley. However, because it deduces 
velocity from measurements of position, and then 
calculates acceleration from values of velocity, its 
precision is relatively poor.

6	 Sketch a section of ticker-tape for a trolley which 
travels at a steady velocity and which then 
decelerates.

7	 Figure 2.11 shows the dimensions of an 
interrupt card, together with the times recorded 
as it passed through a light gate. Use these 
measurements to calculate the acceleration of the 
card. (Follow the steps outlined on page 19.)

8	 Two adjacent five-dot sections of a ticker-tape 
measure 10 cm and 16 cm, respectively. The interval 
between dots is 0.02 s. Deduce the acceleration of 
the trolley which produced the tape.

5.0 cm 5.0 cm

0 s 0.20 s 0.30 s 0.35 s

Figure 2.11  For Question 7. 

Figure 2.12  A rocket accelerates as it lifts off from the ground. 
QUESTIONS
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4	 The rocket shown in Figure 2.12 lifts off from rest with an 
acceleration of 20 m s−2. Calculate its velocity after 50 s.

	 Step 1  What we know:	 u  =  0 m s−1 

	 a  =  20 m s−2 

	 t  =  50 s

	 and what we want to know: 	 v  =  ?

	 Step 2  The equation linking u, a, t and v is equation 1:
v  =  u + at

	 Substituting gives:
v  =  0 + (20 × 50)

	 Step 3  Calculation then gives:
v  =  1000 m s−1

	 So the rocket will be travelling at 1000 m s−1 after 50 s. 
This makes sense, since its velocity increases by 20 m s−1 
every second, for 50 s.

	 You could use the same equation to work out how long 
the rocket would take to reach a velocity of 2000 m s−1, 
or the acceleration it must have to reach a speed of 
1000 m s−1 in 40 s, and so on.

5	 The car shown in Figure 2.13 is travelling along a straight 
road at 8.0 m s−1. It accelerates at 1.0 m s−2 for a distance 
of 18 m. How fast is it then travelling?

	 In this case, we will have to use a different equation, 
because we know the distance during which the car 
accelerates, not the time.

	 Step 1  What we know:	 u  =  8.0 m s−1 

	 a  =  1.0 m s−2 

	 s  =  18 m

	 and what we want to know:	 v  =  ?

	 Step 2  The equation we need is equation 4:
v2  =  u2 + 2as

	 Substituting gives:
v2  =  8.02 + (2 × 1.0 × 18)

	 Step 3  Calculation then gives:
	v2  =  64 + 36 = 100 m2 s−2

	 v  =  10 m s−1

	 So the car will be travelling at 10 m s−1 when it stops 
accelerating.

	 (You may find it easier to carry out these calculations 
without including the units of quantities when you 
substitute in the equation. However, including the units 
can help to ensure that you end up with the correct units 
for the final answer.)

6	 A train (Figure 2.14) travelling at 20 m s−1 accelerates at 
0.50 m s−2 for 30 s. Calculate the distance travelled by the 
train in this time.

	 Step 1  What we know:	 u  =  20 m s−1 

	 t  =  30 s 
	 a  =  0.50 m s−2

	 and what we want to know:	 s  =  ?

	 Step 2  The equation we need is equation 3:

s  =  ut + 12 
at2

	 Substituting gives:

s  =  (20 × 30) +  12  × 0.5 × (30)2

	 Step 3  Calculation then gives:
s  =  600 + 225 = 825 m

	 So the train will travel 825 m while it is accelerating.

u = 8.0 m s–1

s = 18 m

v = ?

u = 20 m s–1

Figure 2.13  For Worked example 5. This car accelerates 
for a short distance as it travels along the road. 

Figure 2.14  For Worked example 6. This train 
accelerates for 30 s.

WORKED EXAMPLES
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Deriving the equations of 
motion
On the previous pages, we have seen how to make use of 
the equations of motion. But where do these equations 
come from? They arise from the definitions of velocity and 
acceleration.

We can find the first two equations from the velocity–
time graph shown in Figure 2.16. The graph represents the 
motion of an object. Its initial velocity is u. After time t, its 
final velocity is v.

7	 The cyclist in Figure 2.15 is travelling at 15 m s−1. 
She brakes so that she doesn’t collide with the wall. 
Calculate the magnitude of her deceleration.

	 This example shows that it is sometimes necessary 
to rearrange an equation, to make the unknown 
quantity its subject. It is easiest to do this before 
substituting in the values.

	 Step 1  What we know: 	 u  =  15 m s−1 

	 v  =  0 m s−1 

	 s  =  18 m

	 and what we want to know:	 a  =  ?

	 Step 2  The equation we need is equation 4:
v 2  =  u2 + 2as

	 Rearranging gives:

a  =  
v2 − u2

2s

a  =  
02  − 152

2 × 18   =  
− 225

36

	 Step 3  Calculation then gives:
a  =  −6.25 m s−2 ≈ −6.3 m s−2

	 So the cyclist will have to brake hard to achieve a 
deceleration of magnitude 6.3 m s−2. The minus sign 
shows that her acceleration is negative,  
i.e. a deceleration.

Figure 2.15  For Worked example 7. The cyclist 
brakes to stop herself colliding with the wall. 

u = 15 m s–1

s = 18 m

	 9	 A car is initially stationary. It has a constant 
acceleration of 2.0 m s−2.
a	 Calculate the velocity of the car after 10 s.
b	 Calculate the distance travelled by the car at 

the end of 10 s.
c	 Calculate the time taken by the car to reach a 

velocity of 24 m s−1.

	10	 A train accelerates steadily from 4.0 m s−1 to 
20 m s−1 in 100 s.
a	 Calculate the acceleration of the train.
b	 From its initial and final velocities, calculate 

the average velocity of the train.
c	 Calculate the distance travelled by the train in 

this time of 100 s.

	11	 A car is moving at 8.0 m s−1. The driver makes 
it accelerate at 1.0 m s−2 for a distance of 18 m. 
What is the final velocity of the car?

Ve
lo

ci
ty

Time

v

u

t

at21
2

ut

0
0

v – u = at

Figure 2.16  This graph shows the variation of velocity of an 
object with time. The object has constant acceleration. 

WORKED EXAMPLES (continued)

QUESTIONS
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So
s = ut + 12 at2� (equation 3)

Looking at Figure 2.16, you can see that the two terms on 
the right of the equation correspond to the areas of the 
rectangle and the triangle which make up the area under 
the graph. Of course, this is the same area as the rectangle 
in Figure 2.17.

Equation 4
Equation 4 is also derived from equations 1 and 2:

v = u + at� (equation 1)

s = (u + u)
2

 × t� (equation 2)

Substituting for time t from equation 1 gives:

s = (u + v) 
2

  +  (v + u)
a

� (equation 2)

Rearranging this gives:
2as = (u + v)(v − u)

	 = v2 − u2

or simply:
v2 = u2 + 2as� (equation 4)

Investigating road traffic accidents
The police frequently have to investigate road traffic 
accidents. They make use of many aspects of physics, 
including the equations of motion. The next two questions 
will help you to apply what you have learned to situations 
where police investigators have used evidence from skid 
marks on the road.

Equation 1
The graph of Figure 2.16 is a straight line, therefore the 
object’s acceleration a is constant. The gradient (slope) of 
the line is equal to acceleration.

The acceleration is defined as:

a = (v − u)
t

which is the gradient of the line. Rearranging this gives the 
first equation of motion:

v = u + at� (equation 1)

Equation 2
Displacement is given by the area under the velocity–time 
graph. Figure 2.17 shows that the object’s average velocity 
is half-way between u and v. So the object’s average 
velocity, calculated by averaging its initial and final 
velocities, is given by:

(u − v)
2

The object’s displacement is the shaded area in Figure 2.17. 
This is a rectangle, and so we have:

displacement = average velocity × time taken
and hence:

s = (u + v)
2

  ×  t� (equation 2)

Equation 3
From equations 1 and 2, we can derive equation 3:

	v = u + at� (equation 1)

	s = (u + v)
2

 × t� (equation 2)

Substituting v from equation 1 gives:

s = (u + u + at)
2

 × t

s = 2ut
2

 + at2

2

t

v

u

average velocity

Ve
lo

ci
ty

Time
0

0
Figure 2.17  The average velocity is half-way between u and v. 

	12	 Trials on the surface of a new road show that, 
when a car skids to a halt, its acceleration is 
−7.0 m s−2. Estimate the skid-to-stop distance  
of a car travelling at a speed limit of 30 m s−1 
(approx. 110 km h−1 or 70 mph).

	13	 At the scene of an accident on a country road, 
police find skid marks stretching for 50 m. 
Tests on the road surface show that a skidding 
car decelerates at 6.5 m s−2. Was the car which 
skidded exceeding the speed limit of 25 m s−1 
(90 km h−1) on this road?

QUESTIONS
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In this case each square is 1 m s−1 on the y-axis by 1 s 
on the x-axis, so the area of each square is 1 × 1 = 1 m and 
the displacement is 250 m. In other cases note carefully the 
value of each side of the square you have chosen.

Uniform and non-uniform 
acceleration
It is important to note that the equations of motion 
only apply to an object which is moving with a constant 
acceleration. If the acceleration a was changing, you 
wouldn’t know what value to put in the equations. 
Constant acceleration is often referred to as uniform 
acceleration.

The velocity–time graph in Figure 2.18 shows non-
uniform acceleration. It is not a straight line; its gradient 
is changing (in this case, decreasing).

t / s

20

10

0
10 20 300

v / m s–1

15

5

30

25

40

Δt = 20 s

Δs = 10 m

Figure 2.18  This curved velocity–time graph cannot be 
analysed using the equations of motion. 

The acceleration at any instant in time is given by the 
gradient of the velocity–time graph. The triangle in Figure 
2.18 shows how to find the acceleration at t = 20 seconds:

■■ At the time of interest, mark a point on the graph.
■■ Draw a tangent to the curve at that point.
■■ Make a large right-angled triangle, and use it to find the 

gradient.

You can find the change in displacement of the body as it 
accelerates by determining the area under the velocity–
time graph.

To find the displacement of the object in Figure 2.18 
between t = 0 and 20 s, the most straightforward, but 
lengthy, method is just to count the number of small 
squares.

In this case up to t = 20 s, there are about 250 small 
squares. This is tedious to count but you can save yourself 
a lot of time by drawing a line from the origin to the point 
at 20 s. The area of the triangle is easy to find (200 small 
squares) and then you only have to count the number of 
small squares between the line you have drawn and the 
curve on the graph (about 50 squares)

t / s

16

8

0
10 20 300

v / m s–1

12

4

20

	14	 The graph in Figure 2.19 represents the motion of 
an object moving with varying acceleration. Lay 
your ruler on the diagram so that it is tangential to 
the graph at point P.
a	 What are the values of time and velocity at this 

point?
b	 Estimate the object’s acceleration at this point.

	15	 The velocity–time graph (Figure 2.20) represents 
the motion of a car along a straight road for a 
period of 30 s.
a	 Describe the motion of the car.
b	 From the graph, determine the car’s initial 

and final velocities over the time of 30 s.
c	 Determine the acceleration of the car.
d	 By calculating the area under the graph, 

determine the displacement of the car.
e	 Check your answer to part d by calculating the 

car’s displacement using s  =  ut  +  12 at2.

t / s

200

100

0
5 10 150

300

20

v / m s–1

P

Figure 2.19  For Question 14.

Figure 2.20  For Question 15.

QUESTIONS
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Determining g
One way to measure the acceleration of free fall g would be 
to try bungee-jumping (Figure 2.22). You would need to 
carry a stopwatch, and measure the time between jumping 
from the platform and the moment when the elastic rope 
begins to slow your fall. If you knew the length of the 
unstretched rope, you could calculate g.

There are easier methods for finding g which can be used 
in the laboratory. These are described in Box 2.2.

Acceleration caused by gravity
If you drop a ball or stone, it falls to the ground. Figure 
2.21, based on a multiflash photograph, shows the ball at 
equal intervals of time. You can see that the ball’s velocity 
increases as it falls because the spaces between the images 
of the ball increase steadily. The ball is accelerating.

Figure 2.21  This diagram of a falling ball, based on a 
multiflash photo, clearly shows that the ball’s velocity 
increases as it falls.

A multiflash photograph is useful to demonstrate 
that the ball accelerates as it falls. Usually, objects fall too 
quickly for our eyes to be able to observe them speeding 
up. It is easy to imagine that the ball moves quickly as soon 
as you let it go, and falls at a steady speed to the ground. 
Figure 2.21 shows that this is not the case.

If we measure the acceleration of a freely falling object 
on the surface of the Earth, we find a value of about 
9.81 m s−2. This is known as the acceleration of free fall, 
and is given the symbol g:

acceleration of free fall, g = 9.81 m s−2

The value of g depends on where you are on the Earth’s 
surface, but we usually take g = 9.81 m s−2.

If we drop an object, its initial velocity u = 0. How far 
will it fall in time t? Substituting in s = ut  +  12  at2 gives 
displacement s:

	s = 12 × 9.81 × t2

	 = 4.9 × t2

Hence, by timing a falling object, we can determine g.

	16	 If you drop a stone from the edge of a cliff, its initial 
velocity u  =  0, and it falls with acceleration  
g  =  9.81 m s−2. You can calculate the distance s it 
falls in a given time t using an equation of motion.
a	 Copy and complete Table 2.3, which shows how 

s depends on t.
b	 Draw a graph of s against t.
c	 Use your graph to find the distance fallen by 

the stone in 2.5 s.
d	 Use your graph to find how long it will take the 

stone to fall to the bottom of a cliff 40 m high. 
Check your answer using the equations  
of motion.

Time / s 0 1.0 2.0 3.0 4.0

Displacement / m 0 4.9

Table 2.3  Time (t) and displacement (s) data for 
Question 16.

	17	 An egg falls off a table. The floor is 0.8 m from the 
table-top.
a	 Calculate the time taken to reach the ground.
b	 Calculate the velocity of impact with the 

ground.

Figure 2.22  A bungee-jumper falls with initial acceleration g. 

QUESTIONS
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BOX 2.2: Laboratory measurements of g

Measuring g using an electronic timer
In this method, a steel ball-bearing is held by an 
electromagnet (Figure 2.23). When the current to the 
magnet is switched off, the ball begins to fall and 
an electronic timer starts. The ball falls through a 
trapdoor, and this breaks a circuit to stop the timer. 
This tells us the time taken for the ball to fall from rest 
through the distance h between the bottom of the ball 
and the trapdoor.

Here is how we can use one of the equations of motion 
to find g:

	 displacement s  =  h
	 time taken  =  t
	initial velocity u  =  0
	 acceleration a  =  g

Substituting in s = ut  +  12 at2 gives:

h  =  1
2 gt2

and for any values of h and t we can calculate a value for g.
A more satisfactory procedure is to take 

measurements of t for several different values of h. The 
height of the ball bearing above the trapdoor is varied 
systematically, and the time of fall measured several 
times to calculate an average for each height. Table 
2.4 and Figure 2.24 show some typical results. We can 
deduce g from the gradient of the graph of h against t2.
The equation for a straight line through the origin is:

y  =  mx

In our experiment we have:

  h	 =	  1
2 g	    t2

	 	 	
  y	 =	  m	    x

The gradient of the straight line of a graph of h 
against t 2 is equal to g

2 . Therefore:

	gradient  =  
g
2  =  

0.84
0.20  =  4.2

	 g  =  4.2 × 2 =  8.4 m s−2

Sources of uncertainty
The electromagnet may retain some magnetism when it 
is switched off, and this may tend to slow the ball’s fall. 
Consequently, the time t recorded by the timer may be 
longer than if the ball were to fall completely freely.  
From h = 12 gt2, it follows that, if t is too great, the 
experimental value of g will be too small. This is an 
example of a systematic error – all the results are 
systematically distorted so that they are too great (or too 
small) as a consequence of the experimental design.

Measuring the height h is awkward. You can probably 
only find the value of h to within ±1 mm at best. So there 
is a random error in the value of h, and this will result in a 
slight scatter of the points on the graph, and a degree of 
uncertainty in the final value of g. For more about errors, 
see P1: Practical skills for AS.

electromagnet

ball-bearing

trapdoor

timer
h

Figure 2.23  The timer records the time for the ball to 
fall through the distance h.

h / m t / s t2 / s2

0.27 0.25 0.063

0.39 0.30 0.090

0.56 0.36 0.130

0.70 0.41 0.168

0.90 0.46 0.212

Table 2.4  Data for Figure 2.24. These are mean values.

t2 / s2

0.8

0.6

0.4

0.2

0
0.05 0.100

1.0

0.250.15 0.20

h / m

h = 0.84 m

Figure 2.24  The acceleration of free fall can be determined 
from the gradient. 
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BOX 2.2: Laboratory measurements of g (continued)

Measuring g using a ticker-timer
Figure 2.25 shows a weight falling. As it falls, it pulls a 
tape through a ticker-timer. The spacing of the dots on 
the tape increases steadily, showing that the weight 
is accelerating. You can analyse the tape to find the 
acceleration, as discussed on page 19.

Measuring g using a light gate
Figure 2.26 shows how a weight can be attached to a 
card ‘interrupt’. The card is designed to break the light 
beam twice as the weight falls. The computer can then 
calculate the velocity of the weight twice as it falls, and 
hence find its acceleration:

 initial velocity u  =  
x

t2 −  t1

 final velocity v  =  
x

t4 −  t3

Therefore:

 acceleration a  =  
v − u

t3 −  t1

The weight can be dropped from diff erent heights above 
the light gate. This allows you to find out whether its 
acceleration is the same at diff erent points in its fall. This 
is an advantage over Method 1, which can only measure 
the acceleration from a stationary start.

This is not a very satisfactory method of measuring 
g. The main problem arises from friction between the 
tape and the ticker-timer. This slows the fall of the 
weight and so its acceleration is less than g. (This is 
another example of a systematic error.)

The eff ect of friction is less of a problem for a large 
weight, which falls more freely. If measurements are 
made for increasing weights, the value of acceleration 
gets closer and closer to the true value of g.

Figure 2.25 A falling weight pulls a tape through a 
ticker-timer. 

ticker-timer

ticker-tape

weight

a.c.

x

x
t4

t3

t2

falling plate

light
gate

t1

computer

Figure 2.26 The weight accelerates as it falls. The upper 
section of the card falls more quickly through the light gate. 

8 To get a rough value for g, a student dropped a stone 
from the top of a cliff . A second student timed the 
stone’s fall using a stopwatch. Here are their results:

  estimated height of cliff   = 30 m

  time of fall =  2.6 s

 Use the results to estimate a value for g.

 Step 1 Calculate the average speed of the stone:

average speed of stone during fall =  
30
2.6  = 11.5 m s−1

 Step 2 Find the values of v and u:
 final speed v  = 2 × 11.5 m s−1 =  23.0 m s−1

 initial speed u  = 0 m s−1

 Step 3 Substitute these values into the equation for 
acceleration:

a  =  
v − u

t
  =  

23.0
2.6   =  8.8 m s−2

 Note that you can reach the same result more directly 
using s  =  ut  +  1

2 at2, but you may find it easier to follow 
what is going on using the method given here. We 
should briefly consider why the answer is less than the 
expected value of g = 9.81 m s−2. It might be that the cliff  
was higher than the student’s estimate. The timer may 
not have been accurate in switching the stopwatch on 
and off . There will have been air resistance which slowed 
the stone’s fall.

WORKED EXAMPLE
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of magnitude g, which slows it down, and when it falls 
it has an acceleration of g, which speeds it up. The ball’s 
horizontal motion is unaffected by gravity. In the absence 
of air resistance, the ball has a constant velocity in the 
horizontal direction. We can treat the ball’s vertical 
and horizontal motions separately, because they are 
independent of one another.

Components of a vector
In order to understand how to treat the velocity in the 
vertical and horizontal directions separately we start by 
considering a constant velocity.

If an aeroplane has a constant velocity v at an angle θ 
as shown in Figure 2.28, then we say that this velocity has 
two effects or components, vN in a northerly direction 
and vE in an easterly direction. These two components of 
velocity add up to make the actual velocity v.

This process of taking a velocity and determining its 
effect along another direction is known as resolving the 
velocity along a different direction. In effect splitting the 
velocity into two components at right angles is the reverse 

Motion in two dimensions – 
projectiles
A curved trajectory
A multiflash photograph can reveal details of the path, or 
trajectory, of a projectile. Figure 2.27 shows the trajectories 
of a projectile – a bouncing ball. Once the ball has left the 
child’s hand and is moving through the air, the only force 
acting on it is its weight.

The ball has been thrown at an angle to the horizontal. 
It speeds up as it falls – you can see that the images of the 
ball become further and further apart. At the same time, it 
moves steadily to the right. You can see this from the even 
spacing of the images across the picture. The ball’s path has a 
mathematical shape known as a parabola. After it bounces, 
the ball is moving more slowly. It slows down, or decelerates, 
as it rises – the images get closer and closer together.

We interpret this picture as follows. The vertical 
motion of the ball is affected by the force of gravity, that 
is, its weight. When it rises it has a vertical deceleration 

	18	 A steel ball falls from rest through a height of 
2.10 m. An electronic timer records a time of 
0.67 s for the fall.
a	 Calculate the average acceleration of the ball 

as it falls.
b	 Suggest reasons why the answer is not exactly 

9.81 m s−2.

	19	 In an experiment to determine the acceleration 
due to gravity, a ball was timed electronically as 
it fell from rest through a height h. The times t 
shown in Table 2.5 were obtained.
a	 Plot a graph of h against t2.
b	 From the graph, determine the acceleration of 

free fall, g.
c	 Comment on your answer.

Height / m 0.70 1.03 1.25 1.60 1.99

Time / s 0.99 1.13 1.28 1.42 1.60

Table 2.5  Height (h) and time (t) data for  
Question 19.

20	 In Chapter 1, we looked at how to use a motion 
sensor to measure the speed and position of a 
moving object. Suggest how a motion sensor 
could be used to determine g.

Figure 2.27  A bouncing ball is an example of a projectile. 
This multiflash photograph shows details of its motion which 
would escape the eye of an observer. 

vN = v cos θ  

vE = v sin θ 

N

θ

v

Figure 2.28  Components of a velocity. The component due 
north is vN = v cos θ and the component due east is vE = v sin θ. 

QUESTIONS
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Understanding projectiles
We will first consider the simple case of a projectile 
thrown straight up in the air, so that it moves vertically. 
Then we will look at projectiles which move horizontally 
and vertically at the same time.

Up and down
A stone is thrown upwards with an initial velocity of 
20 m s−1. Figure 2.30 shows the situation.

of adding together two vectors – it is splitting one vector 
into two vectors along convenient directions.

To find the component of any vector (e.g. displacement, 
velocity, acceleration) in a particular direction, we can use 
the following strategy:
Step 1	 Find the angle θ between the vector and the 

direction of interest.
Step 2	 Multiply the vector by the cosine of the angle θ.
So the component of an object’s velocity v at angle θ to v is 
equal to v cos θ (Figure 2.28).

21	 Find the x- and y-components of each of the 
vectors shown in Figure 2.29. (You will need to use 
a protractor to measure angles from the diagram.)

y

x

b

5.0 m s–1 

c

6.0 m s–2

80 N 

d

a 20 N 

Figure 2.29   
The vectors for 
Question 21.

It is important to use a consistent sign convention 
here. We will take upwards as positive, and downwards as 
negative. So the stone’s initial velocity is positive, but its 
acceleration g is negative. We can solve various problems 
about the stone’s motion by using the equations of motion.

How high?
How high will the stone rise above ground level of the cliff?

As the stone rises upwards, it moves more and more 
slowly – it decelerates, because of the force of gravity. At its 
highest point, the stone’s velocity is zero. So the quantities 
we know are:

initial velocity	=	u	= 20 m s−1

final velocity	 =	v	= 0 m s−1

acceleration	 =	a	= −9.81 m s−2

displacement	 =	s	 = ?
The relevant equation of motion is v2 = u2 + 2as. 
Substituting values gives:

	02 = 202 + 2 × (−9.81) × s

	 0 = 400 − 19.62s

	 s = 400
19.62

 = 20.4 m ≈ 20 m

The stone rises 20 m upwards, before it starts to fall again.

Figure 2.30  Standing at the edge of the cliff, you throw a 
stone vertically upwards. The height of the cliff is 25 m. 

positive
direction

QUESTION
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also shown in Figure 2.31. Study the table and the graph. 
You should notice the following:

■■ The horizontal distance increases steadily. This is because 
the ball’s horizontal motion is unaffected by the force of 
gravity. It travels at a steady velocity horizontally so we can 

use v  =  
s
t  

.

■■ The vertical distances do not show the same pattern. 
The ball is accelerating downwards so we must use the 
equations of motion. (These figures have been calculated 
using g = 9.81 m s−2.)

Time / s Horizontal 
distance / m

Vertical 
distance / m

0.00 0.00 0.000

0.04 0.10 0.008

0.08 0.20 0.031

0.12 0.30 0.071

0.16 0.40 0.126

0.20 0.50 0.196

0.24 0.60 0.283

0.28 0.70 0.385

Table 2.7  Data for the example of a moving ball, as shown in 
Figure 2.31.

You can calculate the distance s fallen using the 
equation of motion s = ut +  12 at2. (The initial vertical 
velocity u = 0.)

The horizontal distance is calculated using:
horizontal distance = 2.5 × t

The vertical distance is calculated using:
vertical distance = 12 × 9.81 × t2

How long?
How long will it take from leaving your hand for the stone 
to fall back to the clifftop?

When the stone returns to the point from which it was 
thrown, its displacement s is zero. So:

s = 0  u = 20 m s−1  a = −9.81 m s−2  t = ?
Substituting in s = ut  + 12 at2 gives:

	0 = 20t  ×  12 (−9.81) × t2

	 = 20t  −  4.905t2 = (20 − 4.905t) ×  t
There are two possible solutions to this:

■■ t  = 0 s, i.e. the stone had zero displacement at the instant it 
was thrown

■■ t  =  4.1 s, i.e. the stone returned to zero displacement after 
4.1 s, which is the answer we are interested in.

Falling further
The height of the cliff is 25 m. How long will it take the 
stone to reach the foot of the cliff?

This is similar to the last example, but now the stone’s 
final displacement is 25 m below its starting point. By  
our sign convention, this is a negative displacement, and  
s = −25 m.

	22	 In the example above (Falling further), calculate 
the time it will take for the stone to reach the foot 
of the cliff.

	23	 A ball is fired upwards with an initial velocity of 
30 m s−1. Table 2.6 shows how the ball’s velocity 
changes. (Take g = 9.81 m s−2.)
a	 Copy and complete the table.
b	 Draw a graph to represent the data.
c	 Use your graph to deduce how long the ball 

took to reach its highest point.

Velocity / m s−1 30 20.19

Time / s 0 1.0 2.0 3.0 4.0 5.0

Table 2.6  For Question 23.

Vertical and horizontal at the same time
Here is an example to illustrate what happens when an 
object travels vertically and horizontally at the same time.

In a toy, a ball-bearing is fired horizontally from 
a point 0.4 m above the ground. Its initial velocity is 
2.5 m s−1. Its positions at equal intervals of time have been 
calculated and are shown in Table 2.7. These results are 

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1
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Figure 2.31  This sketch shows the path of the ball projected 
horizontally. The arrows represent the horizontal and vertical 
components of its velocity.
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	24	 A stone is thrown horizontally from the top of a 
vertical cliff and lands 4.0 s later at a distance 12.0 m 
from the base of the cliff. Ignore air resistance.
a	 Calculate the horizontal speed of the stone.
b	 Calculate the height of the cliff.

	25	 A stone is thrown with a velocity of 8 m s−1 into the air 
at an angle of 40° to the horizontal.
a	 Calculate the vertical component of the velocity.
b	 State the value of the vertical component of the 

velocity when the stone reaches its highest point. 
Ignore air resistance.

c	 Use your answers to a and b to calculate the time 
the stone takes to reach it highest point.

d	 Calculate the horizontal component of the velocity.
e	 Use your answers to c and d to find the horizontal 

distance travelled by the stone as it climbs to its 
highest point.

	26	 The range of a projectile is the horizontal distance 
it travels before it reaches the ground. The greatest 
range is achieved if the projectile is thrown at 45° to 
the horizontal.

		  A ball is thrown with an initial velocity of 40 m s−1. 
Calculate its greatest possible range when air 
resistance is considered to be negligible.

	 9	 A stone is thrown horizontally with a velocity of 12 m s−1 
from the top of a vertical cliff.

		  Calculate how long the stone takes to reach the ground 
40 m below and how far the stone lands from the base 
of the cliff.

		  Step 1  Consider the ball’s vertical motion. It has 
zero initial speed vertically and travels 40 m with 
acceleration 9.81 m s−2 in the same direction.

	 s  =  ut  +  12 at2

	40 =  0 +  12 × 9.81 ×  t 2

		  Thus t  = 2.86 s.

		  Step 2  Consider the ball’s horizontal motion. The ball 
travels with a constant horizontal velocity, 12 m s−1, as 
long as there is no air resistance.

		  distance travelled = u × t = 12 × 2.86 = 34.3 m

		  Hint: You may find it easier to summarise the 
information like this:

		  vertically	 s  =  40	 u  =  0	 a  =  9.81	 t  =  ?	 v  =  ?

		  horizontally	 u  = 12	 v  = 12	 a  =  0	 t  =  ?	 s  =  ?

	10	 A ball is thrown with an initial velocity of 20 m s−1 at an 
angle of 30° to the horizontal (Figure 2.32). Calculate 
the horizontal distance travelled by the ball (its range).

		  Step 1  Split the ball’s initial velocity into horizontal 
and vertical components:
initial velocity = u = 20 m s−1

horizontal component of initial velocity
	 =  u cos θ  = 20 × cos 30° = 17.3 m s−1

vertical component of initial velocity
	 =  u sin θ   =  20 × sin 30° = 10 m s−1

		  Step 2  Consider the ball’s vertical motion. How long 
will it take to return to the ground? In other words, 
when will its displacement return to zero?
u  = 10 m s−1  a  = −9.81 m s−2  s  = 0  t  = ?

		  Using s = ut +  12  at2, we have:
0 = 10t  −  4.905t2

		  This gives t = 0 s or t = 2.04 s. So the ball is in the air  
for 2.04 s.

		  Step 3  Consider the ball’s horizontal motion. How 
far will it travel horizontally in the 2.04 s before it 
lands? This is simple to calculate, since it moves with a 
constant horizontal velocity of 17.3 m s−1.
horizontal displacement s = 17.3 ×  2.04

	 = 35.3 m

		  Hence the horizontal distance travelled by the ball  
(its range) is about 35 m.

30

u = 20 m s–1

Figure 2.32  Where will the ball land?

QUESTIONS

WORKED EXAMPLES



Summary
■■ Acceleration is equal to the rate of change of velocity.

■■ Acceleration is a vector quantity.

■■ The gradient of a velocity–time graph is equal to 
acceleration: 

 a = 
∆v
∆t

■■ The area under a velocity–time graph is equal to 
displacement (or distance travelled).

■■ The equations of motion (for constant acceleration in 
a straight line) are:

v  = u + at s  =  ut +  12 at 2

s  =  
(u + v)

2  v2  =  u2 + 2as

■■ Vectors such as forces can be resolved into 
components. Components at right angles to one 
another can be treated independently of one another. 
For a velocity v at an angle θ to the x-direction, the 
components are:

x-direction: v cos θ

y-direction: v sin θ

■■ For projectiles, the horizontal and vertical components 
of velocity can be treated independently. In the 
absence of air resistance, the horizontal component 
of velocity is constant while the vertical component of 
velocity downwards increases at a rate of 9.81 m s−2.

End-of-chapter questions
1 A motorway designer can assume that cars approaching a motorway enter a slip road with a velocity 

of 10 m s−1 and reach a velocity of 30 m s−1 before joining the motorway. Calculate the minimum 
length for the slip road, assuming that vehicles have an acceleration of 4.0 m s−2. [4]

2 A train is travelling at 50 m s−1 when the driver applies the brakes and gives the train a constant deceleration 
of magnitude 0.50 m s−2 for 100 s. Describe what happens to the train. Calculate the distance travelled 
by the train in 100 s. [7]

3 A boy stands on a cliff  edge and throws a stone vertically upwards at time t  =  0. The stone leaves his 
hand at 20 m s−1. Take the acceleration of the ball as 9.81 m s−2.
a Show that the equation for the displacement of the ball is:
 s  = 20t − 4.9t2 [2]
b What is the height of the stone 2.0 s aft er release and 6.0 s aft er release? [3]
c When does the stone return to the level of the boy’s hand? Assume the boy’s hand does not move 

vertically aft er the ball is released. [4]
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4 The graph in Figure 2.33 shows the variation of velocity 
with time of two cars, A and B, which are travelling in 
the same direction over a period of time of 40 s. Car A, 
travelling at a constant velocity of 40 m s−1, overtakes 
car B at time t = 0. In order to catch up with car A, car B 
immediately accelerates uniformly for 20 s to reach a 
constant velocity of 50 m s−1. Calculate:

a how far A travels during the first 20 s [2]
b the acceleration and distance of travel of B during the first 20 s [5]
c the additional time taken for B to catch up with A [2]
d the distance each car will have then travelled since t = 0. [2]

5 An athlete competing in the long jump leaves the ground with a velocity of 5.6 m s−1 at an angle of 30° 
to the horizontal.
a Determine the vertical component of the velocity and use this value to find the time between leaving 

the ground and landing. [2]
b Determine the horizontal component of the velocity and use this value to find the horizontal 

distance travelled. [4]

6 Figure 2.34 shows an arrangement used to measure the acceleration of a metal plate as it falls vertically. 
The metal plate is released from rest and falls a distance of 0.200 m before breaking light beam 1. It then 
falls a further 0.250 m before breaking light beam 2.

Figure 2.34 For End-of-chapter Question 6. 

a Calculate the time taken for the plate to fall 0.200 m from rest. (You may assume that the metal plate 
falls with an acceleration equal to the acceleration of free fall.) [2]

b The timer measures the speed of the metal plate as it falls through each light beam. The speed as it 
falls through light beam 1 is 1.92 m s−1 and the speed as it falls through light beam 2 is 2.91 m s−1.
i Calculate the acceleration of the plate between the two light beams. [2]
ii State and explain one reason why the acceleration of the plate is not equal to the acceleration 

of free fall. [2]
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Figure 2.33 Velocity–time graphs for two cars, 
A and B. For End-of-chapter Question 4. 



7 Figure 2.35 shows the velocity–time graph for a vertically bouncing ball. The ball is released at A and strikes 
the ground at B. The ball leaves the ground at D and reaches its maximum height at E. The eff ects of air 
resistance can be neglected.

Figure 2.35 For End-of-chapter Question 7. 

a State:
i why the velocity at D is negative [1]
ii why the gradient of the line AB is the same as the gradient of line DE [1]
iii what is represented by the area between the line AB and the time axis [1]
iv why the area of triangle ABC is greater than the area of triangle CDE. [1]

b The ball is dropped from rest from an initial height of 1.2 m. Aft er hitting the ground the ball rebounds 
to a height of 0.80 m. The ball is in contact with the ground between B and D for a time of 0.16 s.

 Using the acceleration of free fall, calculate:
i the speed of the ball immediately before hitting the ground [2]
ii the speed of the ball immediately aft er hitting the ground [2]
iii the acceleration of the ball while it is in contact with the ground. State the direction of this acceleration. [3]

8 A student measures the speed v of a trolley as it moves down a slope. The variation of v with time t is shown 
in the graph in Figure 2.36.

Figure 2.36 For End-of-chapter Question 8. 

a Use the graph to find the acceleration of the trolley when t  = 0.7 s. [2]
b State how the acceleration of the trolley varies between t  = 0 and t  = 1.0 s. Explain your answer by 

reference to the graph. [3]
c Determine the distance travelled by the trolley between t  = 0.6 and t  = 0.8 s. [3]
d The student obtained the readings for v using a motion sensor. The readings may have random 

errors and systematic errors. Explain how these two types of error aff ect the velocity–time graph. [2]
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 9 A car driver is travelling at speed v on a straight road. He comes over the top of a hill to find a fallen tree on 
the road ahead. He immediately brakes hard but travels a distance of 60 m at speed v before the brakes 
are applied. The skid marks left  on the road by the wheels of the car are of length 140 m (Figure 2.37). 
The police investigate whether the driver was speeding and establish that the car decelerates at 2.0 m s−2 
during the skid.

Figure 2.37 For End-of-chapter Question 9. 

a Determine the initial speed v of the car before the brakes are applied. [2]
b Determine the time taken between the driver coming over the top of the hill and applying the brakes. 

Suggest whether this shows whether the driver was alert to the danger. [2]
c The speed limit on the road is 100 km/h. Determine whether the driver was breaking the speed limit. [2]

 10 A hot-air balloon rises vertically. At time t = 0, a ball is released from the balloon. Figure 2.38 shows the 
variation of the ball’s velocity v with t. The ball hits the ground at t  = 4.1 s.

Figure 2.38 For End-of-chapter Question 10. 

a Explain how the graph shows that the acceleration of the ball is constant. [1]
b Use the graph to:

i determine the time at which the ball reaches its highest point [1]
ii show that the ball rises for a further 12 m between release and its highest point [2]
iii determine the distance between the highest point reached by the ball and the ground. [2]

c The equation relating v and t is v  = 15 − 9.81t. Explain the significance in the equation of:
i the number 15 [1]
ii the negative sign. [1]

top of hill
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skid marks

140 m

–20

–10

0

10

20

v / m s–1

1 2 3 4 t / s
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11 An aeroplane is travelling horizontally at a speed of 80 m s−1 and drops a crate of emergency supplies 
(Figure 2.39). To avoid damage, the maximum vertical speed of the crate on landing is 20 m s−1. 
You may assume air resistance is negligible.

Figure 2.39 For End-of-chapter Question 11.

a Calculate the maximum height of the aeroplane when the crate is dropped. [2]
b Calculate the time taken for the crate to reach the ground from this height. [2]
c The aeroplane is travelling at the maximum permitted height. Calculate the horizontal distance travelled 

by the crate aft er it is released from the aeroplane. [1]

80 m s–1
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Learning outcomes
You should be able to:

■■ state Newton’s laws of motion
■■ identify the forces acting on a body in diff erent situations
■■ describe how the motion of a body is aff ected by the 

forces acting on it
■■ solve problems using F = ma
■■ relate derived units to base units in the SI system

Chapter 3:
Dynamics – 
explaining motion
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Force and acceleration
If you have ever flown in an aeroplane you will know 
how the back of the seat pushes you forwards when 
the aeroplane accelerates down the runway (Figure 
3.1). The pilot must control many forces on the 
aeroplane to ensure a successful take-off.

In Chapters 1 and 2 we saw how motion can 
be described in terms of displacement, velocity, 
acceleration and so on. This is known as kinematics. 
Now we are going to look at how we can explain how 
an object moves in terms of the forces which change 
its motion. This is known as dynamics.

In this example we have F = 20 000 N and m = 10 000 kg, 
and so:

a  =  F
m

  =  10 000
10 000

  = 2 m s−2

In Figure 3.2b, the train is decelerating as it comes into a 
station. Its acceleration is −3.0 m s−2. What force must be 
provided by the braking system of the train?

F = ma = 10 000 × −3 = −30 000 N
The minus sign shows that the force must act towards 
the right in the diagram, in the opposite direction to the 
motion of the train.

Force, mass and acceleration
The equation we used above, F = ma, is a simplified version 
of Newton’s second law of motion.

For a body of constant mass, its acceleration is directly 
proportional to the resultant force applied to it.

An alternative form of Newton’s second law is given in 
Chapter 6 when you have studied momentum. Since 
Newton’s second law holds for objects that have a constant 
mass, this equation can be applied to a train whose mass 
remains constant during its journey. The equation a = F

m
 

relates acceleration, resultant force and mass. In  
particular, it shows that the bigger the force, the greater 
the acceleration it produces. You will probably feel that 
this is an unsurprising result. For a given object, the 
acceleration is directly proportional to the resultant force:

a  ∝ F

Calculating the acceleration
Figure 3.2a shows how we represent the force which 
the motors on a train provide to cause it to accelerate. 
The resultant force is represented by a green arrow. The 
direction of the arrow shows the direction of the resultant 
force. The magnitude (size) of the resultant force of 
20 000 N is also shown.

Figure 3.1  An aircraft takes off – the force provided by the 
engines causes the aircraft to accelerate. 

direction of acceleration a

F = 20 000 N

a

direction of acceleration ab
a = –3 m s–2

mass = 10 000 kg

direction of force F

Figure 3.2  A force is needed to make the train a accelerate, 
and b decelerate.

To calculate the acceleration a of the train produced by 
the resultant force F, we must also know the train’s mass m 
(Table 3.1). These quantities are related by:

a = F
m

  or  F = ma

Quantity Symbol Unit
resultant force F N (newtons)

mass m kg (kilograms)

acceleration a m s−2 (metres per second squared)

Table 3.1  The quantities related by F = ma.
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The equation also shows that the acceleration produced 
by a force depends on the mass of the object. The mass of 
an object is a measure of its inertia, or its ability to resist 
any change in its motion. The greater the mass, the smaller 
the acceleration which results. If you push your hardest 
against a small car (which has a small mass), you will have 
a greater effect than if you push against a more massive 
car (Figure 3.3). So, for a constant force, the acceleration is 
inversely proportional to the mass:

a  ∝ 1
m

The train driver knows that, when the train is full during 
the rush hour, it has a smaller acceleration. This is because 
its mass is greater when it is full of people. Similarly, 
it is more difficult to stop the train once it is moving. 
The brakes must be applied earlier to avoid the train 
overshooting the platform at the station.

mass m = 700 kg mass m = 2600 kg

F F

Figure 3.3  It is easier to make a small mass accelerate than a 
large mass. 

1	 A cyclist of mass 60 kg rides a bicycle of mass 20 kg. 
When starting off, the cyclist provides a force of 
200 N. Calculate the initial acceleration.

	 Step 1  This is a straightforward example. First, we 
must calculate the combined mass m of the bicycle 
and its rider:
m  =  20 +  60 = 80 kg

	 We are given the force F:
force causing acceleration F  =  200 N

	 Step 2  Substituting these values gives:

a  =  
F
m

  =  
200
80   = 2.5 m s−2

	 So the cyclist’s acceleration is 2.5 m s−2.

2	 A car of mass 500 kg is travelling at 20 m s−1. The driver 
sees a red traffic light ahead, and slows to a halt in 
10 s. Calculate the braking force provided by the car.

	 Step 1  In this example, we must first calculate the 
acceleration required. The car’s final velocity is 
0 m s−1, so its change in velocity Δv = 0 − 20 = −20 m s−1

	acceleration a  =  
change in velocity

time taken  

	 =  
∆v
∆t

  =  
–20
10   = –2 ms–2

	 Step 2  To calculate the force, we use:
F  =  ma  =  500 × −2  =  −1000 N

	 So the brakes must provide a force of 1000 N. (The 
minus sign shows a force decreasing the velocity of 
the car.)

1	 Calculate the force needed to give a car of mass 
800 kg an acceleration of 2.0 m s−2.

2	 A rocket has a mass of 5000 kg. At a particular 
instant, the resultant force acting on the rocket is 
200 000 N. Calculate its acceleration.

3	 (In this question, you will need to make use of  
the equations of motion which you studied in 
Chapter 2.) A motorcyclist of mass 60 kg rides a 
bike of mass 40 kg. As she sets off from the lights, 
the forward force on the bike is 200 N. Assuming 
the resultant force on the bike remains constant, 
calculate the bike’s velocity after 5.0 s.

Understanding SI units
Any quantity that we measure or calculate consists of a 
value and a unit. In physics, we mostly use units from the 
SI system. These units are all defined with extreme care, 
and for a good reason. In science and engineering, every 
measurement must be made on the same basis, so that 
measurements obtained in different laboratories can be 
compared. This is important for commercial reasons, too. 
Suppose an engineering firm in Taiwan is asked to produce 
a small part for the engine of a car which is to be assembled 
in India. The dimensions are given in millimetres and the 
part must be made with an accuracy of a tiny fraction of 
a millimetre. All concerned must know that the part will 
fit correctly – it wouldn’t be acceptable to use a different 
millimetre scale in Taiwan and India.

Engineering measurements, as well as many other 
technical measurements, are made using SI units to 
ensure that customers get what they expected (and can 
complain if they don’t). So governments around the 
world have set up standards laboratories to ensure that 
measuring instruments are as accurate as is required – 
scales weigh correctly, police speed cameras give reliable 
measurements, and so on. (Other, non-SI, units such as the 
foot, pound or hour, are defined in terms of SI units.)

QUESTIONS

WORKED EXAMPLES
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Other SI units
Using only seven base units means that only this number 
of quantities have to be defined with great precision. There 
would be confusion and possible contradiction if more 
units were also defined. For example, if the density of water 
were defined as exactly 1 g cm−3, then 1000 cm3 of a sample 
of water would have a mass of exactly 1 kg. However, it is 
unlikely that the mass of this volume of water would equal 
exactly the mass of the standard kilogram. The standard 
kilogram, which is kept in France, is the one standard from 
which all masses can ultimately be measured.

All other units can be derived from the base units. This 
is done using the definition of the quantity. For example, 
speed is defined as  distance

time  
, and so the base units of 

speed in the SI system are m s−1.
Since the defining equation for force is F  = ma, the base 

units for force are kg m s−2.
Equations that relate different quantities must have the 

same base units on each side of the equation. If this does 
not happen the equation must be wrong.

When each term in an equation has the same base units 
the equation is said to be homogeneous.

Base units, derived units
The metre, kilogram and second are three of the seven SI 
base units. These are defined with great precision so that 
every standards laboratory can reproduce them correctly.

Other units, such as units of speed (m s−1) and 
acceleration (m s−2) are known as derived units because 
they are combinations of base units. Some derived units, 
such as the newton and the joule, have special names 
which are more convenient to use than giving them in 
terms of base units. The definition of the newton will show 
you how this works.

Defining the newton
Isaac Newton (1642–1727) played a significant part 
in developing the scientific idea of force. Building on 
Galileo’s earlier thinking, he explained the relationship 
between force, mass and acceleration, which we now write 
as F = ma. For this reason, the SI unit of force is named 
after him.

We can use the equation F = ma to define the newton (N).

One newton is the force that will give a 1 kg mass an 
acceleration of 1 m s−2 in the direction of the force.
1 N = 1 kg × 1 m s−2  or  1 N = 1 kg m s−2

The seven base units
In mechanics (the study of forces and motion), the units 
we use are based on three base units: the metre, kilogram 
and second. As we move into studying electricity, we will 
need to add another base unit, the ampere. Heat requires 
another base unit, the kelvin (the unit of temperature).

Table 3.2 shows the seven base units of the SI system. 
Remember that all other units can be derived from these 
seven. The equations that relate them are the equations 
that you will learn as you go along (just as F = ma relates 
the newton to the kilogram, metre and second). The unit 
of luminous intensity is not part of the A/AS course.

Base unit Symbol Base unit
length x, l, s etc. m (metre)

mass m kg (kilogram)

time t s (second)

electric current I A (ampere)

thermodynamic temperature T K (kelvin)

amount of substance n mol (mole)

luminous intensity I cd (candela)

Table 3.2  SI base quantities and units. In this course, you will 
learn about all of these except the candela.

4	 The pull of the Earth’s gravity on an apple (its 
weight) is about 1 newton. We could devise a new 
international system of units by defining our unit 
of force as the weight of an apple. State as many 
reasons as you can why this would not be a very 
useful definition.

5	 Determine the base units of:

a	 pressure (  = 
force
area  )

b	 energy ( = force × distance )

c	 density ( = 
mass

volume )

6	 Use base units to prove that the following 
equations are homogeneous.
a	 pressure  

  = density × acceleration due to gravity × depth
b	 distance travelled  

  = initial speed × time +   12 acceleration × time2  
� (s = ut + 1

2  at2)

QUESTIONS

QUESTION
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The pull of gravity
Now we need to consider some specifi c forces – such as 
weight and friction.

When Isaac Newton was confi ned to his rural home 
to avoid the plague which was rampant in other parts of 
England, he is said to have noticed an apple fall to the 
ground. From this, he developed his theory of gravity 
which relates the motion of falling objects here on Earth to 
the motion of the Moon around the Earth, and the planets 
around the Sun.

Th e force which caused the apple to accelerate was the 
pull of the Earth’s gravity. Another name for this force is the 
weight of the apple. Th e force is shown as an arrow, pulling 
vertically downwards on the apple (Figure 3.4). It is usual 
to show the arrow coming from the centre of the apple – 
its centre of gravity. Th e centre of gravity of an object is 
defi ned as the point where its entire weight appears to act.

Prefixes
Each unit in the SI system can have multiples and sub-
multiples to avoid using very high or low numbers. For 
example 1 millimetre (mm) is one thousandth of a metre 
and 1 micrometre (µm) is one millionth of a metre.

Th e prefi x comes before the unit. In the unit mm, the 
fi rst m is the prefi x milli and the second m is the unit 
metre. You will need to recognise a number of prefi xes for 
the A/AS course, as shown in Table 3.3.

Multiples Sub-multiples
Multiple Prefix Symbol Multiple Prefix Symbol 
103 kilo k 10−1 deci d

106 mega M 10−2 centi c

109 giga G 10−3 mill m

1012 tera T 10−6 micro µ

1015 peta P 10−9 nano n

10−12 pico p

Table 3.3 Multiples and sub-multiples. 

You must take care when using prefi xes.
■■ Squaring or cubing prefixes – for example:

 1 cm = 10 −2 m
 so 1 cm2 = (10 −2 m)2 = 10 −4 m2

 and 1 cm3 = (10 −2 m)3 = 10 −6 m3.
■■ Writing units – for example, you must leave a small space 

between each unit when writing a speed such as 3 m s−1, 
because if you write it as 3 ms−1 it would mean 
3 millisecond−1.

7 Find the area of one page of this book in cm2 and 
then convert your value to m2.

8 Write down in powers of ten the values of the 
following quantities:
a 60 pA
b 500 MW
c 20 000 mm

3 It is suggested that the time T for one oscillation of 
a swinging pendulum is given by the equation 
T 2 = 4π2(l/g) where l is the length of the pendulum 
and g is the acceleration due to gravity. Show that 
this equation is homogeneous.

 For the equation to be homogeneous, the term on 
the left -hand side must have the same base units as 
all the terms on the right-hand side.

 Step 1 The base unit of time T is s. The base unit of 
the left -hand side of the equation is therefore s2.

 Step 2 The base unit of l is m. The base units of g are 
m s−2. Therefore the base unit of the right-hand side is 

 
m

(m s−2) = s2. (Notice that the constant 4π2 has no 

 units.)

 Since the base units on the left -hand side of the 
equation are the same as those on the right, the 
equation is homogeneous.

4 The density of water is 1.0 g cm−3. Calculate this value 
in kg m−3.

 Step 1 Find the conversions for the units:
1 g = 1 × 10−3 kg
1 cm3 = 1 × 10−6 m3

 Step 2 Use these in the value for the density of water:

 1.0 g cm−3 =  
1.0 × 1 × 10−3

1 × 10−6

 = 1.0 × 103 kg m−3

weight = mg

Figure 3.4 The weight of an object is a 
force caused by the Earth’s gravity. It acts 
vertically down on the object. 

QUESTIONSWORKED EXAMPLE

WORKED EXAMPLE
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On the Moon
The Moon is smaller and has less mass than the Earth, and 
so its gravity is weaker. If you were to drop a stone on the 
Moon, it would have a smaller acceleration. Your hand is 
about 1 m above ground level; a stone takes about 0.45 s to 
fall through this distance on the Earth, but about 1.1 s on 
the surface of the Moon. The acceleration of free fall on the 
Moon is about one-sixth of that on the Earth:

gMoon = 1.6 m s−2

It follows that objects weigh less on the Moon than on the 
Earth. They are not completely weightless, because the 
Moon’s gravity is not zero.

Mass and weight
We have now considered two related quantities, mass and 
weight. It is important to distinguish carefully between 
these (Table 3.4).

If your moon-buggy breaks down (Figure 3.5), it will 
be no easier to get it moving on the Moon than on the 
Earth. This is because its mass does not change, because it 
is made from just the same atoms and molecules wherever 
it is. From F = ma, it follows that if m doesn’t change, you 
will need the same force F to start it moving.

However, your moon-buggy will be easier to lift on the 
Moon, because its weight will be less. From W = mg, since 
g is less on the Moon, it has a smaller weight than when on 
the Earth.

Large and small
A large rock has a greater weight than a small rock, but if 
you push both rocks over a cliff at the same time, they will 
fall at the same rate. In other words, they have the same 
acceleration, regardless of their mass. This is a surprising 
result. Common sense may suggest that a heavier object 
will fall faster than a lighter one. It is said that Galileo 
dropped a large cannon ball and a small cannon ball from 
the top of the Leaning Tower of Pisa in Italy, and showed 
that they landed simultaneously. He may never actually 
have done this, but the story illustrates that the result 
is not intuitively obvious – if everyone thought that the 
two cannon balls would accelerate at the same rate, there 
would not have been any experiment or story.

In fact, we are used to lighter objects falling more 
slowly than heavy ones. A feather drifts down to the floor, 
while a stone falls quickly. However, we are being misled 
by the presence of air resistance. The force of air resistance 
has a large effect on the falling feather, and almost no 
effect on the falling stone. When astronauts visited the 
Moon (where there is virtually no atmosphere and so no 
air resistance), they were able to show that a feather and a 
stone fell side-by-side to the ground.

As we saw in Chapter 2, an object falling freely close 
to the Earth’s surface has an acceleration of roughly 
9.81 m s−2, the acceleration of free fall g.

We can find the force causing this acceleration using  
F = ma. This force is the object’s weight. Hence the  
weight W of an object is given by:

weight = mass × acceleration of free fall
or

W = mg

Gravitational field strength
Here is another way to think about the significance 
of g. This quantity indicates how strong gravity is at a 
particular place. The Earth’s gravitational field is stronger 
than the Moon’s. On the Earth’s surface, gravity gives an 
acceleration of free fall of about 9.81 m s−2. On the Moon, 
gravity is weaker; it only gives an acceleration of free 
fall of about 1.6 m s−2. So g indicates the strength of the 
gravitational field at a particular place:

g = gravitational field strength
and

weight = mass × gravitational field strength
(Gravitational field strength has units of N kg−1. This unit 
is equivalent to m s−2.)

9	 Estimate the mass and weight of each of the 
following at the surface of the Earth:
a	 a kilogram of potatoes
b	 this book
c	 an average student
d	 a mouse
e	 a 40-tonne truck.

	 (For estimates, use g = 10 m s−2; 1 tonne = 1000 kg.)

Quantity Symbol Unit Comment
mass m kg this does not vary from place to 

place

weight mg N this a force – it depends on the 
strength of gravity

Table 3.4  Distinguishing between mass and weight.

QUESTION
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your push on the bicycle pedals, the force of the car engine, 
the push of your foot. Without the force, the moving object 
comes to a halt. So what conclusion might we draw?

A moving object needs a force to keep it moving.
Th is might seem a sensible conclusion to draw, but it is 

wrong. We have not thought about all the forces involved. 
Th e missing force is friction.

In each example above, friction (or air resistance) 
makes the object slow down and stop when there is no 
force pushing or pulling it forwards. For example, if you 
stop pedalling your cycle, air resistance will slow you 
down. Th ere is also friction at the axles of the wheels, and 
this too will slow you down. If you could lubricate your 
axles and cycle in a vacuum, you could travel along at a 
steady speed for ever, without pedalling!

In the 17th century, astronomers began to use 
telescopes to observe the night sky. Th ey saw that objects 
such as the planets could move freely through space. Th ey 
simply kept on moving, without anything providing a 
force to push them. Galileo came to the conclusion that 
this was the natural motion of objects.

■■ An object at rest will stay at rest, unless a force causes it to 
start moving.

■■ A moving object will continue to move at a steady speed in 
a straight line, unless a force acts on it.

So objects move with a constant velocity, unless a force 
acts on them. (Being stationary is simply a particular 
case of this, where the velocity is zero.) Nowadays it is 
much easier to appreciate this law of motion, because we 
have more experience of objects moving with little or 
no friction – roller-skates with low-friction bearings, ice 
skates, and spacecraft  in empty space. In Galileo’s day, 
people’s everyday experience was of dragging things along 
the ground, or pulling things on carts with high-friction 
axles. Before Galileo, the orthodox scientifi c idea was that 
a force must act all the time to keep an object moving – 
this had been handed down from the time of the ancient 
Greek philosopher Aristotle. So it was a great achievement 
when scientists were able to develop a picture of a world 
without friction.

The idea of inertia
Th e tendency of a moving object to carry on moving is 
sometimes known as inertia.

■■ An object with a large mass is diff icult to stop moving – think 
about catching a cricket ball, compared with a tennis ball.

■■ Similarly, a stationary object with a large mass is diff icult to 
start moving – think about pushing a car to get it started.

■■ It is diff icult to make a massive object change direction – 
think about the way a fully laden supermarket trolley tries 
to keep moving in a straight line.

Mass and inertia
It took a long time for scientists to develop correct ideas 
about forces and motion. We will start by thinking about 
some wrong ideas, and then consider why Galileo, Newton 
and others decided new ideas were needed.

Observations and ideas
Here are some observations to think about:

■■ The large tree trunk shown in Figure 3.6 is being dragged 
from a forest. The elephant provides the force needed to 
pull it along. If the elephant stops pulling, the tree trunk will 
stop moving.

■■ A horse is pulling a cart. If the horse stops pulling, the cart 
soon stops.

■■ You are riding a bicycle. If you stop pedalling, the bicycle will 
come to a halt.

■■ You are driving along the road. You must keep your foot 
on the accelerator pedal, otherwise the car will not keep 
moving.

■■ You kick a football. The ball rolls along the ground and 
gradually stops.

In each of these cases, there is a force which makes 
something move – the pull of the elephant or the horse, 

Figure 3.5 The mass 
of a moon-buggy 
is the same on the 
Moon as on the 
Earth, but its weight 
is smaller.

Figure 3.6 An elephant provides the force needed to drag this 
tree from the forest. 
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But why can’t they go any faster? Why can’t a car driver 
keep pressing on the accelerator pedal, and simply go 
faster and faster?

To answer this, we have to think about the two forces 
mentioned above: air resistance and the forward thrust 
(force) of the engine. Th e vehicle will accelerate so long as 
the thrust is greater than the air resistance. When the two 
forces are equal, the resultant force on the vehicle is zero, 
and the vehicle moves at a steady velocity.

Balanced and unbalanced forces
If an object has two or more forces acting on it, we have to 
consider whether or not they are ‘balanced’ (Figure 3.8). 
Forces on an object are balanced when the resultant force 
on the object is zero. Th e object will either remain at rest 
or have a constant velocity.

We can calculate the resultant force by adding up two 
(or more) forces which act in the same straight line. We 
must take account of the direction of each force. In the 
examples in Figure 3.8, forces to the right are positive and 
forces to the left  are negative.

When a car travels slowly, it encounters little air 
resistance. However, the faster it goes, the more air it has 
to push out of the way each second, and so the greater 

All of these examples suggest another way to think of an 
object’s mass; it is a measure of its inertia – how diffi  cult 
it is to change the object’s motion. Uniform motion is 
the natural state of motion of an object. Here, uniform 
motion means ‘moving with constant velocity’ or ‘moving 
at a steady speed in a straight line’. Now we can summarise 
these fi ndings as Newton’s fi rst law of motion.

An object will remain at rest or in a state of uniform 
motion unless it is acted on by a resultant force.

In fact, this is already contained in the simple equation 
we have been using to calculate acceleration, F = ma. If no 
resultant force acts on an object (F = 0), it will not accelerate 
(a = 0). Th e object will either remain stationary or it will 
continue to travel at a constant velocity. If we rewrite the 
equation as a = F

m 
, we can see that the greater the mass m, 

the smaller the acceleration a produced by a force F.

 10 Use the idea of inertia to explain why some large 
cars have power-assisted brakes.

 11 A car crashes head-on into a brick wall. Use the 
idea of inertia to explain why the driver is more 
likely to come out through the windscreen if he or 
she is not wearing a seat belt.

Top speed
Th e vehicle shown in Figure 3.7 is capable of speeds as 
high as 760 mph, greater than the speed of sound. Its 
streamlined shape is designed to cut down air resistance 
and its jet engines provide a strong forward force to 
accelerate it up to top speed. All vehicles have a top speed. 

Two equal forces acting
in opposite directions
cancel each other out. 
We say they are balanced. 
The car will continue to
move at a steady velocity 
in a straight line.
    resultant force = 0 N

300 N
300 N

a

These two forces are 
unequal, so they do not
cancel out. They are 
unbalanced. The car will
accelerate.
    resultant force
         = 400 N – 300
         = 100 N to the right

400 N
300 N

b

Again the forces are 
unbalanced. This time,
the car will slow down or
decelerate.
    resultant force
         = 400 N – 300 N
         = 100 N to the le�

200 N
300 N

c
Figure 3.7 The Thrust SSC rocket car broke the world land-
speed record in 1997. It achieved a top speed of 763 mph (just 
over 340 m s−1) over a distance of 1 mile (1.6 km). Figure 3.8 Balanced and unbalanced forces. 

QUESTIONS
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so their terminal velocity is quite low. Insects can be swept 
up several kilometres into the atmosphere by rising air 
streams. Later, they fall back to Earth uninjured. It is said 
that mice can survive a fall from a high building for the 
same reason.

Moving through fluids
Air resistance is just one example of the resistive or 
viscous forces which objects experience when they move 
through a fluid – a liquid or a gas. If you have ever run 
down the beach and into the sea, or tried to wade quickly 
through the water of a swimming pool, you will have 
experienced the force of drag. The deeper the water gets, 
the more it resists your movement and the harder you have 
to work to make progress through it. In deep water, it is 
easier to swim than to wade.

You can observe the effect of drag on a falling object if 
you drop a key or a coin into the deep end of a swimming 
pool. For the first few centimetres, it speeds up, but for the 
remainder of its fall, it has a steady speed. (If it fell through 
the same distance in air, it would accelerate all the way.) 
The drag of water means that the falling object reaches its 
terminal velocity very soon after it is released. Compare 
this with a skydiver, who has to fall hundreds of metres 
before reaching terminal velocity.

Moving through air
We rarely experience drag in air. This is because air is 
much less dense than water; its density is roughly 1

800 that 
of water. At typical walking speed, we do not notice the 
effects of drag. However, if you want to move faster, they 
can be important. Racing cyclists, like the one shown in 
Figure 3.11, wear tight-fitting clothing and streamlined 

the air resistance. Eventually the backward force of air 
resistance equals the forward force provided between the 
tyres and the road, and the forces on the car are balanced. 
It can go no faster – it has reached its top speed.

Free fall
Skydivers (Figure 3.9) are rather like cars – at first, they 
accelerate freely. At the start of the fall, the only force 
acting on the diver is his or her weight. The acceleration of 
the diver at the start must therefore be g. Then increasing 
air resistance opposes their fall and their acceleration 
decreases. Eventually they reach a maximum velocity, 
known as the terminal velocity. At the terminal velocity 
the air resistance is equal to the weight. The terminal 
velocity is approximately 120 miles per hour (about 
50 m s−1), but it depends on the diver’s weight and 
orientation. Head-first is fastest.

Ve
lo

ci
ty

Time0
0

Figure 3.9  A skydiver falling freely.

Figure 3.10  The velocity of a parachutist varies during a 
descent. The force arrows show weight (downwards) and air 
resistance (upwards).

The idea of a parachute is to greatly increase the air 
resistance. Then terminal velocity is reduced, and the 
parachutist can land safely. Figure 3.10 shows how a 
parachutist’s velocity might change during descent.

Terminal velocity depends on the weight and surface 
area of the object. For insects, air resistance is much 
greater relative to their weight than for a human being and 

Figure 3.11  A racing cyclist adopts a posture which helps to 
reduce drag. Clothing, helmet and even the cycle itself are 
designed to allow them to go as fast as possible. 
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helmets. Other athletes may take advantage of the drag 
of air. The runner in Figure 3.12 is undergoing resistance 
training. The parachute provides a backward force against 
which his muscles must work. This should help to develop 
his muscles.

Figure 3.12  A runner making use of air resistance to build up 
his muscles.

	12	 If you drop a large stone and a small stone from 
the top of a tall building, which one will reach the 
ground first? Explain your answer.

	13	 In a race, downhill skiers want to travel as quickly 
as possible. They are always looking for ways to 
increase their top speed. Explain how they might 
do this. Think about:
a	 their skis
b	 their clothing
c	 their muscles
d	 the slope.

	14	 Skydivers jump from a plane at intervals of a few 
seconds. If two divers wish to join up as they fall, 
the second must catch up with the first.
a	 If one diver is more massive than the other, 

which should jump first? Use the idea of forces 
and terminal velocity to explain your answer.

b	 If both divers are equally massive, suggest 
what the second might do to catch up with 
the first.

5	 A car of mass 500 kg is travelling along a flat road. 
The forward force provided between the car tyres 
and the road is 300 N and the air resistance is 200 N. 
Calculate the acceleration of the car.

	 Step 1  Start by drawing a diagram of the car, 
showing the forces mentioned in the question 
(Figure 3.13). Calculate the resultant force on the car; 
the force to the right is taken as positive:
resultant force = 300 − 200 = 100 N

	 Step 2  Now use F =  ma to calculate the car’s 
acceleration:

a =  
F
m 

 =  
100
500 

 =  0.20 m s−2

	 So the car’s acceleration is 0.20 m s−2.

6	 The maximum forward force a car can provide 
is 500 N. The air resistance F which the car 
experiences depends on its speed according to  
F = 0.2v  2, where v is the speed in m s−1. Determine 
the top speed of the car.

	 Step 1  From the equation F = 0.2v  2, you can see 
that the air resistance increases as the car goes 
faster. Top speed is reached when the forward 
force equals the air resistance. So, at top speed:
500 = 0.2v 2

	 Step 2  Rearranging gives:

	v2 =  
500
0.2   = 2500

	 v = 50 m s−1

	 So the car’s top speed is 50 m s−1 (this is about 
180 km h−1).

300 N
200 N

Figure 3.13  The forces on an accelerating car.

QUESTIONS

WORKED EXAMPLES
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Diagram Force Important situations
Pushes and pulls. You can make an object accelerate by pushing and 
pulling it. Your force is shown by an arrow pushing (or pulling) the object.

The engine of a car provides a force to push backwards on the road. 
Frictional forces from the road on the tyre push the car forwards.

■■ pushing and pulling
■■ lifting
■■ force of car engine
■■ attraction and 

repulsion by magnets 
and by electric 
charges

Weight. This is the force of gravity acting on the object. It is usually shown 
by an arrow pointing vertically downwards from the object’s centre of 
gravity.

■■ any object in a 
gravitational field

■■ less on the Moon

Friction. This is the force which arises when two surfaces rub over one another. 
If an object is sliding along the ground, friction acts in the opposite direction to 
its motion. If an object is stationary, but tending to slide – perhaps because it is 
on a slope – the force of friction acts up the slope to stop it from sliding down. 
Friction always acts along a surface, never at an angle to it.

■■ pulling an object 
along the ground

■■ vehicles cornering or 
skidding

■■ sliding down a slope

Drag. This force is similar to friction. When an object moves through air, 
there is friction between it and the air. Also, the object has to push aside 
the air as it moves along. Together, these effects make up drag.

Similarly, when an object moves through a liquid, it experiences a drag 
force.

Drag acts to oppose the motion of an object; it acts in the opposite 
direction to the object’s velocity. It can be reduced by giving the object a 
streamlined shape.

■■ vehicles moving 
■■ aircraft flying
■■ parachuting
■■ objects falling 

through air or water
■■ ships sailing

Upthrust. Any object placed in a fluid such as water or air experiences 
an upwards force. This is what makes it possible for something to float in 
water.

Upthrust arises from the pressure which a fluid exerts on an object. 
The deeper you go, the greater the pressure. So there is more pressure on 
the lower surface of an object than on the upper surface, and this tends to 
push it upwards. If upthrust is greater than the object’s weight, it will float 
up to the surface.

■■ boats and icebergs 
floating

■■ people swimming
■■ divers surfacing
■■ a hot air balloon 

rising

Contact force. When you stand on the floor or sit on a chair, there is 
usually a force which pushes up against your weight, and which supports 
you so that you do not fall down. The contact force is sometimes known 
as the normal reaction of the floor or chair. (In this context, normal means 
‘perpendicular’.) 

The contact force always acts at right angles to the surface which 
produces it. The floor pushes straight upwards; if you lean against a wall, it 
pushes back against you horizontally.

■■ �standing on the 
ground

■■ one object sitting on 
top of another

■■ leaning against a wall
■■ one object bouncing 

off another

Tension. This is the force in a rope or string when it is stretched. If you pull 
on the ends of a string, it tends to stretch. The tension in the string pulls 
back against you. It tries to shorten the string.

Tension can also act in springs. If you stretch a spring, the tension pulls 
back to try to shorten the spring. If you squash (compress) the spring, the 
tension acts to expand the spring.

■■ pulling with a rope
■■ squashing or 

stretching a spring

Figure 3.14  Some important forces. 

Identifying forces
It is important to be able to identify the forces which act on an object. When we 
know what forces are acting, we can predict how it will move. Figure 3.14 shows 
some important forces, how they arise, and how we represent them in diagrams.

push pull

forward 
push on 
car

backward push
on road

weight

pull
friction

friction

drag

weight

upthrust
weight

upthrust

contact
force

contact
forces

tension
tension
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it is low. Molecules hit the top surface of the ball pushing 
down, but only a few more molecules push upwards on 
the bottom of the ball, so the resultant force upwards, or 
the upthrust is low. If the ball is falling, air resistance is 
greater than this small upthrust but both these forces are 
acting upwards on the ball.

Contact forces and upthrust
We will now think about the forces which act when two 
objects are in contact with each other. When two objects 
touch each other, each exerts a force on the other. These 
are called contact forces. For example, when you stand on 
the floor (Figure 3.15), your feet push downwards on the 
floor and the floor pushes back upwards on your feet. This 
is a vital force – the upward push of the floor prevents you 
from falling downwards under the pull of your weight.

	15	 Name these forces:
a	 the upward push of water on a submerged 

object
b	 the force which wears away two surfaces as 

they move over one another
c	 the force which pulled the apple off Isaac 

Newton’s tree
d	 the force which stops you falling through the 

floor
e	 the force in a string which is holding up an 

apple
f	 the force which makes it difficult to run 

through shallow water.

	16	 Draw a diagram to show the forces which act 
on a car as it travels along a level road at its top 
speed.

	17	 Imagine throwing a shuttlecock straight up 
in the air. Air resistance is more important for 
shuttlecocks than for a tennis ball. Air resistance 
always acts in the opposite direction to the 
velocity of an object.

		  Draw diagrams to show the two forces, weight 
and air resistance, acting on the shuttlecock:
a	 as it moves upwards
b	 as it falls back downwards.

Where do these contact forces come from? When you 
stand on the floor, the floor becomes slightly compressed. 
Its atoms are pushed slightly closer together, and the 
interatomic forces push back against the compressing 
force. At the same time, the atoms in your feet are also 
pushed together so that they push back in the opposite 
direction. (It is hard to see the compression of the floor 
when you stand on it, but if you stand on a soft material 
such as foam rubber or a mattress you will be able to see 
the compression clearly.)

You can see from Figure 3.15 that the two contact 
forces act in opposite directions. They are also equal in 
magnitude. As we will see shortly, this is a consequence of 
Newton’s third law of motion.

When an object is immersed in a fluid (a liquid or a 
gas), it experiences an upward force called upthrust. It is 
the upthrust of water which keeps a boat floating (Figure 
3.16) and the upthrust of air which lifts a hot air balloon 
upwards.

The upthrust of water on a boat can be thought of as 
the contact force of the water on the boat. It is caused by 
the pressure of the water pushing upwards on the boat. 
Pressure arises from the motion of the water molecules 
colliding with the boat and the net effect of all these 
collisions is an upward force.

An object in air, such as a ball, has a very small 
upthrust acting on it, because the density of the air around 

contact force 
of floor on foot

contact force 
of foot on floor

Figure 3.15  Equal and opposite contact forces act when you 
stand on the floor.

upthrust of water
on boat

weight of boat

Figure 3.16  Without sufficient upthrust from the water, the 
boat would sink.

QUESTIONS
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Newton’s third law of motion
For completeness, we should now consider Newton’s third 
law of motion. (There is more about this in Chapter 6.)

When two objects interact, each exerts a force on the 
other. Newton’s third law says that these forces are equal 
and opposite to each other:

When two bodies interact, the forces they exert on each 
other are equal in magnitude and opposite in direction.

(These two forces are sometimes described as action and 
reaction, but this is misleading as it sounds as though one 
force arises as a consequence of the other. In fact, the two 
forces appear at the same time and we can’t say that one 
caused the other.)

The two forces which make up a ‘Newton’s third law 
pair’ have the following characteristics:

■■ They act on different objects.
■■ They are equal in magnitude.
■■ They are opposite in direction.
■■ They are forces of the same type.

What does it mean to say that the forces are ‘of the same 
type’? We need to think about the type of interaction 
which causes the forces to appear.

■■ Two objects may attract each other because of the gravity 
of their masses – these are gravitational forces.

■■ Two objects may attract or repel because of their electrical 
charges – electrical forces.

■■ Two objects may touch – contact forces.
■■ Two objects may be attached by a string and pull on each 

other – tension forces.
■■ Two objects may attract or repel because of their magnetic 

fields – magnetic forces.

Figure 3.17 shows a person standing on the Earth’s surface. 
The two gravitational forces are a Newton’s third law pair, 
as are the two contact forces. Don’t be misled into thinking 
that the person’s weight and the contact force of the floor 
are a Newton’s third law pair. Although they are ‘equal and 
opposite’, they do not act on different objects and they are 
not of the same type.

gravitational force
(Earth on man)

contact force 
(Earth on man)

contact force
(man on Earth)

gravitational force 
(man on Earth)

Figure 3.17  For each of the forces that the Earth exerts on 
you, an equal and opposite force acts on the Earth. 

	18	 Describe one ‘Newton’s third law pair’ of forces 
involved in the following situations. In each case, 
state the object that each force acts on, the type 
of force and the direction of the force.
a	 You step on someone’s toe.
b	 A car hits a brick wall and comes to rest.
c	 A car slows down by applying the brakes.
d	 You throw a ball upwards into the air.

QUESTION
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Summary
■■ An object will remain at rest or in a state of uniform 

motion unless it is acted on by an external force. This 
is Newton’s first law of motion.

■■ For a body of constant mass, the acceleration is 
directly proportional to the resultant force applied to 
it. Resultant force F, mass m and acceleration a are 
related by the equation:

resultant force = mass × acceleration

F = ma

This is a form of Newton’s second law of motion.

■■ When two bodies interact, the forces they exert on 
each other are equal in magnitude and opposite in 
direction.  
This is Newton’s third law of motion.

■■ The acceleration produced by a force is in the same 
direction as the force. Where there are two or more 
forces, we must determine the resultant force.

■■ A newton (N) is the force required to give a mass of 
1 kg an acceleration of 1 m s−2 in the direction of the 
force.

■■ The greater the mass of an object, the more it resists 
changes in its motion. Mass is a measure of the 
object’s inertia.

■■ The weight of an object is a result of the pull of gravity 
on it:

weight = mass × acceleration of free fall (W = mg)

weight = mass × gravitational field strength

■■ An object falling freely under gravity has a constant 
acceleration provided the gravitational field strength 
is constant. However, fluid resistance (such as air 
resistance) reduces its acceleration. Terminal velocity 
is reached when the fluid resistance is equal to the 
weight of the object.



Chapter 3: Dynamics – explaining motion

51

End-of-chapter questions
1 When a golfer hits a ball his club is in contact with the ball for about 0.0005 s and the ball leaves the club 

with a speed of 70 m s−1. The mass of the ball is 46 g.
a Determine the mean accelerating force. [4]
b What mass, resting on the ball, would exert the same force as in a? [2]

2 The mass of a spacecraft  is 70 kg. As the spacecraft  takes off  from the Moon, the upwards force on the spacecraft  
caused by the engines is 500 N. The gravitational field strength on the Moon is 1.6 N kg−1.

 Determine:
a the weight of the spacecraft  on the Moon [2]
b the resultant force on the spacecraft  [2]
c the acceleration of the spacecraft . [2]

3 A metal ball is dropped into a tall cylinder of oil. The ball initially accelerates but soon reaches a terminal velocity.
a By considering the forces on the metal ball bearing, explain why it first accelerates but then reaches 

terminal velocity. [3]
b Describe how you would show that the metal ball reaches terminal velocity. [3]

4 Determine the speed in m s−1 of an object that travels:
a 3 µm in 5 ms [2]
b 6 km in 3 Ms [2]
c 8 pm in 4 ns. [2]

5 Figure 3.18 shows a man who is just supporting the weight of a box. Two of the forces acting are shown 
in the diagram. According to Newton’s third law, each of these forces is paired with another force.

Figure 3.18 For End-of-chapter Question 5. 

 For a the weight of the box and b the force of the ground on the man, state:
i the body that the other force acts upon [2]
ii the direction of the other force [2]
iii the type of force involved. [2]

20 kg

weight of box

force of
ground on
man
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 6 A car starts to move along a straight, level road. For the first 10 s, the driver maintains a constant 
acceleration of 1.5 m s−2. The mass of the car is 1.1 × 103 kg.
a Calculate the driving force provided by the wheels, when:

i the force opposing motion is negligible [1]
ii the total force opposing the motion of the car is 600 N. [1]

b Calculate the distance travelled by the car in the first 10 s. [2]

 7 Figure 3.19 shows the speed–time graphs for two falling balls.

Figure 3.19 For End-of-chapter Question 7.

a Determine the terminal velocity of the plastic ball. [1]
b Both balls are of the same size and shape but the metal ball has a greater mass. Explain, in terms 

of Newton’s laws of motion and the forces involved, why the plastic ball reaches a constant 
velocity but the metal ball does not. [3]

c Explain why both balls have the same initial acceleration. [2]

 8 A car of mass 1200 kg accelerates from rest to a speed of 8.0 m s−1 in a time of 2.0 s.
a Calculate the forward driving force acting on the car while it is accelerating. Assume that, at 

low speeds, all frictional forces are negligible. [2]
b At high speeds the resistive frictional force F produced by air on a body moving with velocity v is given 

by the equation F = bv 2, where b is a constant.
i Derive the base units of force in the SI system. [1]
ii Determine the base units of b in the SI system. [1]
iii The car continues with the same forward driving force and accelerates until it reaches a top speed 

of 50 m s−1. At this speed the resistive force is given by the equation F = bv 2. Determine the value 
of b for the car. [2]

iv Sketch a graph showing how the value of F  varies with v over the range 0 to 50 m s−1. Use your 
graph to describe what happens to the acceleration of the car during this time. [2]

 9 a  Explain what is meant by the mass of a body and the weight of a body. [3]
b State and explain one situation in which the weight of a body changes while its mass remains constant. [2]
c State the diff erence between the base units of mass and weight in the SI system. [2]

 10 a State Newton’s second law of motion. [2]
b When you jump from a wall on to the ground, it is advisable to bend your knees on landing.

i State how bending your knees aff ects the time it takes to stop when hitting the ground. [1]
ii Using Newton’s second law of motion, explain why it is sensible to bend your knees.  [2]
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Chapter 4:
Forces – vectors 
and moments

Learning outcomes
You should be able to:

■■ add two or more coplanar forces
■■ resolve a force into perpendicular components
■■ define and apply the moment of a force and the torque of 

a couple
■■ apply the principle of moments
■■ state the conditions for a body to be in equilibrium
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Sailing ahead
Force is a vector quantity. Sailors know a lot about the 
vector nature of forces. For example, they can sail ‘into 
the wind’. The sails of a yacht can be angled to provide 
a component of force in the forward direction and 
the boat can then sail at almost 45º to the wind. The 
boat tends to ‘heel over’ and the crew sit on the side 
of the boat to provide a turning eff ect in the opposite 
direction (Figure 4.1).

Th e combined eff ect of several forces is known as the 
resultant force. To see how to work out the resultant of 
two or more forces, we will start with a relatively simple 
example.

Two forces in a straight line
We saw some examples in Chapter 3 of two forces acting 
in a straight line. For example, a falling tennis ball may be 
acted on by two forces: its weight mg, downwards, and 
air resistance D, upwards (Figure 4.3). Th e resultant force 
is then:

resultant force = mg − D = 1.0 − 0.2 = 0.8 N
When adding two or more forces which act in a straight 
line, we have to take account of their directions. A force 
may be positive or negative; we adopt a sign convention to 
help us decide which is which.

If you apply a sign convention correctly, the sign of 
your fi nal answer will tell you the direction of the resultant 
force (and hence acceleration).

Combining forces
You should recall that a vector quantity has both 
magnitude and direction. An object may have two or more 
forces acting on it and, since these are vectors, we must use 
vector addition (Chapter 1) to fi nd their combined eff ect 
(their resultant).

Th ere are several forces acting on the car (Figure 4.2) as 
it struggles up the steep hill. Th ey are:

■■ its weight W (= mg)
■■ the contact force N of the road (its normal reaction)
■■ air resistance D
■■ the forward force F caused by friction between the car tyres 

and the road.

If we knew the magnitude and direction of each of these 
forces, we could work out their combined eff ect on the car. 
Will it accelerate up the hill? Or will it slide backwards 
down the hill? 

Figure 4.1 Sailing into the wind.

D

F
N

W

Figure 4.2 Four forces act on this car as it moves uphill. 

mg = 1.0 N

positive
direction

D = 0.2 N

Figure 4.3 Two forces on a falling tennis ball.
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Two forces at right angles
Figure 4.4 shows a shuttlecock falling on a windy day. 
There are two forces acting on the shuttlecock: its weight 
vertically downwards, and the horizontal push of the wind. 
(It helps if you draw the force arrows of different lengths, to 
show which force is greater.) We must add these two forces 
together to find the resultant force acting on the shuttlecock.

If you draw a scale drawing be careful to:

■■ state the scale used
■■ draw a large diagram to reduce the uncertainty.

Three or more forces
The spider shown in Figure 4.5 is hanging by a thread. It is 
blown sideways by the wind. The diagram shows the three 
forces acting on it:

■■ weight acting downwards
■■ the tension in the thread
■■ the push of the wind.

The diagram also shows how these can be added together. 
In this case, we arrive at an interesting result. Arrows are 
drawn to represent each of the three forces, end-to-end. 
The end of the third arrow coincides with the start of the 
first arrow, so the three arrows form a closed triangle. This 
tells us that the resultant force R on the spider is zero, that 
is, R = 0. The closed triangle in Figure 4.5 is known as a 
triangle of forces.

So there is no resultant force. The forces on the spider 
balance each other out, and we say that the spider is in 
equilibrium. If the wind blew a little harder, there would 
be an unbalanced force on the spider, and it would move 
off to the right.

We can use this idea in two ways:

■■ If we work out the resultant force on an object and find that 
it is zero, this tells us that the object is in equilibrium.

■■ If we know that an object is in equilibrium, we know that the 
forces on it must add up to zero. We can use this to work out 
the values of one or more unknown forces.

6.0 N

8.0 N

6.0 N

8.0 N
R

Direction
of travel θ

Figure 4.4  Two forces act on this shuttlecock as it travels 
through the air; the vector triangle shows how to find the 
resultant force.

push of wind

weight

tension

triangle of forces

tension in
thread

push of wind

weight

θ

Figure 4.5  Blowing in the wind – this spider is hanging in 
equilibrium. 

We add the forces by drawing two arrows, end-to-end, 
as shown on the right of Figure 4.4.

■■ First, a horizontal arrow is drawn to represent the 6.0 N push 
of the wind.

■■ Next, starting from the end of this arrow, we draw a second 
arrow, downwards, representing the weight of 8.0 N.

■■ Now we draw a line from the start of the first arrow to 
the end of the second arrow. This arrow represents the 
resultant force R, in both magnitude and direction.

The arrows are added by drawing them end-to-end; the 
end of the first arrow is the start of the second arrow. Now 
we can find the resultant force either by scale drawing or 
by calculation. In this case, we have a 3–4–5 right-angled 
triangle, so calculation is simple:

	 R2 = 6.02 + 8.02 = 36 + 64 = 100

	 R = 10 N

	tan θ = opp
adj

 = 8.0
6.0

 = 4
3

	 θ = tan−1 4
3

 ≈ 53°

So the resultant force is 10 N, at an angle of 53° below 
the horizontal. This is a reasonable answer; the weight 
is pulling the shuttlecock downwards and the wind is 
pushing it to the right. The angle is greater than 45° because 
the downward force is greater than the horizontal force.
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Components of vectors
Look back to Figure 4.5. The spider is in equilibrium, even 
though three forces are acting on it. We can think of the 
tension in the thread as having two effects:

■■ it is pulling upwards, to counteract the downward effect of 
gravity

■■ it is pulling to the left, to counteract the effect of the wind.

We can say that this force has two effects or components: 
an upwards (vertical) component and a sideways 
(horizontal) component. It is often useful to split up a 
vector quantity into components like this, just as we did 
with velocity in Chapter 2. The components are in two 
directions at right angles to each other, often horizontal 
and vertical. The process is called resolving the vector. 
Then we can think about the effects of each component 
separately; we say that the perpendicular components are 
independent of one another. Because the two components 
are at 90° to each other, a change in one will have no effect 
on the other. Figure 4.8 shows how to resolve a force F into 
its horizontal and vertical components. These are:

horizontal component of F, Fx = F cos  θ

vertical component of F, Fy = F sin  θ

1	 A parachutist weighs 1000 N. When she opens her 
parachute, it pulls upwards on her with a force of 
2000 N.
a	 Draw a diagram to show the forces acting on 

the parachutist.
b	 Calculate the resultant force acting on her.
c	 What effect will this force have on her?

2	 The ship shown in Figure 4.6 is travelling at a 
constant velocity.
a	 Is the ship in equilibrium (in other words, is the 

resultant force on the ship equal to zero)? How 
do you know?

b	 What is the upthrust U of the water?
c	 What is the drag D of the water?

3	 A stone is dropped into a fast-flowing stream. It 
does not fall vertically, because of the sideways 
push of the water (Figure 4.7).
a	 Calculate the resultant force on the stone.
b	 Is the stone in equilibrium?

weight W = 1000 kN

upthrust U

drag D

force of
engines
F = 50 kN

weight W = 2.5 N

upthrust U = 0.5 N

push of water
F = 1.5 N

Figure 4.6  For Question 2. The force D is the 
frictional drag of the water on the boat. Like air 
resistance, drag is always in the opposite direction to 
the object’s motion. 

Figure 4.7  For Question 3.

Fy = F sin θ 

Fx = F cos θ  

x

y

F

θ

Making use of components
When the trolley shown in Figure 4.9 is released, it 
accelerates down the ramp. This happens because of the 
weight of the trolley. The weight acts vertically downwards, 
although this by itself does not determine the resulting 
motion. However, the weight has a component which 
acts down the slope. By calculating the component of 
the trolley’s weight down the slope, we can determine its 
acceleration.

Figure 4.10 shows the forces acting on the trolley. To 
simplify the situation, we will assume there is no friction. 
The forces are:

■■ W, the weight of the trolley, which acts vertically downwards
■■ N, the contact force of the ramp, which acts at right angles 

to the ramp.

Figure 4.8  Resolving a vector into two components at right 
angles. 

QUESTIONS
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Does the contact force N help to accelerate the trolley 
down the ramp? To answer this, we must calculate its 
component down the slope. The angle between N and the 
slope is 90°. So:

component of N down the slope = N cos 90° = 0
The cosine of 90° is zero, and so N has no component 
down the slope. This shows why it is useful to think in 
terms of the components of forces; we don’t know the 
value of N, but, since it has no effect down the slope, we 
can ignore it.

(There’s no surprise about this result. The trolley runs 
down the slope because of the influence of its weight, not 
because it is pushed by the contact force N.)

Changing the slope
If the students in Figure 4.9 increase the slope of their 
ramp, the trolley will move down the ramp with greater 
acceleration. They have increased θ, and so the component 
of W down the slope will have increased.

Now we can work out the trolley’s acceleration. If the 
trolley’s mass is m, its weight is mg. So the force F making 
it accelerate down the slope is:

F = mg sin θ
Since from Newton’s second law for constant mass we 

have a = F
m

, the trolley’s acceleration a is given by:

a = mg sin θ
m

 = g sin θ

We could have arrived at this result simply by saying that 
the trolley’s acceleration would be the component of g 
down the slope (Figure 4.11). The steeper the slope, the 
greater the value of sin θ, and hence the greater the trolley’s 
acceleration.

You can see at once from the diagram that the forces 
cannot be balanced, since they do not act in the same 
straight line.

To find the component of W down the slope, we need 
to know the angle between W and the slope. The slope 
makes an angle θ with the horizontal, and from the 
diagram we can see that the angle between the weight and 
the ramp is (90° −  θ). Using the rule for calculating the 
component of a vector given above, we have:

component of W down the slope = W cos (90° − θ )  
	 = W sin  θ

(It is helpful to recall that cos (90° − θ ) = sin  θ; you can see 
this from Figure 4.10.)

Figure 4.9  These students are investigating the acceleration 
of a trolley down a sloping ramp. 

N

W

(90° – θ )

trolley

ramp

θ

component down
slope = g sin θ 

ramp

(90 – θ)

g

θ

Figure 4.10  A force diagram for a trolley on a ramp.

Figure 4.11  Resolving g down the ramp. 
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4	 The person in Figure 4.12 is pulling a large box 
using a rope. Use the idea of components of a 
force to explain why they are more likely to get the 
box to move if the rope is horizontal (as in a) than 
if it is sloping upwards (as in b).

6	 A child of mass 40 kg is on a water slide. The 
slide slopes down at 25° to the horizontal. The 
acceleration of free fall is 9.81 m s−2. Calculate the 
child’s acceleration down the slope:
a	 when there is no friction and the only force 

acting on the child is his weight
b	 if a frictional force of 80 N acts up the slope.

5	 A crate is sliding down a slope. The weight of the 
crate is 500 N. The slope makes an angle of 30° with 
the horizontal.
a	 Draw a diagram to show the situation. Include 

arrows to represent the weight of the crate  
and the contact force of the slope acting on  
the crate.

b	 Calculate the component of the weight down 
the slope.

c	 Explain why the contact force of the slope has 
no component down the slope.

d	 What third force might act to oppose the 
motion? In which direction would it act?

Solving problems by resolving forces
A force can be resolved into two components at 
right angles to each other; these can then be treated 
independently of one another. This idea can be used to 
solve problems, as illustrated in Worked example 1.

a b

Figure 4.12  Why is it easier to move the box with the 
rope horizontal? See Question 4. 

1	 A boy of mass 40 kg is on a waterslide which slopes 
at 30° to the horizontal. The frictional force up the 
slope is 120 N. Calculate the boy’s acceleration down 
the slope. Take the acceleration of free fall g to be 
9.81 m s−2.

	 Step 1  Draw a labelled diagram showing all the 
forces acting on the object of interest (Figure 4.13). 
This is known as a free-body force diagram. The 
forces are:
the boy’s weight W =  40 × 9.81 = 392 N
the frictional force up the slope F = 120 N
the contact force N at 90° to the slope.

	 Step 2  We are trying to find the resultant force on 
the boy which makes him accelerate down the slope. 
We resolve the forces down the slope, i.e. we find 
their components in that direction.
component of W down the slope = 392 × cos 60°  
	 = 196 N
component of F down the slope = −120 N 
(negative because F is directed up the slope)
component of N down the slope = 0 
(because it is at 90° to the slope)

	 It is convenient that N has no component down the 
slope, since we do not know the value of N.

	 Step 3  Calculate the resultant force on the boy: 

	 resultant force = 196 − 120 = 76 N

	 Step 4  Calculate his acceleration:

acceleration =  
resultant force

mass   =  
76
40  = 1.9 ms−2

	 So the boy’s acceleration down the slope is 1.9 m s−2. 
We could have arrived at the same result by resolving 
vertically and horizontally, but that would have led 
to two simultaneous equations from which we would 
have had to eliminate the unknown force N. It often 
helps to resolve forces at 90° to an unknown force.

N F

W30°

Figure 4.13  For Worked example 1. 

QUESTIONS

QUESTION

WORKED EXAMPLE
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Centre of gravity
We have weight because of the force of gravity of the 
Earth on us. Each part of our body – arms, legs, head, 
for example – experiences a force, caused by the force of 
gravity. However, it is much simpler to picture the overall 
effect of gravity as acting at a single point. This is our 
centre of gravity.

The centre of gravity of an object is defined as the point 
where all the weight of the object may be considered  
to act.

For a person standing upright, the centre of gravity is 
roughly in the middle of the body, behind the navel. 
For a sphere, it is at the centre. It is much easier to solve 
problems if we simply indicate an object’s weight by a 
single force acting at the centre of gravity, rather than a 
large number of forces acting on each part of the object. 
Figure 4.14 illustrates this point. The athlete performs a 
complicated manoeuvre. However, we can see that his 
centre of gravity follows a smooth, parabolic path through 
the air, just like the paths of projectiles we discussed in 
Chapter 2.

Figure 4.14  The dots indicate the athlete’s centre of gravity, 
which follows a smooth trajectory through the air. With his 
body curved like this, the athlete’s centre of gravity is actually 
outside his body, just below the small of his back. At no time is 
the whole of his body above the bar. 

BOX 4.1: Finding the centre of gravity

The centre of gravity of a thin sheet, or lamina, of 
cardboard or metal can be found by suspending it 
freely from two or three points (Figure 4.15).

Small holes are made round the edge of the 
irregularly shaped object. A pin is put through one 
of the holes and held firmly in a clamp and stand 
so the object can swing freely. A length of string is 
attached to the pin. The other end of the string has 
a heavy mass attached to it. This arrangement is 
called a plumb line.

The object will stop swinging when its centre of 
gravity is vertically below the point of suspension. A 
line is drawn on the object along the vertical string 
of the plumb line. The centre of gravity must lie on 
this line. To find the position of the centre of gravity, 
the process is repeated with the object suspended 
from different holes. The centre of gravity will be at 
the point of intersection of the lines drawn on the 
object.

plumb line

irregular object

plumb line suspended
from pin

Figure 4.15  The centre of gravity is located at the 
intersection of the lines.

The turning effect of a force
Forces can make things accelerate. They can do something 
else as well: they can make an object turn round. We say 
that they can have a turning effect. Figure 4.16 shows how 
to use a spanner to turn a nut.

To maximise the turning effect of his force, the 
operator pulls close to the end of the spanner, as far as 
possible from the pivot (the centre of the nut) and at 90º to 
the spanner.
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Figure 4.17b shows a slightly more complicated 
situation. F2 is pushing at an angle θ to the lever, rather 
than at 90°. This makes it have less turning effect. There 
are two ways to calculate the moment of the force.

Method 1
Draw a perpendicular line from the pivot to the line of the 
force. Find the distance x2. Calculate the moment of the 
force, F2 ×  x2. From the right-angled triangle, we can see 
that:

x2 = d sin θ
Hence:

moment of force = F2 × d sin θ  = F2d sin θ

Method 2
Calculate the component of F2 which is at 90° to the lever. 
This is F2 sin θ. Multiply this by d.

moment = F2 sin θ  × d
We get the same result as Method 1:

moment of force = F2d sin θ
Note that any force (such as the component F2 cos θ ) which 
passes through the pivot has no turning effect, because the 
distance from the pivot to the line of the force is zero.

Note also that we can calculate the moment of a force 
about any point, not just the pivot. However, in solving 
problems, it is often most convenient to take moments 
about the pivot as there is often an unknown force acting 
through the pivot (its contact force on the object).

Balanced or unbalanced?
We can use the idea of the moment of a force to solve two 
sorts of problem:

■■ We can check whether an object will remain balanced or 
start to rotate.

■■ We can calculate an unknown force or distance if we know 
that an object is balanced.

We can use the principle of moments to solve problems. 
The principle of moments states that:

For any object that is in equilibrium, the sum of the 
clockwise moments about any point provided by 
the forces acting on the object equals the sum of the 
anticlockwise moments about that same point.

Note that, for an object to be in equilibrium, we also 
require that no resultant force acts on it. The Worked 
examples that follow illustrate how we can use these ideas 
to determine unknown forces.

Moment of a force
The quantity which tells us about the turning effect of a 
force is its moment. The moment of a force depends on 
two quantities:

■■ the magnitude of the force (the bigger the force, the greater 
its moment)

■■ the perpendicular distance of the force from the pivot (the 
further the force acts from the pivot, the greater its moment).

The moment of a force is defined as follows:

The moment of a force = force × perpendicular distance of  
� the pivot from the line of action of the force.

Figure 4.17a shows these quantities. The force F1 is pushing 
down on the lever, at a perpendicular distance x1 from the 
pivot. The moment of the force F1 about the pivot is then 
given by:

moment = force × distance from pivot

	 = F1 ×  x1

The unit of moment is the newton metre (N m). This is 
a unit which does not have a special name. You can also 
determine the moment of a force in N cm.

x2

F2

F1

x1

a b

d

θ

Figure 4.16  A mechanic turns a nut. 

Figure 4.17  The quantities involved in calculating the 
moment of a force.
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2	 Is the see-saw shown in Figure 4.18 in equilibrium 
(balanced), or will it start to rotate?

	 The see-saw will remain balanced, because the 20 N 
force is twice as far from the pivot as the 40 N force.

	 To prove this, we need to think about each force 
individually. Which direction is each force trying to turn 
the see-saw, clockwise or anticlockwise? The 20 N force 
is tending to turn the see-saw anticlockwise, while the 
40 N force is tending to turn it clockwise.

	 Step 1  Determine the anticlockwise moment:
moment of anticlockwise force = 20 × 2.0  =  40 N m

	 Step 2  Determine the clockwise moment:
moment of clockwise force = 40 × 1.0  =  40 N m

	 Step 3  We can see that:
clockwise moment = anticlockwise moment

	 So the see-saw is balanced and therefore does not 
rotate. The see-saw is in equilibrium.

3	 The beam shown in Figure 4.19 is in equilibrium. 
Determine the force X.

	 The unknown force X is tending to turn the beam 
anticlockwise. The other two forces (10 N and 20 N) are 
tending to turn the beam clockwise. We will start by 
calculating their moments and adding them together.

	 Step 1  Determine the clockwise moments:
sum of moments of clockwise forces  
	 =  (10 × 1.0) + (20 ×  0.5)
	 =  10 + 10  =  20 N m

	 Step 2  Determine the anticlockwise moment:
moment of anticlockwise force = X  × 0.8

	 Step 3  Since we know that the beam must be balanced, 
we can write:
sum of clockwise moments  
	 =  sum of anticlockwise moments
	 20  =  X  × 0.8

	 X  =  
20
0.8  =  25 N

	 So a force of 25 N at a distance of 0.8 m from the pivot 
will keep the beam still and prevent it from rotating 
(keep it balanced).

4	 Figure 4.20 shows the internal structure of a human arm 
holding an object. The biceps are muscles attached to 
one of the bones of the forearm. These muscles provide 
an upward force.

	 An object of weight 50 N is held in the hand with the 
forearm at right angles to the upper arm. Use the  
principle of moments to determine the muscular force  
F provided by the biceps, given the following data:
weight of forearm = 15 N
distance of biceps from elbow =  4.0 cm
distance of centre of gravity  
	 of forearm from elbow = 16 cm
distance of object in the hand from elbow = 35 cm

	 Step 1  There is a lot of information in this question.  
It is best to draw a simplified diagram of the forearm 
that shows all the forces and the relevant distances 
(Figure 4.21). All distances must be from the pivot, which 
in this case is the elbow.

2.0 m 1.0 m

20 N
40 Npivot

1.0 m0.5 m

X pivot 10 N

20 N

0.8 m

biceps

35 cm

4.0 cm

Figure 4.18  Will these forces make the see-saw rotate, 
or are their moments balanced?

Figure 4.19  For Worked example 3.

Figure 4.20  The human arm. For Worked example 4.

WORKED EXAMPLES
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	 Step 2  Determine the clockwise moments:
sum of moments of clockwise forces  
	 = (15 × 0.16) + (50 × 0.35)
	 = 19.9 N m

	 Step 3  Determine the anticlockwise moment:
moment of anticlockwise force = F × 0.04

	 Step 4  Since the arm is in balance, according to the 
principle of moments we have:
sum of clockwise moments  
� = sum of anticlockwise moments
19.9 = 0.04 F

F  =  
19.9
0.04  =  497.5 N ≈ 500 N

	 The biceps provide a force of 500 N – a force large 
enough to lift 500 apples!

F

15 N

arm

elbow

4.0 cm

16 cm

35 cm
50 N

Figure 4.21  Simplified diagram showing forces on the 
forearm. For Worked example 4. Note that another 
force acts on the arm at the elbow; we do not know the 
size or direction of this force but we can ignore it by 
taking moments about the elbow.

7	 A wheelbarrow is loaded as shown in Figure 4.22.
a	 Calculate the force that the gardener needs to exert 

to hold the wheelbarrow’s legs off the ground.
b	 Calculate the force exerted by the ground on the 

legs of the wheelbarrow (taken both together) 
when the gardener is not holding the handles.

8	 A traditional pair of scales uses sliding masses of 
10 g and 100 g to achieve a balance. A diagram of the 
arrangement is shown in Figure 4.23. The bar itself is 
supported with its centre of gravity at the pivot.
a	 Calculate the value of the mass M, attached at X.
b	 State one advantage of this method of measuring 

mass.
c	 Determine the upward force of the pivot on the bar.

9	 Figure 4.24 shows a beam with four forces acting on it
a	 For each force, calculate the moment of the force 

about point P.
b	 State whether each moment is clockwise or 

anticlockwise.
c	 State whether or not the moments of the forces 

are balanced.
400 N 1.20 m 

0.50 m

0.20 m 

20 cm 100 g

10 g
30 cm 

pivot

45 cm

X

M

25 cm 25 cm 50 cmP

F1 = 10 N F4 = 5 N

F2 = 10 N F3 = 10 N
30°

Figure 4.22   
For Question 7. 

Figure 4.23  For Question 8.

Figure 4.24  For Question 9. 

QUESTIONS

WORKED EXAMPLES (continued)
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Pure turning effect
When we calculate the moment of a single force, the result 
depends on the point or pivot about which the moment 
acts. The further the force is from the pivot, the greater 
the moment. A couple is different; the moment of a couple 
does not depend on the point about which it acts, only 
on the perpendicular distance between the two forces. 
A single force acting on an object will tend to make the 
object accelerate (unless there is another force to balance 
it). A couple, however, is a pair of equal and opposite 
forces, so it will not make the object accelerate. This means 
we can think of a couple as a pure ‘turning effect’, the size 
of which is given by its torque.

For an object to be in equilibrium, two conditions must be 
met at the same time:

■■ The resultant force acting on the object is zero.
■■ The resultant moment is zero.

The torque of a couple
Figure 4.25 shows the forces needed to turn a car’s steering 
wheel. The two forces balance up and down (15 N up 
and 15 N down), so the wheel will not move up, down or 
sideways. However, the wheel is not in equilibrium. The 
pair of forces will cause it to rotate.

15 N

15 N

0.20 m 0.20 m

Figure 4.25  Two forces act on this steering wheel to make it 
turn. 

A pair of forces like that in Figure 4.25 is known as a 
couple. A couple has a turning effect, but does not cause 
an object to accelerate. To form a couple, the two forces 
must be:

■■ equal in magnitude
■■ parallel, but opposite in direction
■■ separated by a distance d.

The turning effect or moment of a couple is known as its 
torque. We can calculate the torque of the couple in Figure 
4.25 by adding the moments of each force about the centre 
of the wheel:

torque of couple = (15 × 0.20) + (15 × 0.20)

	 = 6.0 N m
We could have found the same result by multiplying one of 
the forces by the perpendicular distance between them:

torque of a couple = 15 × 0.4 = 6.0 N m
The torque of a couple is defined as follows:

torque of a couple = one of the forces × perpendicular  
� distance between the forces

	10	 The driving wheel of a car travelling at a constant 
velocity has a torque of 137 N m applied to it by 
the axle that drives the car (Figure 4.26). The 
radius of the tyre is 0.18 m. Calculate the driving 
force provided by this wheel.

0.18 m

Figure 4.26  For Question 10.

QUESTION
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Summary
■■ Forces are vector quantities that can be added by 

means of a vector triangle. Their resultant can be 
determined using trigonometry or by scale drawing.

■■ Vectors such as forces can be resolved into 
components. Components at right angles to one 
another can be treated independently of one another. 
For a force F at an angle θ to the x-direction, the 
components are:
x-direction: F cos θ
y-direction: F sin θ

■■ The moment of a force = force × perpendicular 
distance of the pivot from the line of action of 
the force.

■■ The principle of moments states that, for any object 
that is in equilibrium, the sum of the clockwise 
moments about any point provided by the 
forces acting on the object equals the sum of the 
anticlockwise moments about that same point.

■■ A couple is a pair of equal, parallel but opposite forces 
whose eff ect is to produce a turning eff ect on a body 
without giving it linear acceleration.

torque of a couple = one of the forces × perpendicular 
distance between the forces

■■ For an object to be in equilibrium, the resultant force 
acting on the object must be zero and the resultant 
moment must be zero.

End-of-chapter questions
1 A ship is pulled at a constant speed by two small boats, A and B, as shown in Figure 4.27. The engine of the 

ship does not produce any force.

Figure 4.27 For End-of-chapter Question 1. 

 The tension in each cable between A and B and the ship is 4000 N.
a Draw a free-body diagram showing the three horizontal forces acting on the ship. [2]
b Draw a vector diagram to scale showing these three forces and use your diagram to find the value 

of the drag force on the ship. [2]

40°

B

A

40°
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2 A block of mass 1.5 kg is at rest on a rough surface which is inclined at 20° to the horizontal as shown 
in Figure 4.28.

Figure 4.28 For End-of-chapter Question 2. 

a Draw a free-body diagram showing the three forces acting on the block. [2]
b Calculate the component of the weight that acts down the slope. [2]
c Use your answer to b to determine the force of friction that acts on the block. [2]
d Determine the normal contact force between the block and the surface. [3]

3 The free-body diagram (Figure 4.29) shows three forces that act on a stone hanging at rest from two strings.

Figure 4.29 For End-of-chapter Question 3. 

a Calculate the horizontal component of the tension in each string. Why should these two components 
be equal in magnitude? [5]

b Calculate the vertical component of the tension in each string. [4]
c Use your answer to b to calculate the weight of the stone. [2]
d Draw a vector diagram of the forces on the stone. This should be a triangle of forces. [1]
e Use your diagram in d to calculate the weight of the stone. [2]

4 The force F shown in Figure 4.30 has a moment of 40 N m about the pivot. Calculate the magnitude 
of the force F. [4]

Figure 4.30 For End-of-chapter Question 4. 

20°

tension in string 1
1.00 N tension in string 2

0.58 N60°

horizontal

weight of stone

30°

2.0 m

45°

F
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5 The asymmetric bar shown in Figure 4.31 has a weight of 7.6 N and a centre of gravity that is 0.040 m from the 
wider end, on which there is a load of 3.3 N. It is pivoted a distance of 0.060 m from its centre of gravity. 
Calculate the force P that is needed at the far end of the bar in order to maintain equilibrium. [4]

Figure 4.31 For End-of-chapter Question 5. 

6 a Explain what is meant by:
i a couple [1]
ii torque. [2]

b The engine of a car produces a torque of 200 N m on the axle of the wheel in contact with the road. 
The car travels at a constant velocity towards the right (Figure 4.32).

Figure 4.32 For End-of-chapter Question 6. 

i Copy Figure 4.32 and show the direction of rotation of the wheel, and the horizontal component 
of the force that the road exerts on the wheel. [2]

ii State the resultant torque on the wheel. Explain your answer. [2]
iii The diameter of the car wheel is 0.58 m. Determine the value of the horizontal component of 

the force of the road on the wheel. [1]

7 a  Explain what is meant by the centre of gravity of an object. [2]
b A flagpole of mass 25 kg is held in a horizontal position by a cable 

as shown in Figure 4.33. The centre of gravity of the flagpole is at 
a distance of 1.5 m from the fixed end.
i Write an equation to represent taking moments about the 

left -hand end of the flagpole. Use your equation to find the 
tension T in the cable. [4]

ii Determine the vertical component of the force at the 
left -hand end of the flagpole. [2]

P

0.040 m 0.060 m 0.080 m 

pivot
load

load = 3.3 N

W = 7.6 N

ground

axle

cable

30°flagpole

1.5 m

weight 2.5 m

T 

Figure 4.33 For End-of-chapter Question 7. 
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8 a  State the two conditions necessary for an object to be in equilibrium. [2]
b A metal rod of length 90 cm has a disc of radius 24 cm fixed rigidly at its centre, as shown in 

Figure 4.34 The assembly is pivoted at its centre.

Figure 4.34 For End-of-chapter Question 8. 

 Two forces, each of magnitude 30 N, are applied normal to the rod at each end so as to 
produce a turning eff ect on the rod. A rope is attached to the edge of the disc to prevent rotation.

 Calculate:
i the torque of the couple produced by the 30 N forces [1]
ii the tension T in the rope. [3]

9 a Explain what is meant by the torque of a couple. [2]
b Three strings, A, B and C, are attached to a circular ring, as shown in Figure 4.35.

 The strings and the ring all lie on a smooth horizontal surface and are at rest. The tension in 
string A is 8.0 N. Calculate the tension in strings B and C. [4]

90 cm

30 N

30 N
rope

24 cm
T

50°

90°

string B

string A

string C

Figure 4.35 For End-of-chapter Question 9. 



68

 10 Figure 4.36 shows a picture hanging symmetrically by two cords from a nail fixed to a wall. 
The picture is in equilibrium.

Figure 4.36 For End-of-chapter Question 10. 

a Explain what is meant by equilibrium. [2]
b Draw a vector diagram to represent the three forces acting on the picture in the vertical plane. 

Label each force clearly with its name and show the direction of each force with an arrow. [2]
c The tension in the cord is 45 N and the angle that each end of the cord makes with the 

horizontal is 50°. Calculate:
i the vertical component of the ten sion in the cord [1]
ii the weight of the picture. [1]

50° 50°

nail

cord
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Learning outcomes
You should be able to:

■■ give examples of conversions of energy between 
diff erent forms

■■ understand and use the concept of work
■■ apply the principle of conservation of energy to simple 

examples involving energy in diff erent forms
■■ derive and use the formulae for kinetic energy and 

potential energy
■■ define and use the equation for power

Chapter 5:
Work, energy
and power
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The idea of energy
The Industrial Revolution started in the late 
18th century in the British Isles. Today, many 
other countries are undergoing the process of 
industrialisation (Figure 5.1). Industrialisation began 
as engineers developed new machines which were 
capable of doing the work of hundreds of craftsmen 
and labourers. At first, they made use of the traditional 
techniques of water power and wind power. Water 
stored behind a dam was used to turn a wheel, 
which turned many machines. By developing new 
mechanisms, the designers tried to extract as much 
as possible of the energy stored in the water. Steam 
engines were developed, initially for pumping water 
out of mines. Steam engines use a fuel such as coal; 
there is much more energy stored in 1 kg of coal than in 
1 kg of water held behind a dam. Steam engines soon 
powered the looms of the textile mills, and the British 
industry came to dominate world trade in textiles.

Nowadays, most factories and mills rely on  
electrical power, generated by burning coal or gas at 
a power station. The fuel is burnt to release its store 
of energy. High-pressure steam is generated, and this 
turns a turbine which turns a generator. Even in the 
most efficient coal-fired power station, only about 
40% of the energy from the fuel is transferred to the 
electrical energy that the station supplies to the grid.

Engineers strove to develop machines which made 
the most efficient use of the energy supplied to them. 
At the same time, scientists were working out the basic 
ideas of energy transfer and energy transformations. 
The idea of energy itself had to be developed; it was 

not obvious at first that heat, light, electrical energy 
and so on could all be thought of as being, in some 
way, forms of the same thing. In fact, steam engines 
had been in use for 150 years before it was realised 
that their energy came from the heat supplied to them 
from their fuel.

The earliest steam engines had very low efficiencies 
– many converted less than 1% of the energy supplied 
to them into useful work. The understanding of the 
relationship between work and energy led to many 
ingenious ways of making the most of the energy 
supplied by fuel.

This improvement in energy efficiency has led to 
the design of modern engines such as the jet engines 
which have made long-distance air travel a commercial 
possibility (Figure 5.2).

Figure 5.1  Anshan steel works, China. 

Figure 5.2  The jet engines of this aircraft are designed to 
make efficient use of their fuel. If they were less efficient, their 
thrust might only be sufficient to lift the empty aircraft, and 
the passengers would have to be left behind.
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Doing work, transferring energy
The weight-lifter shown in Figure 5.3 has powerful 
muscles. They can provide the force needed to lift a large 
weight above her head – about 2 m above the ground. The 
force exerted by the weight-lifter transfers energy from 
her to the weights. We know that the weights have gained 
energy because, when the athlete releases them, they come 
crashing down to the ground.

you are not doing any work on the weights, because you 
are not transferring energy to the weights once they are 
above your head. Your muscles get tired because they are 
constantly relaxing and contracting, and this uses energy, 
but none of the energy is being transferred to the weights.

Calculating work done
Because doing work defines what we mean by energy,  
we start this chapter by considering how to calculate  
work done. There is no doubt that you do work if you push 
a car along the road. A force transfers energy from you to 
the car. But how much work do you do? Figure 5.4 shows 
the two factors involved:

■■ the size of the force F – the bigger the force, the greater the 
amount of work you do

■■ the distance s you push the car – the further you push it, the 
greater the amount of work done.

So, the bigger the force, and the further it moves, the 
greater the amount of work done.

The work done by a force is defined as the product of the 
force and the distance moved in the direction of the force:

W =  F × s

where s is the distance moved in the direction of the force.

Doing work Not doing work
Pushing a car to start it 
moving: your force transfers 
energy to the car. The car’s 
kinetic energy (i.e. ‘movement 
energy’) increases.

Pushing a car but it does 
not budge: no energy is 
transferred, because your 
force does not move it. The 
car’s kinetic energy does not 
change.

Lifting weights: you are doing 
work as the weights move 
upwards. The gravitational 
potential energy of the 
weights increases.

Holding weights above your 
head: you are not doing 
work on the weights (even 
though you may find it tiring) 
because the force you apply 
is not moving them. The 
gravitational potential energy 
of the weights is not changing.

A falling stone: the force of 
gravity is doing work. The 
stone’s kinetic energy is 
increasing.

The Moon orbiting the Earth: 
the force of gravity is not doing 
work. The Moon’s kinetic 
energy is not changing.

Writing an essay: you are 
doing work because you need 
a force to move your pen 
across the page, or to press 
the keys on the keyboard.

Reading an essay: this may 
seem like ‘hard work’, but no 
force is involved, so you are 
not doing any work.

Table 5.1  The meaning of ‘doing work’ in physics. 

As the athlete lifts the weights and transfers energy to 
them, we say that her lifting force is doing work. ‘Doing 
work’ is a way of transferring energy from one object to 
another. In fact, if you want to know the scientific meaning 
of the word ‘energy’, we have to say it is ‘that which is 
transferred when a force moves through a distance’. So 
work and energy are two closely linked concepts.

In physics, we often use an everyday word but with a 
special meaning. Work is an example of this. Table 5.1 
describes some situations which illustrate the meaning of 
doing work in physics.

It is important to appreciate that our bodies sometimes 
mislead us. If you hold a heavy weight above your head 
for some time, your muscles will get tired. However, 

Figure 5.3  It is hard work being a weight-lifter.

Chapter 5: Work, energy and power
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Energy transferred
Doing work is a way of transferring energy. For both 
energy and work the correct SI unit is the joule (J). The 
amount of work done, calculated using W = F × s, shows 
the amount of energy transferred:

work done = energy transferred

Newtons, metres and joules
From the equation W = F × s we can see how the unit of 
force (the newton), the unit of distance (the metre) and the 
unit of work or energy (the joule) are related.

	1 joule = 1 newton × 1 metre

	 1 J = 1 N m

The joule is defined as the amount of work done when 
a force of 1 newton moves a distance of 1 metre in 
the direction of the force. Since work done = energy 
transferred, it follows that a joule is also the amount of 
energy transferred when a force of 1 newton moves a 
distance of 1 metre in the direction of the force.

F

F = 300 N
 s = 5.0 m

F

s

Figure 5.4  You have to do work to start the car moving. 

1	 In each of the following examples, explain whether 
or not any work is done by the force mentioned.
a	 You pull a heavy sack along rough ground.
b	 The force of gravity pulls you downwards when 

you fall off a wall.
c	 The tension in a string pulls on a stone when 

you whirl it around in a circle at a steady speed.
d	 The contact force of the bedroom floor stops 

you from falling into the room below.

2	 A man of mass 70 kg climbs stairs of vertical height 
2.5 m. Calculate the work done against the force of 
gravity. (Take g = 9.81 m s−2.)

3	 A stone of weight 10 N falls from the top of a 250 m 
high cliff.
a	 Calculate how much work is done by the force 

of gravity in pulling the stone to the foot of the 
cliff.

b	 How much energy is transferred to the stone?

Force, distance and direction
It is important to appreciate that, for a force to do work, 
there must be movement in the direction of the force. Both 
the force F and the distance s moved in the direction of 
the force are vector quantities, so you should know that 
their directions are likely to be important. To illustrate 
this, we will consider three examples involving gravity 
(Figure 5.5). In the equation for work done, W = F × s , the 
distance moved s is thus the displacement in the direction 
of the force.

Suppose that the force F moves through a distance 
s which is at an angle θ to F, as shown in Figure 5.6. To 
determine the work done by the force, it is simplest to 
determine the component of F in the direction of s. This 
component is F cos θ, and so we have:

work done = (F cos θ) × s
or simply:

work done = Fs cos θ
Worked example 1 shows how to use this.

In the example shown in Figure 5.4,  
F = 300 N and s = 5.0 m, so:

work done W = F × s = 300 × 5.0 = 1500 J

QUESTIONS
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Doing work Not doing work

1	 You drop a stone weighing 5.0 N from 
the top of a 50 m high cliff. What is the 
work done by the force of gravity?
force on stone F
  = pull of gravity = weight of stone
  = 5.0 N vertically downwards

2	 A stone weighing 5.0 N rolls 50 m down 
a slope. What is the work done by the 
force of gravity?
force on stone F
  = pull of gravity = weight of stone
  = 5.0 N vertically downwards

3	 A satellite orbits the Earth at a constant 
height and at a constant speed. The 
weight of the satellite at this height is 
500 N. What is the work done by the 
force of gravity?
force on satellite F
  = pull of gravity = weight of satellite
  = 500 N towards centre of Earth

Distance moved by stone is s = 50 m
vertically downwards.

Distance moved by stone down slope is  
50 m, but distance moved in direction of 
force is 30 m.

Distance moved by satellite towards centre 
of Earth (i.e. in the direction of force) is 
s = 0.

Since F and s are in the same direction, 
there is no problem:
work done = F × s
	 = 5.0 × 50
	 = 250 J

The work done by the force of gravity is:
work done = 5.0 × 30
	 = 150 J

The satellite remains at a constant distance 
from the Earth. It does not move in the 
direction of F.
The work done by the Earth’s pull on the 
satellite is zero because F = 500 N but s = 0:
work done = 500 × 0
	 = 0 J

Figure 5.5  Three examples involving gravity. 

F

30 m
50 m

F
F

1	 A man pulls a box along horizontal ground using a rope 
(Figure 5.7). The force provided by the rope is 200 N, at 
an angle of 30° to the horizontal. Calculate the work 
done if the box moves 5.0 m along the ground.

	 Step 1  Calculate the component of the force in the 
direction in which the box moves. This is the horizontal 
component of the force:
horizontal component of force = 200 cos 30° ≈ 173 N

	 Hint: F cos θ is the component of the force at an angle θ to 
the direction of motion.

	 Step 2  Now calculate the work done:
work done = force × distance moved = 173 × 5.0 = 865 J

	 Hint: Note that we could have used the equation  
work done = Fs cos θ to combine the two steps into one.

30°

5.0 m

200 N

F

F cos θ 

distance travelled = s

direction of motion
θ

Figure 5.6  The work done by a force 
depends on the angle between the 
force and the distance it moves. 

Figure 5.7  For Worked example 1.
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A gas doing work
Gases exert pressure on the walls of their container. If 
a gas expands, the walls are pushed outwards – the gas 
has done work on its surroundings. In a steam engine, 
expanding steam pushes a piston to turn the engine, and 
in a car engine, the exploding mixture of fuel and air does 
the same thing, so this is an important situation.

gas

A

piston pushed
by gas

s

Figure 5.8  When a gas expands, it does work on its 
surroundings.

Figure 5.8 shows a gas at pressure p inside a cylinder 
of cross-sectional area A. The cylinder is closed by a 
moveable piston. The gas pushes the piston a distance s. If 
we know the force F exerted by the gas on the piston, we 
can deduce an expression for the amount of work done by 
the gas.

From the definition of pressure (pressure = force
area  ), the 

force exerted by the gas on the piston is given by:
force = pressure × area

F = p × A
and the work done is force × displacement:

W = p × A × s
But the quantity A × s is the increase in volume of the gas; 
that is, the shaded volume in Figure 5.8. We call this ΔV, 
where the Δ indicates that it is a change in V. Hence the 
work done by the gas in expanding is:

W = pΔV
Notice that we are assuming that the pressure p does not 
change as the gas expands. This will be true if the gas is 
expanding against the pressure of the atmosphere, which 
changes only very slowly.

4	 The crane shown in Figure 5.9 lifts its 500 N load 
to the top of the building from A to B. Distances 
are as shown on the diagram. Calculate how much 
work is done by the crane.

Figure 5.9  For Question 4. The dotted line shows 
the track of the load as it is lifted by the crane. 

5	 Figure 5.10 shows the forces acting on a box which 
is being pushed up a slope. Calculate the work 
done by each force if the box moves 0.50 m up the 
slope.

Figure 5.10  For Question 5. 

6	 When you blow up a balloon, the expanding 
balloon pushes aside the atmosphere. How much 
work is done against the atmosphere in blowing 
up a balloon to a volume of 2 litres (0.002 m3)? 
(Atmospheric pressure = 1.0 × 105 N m−2.)

30 m

40 m 50 m

B

A

100 N 

70 N 

100 N 

30 N 

45°

θ
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An equation for gravitational potential 
energy
The change in the gravitational potential energy (g.p.e.) of 
an object, Ep, depends on the change in its height, h. We 
can calculate Ep using this equation:

change in g.p.e. = weight × change in height

Ep = (mg) × h
or simply

Ep = mgh
It should be clear where this equation comes from. The 
force needed to lift an object is equal to its weight mg, 
where m is the mass of the object and g is the acceleration 
of free fall or the gravitational field strength on the 
Earth’s surface. The work done by this force is given by 
force × distance moved, or weight × change in height. You 
might feel that it takes a force greater than the weight of 
the object being raised to lift it upwards, but this is not so. 
Provided the force is equal to the weight, the object will 
move upwards at a steady speed.

Note that h stands for the vertical height through 
which the object moves. Note also that we can only use the 
equation E p = mgh for relatively small changes in height. 
It would not work, for example, in the case of a satellite 
orbiting the Earth. Satellites orbit at a height of at least 
200 km and g has a smaller value at this height.

Other forms of potential energy
Potential energy is the energy an object has because 
of its position or shape. So, for example, an object’s 
gravitational potential energy changes when it moves 
through a gravitational field. (There is much more about 
gravitational fields in Chapter 18.)

We can identify other forms of potential energy. An 
electrically charged object has electric potential energy 
when it is placed in an electric field (see Chapter 8). 
An object may have elastic potential energy when it is 
stretched, squashed or twisted – if it is released it goes back 
to its original shape (see Chapter 7).

Gravitational potential energy
If you lift a heavy object, you do work. You are providing 
an upward force to overcome the downward force of 
gravity on the object. The force moves the object upwards, 
so the force is doing work.

In this way, energy is transferred from you to the 
object. You lose energy, and the object gains energy. We 
say that the gravitational potential energy Ep of the object 
has increased. Worked example 2 shows how to calculate a 
change in gravitational potential energy – or g.p.e.  
for short.

2	 A weight-lifter raises weights with a mass of 200 kg 
from the ground to a height of 1.5 m. Calculate how 
much work he does. By how much does the g.p.e. of 
the weights increase?

	 Step 1  As shown in Figure 5.11, the downward force 
on the weights is their weight, W = mg. An equal, 
upward force F is required to lift them.

Figure 5.11  For Worked example 2. 

W = F = mg = 200 × 9.81 = 1962 N

	 Hint: It helps to draw a diagram of the situation.

	 Step 2  Now we can calculate the work done by the 
force F:
work done = force × distance moved
	 = 1962 × 1.5 ≈ 2940 J

	 Note that the distance moved is in the same 
direction as the force. So the work done on the 
weights is about 2940 J. This is also the value of the 
increase in their g.p.e.

1.5 m

F

mg

WORKED EXAMPLE
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g.p.e.–k.e. transformations
A motor drags the roller-coaster car to the top of the first 
hill. The car runs down the other side, picking up speed 
as it goes (see Figure 5.12). It is moving just fast enough 
to reach the top of the second hill, slightly lower than the 
first. It accelerates downhill again. Everybody screams!

The motor provides a force to pull the roller-coaster 
car to the top of the hill. It transfers energy to the car. But 
where is this energy when the car is waiting at the top of 
the hill? The car now has gravitational potential energy; 
as soon as it is given a small push to set it moving, it 
accelerates. It gains kinetic energy and at the same time it 
loses g.p.e.

Kinetic energy
As well as lifting an object, a force can make it accelerate. 
Again, work is done by the force and energy is transferred 
to the object. In this case, we say that it has gained kinetic 
energy, Ek. The faster an object is moving, the greater its 
kinetic energy (k.e.).

For an object of mass m travelling at a speed v, we have:
	kinetic energy =   12 × mass × speed2

	 Ek =  12  mv2

Deriving the formula for kinetic energy
The equation for k.e., Ek = 12mv2, is related to one of the 
equations of motion. We imagine a car being accelerated 
from rest (u = 0) to velocity v. To give it acceleration a, it 
is pushed by a force F for a distance s. Since u = 0, we can 
write the equation v2 = u2 + 2as as:

v2 = 2as
Multiplying both sides by 12m gives:

1
2 mv2 = mas

Now, ma is the force F accelerating the car, and mas is the 
force × the distance it moves, that is, the work done by the 
force. So we have:

1
2mv 2 = work done by force F

This is the energy transferred to the car, and hence its 
kinetic energy.

3	 Calculate the increase in kinetic energy of a car of 
mass 800 kg when it accelerates from 20 m s−1 to 
30 m s−1.

	 Step 1  Calculate the initial k.e. of the car:
Ek =  1

2 mv2  =  12 × 800 × (20)2 = 160 000 J
	 =  160 kJ

	 Step 2  Calculate the final k.e. of the car:
Ek =  1

2 mv2  =  12 × 800 × (30)2 = 360 000 J
	 =  360 kJ

	 Step 3  Calculate the change in the car’s k.e.:
change in k.e. = 360 − 160 = 200 kJ

	 Hint: Take care! You can’t calculate the change in k.e. 
by squaring the change in speed. In this example, the 
change in speed is 10 m s−1, and this would give an 
incorrect value for the change in k.e.

7	 Calculate how much gravitational potential 
energy is gained if you climb a flight of stairs. 
Assume that you have a mass of 52 kg and that the 
height you lift yourself is 2.5 m.

8	 A climber of mass 100 kg (including the equipment 
she is carrying) ascends from sea level to the top 
of a mountain 5500 m high. Calculate the change 
in her gravitational potential energy.

9	 a	� A toy car works by means of a stretched rubber 
band. What form of potential energy does the 
car store when the band is stretched?

b	 A bar magnet is lying with its north pole next 
to the south pole of another bar magnet. A 
student pulls them apart. Why do we say that 
the magnets’ potential energy has increased? 
Where has this energy come from?

	10	 Which has more k.e., a car of mass 500 kg 
travelling at 15 m s−1 or a motorcycle of mass 
250 kg travelling at 30 m s−1?

	11	 Calculate the change in kinetic energy of a ball of 
mass 200 g when it bounces. Assume that it hits 
the ground with a speed of 15.8 m s−1 and leaves 
it at 12.2 m s−1.

QUESTIONS

QUESTIONS

WORKED EXAMPLE
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Down, up, down – energy 
changes
When an object falls, it speeds up. Its g.p.e. decreases 
and its k.e. increases. Energy is being transformed from 
gravitational potential energy to kinetic energy. Some energy 
is likely to be lost, usually as heat because of air resistance. 
However, if no energy is lost in the process, we have:

decrease in g.p.e. = gain in k.e.
We can use this idea to solve a variety of problems, as 
illustrated by Worked example 4.

As the car runs along the roller-coaster track (Figure 
5.13), its energy changes.
1	 At the top of the first hill, it has the most g.p.e.
2	 As it runs downhill, its g.p.e. decreases and its k.e. 

increases.
3	 At the bottom of the hill, all of its g.p.e. has been 

changed to k.e. and heat and sound energy.
4	 As it runs back uphill, the force of gravity slows it 

down. k.e. is being changed to g.p.e.
Inevitably, some energy is lost by the car. There is friction 
with the track, and air resistance. So the car cannot return 
to its original height. That is why the second hill must be 
slightly lower than the first. It is fun if the car runs through 
a trough of water, but that takes even more energy, and the 
car cannot rise so high. There are many situations where 
an object’s energy changes between gravitational potential 
energy and kinetic energy. For example:

■■ a high diver falling towards the water – g.p.e. changes to k.e.
■■ a ball is thrown upwards – k.e. changes to g.p.e.
■■ a child on a swing – energy changes back and forth between 

g.p.e. and k.e.

maximum g.p.e.

g.p.e. = 0

g.p.e. → k.e.

k.e. → g.p.e.

k.e.

Figure 5.13  Energy changes along a roller-coaster.

4	 A pendulum consists of a brass sphere of mass 5.0 kg 
hanging from a long string (see Figure 5.14). The 
sphere is pulled to the side so that it is 0.15 m above 
its lowest position. It is then released. How fast will it 
be moving when it passes through the lowest point 
along its path?

0.15 m
v

Figure 5.14  For Worked example 4. 

Figure 5.12  The roller-coaster car accelerates as it comes 
downhill. It’s even more exciting if it runs through water. 

WORKED EXAMPLE
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Energy transfers
Climbing bars
If you are going to climb a mountain, you will need 
a supply of energy. This is because your gravitational 
potential energy is greater at the top of the mountain than 
at the base. A good supply of energy would be some bars of 
chocolate. Each bar supplies 1200 kJ. Suppose your weight 
is 600 N and you climb a 2000 m high mountain. The work 
done by your muscles is:

work done = Fs = 600 × 2000 = 1200 kJ
So one bar of chocolate will do the trick. Of course, in 
reality, it would not. Your body is inefficient. It cannot 
convert 100% of the energy from food into gravitational 
potential energy. A lot of energy is wasted as your muscles 
warm up, you perspire, and your body rises and falls as 
you walk along the path. Your body is perhaps only 5% 
efficient as far as climbing is concerned, and you will 
need to eat 20 chocolate bars to get you to the top of the 
mountain. And you will need to eat more to get you back 
down again.

Many energy transfers are inefficient. That is, only part 
of the energy is transferred to where it is wanted. The rest 
is wasted, and appears in some form that is not wanted 
(such as waste heat), or in the wrong place. You can 
determine the efficiency of any device or system using the 
following equation:

efficiency = useful output energy
total input energy   × 100%

A car engine is more efficient than a human body, but not 
much more. Figure 5.16 shows how this can be represented 
by a Sankey diagram. The width of the arrow represents 
the fraction of the energy which is transformed to each 
new form. In the case of a car engine, we want it to provide 

	12	 Re-work Worked example 4 for a brass sphere of mass 10 kg, and 
show that you get the same result. Repeat with any other value  
of mass.

	13	 Calculate how much gravitational potential energy is lost by an 
aircraft of mass 80 000 kg if it descends from an altitude of 10 000 m 
to an altitude of 1000 m. What happens to this energy if the pilot 
keeps the aircraft’s speed constant?

	14	 A high diver (see Figure 5.15) reaches the highest point in her jump 
with her centre of gravity 10 m above the water. Assuming that all 
her gravitational potential energy becomes kinetic energy during 
the dive, calculate her speed just before she enters the water.

	 Step 1  Calculate the loss in g.p.e. as the sphere falls 
from its highest position:
Ep =  mgh = 5.0 ×  9.81 × 0.15 = 7.36 J

	 Step 2  The gain in the sphere’s k.e. is 7.36 J. We 
can use this to calculate the sphere’s speed. First 
calculate v  2, then v:

	 1
2 mv  2 = 7.36

	12 × 5.0 × v  2 = 7.36

	 v  2 = 2 × 
7.36
5.0    = 2.944

	 v  =     2.944  ≈ 1.72 ms−1 ≈ 1.7 ms−1

	 Note that we would obtain the same result in Worked 
example 4 no matter what the mass of the sphere. 
This is because both k.e. and g.p.e. depend on  
mass m. If we write:
	change in g.p.e. = change in k.e.

	 mgh =  
1
2 

mv2

	 we can cancel m from both sides. Hence:

	gh = 
v2

2

	 	v  2 = 2gh

	 Therefore:
v =     2gh

	 The final speed v only depends on g and h. The mass 
m of the object is irrelevant. This is not surprising; we 
could use the same equation to calculate the speed 
of an object falling from height h. An object of small 
mass gains the same speed as an object of large 
mass, provided air resistance has no effect.

Figure 5.15  A high 
dive is an example 
of converting 
(transforming) 
gravitational 
potential energy to 
kinetic energy.

WORKED EXAMPLE (continued)
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kinetic energy to turn the wheels. In practice, 80% of the 
energy is transformed into heat: the engine gets hot, and 
heat escapes into the surroundings. So the car engine is 
only 20% efficient.

We have previously considered situations where an 
object is falling, and all of its gravitational potential energy 
changes to kinetic energy. In Worked example 5, we will 
look at a similar situation, but in this case the energy 
change is not 100% efficient.

Conservation of energy
Where does the lost energy from the water in the reservoir 
go? Most of it ends up warming the water, or warming the 

Figure 5.16  We want a car engine to supply kinetic energy. This 
Sankey diagram shows that only 20% of the energy supplied to 
the engine ends up as kinetic energy – it is 20% efficient. 

5	 Figure 5.17 shows a dam which stores water. The outlet 
of the dam is 20 m below the surface of the water in the 
reservoir. Water leaving the dam is moving at 16 m s−1. 
Calculate the percentage of the gravitational potential 
energy that is lost when converted into kinetic energy.

	 Step 1  We will picture 1 kg of water, starting at the 
surface of the lake (where it has g.p.e., but no k.e.) and 
flowing downwards and out at the foot (where it has k.e., 
but less g.p.e.). Then:
change in g.p.e. of water between surface and outflow  
� = mgh = 1 × 9.81 × 20 = 196 J

	 Step 2  Calculate the k.e. of 1 kg of water as it leaves the 
dam:
	k.e. of water leaving dam =  12  mv  2

	 =  12  × 1 × (16)2

	 = 128 J

	 Step 3  For each kilogram of water flowing out of the 
dam, the loss of energy is:
loss = 196 − 128 = 68 J

percentage loss =  
68

196  × 100% ≈ 35%

	 If you wanted to use this moving water to generate 
electricity, you would have already lost more than a third 
of the energy which it stores when it is behind the dam.

Figure 5.17  Water stored behind the dam has 
gravitational potential energy; the fast-flowing 
water leaving the foot of the dam has kinetic energy.

20m 

dam wall

outlet

pipes that the water flows through. The outflow of water is 
probably noisy, so some sound is produced.

Here, we are assuming that all of the energy ends up 
somewhere. None of it disappears. We assume the same 
thing when we draw a Sankey diagram. The total thickness 
of the arrow remains constant. We could not have an 
arrow which got thinner (energy disappearing) or thicker 
(energy appearing out of nowhere).

We are assuming that energy is conserved. This is 
a principle, known as the principle of conservation of 
energy, which we expect to apply in all situations.

Energy cannot be created or destroyed. It can only be 
converted from one form to another.

We should always be able to add up the total amount of 
energy at the beginning, and be able to account for it all at 
the end. We cannot be sure that this is always the case, but 
we expect it to hold true.

We have to think about energy changes within a closed 
system; that is, we have to draw an imaginary boundary 
around all of the interacting objects which are involved in 
an energy transfer.

100%

80%

20%

chemical
energy 
supplied
to engine 

heat to
environment 

kinetic
energy
to wheels

WORKED EXAMPLE



80

Cambridge International AS Level Physics

	16	 Calculate how much work is done by a 50 kW car 
engine in a time of 1.0 minute.

	17	 A car engine does 4200 kJ of work in one minute. 
Calculate its output power, in kilowatts.

	18	 A particular car engine provides a force of 700 N 
when the car is moving at its top speed of 40 m s−1.

a	 Calculate how much work is done by the car’s 
engine in one second.

b	 State the output power of the engine.

engine in the second half of the 18th century. The watt is 
defined as a rate of working of 1 joule per second. Hence:

1 watt = 1 joule per second
or 

1 W = 1 J s−1

In practice we also use kilowatts (kW) and megawatts (MW).
1000 watts = 1 kilowatt (1 kW)

1 000 000 watts = 1 megawatt (1 MW)
You are probably familiar with the labels on light bulbs 
which indicate their power in watts, for example 60 W or 
10 W. The values of power on the labels tell you about the 
energy transferred by an electrical current, rather than by 
a force doing work.

Sometimes, applying the principle of conservation of 
energy can seem like a scientific fiddle. When physicists 
were investigating radioactive decay involving beta 
particles, they found that the particles after the decay had 
less energy in total than the particles before. They guessed 
that there was another, invisible particle which was 
carrying away the missing energy. This particle, named 
the neutrino, was proposed by the theoretical physicist 
Wolfgang Pauli in 1931. The neutrino was not detected by 
experimenters until 25 years later.

Although we cannot prove that energy is always 
conserved, this example shows that the principle of 
conservation of energy can be a powerful tool in helping us 
to understand what is going on in nature, and that it can help 
us to make fruitful predictions about future experiments.

	15	 A stone falls from the top of a cliff, 80 m high. When 
it reaches the foot of the cliff, its speed is 38 m s−1.
a	 Calculate the proportion of the stone’s initial 

g.p.e. that is converted to k.e.
b	 What happens to the rest of the stone’s initial 

energy?

Power
The word power has several different meanings – political 
power, powers of ten, electrical power from power stations. 
In physics, it has a specific meaning which is related to 
these other meanings. Figure 5.18 illustrates what we mean 
by power in physics.

The lift shown in Figure 5.18 can lift a heavy load of 
people. The motor at the top of the building provides a 
force to raise the lift car, and this force does work against 
the force of gravity. The motor transfers energy to the lift 
car. The power P of the motor is the rate at which it does 
work. Power is defined as the rate of work done. As a word 
equation, power is given by:

power = work done
time taken

or

P = W
t

where W is the work done in a time t.

Units of power: the watt
Power is measured in watts, named after James Watt, the 
Scottish engineer famous for his development of the steam 

Figure 5.18  A lift needs a powerful motor to raise the car 
when it has a full load of people. The motor does many 
thousands of joules of work each second.

QUESTIONS

QUESTION
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Moving power
An aircraft is kept moving forwards by the force of its 
engines pushing air backwards. The greater the force and 
the faster the aircraft is moving, the greater the power 
supplied by its engines.

Suppose that an aircraft is moving with velocity v. Its 
engines provide the force F needed to overcome the drag 
of the air. In time t, the aircraft moves a distance s equal to 
v × t. So the work done by the engines is:

work done = force × distance

W = F × v × t
and the power P (= work done

time taken
) is given by:

P = W
t

 = F × v × t
t

and we have:
P = F × v

power = force × velocity

6	 The motor of the lift shown in Figure 5.18 provides a 
force of 20 kN; this force is enough to raise the lift by 
18 m in 10 s. Calculate the output power of the motor.

	 Step 1  First, we must calculate the work done:
work done = force × distance moved
	 = 20 × 18 = 360 kJ

	 Step 2  Now we can calculate the motor’s output 
power:

power =  
work done
time taken  =  

360 × 103

10   =  36 kW

	 Hint: Take care not to confuse the two uses of the 
letter ‘W’:

	 W = watt (a unit)
	 W = work done (a quantity)

	 So the lift motor’s power is 36 kW. Note that this is 
its mechanical power output. The motor cannot 
be 100% efficient since some energy is bound to 
be wasted as heat due to friction, so the electrical 
power input must be more than 36 kW.

	19	 In an experiment to measure a student’s power, 
she times herself running up a flight of steps. Use 
the data below to work out her useful power.

		  	 number of steps = 28
		  	 height of each step = 20 cm
		  	acceleration of free fall = 9.81 m s−2

		  	 mass of student = 55 kg
		  	 time taken = 5.4 s

It may help to think of this equation in terms of units.  
The right-hand side is in N × m s−1, and N m is the same  
as J. So the right-hand side has units of J s−1, or W, the unit 
of power. If you look back to Question 18 above, you will 
see that, to find the power of the car engine, rather than 
considering the work done in 1 s, we could simply have 
multiplied the engine’s force by the car’s speed.

Human power
Our energy supply comes from our food. A typical diet 
supplies 2000–3000 kcal (kilocalories) per day. This is 
equivalent (in SI units) to about 10 MJ of energy. We need 
this energy for our daily requirements – keeping warm, 
moving about, brainwork and so on. We can determine 
the average power of all the activities of our body:

	average power = 10 MJ per day

	 = 10 ×   106

86 400
  = 116 W

So we dissipate energy at the rate of about 100 W. We 
supply roughly as much energy to our surroundings as a 
100 W light bulb. Twenty people will keep a room as warm 
as a 2 kW electric heater.

Note that this is our average power. If you are doing 
some demanding physical task, your power will be greater. 
This is illustrated in Worked example 7.

Note also that the human body is not a perfectly 
efficient system; a lot of energy is wasted when, for 
example, we lift a heavy load. We might increase an 
object's g.p.e. by 1000 J when we lift it, but this might 
require five or ten times this amount of energy to be 
expended by our bodies.

QUESTION

WORKED EXAMPLE
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Summary
■■ The work done W when a force F moves through a 

displacement s in the direction of the force:

W = Fs  or  W = Fs cos θ

where θ is the angle between the force and the 
displacement.

■■ A joule is defined as the work done (or energy 
transferred) when a force of 1 N moves a distance of 
1 m in the direction of the force.

■■ The work done W by a gas at pressure p when it 
expands:

W = pΔV

where ΔV is the increase in its volume. 

■■ When an object of mass m rises through a height h, 
its gravitational potential energy Ep increases by an 
amount:

Ep = mgh

■■ The kinetic energy Ek of a body of mass m moving at 
speed v is:

Ek = 1
2 mv2

■■ The principle of conservation of energy states that, 
for a closed system, energy can be transformed to 
other forms but the total amount of energy remains 
constant.

■■ The efficiency of a device or system is determined 
using the equation:

efficiency = 
useful output energy

total input energy  × 100%

■■ Power is the rate at which work is done (or energy is 
transferred):

P = 
W
t

  and  P = Fv

■■ A watt is defined as a rate of transfer of energy of one 
joule per second.

7	 A person who weighs 500 N runs up a flight of stairs in 
5.0 s (Figure 5.19). Their gain in height is 3.0 m. Calculate 
the rate at which work is done against the force of 
gravity.

	 Step 1  Calculate the work done against gravity:
work done W = F × s = 500 × 3.0 = 1500 J

	 Step 2  Now calculate the power:

power P  =  
W
t

  =  
1500
5.0   = 300 W

	 So, while the person is running up the stairs, they are 
doing work against gravity at a greater rate than their 
average power – perhaps three times as great. And, 
since our muscles are not very efficient, they need to 
be supplied with energy even faster, perhaps at a rate 
of 1 kW. This is why we cannot run up stairs all day long 
without greatly increasing the amount we eat. The 
inefficiency of our muscles also explains why we get hot 
when we exert ourselves.

500 N
3 m

Figure 5.19  Running up stairs can require a high rate 
of doing work. You may have investigated your own 
power in this way. 

WORKED EXAMPLE
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End-of-chapter questions
1 In each case below, discuss the energy changes taking place:

a An apple falling towards the ground [1]
b A car decelerating when the brakes are applied [1]
c A space probe falling towards the surface of a planet. [1]

2 A 120 kg crate is dragged along the horizontal ground by a 200 N force acting at an angle of 30° to the 
horizontal, as shown in Figure 5.20. The crate moves along the surface with a constant velocity 
of 0.5 m s−1. The 200 N force is applied for a time of 16 s.

Figure 5.20 For End-of-chapter Question 2. 

a Calculate the work done on the crate by:
i the 200 N force [3]
ii the weight of the crate [2]
iii the normal contact force N. [2]

b Calculate the rate of work done against the frictional force F. [2]

3 Which of the following has greater kinetic energy?
■ A 20-tonne truck travelling at a speed of 30 m s−1

■ A 1.2 g dust particle travelling at 150 km s−1 through space. [3]

4 A 950 kg sack of cement is lift ed to the top of a building 50 m high by an electric motor.
a Calculate the increase in the gravitational potential energy of the sack of cement. [2]
b The output power of the motor is 4.0 kW. Calculate how long it took to raise the sack to the top 

of the building. [2]
c The electrical power transferred by the motor is 6.9 kW. In raising the sack to the top of the building, 

how much energy is wasted in the motor as heat? [3]

5 a Define power and state its unit. [2]
b Write a word equation for the kinetic energy of a moving object. [1]
c A car of mass 1100 kg starting from rest reaches a speed of 18 m s−1 in 25 s. Calculate the average power 

developed by the engine of the car. [2]

200 N

30°

crate

weight

F

N
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6 A cyclist pedals a long slope which is at 5.0° to the horizontal (Figure 5.21). The cyclist starts from rest 
at the top of the slope and reaches a speed of 12 m s−1 aft er a time of 67 s, having travelled 40 m down 
the slope. The total mass of the cyclist and bicycle is 90 kg.

Figure 5.21 For End-of-chapter Question 6. 

a Calculate:
i the loss in gravitational potential energy as he travels down the slope [3]
ii the increase in kinetic energy as he travels down the slope. [2]

b i  Use your answers to a to determine the useful power output of the cyclist. [3]
ii Suggest one reason why the actual power output of the cyclist is larger than your value in i. [2]

7 a Explain what is meant by work. [2]
b i  Explain how the principle of conservation of energy applies to a man sliding from rest down a 

vertical pole, if there is a constant force of friction acting on him. [2]
ii The man slides down the pole and reaches the ground aft er falling a distance h = 15 m. His 

potential energy at the top of the pole is 1000 J. Sketch a graph to show how his gravitational 
potential energy Ep varies with h. Add to your graph a line to show the variation of his kinetic 
energy Ek with h. [3]

8 a  Use the equations of motion to show that the kinetic energy of an object of mass m moving with 
velocity v is  12 mv 2. [2]

b A car of mass 800 kg accelerates from rest to a speed of 20 m s−1 in a time of 6.0 s.
i Calculate the average power used to accelerate the car in the first 6.0 s. [2]
ii The power passed by the engine of the car to the wheels is constant. Explain why the 

acceleration of the car decreases as the car accelerates. [2]

9 a i Define potential energy. [1]
ii Distinguish between gravitational potential energy and elastic potential energy. [2]

b Seawater is trapped behind a dam at high tide and then released through turbines. The level 
of the water trapped by the dam falls 10.0 m until it is all at the same height as the sea.
i Calculate the mass of seawater covering an area of 1.4 × 106 m2 and with a depth of 10.0 m. 

(Density of seawater = 1030 kg m−3) [1]
ii Calculate the maximum loss of potential energy of the seawater in i when passed through 

the turbines. [2]
iii The potential energy of the seawater, calculated in ii, is lost over a period of 6.0 hours. 

Estimat e the average power output of the power station over this time period, given that 
the eff iciency of the power station is 50%. [3]

40 m

5.0°
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Chapter 6:
Momentum

Learning outcomes
You should be able to:

■■ define linear momentum
■■ state and apply the principle of conservation of 

momentum to collisions in one and two dimensions
■■ relate force to the rate of change of momentum
■■ discuss energy changes in perfectly elastic and inelastic 

collisions
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Understanding collisions
To improve the safety of cars the motion of a car 
during a crash must be understood and the forces on 
the driver minimised (Figure 6.1). In this way safer cars 
have been developed and many lives have been saved.

In this chapter, we will explore how the idea of 
momentum can allow us to predict how objects 
move after colliding (interacting) with each other. 
We will also see how Newton’s laws of motion can be 
expressed in terms of momentum.

■■ Electrons that form an electric current collide with the 
vibrating ions that make up a metal wire.

■■ Two distant galaxies collide over millions of years.

From these examples, we can see that collisions are 
happening all around us, all the time. They happen on the 
microscopic scale of atoms and electrons, they happen in 
our everyday world, and they also happen on the cosmic 
scale of our Universe.

Modelling collisions
Springy collisions
Figure 6.3a shows what happens when one snooker ball 
collides head-on with a second, stationary ball. The result 
can seem surprising. The moving ball stops dead. The ball 
initially at rest moves off with the same velocity as that of 
the original ball. To achieve this, a snooker player must 
observe two conditions:

■■ The collision must be head-on. (If one ball strikes a glancing 
blow on the side of the other, they will both move off at 
different angles.)

■■ The moving ball must not be given any spin. (Spin is an 
added complication which we will ignore in our present 
study, although it plays a vital part in the games of pool and 
snooker.)

You can mimic the collision of two snooker balls in the 
laboratory using two identical trolleys, as shown in Figure 
6.3b. The moving trolley has its spring-load released, so 
that the collision is springy. As one trolley runs into the 

The idea of momentum
Snooker players can perform some amazing moves on the 
table, without necessarily knowing Newton’s laws of motion 
– see Figure 6.2. However, the laws of physics can help us to 
understand what happens when two snooker balls collide or 
when one bounces off the side cushion of the table.

Here are some examples of situations involving collisions:

■■ Two cars collide head-on.
■■ A fast-moving car runs into the back of a slower car in front.
■■ A footballer runs into an opponent.
■■ A hockey stick strikes a ball.
■■ A comet or an asteroid collides with a planet as it orbits  

the Sun.
■■ The atoms of the air collide constantly with each other, and 

with the walls of their surroundings.

Figure 6.1  A high-speed photograph of a crash test. The cars 
collide head-on at 15 m s−1 with dummies as drivers. 

Figure 6.2  If you play pool often enough, you will be able to 
predict how the balls will move on the table. Alternatively, you 
can use the laws of physics to predict their motion. 
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other, the spring is at first compressed, and then it pushes 
out again to set the second trolley moving. The first trolley 
comes to a complete halt. The ‘motion’ of one trolley has 
been transferred to the other.

You can see another interesting result if two moving 
identical trolleys collide head-on. If the collision is springy, 
both trolleys bounce backwards. If a fast-moving trolley 
collides with a slower one, the fast trolley bounces back at 
the speed of the slow one, and the slow one bounces back 
at the speed of the fast one. In this collision, it is as if the 
velocities of the trolleys have been swapped.

a

b

Figure 6.3  a The red snooker ball, coming from the left, has 
hit the yellow ball head-on. b You can do the same thing with 
two trolleys in the laboratory. 

Sticky collisions
Figure 6.4 shows another type of collision. In this case, the 
trolleys have adhesive pads so that they stick together when 
they collide. A sticky collision like this is the opposite of a 
springy collision like the ones described above.

If a single moving trolley collides with an identical 
stationary one, they both move off together. After the 
collision, the speed of the combined trolleys is half that of 
the original trolley. It is as if the ‘motion’ of the original 
trolley has been shared between the two. If a single moving 
trolley collides with a stationary double trolley (twice the 
mass), they move off with one-third of the original velocity.

From these examples of sticky collisions, you can see 
that, when the mass of the trolley increases as a result of a 
collision, its velocity decreases. Doubling the mass halves 
the velocity, and so on.

Figure 6.4  If a moving trolley sticks to a stationary trolley, 
they both move off together. 

1	 Here are two collisions to picture in your mind. 
Answer the question for each.
a	 Ball A, moving towards the right, collides with 

stationary ball B. Ball A bounces back; B moves 
off slowly to the right. Which has the greater 
mass, A or B?

b	 Trolley A, moving towards the right, collides 
with stationary trolley B. They stick together, 
and move off at less than half A’s original 
speed. Which has the greater mass, A or B?

Defining linear momentum
From the examples discussed above, we can see that two 
quantities are important in understanding collisions:

■■ the mass m of the object
■■ the velocity v of the object.

These are combined to give a single quantity, called the 
linear momentum (or simply momentum) p of an object. 
The momentum of an object is defined as the product of 
the mass of the object and its velocity. Hence:

	momentum = mass × velocity
	 p = mv

The unit of momentum is kg m s−1. There is no special 
name for this unit in the SI system.

Momentum is a vector quantity because it is a product 
of a vector quantity (velocity) and a scalar quantity (mass). 
Momentum has both magnitude and direction. Its direction 
is the same as the direction of the object’s velocity.

QUESTION
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A group of colliding objects always has as much 
momentum after the collision as it had before the collision. 
This principle is illustrated in Worked example 1.

In the earlier examples, we described how the ‘motion’ 
of one trolley appeared to be transferred to a second 
trolley, or shared with it. It is more correct to say that it 
is the trolley’s momentum that is transferred or shared. 
(Strictly speaking, we should refer to linear momentum, 
because there is another quantity called angular 
momentum which is possessed by spinning objects.)

As with energy, we find that momentum is also 
conserved. We have to consider objects which form a 
closed system – that is, no external force acts on them. The 
principle of conservation of momentum states that:

Within a closed system, the total momentum in any 
direction is constant.

The principle of conservation of momentum can also be 
expressed as follows:

For a closed system, in any direction:
total momentum of objects before collision 
� = total momentum of objects after collision

A

before a�er

B A B

2.0 m s–1 2.0 m s–1 1.0 m s–13.0 m s–1

1	 In Figure 6.5, trolley A of mass 0.80 kg travelling at a 
velocity of 3.0 m s−1 collides head-on with a stationary 
trolley B. Trolley B has twice the mass of trolley A. The 
trolleys stick together and have a common velocity of 
1.0 m s−1 after the collision. Show that momentum is 
conserved in this collision.

	 Step 1  Make a sketch using the information given in the 
question. Notice that we need two diagrams to show 
the situations, one before and one after the collision. 
Similarly, we need two calculations – one for the 
momentum of the trolleys before the collision and one 
for their momentum after the collision.

	 Step 2  Calculate the momentum before the collision:
momentum of trolleys before collision
	 = mA × uA + mB × uB

	 = (0.80 × 3.0) + 0
	 = 2.4 kg m s−1

	 Trolley B has no momentum before the collision, 
because it is not moving.

	 Step 3  Calculate the momentum after the collision:
momentum of trolleys after collision
	 = (mA + mB) × vA+B

	 = (0.80 + 1.60) × 1.0
	 = 2.4 kg m s−1

	 So, both before and after the collision, the trolleys have 
a combined momentum of 2.4 kg m s−1. Momentum has 
been conserved.

uA = 3.0 m s–1 uB = 0 vA+B = 1.0 m s–1

0.80 kg 0.80 kg
0.80kg

positive
direction

before a�er

A B A B
0.80 kg 0.80 kg

0.80kg

Figure 6.5  The state of trolleys A and B, before and after 
the collision.

2	 Calculate the momentum of each of the following 
objects:
a	 a 0.50 kg stone travelling at a velocity of 20 m s−1

b	 a 25 000 kg bus travelling at 20 m s−1 on a road
c	 an electron travelling at 2.0 × 107 m s−1.
	 (The mass of the electron is 9.1 × 10−31 kg.)

3	 Two balls, each of mass 0.50 kg, collide as shown in 
Figure 6.6. Show that their total momentum before 
the collision is equal to their total momentum after 
the collision.

Figure 6.6  For Question 3.

QUESTIONS

WORKED EXAMPLE
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as being ‘springy’ or ‘sticky’. We should now use the 
correct scientific terms, perfectly elastic and inelastic.

We will look at examples of these two types of collision 
and consider what happens to linear momentum and 
kinetic energy in each.

A perfectly elastic collision
Two identical objects A and B, moving at the same speed 
but in opposite directions, have a head-on collision, as 
shown in Figure 6.8. Each object bounces back with its 
velocity reversed. This is a perfectly elastic collision. 

Understanding collisions
The cars in Figure 6.7 have been badly damaged by a 
collision. The front of a car is designed to absorb the 
impact of the crash. It has a ‘crumple zone’, which 
collapses on impact. This absorbs most of the kinetic 
energy that the car had before the collision. It is better 
that the car’s kinetic energy should be transferred to the 
crumple zone than to the driver and passengers.

Motor manufacturers make use of test labs to 
investigate how their cars respond to impacts. When a car 
is designed, the manufacturers combine soft, compressible 
materials that absorb energy with rigid structures that 
protect the car’s occupants. Old-fashioned cars had much 
more rigid structures. In a collision, they were more likely 
to bounce back and the violent forces involved were much 
more likely to prove fatal. v v v v

before a�erpositive
direction

A B A B
mmmm

Figure 6.7  The front of each car has crumpled in, as a result of 
a head-on collision. 

Two types of collision
When two objects collide, they may crumple and deform. 
Their kinetic energy may also disappear completely as they 
come to a halt. This is an example of an inelastic collision. 
Alternatively, they may spring apart, retaining all of 
their kinetic energy. This is a perfectly elastic collision. 
In practice, in most collisions, some kinetic energy is 
transformed into other forms (e.g. heat or sound) and the 
collision is inelastic. Previously we described the collisions 

You should be able to see that, in this collision, both 
momentum and kinetic energy are conserved. Before 
the collision, object A of mass m is moving to the right 
at speed v and object B of mass m is moving to the left at 
speed v. Afterwards, we still have two masses m moving 
with speed v, but now object A is moving to the left and 
object B is moving to the right. We can express this 
mathematically as follows:

Before the collision
object A:	 mass = m	 velocity = v	 momentum = mv
object B:	 mass = m	 velocity = −v	 momentum = −mv
Object B has negative velocity and momentum because it is 
travelling in the opposite direction to object A. Therefore 
we have:

total momentum before collision
	 = momentum of A + momentum of B
	 = mv + (−mv) = 0

total kinetic energy before collision

	 = k.e. of A + k.e. of B

	 = 12 mv2 + 12 mv2 = mv2

Figure 6.8  Two objects may collide in different ways: this is an 
elastic collision. An inelastic collision of the same two objects 
is shown in Figure 6.9.
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Again we see that momentum is conserved. However, 
kinetic energy is not conserved. It is lost because work is 
done in deforming the two objects.

In fact, momentum is always conserved in all 
collisions. There is nothing else into which momentum 
can be converted. Kinetic energy is usually not conserved 
in a collision, because it can be transformed into other 
forms of energy – sound energy if the collision is noisy, 
and the energy involved in deforming the objects (which 
usually ends up as internal energy – they get warmer). Of 
course, the total amount of energy remains constant, as 
prescribed by the principle of conservation of energy.

The magnitude of the momentum of each object is the 
same. Momentum is a vector quantity and we have to 
consider the directions in which the objects travel. The 
combined momentum is zero. On the other hand, kinetic 
energy is a scalar quantity and direction of travel is 
irrelevant. Both objects have the same kinetic energy and 
therefore the combined kinetic energy is twice the kinetic 
energy of a single object.

After the collision
Both objects have their velocities reversed, and we have:

total momentum after collision = (−mv) + mv = 0

total kinetic energy after collision = 12 mv2 + 12 mv2 = mv2

So the total momentum and the total kinetic energy are 
unchanged. They are both conserved in a perfectly elastic 
collision such as this.

In this collision, the objects have a relative speed of 2v 
before the collision. After their collision, their velocities 
are reversed so their relative speed is 2v again. This is a 
feature of perfectly elastic collisions.

The relative speed of approach is the speed of one 
object measured relative to another. If two objects are 
travelling directly towards each other with speed v, as 
measured by someone stationary on the ground, then each 
object ‘sees’ the other one approaching with a speed of 
2v. Thus if objects are travelling in opposite directions we 
add their speeds to find the relative speed. If the objects 
are travelling in the same direction then we subtract their 
speeds to find the relative speed.

In a perfectly elastic collision,  
relative speed of approach = relative speed of separation.

An inelastic collision
In Figure 6.9, the same two objects collide, but this time 
they stick together after the collision and come to a halt. 
Clearly, the total momentum and the total kinetic energy 
are both zero after the collision, since neither mass is 
moving. We have:
	 Before collision	 After collision
momentum	 0	 0
kinetic energy	 1

2 mv2	 0

A
v v

B A B

before a�erpositive
direction

m mmm

Figure 6.9  An inelastic collision between two identical 
objects. The trolleys are stationary after the collision.

4	 Copy Table 6.1 below, choosing the correct words 
from each pair.

Type of collision perfectly 
elastic 

inelastic 

Momentum conserved / 
not conserved 

conserved / 
not conserved 

Kinetic energy conserved /
not conserved 

conserved / 
not conserved 

Total energy conserved / 
not conserved

conserved / 
not conserved

Table 6.1  For Question 4.

Solving collision problems
We can use the idea of conservation of momentum to solve 
numerical problems, as illustrated by Worked example 2.

QUESTION
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Explosions and crash-landings
There are situations where it may appear that momentum 
is being created out of nothing, or that it is disappearing 
without trace. Do these contradict the principle of 
conservation of momentum?

The rockets shown in Figure 6.12 rise high into the sky. 
As they start to fall, they send out showers of chemical 
packages, each of which explodes to produce a brilliant 
sphere of burning chemicals. Material flies out in all 
directions to create a spectacular effect.

Does an explosion create momentum out of nothing? 
The important point to note here is that the burning 
material spreads out equally in all directions. Each tiny 
spark has momentum, but for every spark, there is another 
moving in the opposite direction, i.e. with opposite 
momentum. Since momentum is a vector quantity, the 
total amount of momentum created is zero.

5	 Figure 6.11 shows two identical balls A and B 
about to make a head-on collision. After the 
collision, ball A rebounds at a speed of 1.5 m s−1 
and ball B rebounds at a speed of 2.5 m s−1. The 
mass of each ball is 4.0 kg.
a	 Calculate the momentum of each ball before 

the collision.
b	 Calculate the momentum of each ball after the 

collision.
c	 Is the momentum conserved in the collision?
d	 Show that the total kinetic energy of the two 

balls is conserved in the collision.
e	 Show that the relative speed of the balls is the 

same before and after the collision.

	� Figure 6.11   
For Question 5. 

6	 A trolley of mass 1.0 kg is moving at 2.0 m s−1. It 
collides with a stationary trolley of mass 2.0 kg. 
This second trolley moves off at 1.2 m s−1.
a	 Draw ‘before’ and ‘after’ diagrams to show the 

situation.
b	 Use the principle of conservation of 

momentum to calculate the speed of the first 
trolley after the collision. In what direction 
does it move?

1.5 m s–12.5 m s–1

A B

2	 In the game of bowls, a player rolls a large ball 
towards a smaller, stationary ball. A large ball of mass 
5.0 kg moving at 10.0 m s−1 strikes a stationary ball of 
mass 1.0 kg. The smaller ball flies off at 10.0 m s−1.
a	 Determine the final velocity of the large ball after 

the impact.
b	 Calculate the kinetic energy ‘lost’ in the impact.

	 Step 1  Draw two diagrams, showing the situations 
before and after the collision. Figure 6.10 shows the 
values of masses and velocities; since we don’t know 
the velocity of the large ball after the collision, this is 
shown as v. The direction from left to right has been 
assigned the ‘positive’ direction.

	 Step 2  Using the principle of conservation of 
momentum, set up an equation and solve for the 
value of v:
total momentum before collision 

= total momentum after collision
	(5.0 × 10) + (1.0 × 0) = (5.0 × v) + (1.0 × 10)
	 50 + 0 = 5.0v  + 10

	 v  =  
40
5.0  = 8.0 m s−1

	 So the speed of the large ball decreases to 8.0 m s−1 
after the collision. Its direction of motion is 
unchanged – the velocity remains positive.

	 Step 3  Knowing the large ball’s final velocity, 
calculate the change in kinetic energy during the 
collision:

total k.e. before collision =  12  × 5.0 × 102 + 0 = 250 J

total k.e. after collision =  12  × 5.0 × 8.02 +  12  × 1.0 × 102 
	 =  210 J
k.e. ‘lost’ in the collision = 250 J − 210 J = 40 J

	 This lost kinetic energy will appear as internal 
energy (the two balls get warmer) and as sound 
energy (we hear the collision between the balls).

before a�er

5.0 kg 1.0 kg 5.0 kg 1.0 kg 

v

positive
direction

10 m s–1 10 m s–1

Figure 6.10  When solving problems involving 
collisions, it is useful to draw diagrams showing the 
situations before and after the collision. Include the 
values of all the quantities that you know.

WORKED EXAMPLE QUESTIONS
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Down to Earth
If you push a large rock over a cliff, its speed increases as it 
falls. Where does its momentum come from? And when it 
lands, where does its momentum disappear to?

The rock falls because of the pull of the Earth’s 
gravity on it. This force is its weight and it makes the 
rock accelerate towards the Earth. Its weight does work 
and the rock gains kinetic energy. It gains momentum 
downwards. Something must be gaining an equal amount 
of momentum in the opposite (upward) direction. It is 
the Earth, which starts to move upwards as the rock falls 
downwards. The mass of the Earth is so great that its 
change in velocity is small – far too small to be noticeable.

When the rock hits the ground, its momentum 
becomes zero. At the same instant, the Earth also stops 
moving upwards. The rock’s momentum cancels out the 
Earth’s momentum. At all times during the rock’s fall and 
crash-landing, momentum has been conserved.

If a rock of mass 60 kg is falling towards the Earth at a 
speed of 20 m s−1, how fast is the Earth moving towards it? 
Figure 6.13 shows the situation. The mass of the Earth is 
6.0 × 1024 kg. We have:

total momentum of Earth and rock = 0
Hence:

(60 × 20) + (6.0 × 1024 × v) = 0

v = −2.0 × 10−22 m s−1

The minus sign shows that the Earth’s velocity is in the 
opposite direction to that of the rock. The Earth moves very 
slowly indeed. In the time of the rock’s fall, it will move 
much less than the diameter of the nucleus of an atom!

At the same time, kinetic energy is created in an 
explosion. Burning material flies outwards; its kinetic 
energy has come from the chemical potential energy 
stored in the chemical materials before they burn.

More fireworks
A roman candle fires a jet of burning material up into the 
sky. This is another type of explosion, but it doesn’t send 
material in all directions. The firework tube directs the 
material upwards. Has momentum been created out of 
nothing here?

Again, the answer is no. The chemicals have 
momentum upwards, but at the same time, the roman 
candle pushes downwards on the Earth. An equal amount 
of downwards momentum is given to the Earth. Of course, 
the Earth is massive, and we don’t notice the tiny change 
in its velocity which results.

Figure 6.12  These exploding rockets produce a spectacular 
display of bright sparks in the night sky. 

 

 20 m s–1 

mass of Earth = 6.0 × 1024 kg   
 

v = ?   

60 kg 

Figure 6.13  The rock and Earth gain momentum in opposite 
directions. 
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At the same time, each ball gains momentum in 
the sideways direction, because each has a sideways 
component of velocity – the white ball to the right, and the 
red ball to the left. These must be equal in magnitude and 
opposite in direction, otherwise we would conclude that 
momentum had been created out of nothing. The red ball 
moves at a greater angle, but its velocity is less than that of 
the white ball, so that the component of its velocity at right 
angles to the original track is the same as the white ball’s.

Figure 6.15a shows the momentum of each ball before 
and after the collision. We can draw a vector triangle to 
represent the changes of momentum in this collision  
(Figure 6.15b). The two momentum vectors after the collision 
add up to equal the momentum of the white ball before 
the collision. The vectors form a closed triangle because 
momentum is conserved in this two-dimensional collision. 

Collisions in two dimensions
It is rare that collisions happen in a straight line – in one 
dimension. Figure 6.14 shows a two-dimensional collision 
between two snooker balls. From the multiple images, we 
can see how the velocities of the two balls change:

■■ At first, the white ball is moving straight forwards. When 
it hits the red ball, it moves off to the right. Its speed 
decreases; we can see this because the images get closer 
together.

■■ The red ball moves off to the left. It moves off at a bigger 
angle than the white ball, but more slowly – the images are 
even closer together.

How can we understand what happens in this collision, 
using the ideas of momentum and kinetic energy?

At first, only the white ball has momentum, and this 
is in the forward direction. During the collision, this 
momentum is shared between the two balls. We can 
see this because each has a component of velocity in the 
forward direction.

Figure 6.14  The white ball strikes the red ball a glancing blow. 
The two balls move off in different directions. 

Figure 6.15  a These vectors represent the momenta of the 
colliding balls shown in Figure 6.14. b The closed vector 
triangle shows that momentum is conserved in the collision. 

Components of momentum
Momentum is a vector quantity and so we can split it into 
components in order to solve problems.

Worked example 3 shows how to find an unknown 
velocity.

Worked example 4 shows how to demonstrate that 
momentum has been conserved in a two-dimensional 
collision.

7	 Discuss whether momentum is conserved in each 
of the following situations.
a	 A star explodes in all directions – a supernova.
b	 You jump up from a trampoline. As you go 

up, your speed decreases; as you come down 
again, your speed increases.

8	 A ball of mass 0.40 kg is thrown at a wall. It strikes 
the wall with a speed of 1.5 m s−1 perpendicular to 
the wall and bounces off the wall with a speed of 
1.2 m s−1. Explain the changes in momentum and 
energy which happen in the collision between the 
ball and the wall. Give numerical values where 
possible.

a b

mvwhite (before)

mvwhite (before)

mvwhite (a�er)

mvwhite (a�er)

mvred (a�er)

mvred (a�er)

QUESTIONS
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3	 A white ball of mass m = 1.0 kg and moving with initial 
speed u =  0.5 m s−1 collides with a stationary red ball of 
the same mass. They move off so that each has the same 
speed and the angle between their paths is 90°. What is 
their speed?

	 Step 1  Draw a diagram to show the velocity vectors of 
the two balls, before and after the collision (Figure 6.16). 
We will show the white ball initially travelling along the 
y-direction.

	 Because we know that the two balls have the same final 
speed v, their paths must be symmetrical about the 
y-direction. Since their paths are at 90° to one other, 
each must be at 45° to the y-direction.

	 Step 2  We know that momentum is conserved in the 
y-direction. Hence we can say:
initial momentum of white ball in y-direction
  = �final component of momentum of white ball  

� in y-direction
  + �final component of momentum of red ball  

� in y-direction

	 This is easier to understand using symbols:
mu = mvy + mvy

	 where vy is the component of v in the y-direction. The 
right-hand side of this equation has two identical 
terms, one for the white ball and one for the red. We can 
simplify the equation to give:
mu = 2mvy

	 Step 3  The component of v in the y-direction is v cos 45°. 
Substituting this, and including values of m and u, gives
0.5 = 2v cos 45°

	 and hence

v  =  
0.5

2 cos 45°  ≈ 0.354 m s−1

	 So each ball moves off at 0.354 m s−1 at an angle of 45° to 
the initial direction of the white ball.

4	 Figure 6.17 shows the momentum vectors for particles 
1 and 2, before and after a collision. Show that 
momentum is conserved in this collision.

	 Step 1  Consider momentum changes in the y-direction.

	 Before collision: 
momentum = 0 

	 (because particle 1 is moving in the x-direction and 
particle 2 is stationary).

	 After collision:
component of momentum of particle 1 
  = 3.0 cos 36.9° ≈ 2.40 kg m s−1 upwards
component of momentum of particle 2 
  = 4.0 cos 53.1° ≈ 2.40 kg m s−1 downwards

	 These components are equal and opposite and hence 
their sum is zero. Hence momentum is conserved in the 
y-direction.

	 Step 2  Consider momentum changes in the x-direction.
Before collision: momentum = 5.0 kg m s−1 to the right
After collision:
component of momentum of particle 1
  = 3.0 cos 53.1° ≈ 1.80 kg m s−1 to the right
component of momentum of particle 2
  = 4.0 cos 36.9° ≈ 3.20 kg m s−1 to the right
total momentum to the right = 5.0 kg m s−1

	 Hence momentum is conserved in the x-direction.

	 Step 3  An alternative approach would be to draw a 
vector triangle similar to Figure 6.15b. In this case, 
the numbers have been chosen to make this easy; the 
vectors form a 3–4–5 right-angled triangle.

	 Because the vectors form a closed triangle, we can 
conclude that:
momentum before collision = momentum after collision 
i.e. momentum is conserved.

Figure 6.16  Velocity vectors for the white and red balls. 

vwhite (before)

vwhite (a�er)
45°45°

vred (a�er)

y

particle 1

53.1°

36.9°

5.0 kg m s−1

particle 1

3.0 kg m s−1

particle 2

4.0 kg m s−1

y

Figure 6.17  Momentum vectors: particle 1 has come 
from the left and collided with particle 2. 

WORKED EXAMPLES
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Momentum and Newton’s laws
The big ideas of physics are often very simple; that is to 
say, it takes only a few words to express them and they can 
be applied in many situations. However, ‘simple’ does not 
usually mean ‘easy’. Concepts such as force, energy and 
voltage, for example, are not immediately obvious. They 
usually took someone to make a giant leap of imagination 
to first establish them. Then the community of physicists 
spent decades worrying away at them, refining them until 
they are the fundamental ideas which we use today.

Take Isaac Newton’s work on motion. He published 
his ideas in a book commonly known as the Principia 
(see Figure 6.20); its full title translated from Latin is 
Mathematical Principles of Natural Philosophy.

	 9	 A snooker ball strikes a stationary ball. The 
second ball moves off sideways, at 60° to the 
initial path of the first ball. 

		  Use the idea of conservation of momentum to 
explain why the first ball cannot travel in its 
initial direction after the collision. Illustrate your 
answer with a diagram.

	10	 Look back to Worked example 4 above. Draw the 
vector triangle which shows that momentum 
is conserved in the collision described in the 
question. Show the value of each angle in the 
triangle.

	11	 Figure 6.18 shows the momentum vectors for two 
particles, 1 and 2, before and after a collision. 
Show that momentum is conserved in this 
collision.

Figure 6.18  For Question 11. 

	12	 A snooker ball collides with a second identical 
ball as shown in Figure 6.19.
a	 Determine the components of the velocity of 

the first ball in the x- and y-directions.
b	 Hence determine the components of the 

velocity of the second ball in the x- and 
y-directions.

c	 Hence determine the velocity (magnitude and 
direction) of the second ball.

Figure 6.19  For Question 12. 

Figure 6.20  The title page of Newton’s Principia, in which he 
outlined his theories of the laws that govern the motion of 
objects.

The Principia represents the results of 20 years of 
thinking. Newton was able to build on Galileo’s ideas and 
he was in correspondence with many other scientists and 
mathematicians. Indeed, there was an ongoing feud with 
Robert Hooke as to who was the first to come up with 
certain ideas. Among scientists, this is known as ‘priority’, 
and publication is usually taken as proof of priority.

Newton wanted to develop an understanding of the 
idea of ‘force’. You may have been told in your early 
studies of science that ‘a force is a push or a pull’. That 
doesn’t tell us very much. Newton’s idea was that forces 
are interactions between bodies and that they change the 
motion of the body that they act on. Forces acting on an 
object can produce acceleration. For an object of constant 
mass, this acceleration is directly proportional to the 
resultant force acting on the object. That is much more like 
a scientific definition of force.

particle 1 60°

60°2.40 kg m s−1

particle 1

2.40 kg m s−1

particle 2

2.40 kg m s−1

ball 1
20°u = 1.00 m s−1

v = 0.80 m s−1

ball 1

x

QUESTIONS
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If the forces acting on an object are balanced, there 
is no resultant force and the object’s momentum will 
remain constant. If a resultant force acts on an object, its 
momentum (velocity and/or direction) will change. The 
equation above gives us another way of stating Newton’s 
second law of motion:

The resultant force acting on an object is equal to the rate 
of change of its momentum. The resultant force and the 
change in momentum are in the same direction.

This statement effectively defines what we mean by a force; 
it is an interaction that causes an object’s momentum to 
change. So, if an object’s momentum is changing, there 
must be a force acting on it. We can find the size and 
direction of the force by measuring the rate of change of 
the object’s momentum:

	force = rate of change of momentum

	 F =  
Δp
Δt

Worked example 5 shows how to use this equation.

Understanding motion
In Chapter 3, we looked at Newton’s laws of motion. We 
can get further insight into these laws by thinking about 
them in terms of momentum.

Newton’s first law of motion
In everyday speech, we sometimes say that something has 
momentum when we mean that it has a tendency to keep 
on moving of its own free will. An oil tanker is difficult 
to stop at sea, because of its momentum. We use the same 
word in a figurative sense: ‘The election campaign is gaining 
momentum.’ This idea of keeping on moving is just what we 
discussed in connection with Newton’s first law of motion:

An object will remain at rest or keep travelling at constant 
velocity unless it is acted on by a resultant force.

An object travelling at constant velocity has constant 
momentum. Hence the first law is really saying that the 
momentum of an object remains the same unless the 
object experiences an external force.

Newton’s second law of motion
Newton’s second law of motion links the idea of the 
resultant force acting on an object and its momentum.  
A statement of Newton’s second law is:

The resultant force acting on an object is directly 
proportional to the rate of change of the linear 
momentum of that object. The resultant force and the 
change in momentum are in the same direction.

Hence:
resultant force  ∝ rate of change of momentum

This can be written as:

F  ∝ Δp
Δt

where F is the resultant force and Δp is the change 
in momentum taking place in a time interval of Δt. 
(Remember that the Greek letter delta, Δ, is a shorthand for 
‘change in …’, so Δp means ‘change in momentum’.) The 
changes in momentum and force are both vector quantities, 
hence these two quantities must be in the same direction.

The unit of force (the newton, N) is defined to make the 
constant of proportionality equal to one, so we can write 
the second law of motion mathematically as:

F = Δp
Δt

5	 Calculate the average force acting on a 900 kg car 
when its velocity changes from 5.0 m s−1 to 30 m s−1 in 
a time of 12 s.

	 Step 1  Write down the quantities given:
m = 900 kg
initial velocity u = 5.0 m s−1

Δt = 12 s

	 Step 2  Calculate the initial momentum and the final 
momentum of the car:
momentum = mass × velocity
initial momentum = mu = 900 × 5.0 = 4500 kg m s−1

final momentum = mv = 900 × 30 = 27 000 kg m s−1

	 Step 3  Use Newton’s second law of motion to 
calculate the average force on the car:

F =  
Δp
Δt

	 =  
27 500 − 4500

12

	 =  1875 N ≈ 1900  N

	 The average force acting on the car is about 1.9 kN.

WORKED EXAMPLE
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Newton’s third law of motion
Newton’s third law of motion is about interacting objects. 
Th ese could be two magnets attracting or repelling each 
other, two electrons repelling each other, etc. Newton’s 
third law states:

When two bodies interact, the forces they exert on each 
other are equal and opposite.

How can we relate this to the idea of momentum? Picture 
holding two magnets, one in each hand. You gradually 
bring them towards each other (Figure 6.21) so that they 
start to attract each other. Each feels a force pulling it 
towards the other. Th e two forces are the same size, even if 
one magnet is stronger than the other. Indeed, one magnet 
could be replaced by an unmagnetised piece of steel and 
they would still attract each other equally.

If you release the magnets, they will gain momentum 
as they are pulled towards each other. One gains 
momentum to the left  while the other gains equal 
momentum to the right.

Each is acted on by the same force, and for the same 
time. Hence momentum is conserved.

A special case of Newton’s second law of 
motion
Imagine an object of constant mass m acted upon by a 
resultant force F. Th e force will change the momentum of 
the object. According to Newton’s second law of motion, 
we have:

F = Δp
Δt

 = mv − mu
t

where u is the initial velocity of the object, v is the fi nal 
velocity of the object and t is the time taken for the change 
in velocity. Th e mass m of the object is a constant; hence 
the above equation can be rewritten as:

F = m(v − u)
t

 = m  v − u
t

Th e term in brackets on the right-hand side is the 
acceleration a of the object. Th erefore a special case of 
Newton’s second law is:

F = ma
We have already met this equation in Chapter 3. In 
Worked example 5, you could have determined the average 
force acting on the car using this simplifi ed equation for 
Newton’s second law of motion. Remember that the 
equation F = ma is a special case of F = Δp

Δt
 which only 

applies when the mass of the object is constant. Th ere are 
situations where the mass of an object changes as it moves, 
for example a rocket, which burns a phenomenal amount 
of chemical fuel as it accelerates upwards.

 13 A car of mass 1000 kg is travelling at a velocity of 
10 m s−1. It accelerates for 15 s, reaching a velocity of 
24 m s−1. Calculate:
a the change in the momentum of the car in the 15 s 

period
b the average force acting on the car as it 

accelerates.

 14 A ball is kicked by a footballer. The average force 
on the ball is 240 N and the impact lasts for a time 
interval of 0.25 s.
a Calculate the change in the ball’s momentum.
b State the direction of the change in momentum.

 15 Water pouring from a broken pipe lands on a flat 
roof. The water is moving at 5.0 m s−1 when it strikes 
the roof. The water hits the roof at a rate of 10 kg s−1. 
Calculate the force of the water hitting the roof. 
(Assume that the water does not bounce as it hits 
the roof. If it did bounce, would your answer be 
greater or smaller?)

 16 A golf ball has a mass of 0.046 kg. The final velocity 
of the ball aft er being struck by a golf club is 50 m s−1. 
The golf club is in contact with the ball for a time of 
1.3 ms. Calculate the average force exerted by the 
golf club on the ball.

A

B

N

S

force of B on A

force of A on B

Figure 6.21 Newton’s third law states that the forces these two 
magnets exert one each other must be equal and opposite. 

QUESTIONS
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End-of-chapter questions
1 An object is dropped and its momentum increases as it falls toward the ground. Explain how the 

law of conservation of momentum and Newton’s third law of motion can be applied to this situation. [2]

2 A ball of mass 2 kg, moving at 3.0 m s−1, strikes a wall and rebounds with the same speed. State and 
explain whether there is a change in:
a the momentum of the ball [3]
b the kinetic energy of the ball. [1]

3 a Define linear momentum. [1]
b Determine the base units of linear momentum in the SI system. [1]
c A car of mass 900 kg starting from rest has a constant acceleration of 3.5 m s−2. Calculate its momentum 

aft er it has travelled a distance of 40 m. [2]
d Figure 6.22 shows two identical objects about to make a head-on collision. The objects stick together 

during the collision. Determine the final speed of the objects. State the direction in which they move. [3]

Figure 6.22 For End-of-chapter Question 3. 

Summary
■■ Linear momentum is the product of mass and velocity:

momentum = mass × velocity or p = mv

■■ The principle of conservation of momentum:

For a closed system, in any direction the total 
momentum before an interaction (e.g. collision) is 
equal to the total momentum aft er the interaction.

■■ In all interactions or collisions, momentum and total 
energy are conserved.

■■ Kinetic energy is conserved in a perfectly elastic 
collision; relative speed is unchanged in a perfectly 
elastic collision.

■■ In an inelastic collision, kinetic energy is not conserved. 
It is transferred into other forms of energy (e.g. heat or 
sound). Most collisions are inelastic.

■■ Newton’s first law of motion: An object will remain at 
rest or keep travelling at constant velocity unless it is 
acted on by a resultant force.

■■ Newton’s second law of motion: The resultant force 
acting on a body is equal to the rate of change of its 
momentum:

resultant force = rate of change of momentum 

or 

F = 
Δp
Δt

■■ Newton’s third law of motion: When two bodies 
interact, the forces they exert on each other are equal 
and opposite.

■■ The equation F = ma is a special case of Newton’s 
second law of motion when mass m remains constant.

4.0 kg 4.0 kg

2.0 m s–1 3.0 m s–1

Cambridge International AS Level Physics
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4 a Explain what is meant by an:
i elastic collision [1]
ii inelastic collision. [1]

b A snooker ball of mass 0.35 kg hits the side of a snooker table at right angles and bounces off  also 
at right angles. Its speed before collision is 2.8 m s−1 and its speed aft er is 2.5 m s−1. Calculate 
the change in the momentum of the ball. [2]

c Explain whether or not momentum is conserved in the situation described in b. [3]

5 A car of mass 1100 kg is travelling at 24 m s−1. The driver applies the brakes and the car decelerates 
uniformly and comes to rest in 20 s.
a Calculate the change in momentum of the car. [2]
b Calculate the braking force on the car. [2]
c Determine the braking distance of the car. [2]

6 A marble of mass 100 g is moving at a speed of 0.40 m s−1 in the x-direction.
a Calculate the marble’s momentum. [2]
 The marble strikes a second, identical marble. Each moves off  at an angle of 45° to the x-direction.
b Use the principle of conservation of momentum to determine the speed of each marble aft er the collision. [3]
c Show that kinetic energy is conserved in this collision. [2]

7 A cricket bat strikes a ball of mass 0.16 kg travelling towards it. The ball initially hits the bat at a speed 
of 25 m s−1 and returns along the same path with the same speed. The time of impact is 0.0030 s.
a Determine the change in momentum of the cricket ball. [2]
b Determine the force exerted by the bat on the ball. [2]
c Describe how the laws of conservation of energy and momentum apply to this impact and state 

whether the impact is elastic or inelastic. [4]

8 a  State the principle of conservation of momentum and state the conditions under which it is valid. [2]
b An arrow of mass 0.25 kg is fired horizontally towards an apple of mass 0.10 kg which is hanging 

on a string (Figure 6.23).

Figure 6.23 For End-of-chapter Question 8. 

 The horizontal velocity of the arrow as it enters the apple is 30 m s−1. The apple was initially at rest 
and the arrow sticks in the apple.
i Calculate the horizontal velocity of the apple and arrow immediately aft er the impact. [2]
ii Calculate the change in momentum of the arrow during the impact. [2]
iii Calculate the change in total kinetic energy of the arrow and apple during the impact. [2]
iv An identical arrow is fired at the centre of a stationary ball of mass 0.25 kg. The collision is 

perfectly elastic. Describe what happens and state the relative speed of separation of the 
arrow and the ball. [2]

30 m s–1
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 9 a State what is meant by:
i a perfectly elastic collision [1]
ii a completely inelastic collision. [1]

b A stationary uranium nucleus disintegrates, emitting an alpha-particle of mass 6.65 × 10−27 kg and 
another nucleus X of mass 3.89 × 10−25 kg (Figure 6.24).

Figure 6.24 For End-of-chapter Question 9. 

i Explain why the alpha-particle and nucleus X must be emitted in exactly opposite directions. [2]
ii Using the symbols vα and vX for velocities, write an equation for the conservation of momentum 

in this disintegration. [1]
iii Using your answer to ii, calculate the ratio vα /vX aft er the disintegration. [1]

10 a State two quantities that are conserved in an elastic collision. [1]
b A machine gun fires bullets of mass 0.014 kg at a speed of 640 m s−1.

i Calculate the momentum of each bullet as it leaves the gun. [1]
ii Explain why a soldier holding the machine gun experiences a force when the gun is firing. [2]
iii The maximum steady horizontal force that a soldier can exert on the gun is 140 N. Calculate the 

maximum number of bullets that the gun can fire in one second. [2]

11 Two railway trucks are travelling in the same direction 
and collide. The mass of truck X is 2.0 × 104 kg and the 
mass of truck Y is 3.0 × 104 kg. Figure 6.25 shows how 
the velocity of each truck varies with time.

a Copy and complete the table. [6]

Change in momen-
tum / kg m s−1

Initial kinetic 
energy / J

Final kinetic 
energy / J

truck X

truck Y

b State and explain whether the collision of the two trucks is an example of an elastic collision.  [2]
c Determine the force that acts on each truck during the collision. [2]

uranium nucleus
before decay

X

alpha-particle

2.00

X
4

3

2

Ve
lo

ci
ty

 / 
m

s–1

1

0

5

Y X

Y

3.6

Time / s
Figure 6.25 For End-of-chapter Question 11.
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Chapter 7:
Matter and 
materials

Learning outcomes
You should be able to:

■■ define density
■■ define pressure and calculate the pressure in a fluid
■■ understand how tensile and compressive forces cause 

deformation
■■ describe the behaviour of springs and understand 

Hooke’s law
■■ distinguish between elastic and plastic deformation
■■ define and use stress, strain and the Young modulus
■■ describe an experiment to measure the Young modulus
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Springy stuff
In everyday life, we make great use of elastic 
materials. The term elastic means springy; that is, the 
material deforms when a force is applied and returns 
to its original shape when the force is removed. Rubber 
is an elastic material. This is obviously important for 
a bungee jumper (Figure 7.1). The bungee rope must 
have the correct degree of elasticity. The jumper must 
be brought gently to a halt. If the rope is too stiff, the 
jumper will be jerked violently so that the deceleration 
is greater than their body can withstand. On the other 
hand, if the rope is too stretchy, they may bounce up 
and down endlessly, or even strike the ground.

In this chapter we will look at how forces can change 
the shape of an object. Before that, we will look at two 
important quantities, density and pressure.

Density
Density is a property of matter. It tells us about how 
concentrated the matter is in a particular material. Density 
is a constant for a given material under specific conditions.

Density is defined as the mass per unit volume of a 
substance:

density = mass
volume

ρ = m
v

The symbol used here for density, ρ, is the Greek letter rho.
The standard unit for density in the SI system is kg m−3, 

but you may also find values quoted in g cm−3. It is useful 
to remember that these units are related by:

1000 kg m−3 = 1 g cm−3

and that the density of water is approximately 1000 kg m−3.

Figure 7.1  The stiffness and elasticity of rubber 
are crucial factors in bungee jumping.

Pressure
A fluid (liquid or gas) exerts pressure on the walls of its 
container, or on any surface with which it is in contact. A 
big force on a small area produces a high pressure.

Pressure is defined as the normal force acting per unit 
cross-sectional area. 
We can write this as a word equation:

	pressure = 
normal force

cross-sectional area

	 p = 
F
A

Force is measured in newtons and area is measured in 
square metres. The units of pressure are thus newtons per 
square metre (N m−2), which are given the special name of 
pascals (Pa).

1 Pa = 1 N m−2

1	 A cube of copper has a mass of 240 g. Each side of 
the cube is 3.0 cm long. Calculate the density of 
copper in g cm−3 and in kg m−3.

2	 The density of steel is 7850 kg m−3. Calculate the 
mass of a steel sphere of radius 0.15 m. (First 
calculate the volume of the sphere using the 
formula V = 43πr 3 and then use the density equation.)

3	 A chair stands on four feet, each of area 10 cm2. 
The chair weighs 80 N. Calculate the pressure it 
exerts on the floor.

4	 Estimate the pressure you exert on the floor when 
you stand on both feet. (You could draw a rough 
rectangle around both your feet placed together to 
find the area in contact with the floor. You will also 
need to calculate your weight from your mass.)

QUESTIONS
QUESTIONS
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Pressure in a fluid
The pressure in a fluid (a liquid or gas) increases with 
depth. Divers know this: the further down they dive, the 
greater the water pressure acting on them. Pilots know 
this: the higher they fly, the lower is the pressure of the 
atmosphere. The atmospheric pressure we experience 
down here on the surface of the Earth is due to the weight 
of the atmosphere above us, pressing downwards. It is 
pulled downwards by gravity.

The pressure in a fluid depends on three factors:

■■ the depth h below the surface
■■ the density ρ of the fluid
■■ the acceleration due to gravity, g.

In fact, pressure p is proportional to each of these and we 
have:

	pressure = density × acceleration due to gravity × depth
	 p = ρgh

We can derive this relationship using Figure 7.2. The 
force acting on the shaded area A on the bottom of the 
tank is caused by the weight of water above it, pressing 
downwards. We can calculate this force and hence the 
pressure as follows:

volume of water = A × h

mass of water = density × volume = ρ × A × h

1	 A cube of side 0.20 m floats in water with 0.15 m 
below the surface of the water. The density of water 
is 1000 kg m−3. Calculate the pressure of the water 
acting on the bottom surface of the cube and the force 
upwards on the cube caused by this pressure. (This force 
is the upthrust on the cube.)

	 Step 1  Use the equation for pressure:
p =  ρ × g × h = 1000 × 9.81 ×  0.15 = 1470 Pa

	 Step 2  Calculate the area of the base of the cube, and 
use this area in the equation for force.
area of base of cube = 0.2 × 0.2 = 0.04 m2

force = pressure × area = 1470 ×  0.04 = 58.8 N

2	 Figure 7.3 shows a manometer used to measure 
the pressure of a gas supply. Calculate the pressure 
difference between the gas inside the pipe and 
atmospheric pressure.

	 Step 1  Determine the difference in height h of the water 
on the two sides of the manometer.
h = 60 − 30 = 30 cm

	 Step 2  Because the level of water on the side of the 
tube next to the gas pipe is lower than on the side open 
to the atmosphere, the pressure in the gas pipe is above 
atmospheric pressure.
pressure difference = ρ × g × h = 1000 × 9.81 × 0.30 = 2940 Pa

h

A

density of
liquid ρ    

Figure 7.2  The weight of water in a tank exerts pressure on its 
base.

atmosphere
scale
in cm

gas
pipe

80
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40

20

0

h

water of density
1000 kg m–3

Figure 7.3  For Worked example 2.

weight of water = mass × g = ρ × A × h × g

	pressure = force
area  = ρ × A × h × gA

	 = ρ × g × h

5	 Calculate the pressure of water on the bottom of 
a swimming pool if the depth of water in the pool 
varies between 0.8 m and 2.4 m. (Density of  
water = 1000 kg m−3.) If atmospheric pressure is  
1.01 × 105 Pa, calculate the maximum total 
pressure at the bottom of the swimming pool.

6	 Estimate the height of the atmosphere if 
atmospheric density at the Earth’s surface is 
1.29 kg m−3. (Atmospheric pressure = 101 kPa.)

QUESTIONS

WORKED EXAMPLES
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Compressive and tensile forces
A pair of forces is needed to change the shape of a spring. 
If the spring is being squashed and shortened, we say 
that the forces are compressive. More usually, we are 
concerned with stretching a spring, in which case the 
forces are described as tensile (Figure 7.4).
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Figure 7.7  Force–extension graph for a spring.
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Figure 7.6  Stretching a spring.
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Figure 7.4  The effects of compressive and tensile forces.

Figure 7.5  Bending a straight wire or beam results in tensile 
forces along the upper surface (the outside of the bend) and 
compressive forces on the inside of the bend.

When a wire is bent, some parts become longer and 
are in tension while other parts become shorter and are in 
compression. Figure 7.5 shows that the line AA becomes 
longer when the wire is bent and the line BB becomes 
shorter. The thicker the wire, the greater the compression 
and tension forces along its edges.

It is simple to investigate how the length of a helical 
spring is affected by the applied force or load. The spring 
hangs freely with the top end clamped firmly (Figure 7.6). 
A load is added and gradually increased. For each value of 
the load, the extension of the spring is measured. Note that 
it is important to determine the increase in length of the 
spring, which we call the extension. We can plot a graph of 
force against extension to find the stiffness of the spring, as 
shown in Figure 7.7.

Hooke’s law
The conventional way of plotting the results would be to 
have the force along the horizontal axis and the extension 
along the vertical axis. This is because we are changing 
the force (the independent variable) and this results in 
a change in the extension (the dependent variable). The 
graph shown in Figure 7.7 has extension on the horizontal 

axis and force on the vertical axis. This is a departure from 
the convention because the gradient of the straight section 
of this graph turns out to be an important quantity, 
known as the force constant of the spring. For a typical 
spring, the first section of this graph OA is a straight line 
passing through the origin. The extension x is directly 
proportional to the applied force (load) F. The behaviour 
of the spring in the linear region OA of the graph can be 
expressed by the following equation:

	 x ∝ F
or	 F = kx

where k is the force constant of the spring (sometimes 
called either the stiffness or the spring constant of the 
spring). The force constant is the force per unit extension. 
The force constant k of the spring is given by the equation:

k = F
x

The SI unit for the force constant is newtons per metre or 
N m−1. We can find the force constant k from the gradient 
of section OA of the graph:

k = gradient
A stiffer spring will have a larger value for the force 
constant k. Beyond point A, the graph is no longer a 
straight line; its gradient changes and we can no longer use 
the equation F = kx. 
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If a spring or anything else responds to a pair of tensile 
forces in the way shown in section OA of Figure 7.7, we say 
that it obeys Hooke’s law:

A material obeys Hooke’s law if the extension produced in 
it is proportional to the applied force (load). 

If you apply a small force to a spring and then release 
it, it will return to its original length. This behaviour is 
described as ‘elastic’. However, if you apply a large force, 
the spring may not return to its original length. It has 
become permanently deformed. The force beyond which 
the spring becomes permanently deformed is known as 
the elastic limit.

7	 Figure 7.8 shows the force–extension graphs for 
four springs, A, B, C and D.
a	 State which spring has the greatest value of 

force constant.
b	 State which is the least stiff.
c	 State which of the four springs does not obey 

Hooke’s law.
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Figure 7.8  Force–extension graphs for four 
different springs.

BOX 7.1: Investigating springs

Springs can be combined in different ways  
(Figure 7.9): end-to-end (in series) and side-by-
side (in parallel). Using identical springs, you can 
measure the force constant of a single spring, and of 
springs in series and in parallel. Before you do this, 
predict the outcome of such an experiment. If the 
force constant of a single spring is k, what will be the 
equivalent force constant of:

■■ two springs in series?
■■ two springs in parallel?

This approach can be applied to combinations of 
three or more springs.

Figure 7.9  Two ways to combine a pair of springs:  
a in series; b in parallel.

a b

clamp metre rule sticky tape
pointer pulley

wire

load

Figure 7.10  Stretching a wire in the laboratory. WEAR EYE 
PROTECTION and be careful not to overload the wire.

Stretching materials
When we determine the force constant of a spring, we 
are only finding out about the stiffness of that particular 
spring. However, we can compare the stiffness of different 
materials. For example, steel is stiffer than copper, but 
copper is stiffer than lead.

Stress and strain
Figure 7.10 shows a simple way of assessing the stiffness of 
a wire in the laboratory. As the long wire is stretched, the 
position of the sticky tape pointer can be read from the 
scale on the bench.

Why do we use a long wire? Obviously, this is because 
a short wire would not stretch as much as a long one. We 
need to take account of this in our calculations, and we  
do this by calculating the strain produced by the load.  
The strain is defined as the fractional increase in the 
original length of the wire. That is:

strain =  extension
original length

QUESTION
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Hooke’s law obeyed
in this linear region

0
0

gradient = Young modulus

Strain
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Figure 7.11  Stress–strain graph, and how to deduce the 
Young modulus. Note that we can only use the first, straight-
line section of the graph.

	 8	 List the metals in Table 7.1 from stiffest to least 
stiff.

	 9	 Which of the non-metals in Table 7.1 is the stiffest?

the material. It is important to consider only the first, 
linear section of the graph. In the linear section stress 
is proportional to strain and the wire under test obeys 
Hooke’s law.

Table 7.1 gives some values of the Young modulus for 
different materials.

This may be written as:

strain =  x
L

where x is the extension of the wire and L is its original 
length.

Note that both extension and original length must be 
in the same units, and so strain is a ratio, without units. 
Sometimes strain is given as a percentage. For example, a 
strain of 0.012 is equivalent to 1.2%.

Why do we use a thin wire? This is because a thick 
wire would not stretch as much for the same force. Again, 
we need to take account of this in our calculations, and 
we do this by calculating the stress produced by the load. 
The stress is defined as the force applied per unit cross-
sectional area of the wire. That is:

stress =  force
cross-sectional area

This may be written as:

stress =  F
A

where F is the applied force on a wire of cross-sectional 
area A.

The units of stress are newtons per square metre 
(N m−2) or pascals (Pa), the same as the units of pressure:

1 Pa = 1 N m−2

The Young modulus
We can now find the stiffness of the material we are 
stretching. Rather than calculating the ratio of force to 
extension as we would for a spring or a wire, we calculate 
the ratio of stress to strain. This ratio is a constant for 
a particular material and does not depend on its shape 
or size. The ratio of stress to strain is called the Young 
modulus of the material. That is:

Young modulus = stress
strain

or	 = σ
ε

where E is the Young modulus of the material, σ (Greek 
letter sigma) is the stress and ε (epsilon) is the strain.

The unit of the Young modulus is the same as that for 
stress, N m−2 or Pa. In practice, values may be quoted in 
MPa or GPa. These units are related as:

1 MPa = 106 Pa

1 GPa = 109 Pa
Usually, we plot a graph with stress on the vertical axis 
and strain on the horizontal axis (Figure 7.11). It is drawn 
like this so that the gradient is the Young modulus of 

Material Young modulus / GPa
aluminium 70

brass 90–110

brick 7–20

concrete 40

copper 130

glass 70–80

iron (wrought) 200

lead 18

Perspex® 3

polystyrene 2.7–4.2

rubber 0.01

steel 210

tin 50

wood 	 10 approx.

Table 7.1  The Young modulus of various materials. Many 
of these values depend on the precise composition of the 
material concerned. (Remember, 1 GPa = 109 Pa.)

QUESTIONS



Chapter 7: Matter and materials

107

BOX 7.2: Determining the Young modulus

Metals are not very elastic. In practice, they can only be 
stretched by about 0.1% of their original length. Beyond 
this, they become permanently deformed. As a result, 
some careful thought must be given to getting results 
that are good enough to give an accurate value of the 
Young modulus.

First, the wire used must be long. The increase in 
length is proportional to the original length, and so a 
longer wire gives larger and more measurable extensions. 
Typically, extensions up to 1 mm must be measured for 
a wire of length 1 m. To get suitable measurements of 
extension there are two possibilities: use a very long wire, 
or use a method that allows measurement of extensions 
that are a fraction of a millimetre.

The apparatus shown in Figure 7.10 can be used 
with a travelling microscope placed above the wire and 
focused on the sticky tape pointer. When the pointer 
moves, the microscope is adjusted to keep the pointer 

at the middle of the cross-hairs on the microscope. 
The distance that the pointer has moved can then be 
measured accurately from the scale on the microscope.

Second, the cross-sectional area of the wire must 
be known accurately. The diameter of the wire is 
measured using a micrometer screw gauge. This is 
reliable to within ±0.01 mm. Once the wire has been 
loaded in increasing steps, the load must be gradually 
decreased to ensure that there has been no permanent 
deformation of the wire.

Other materials such as glass and many plastics 
are also quite stiff, and so it is difficult to measure their 
Young modulus. Rubber is not as stiff, and strains of 
several hundred per cent can be achieved. However, the 
stress–strain graph for rubber is not a straight line. This 
means the value of the Young modulus found is not very 
precise, because it only has a very small linear region on 
a stress–strain graph.

	13	 In an experiment to measure the Young modulus of 
glass, a student draws out a glass rod to form a fibre 
0.800 m in length. Using a travelling microscope, she 
estimates its diameter to be 0.40 mm. Unfortunately 
it proves impossible to obtain a series of readings for 
load and extension. The fibre snaps when a load of 
1.00 N is hung on  
the end. The student judges that the fibre extended 
by no more than 1 mm before it snapped. 

		  Use these values to obtain an estimate for the Young 
modulus of the glass used. Explain how the actual or 
accepted value for the Young modulus might differ 
from this estimate. 

	14	 For each of the materials whose stress–strain graphs 
are shown in Figure 7.13, deduce the values of the 
Young modulus.

	10	 Figure 7.12 shows stress–strain graphs for two 
materials, A and B. Use the graphs to determine the 
Young modulus of each material.

Figure 7.12  Stress–strain graphs for two different 
materials.

	11	 A piece of steel wire, 200.0 cm long and having 
cross-sectional area of 0.50 mm2, is stretched by a 
force of 50 N. Its new length is found to be 200.1 cm. 
Calculate the stress and strain, and the Young 
modulus of steel.

	12	 Calculate the extension of a copper wire of length 
1.00 m and diameter 1.00 mm when a tensile force 
of 10 N is applied to the end of the wire. (Young 
modulus E of copper = 130 GPa.)
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Figure 7.13  Stress–strain graphs for three materials.
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First, consider the linear region of the graph where 
Hooke’s law is obeyed, OA. The graph in this region is a 
straight line through the origin. The extension x is directly 
proportional to the applied force F. There are two ways to 
find the work done.

Method 1
We can think about the average force needed to produce 
an extension x. The average force is half the final force F, 
and so we can write:

	elastic potential energy = work done

	elastic potential energy = final force
2

 × extension

	elastic potential energy = 12 Fx

or	 E = 12 Fx

Method 2
The other way to find the elastic potential energy is to 
recognise that we can get the same answer by finding the 
area under the graph. The area shaded in Figure 7.15 is a 
triangle whose area is given by:

area = 12 × base × height

This again gives:
	elastic potential energy = 12 Fx

or	 E = 12 Fx
The work done in stretching or compressing a material 
is always equal to the area under the graph of force 
against extension. This is true whatever the shape of the 
graph, provided we draw the graph with extension on the 
horizontal axis. If the graph is not a straight line, we cannot 
use the Fx relationship, so we have to resort to counting 
squares or some other technique to find the answer.  

Elastic potential energy
Whenever you stretch a material, you are doing work. 
This is because you have to apply a force and the material 
extends in the direction of the force. You will know this 
if you have ever used an exercise machine with springs 
intended to develop your muscles (Figure 7.14). Similarly, 
when you push down on the end of a springboard before 
diving, you are doing work. You transfer energy to the 
springboard, and you recover the energy when it pushes 
you up into the air.

Figure 7.14  Using an exercise machine is hard work.

We call the energy in a deformed solid the elastic 
potential energy or strain energy. If the material has 
been strained elastically (the elastic limit has not been 
exceeded), the energy can be recovered. If the material 
has been plastically deformed, some of the work done has 
gone into moving atoms past one another, and the energy 
cannot be recovered. The material warms up slightly. 
We can determine how much elastic potential energy is 
involved from a force–extension graph: see Figure 7.15. We 
need to use the equation that defines the amount of work 
done by a force. That is:

work done  
� = force × distance moved in the direction of the force

F
A

0 0 x

area = work done
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Extension
Figure 7.15  Elastic potential energy is equal to the area under 
the force–extension graph.
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Note that the elastic potential energy relates to the elastic 
part of the graph (i.e. up to the elastic limit), so we can only
consider the force–extension graph up to the elastic limit.

There is an alternative equation for elastic potential 
energy. We know that, according to Hooke’s law (page 
104), applied force F and extension x are related by F = kx, 
where k is the force constant. Substituting for F gives:

elastic potential energy = 12 Fx = 12 × kx × x

elastic potential energy = 12 kx 2

3	 Figure 7.16 shows a simplified version of a force–
extension graph for a piece of metal. Find the elastic 
potential energy when the metal is stretched to its 
elastic limit, and the total work that must be done to 
break the metal.

Figure 7.16  For Worked example 3.

	 Step 1  The elastic potential energy when the metal 
is stretched to its elastic limit is given by the area 
under the graph up to the elastic limit. The graph is a 
straight line up to x = 5.0 mm, F = 20 N, so the elastic 
potential energy is the area of triangle OAB:

	elastic potential energy =  12 Fx

	 =  12  × 20 ×  5.0 × 10−3

	 =  0.050 J

	 Step 2  To find the work done to break the metal, we 
need to add on the area of the rectangle ABCD:
	 work done = total area under the graph
	 = 0.05 + (20 × 25 × 10−3)
	 = 0.05 + 0.50 = 0.55 J
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	15	 A force of 12 N extends a length of rubber band by 
18 cm. Estimate the energy stored in this rubber 
band. Explain why your answer can only be an 
estimate.

	16	 A spring has a force constant of 4800 N m−1. 
Calculate the elastic potential energy when it is 
compressed by 2.0 mm.

	17	 Figure 7.17 shows force–extension graphs for  
two materials. For each of the following 
questions, explain how you deduce your answer 
from the graphs.
a	 State which polymer has the greater stiffness.
b	 State which polymer requires the greater 

force to break it.
c	 State which polymer requires the greater 

amount of work to be done in order to break it.
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Figure 7.17  Force–extension graph for two polymers.

WORKED EXAMPLE

QUESTIONS
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Summary
■■ Density is defined as the mass per unit volume of a 

substance:

	density  =  
mass

volume

■■ Pressure is defined as the normal force acting per unit 
cross-sectional area:

pressure  =  
force
area

■■ Pressure in a fluid increases with depth:

p = ρgh

■■ Hooke’s law states that the extension of a material is 
directly proportional to the applied force. For a spring 
or a wire, F = kx, where k is the force constant. The 
force constant has units of N m−1.

■■ Stress is defined as:

	stress  =  
force

cross-sectional area

	 σ  =  
F
A

■■ Strain is defined as:

	strain  =  
extension

original length

or	 ε  =  
x
L

■■ To describe the behaviour of a material under tensile 
and compressive forces, we have to draw a  
graph of stress against strain. The gradient of the 
initial linear section of the graph is equal to the  
Young modulus. The Young modulus is an indication 
of the stiffness of the material.

■■ The Young modulus E is given by:

E  =  
stress
strain  =  

σ
ε

■■ 	The unit of the Young modulus is pascal (Pa) or N m−2.

■■ The area under a force–extension graph is equal to the 
work done by the force.

■■ For a spring or a wire obeying Hooke’s law, the elastic 
potential energy E is given by:

E  =  12 kx    Fx  =  12 kx 2
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End-of-chapter questions
1 a i Define density. [1]

 ii State the base units in the SI system in which density is measured. [1]
b i Define pressure. [1]
 ii State the base units in the SI system in which pressure is measured. [1]

2 Sketch a force–extension graph for a spring which has a spring constant of 20 N m−1 and which obeys 
Hooke’s law for forces up to 5 N. Your graph should cover forces between 0 and 6 N and show values 
on both axes. [3]

3 Two springs, each with a spring constant 20 N m−1, are connected in series. Draw a diagram of the two 
springs connected in series and determine the total extension if a mass, with weight 2.0 N, is hung 
on the combined springs. [5]

4 A sample of fishing line is 1.0 m long and is of circular cross-section of radius 0.25 mm. When a weight 
is hung on the line, the extension is 50 mm and the stress is 2.0 × 108 Pa. Calculate:
a the cross-sectional area of the line [1]
b the weight added [2]
c the strain in the line [2]
d the Young modulus. [2]

5 Figure 7.18 shows the force–extension graph for a metal wire of length 2.0 m and cross-sectional area 1.5 × 10−7 m2.

Figure 7.18 For End-of-chapter Question 5.

a Calculate the Young modulus. [3]
b Determine the energy stored in the wire when the extension is 0.8 mm. [2]
c Calculate the work done in stretching the wire between 0.4 mm and 0.8 mm. [2]

6 a  Explain how a manometer may be adapted to measure large pressures. [2]
b Explain why the pressure measured by a manometer does not depend on the cross-sectional area of 

the tube used in the manometer. [2]
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7 a  Figure 7.19 shows the stress–strain curves for three diff erent materials, P, Q and R. 
State and explain which material has the greatest Young modulus. [2]

Figure 7.19 For End-of-chapter Question 7.

b Describe an experiment to determine the Young modulus for a material in the form of a wire. 
Include a labelled diagram and explain how you would make the necessary measurements. 
Show how you would use your measurements to calculate the Young modulus. [7]

8 a State the meaning of tensile stress and tensile strain. [2]
b A vertical steel wire of length 1.6 m and cross-sectional area 1.3 × 10−6 m2 carries a weight of 60 N. 

The Young modulus for steel is 2.1 × 1011 Pa. Calculate:
i the stress in the wire [2]
ii the strain in the wire [2]
iii the extension produced in the wire by the weight. [2]

9 To allow for expansion in the summer when temperatures rise, a steel railway line laid in cold weather is 
pre-stressed by applying a force of 2.6 × 105 N to the rail of cross-sectional area 5.0 × 10−3 m2. If the railway 
line is not pre-stressed then a strain of 1.4 × 10−5 is caused by each degree Celsius rise in temperature. 
The Young modulus of the steel is 2.1 × 1011 Pa. 
a State and explain whether the force applied to the rail when it is laid should be tensile or compressive. [2]
b Calculate:

i the strain produced when the rail is laid [3]
ii the temperature rise when the rail becomes unstressed. [2]
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 10 Figure 7.20 shows the stress–strain graph for a metal wire. 

Figure 7.20 For End-of-chapter Question 10.

  The wire has a diameter of 0.84 mm and a natural length of 3.5 m. Use the graph to determine:
a the Young modulus of the wire [3]
b the extension of the wire when the stress is 0.6 GPa [2]
c the force which causes the wire to break, assuming that the cross-sectional area of the wire remains constant [3]
d the energy stored when the wire has a stress of 0.6 GPa. [3]

11 Figure 7.21 shows the force–extension graph for a spring.

a State what is represented by:
i the gradient of the graph [1]
ii the area under the graph. [1]

b The spring has force constant k = 80 N m−1. The spring is compressed by 0.060 m and placed between 
two trolleys that run on a friction-free, horizontal track. Each trolley has a mass of 0.40 kg. When 
the spring is released the trolleys fly apart with equal speeds but in opposite directions.
i How much energy is stored in the spring when it is compressed by 0.060 m? [2]
ii Explain why the two trolleys must fly apart with equal speeds. [2]
iii Calculate the speed of each trolley. [2]
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Figure 7.21 For End-of-chapter Question 11.



12 a  Liquid of density ρ fills a cylinder of base area A and height h.
i Using the symbols provided, state the mass of liquid in the container. [1]
ii Using your answer to i, derive a formula for the pressure exerted on the base of the cylinder. [2]

b A boy stands on a platform of area 0.050 m2 and a manometer measures the pressure created in 
a flexible plastic container by the weight W of the boy (Figure 7.22).

Figure 7.22 For End-of-chapter Question 12.

 The density of water is 1000 kg m−3. Determine:

i the pressure diff erence between the inside of the plastic container and the atmosphere outside [2]

ii the weight W of the boy. [2]

13 Figure 7.23 shows water in a container filled to a depth of 0.50 m. The density of water is 1000 kg m−3.

Figure 7.23 For End-of-chapter Question 13.

a Calculate the pressure at X on the base of the container. [2]
b Explain why the pressure at X must be equal to the pressure at Y. [1]
c Explain why the force downwards on the base of the container is larger than the weight of the 

liquid in the container. [2]
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14 a  Describe why the pressure of the atmosphere is less at the top of a mountain than at the bottom. [1]

Figure 7.24 For End-of-chapter Question 14.

b Figure 7.24 shows a U-tube, open at both ends, which contains two diff erent liquids, X and Y, that do 
not mix. The numbers on the metre rule are distances in centimetres. The density of liquid Y is 800 kg m−3.
i Explain how Figure 7.24 shows that liquid Y has a greater density than liquid X. [2]
ii Calculate the density of liquid X. [3]
iii Explain why the pressure in the U-tube is the same on both sides of the manometer at level L. [1]
iv Calculate the pressure caused by liquid in the U-tube at level L. [2]
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Chapter 8:
Electric fields

Learning outcomes
You should be able to:

■■ show an understanding of the concept of an electric field
■■ define electric field strength
■■ draw field lines to represent an electric field
■■ calculate the strength of a uniform electric field
■■ calculate the force on a charge in a uniform electric field
■■ describe how charged particles move in a uniform 

electric field
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Electricity in nature
The lower surface of a thundercloud is usually 
negatively charged. When lightning strikes (Figure 8.1), 
an intense electric current is sent down to the ground 
below. You may have noticed a ‘strobe’ effect – this is 
because each lightning strike usually consists of four 
or five flashes at intervals of 50 milliseconds or so. You 
will already know a bit about electric (or electrostatic) 
fields, from your experience of static electricity in 
everyday life, and from your studies in science. In this 
chapter, you will learn how we can make these ideas 
more formal. We will look at how electric forces are 
caused, and how we can represent their effects in 
terms of electric fields. Then we will find mathematical 
ways of calculating electric forces and field strengths.

Figure 8.1  Lightning flashes, dramatic evidence of natural 
electric fields.

Attraction and repulsion
Static electricity can be useful – it is important in the 
process of photocopying, in dust precipitation to clean up 
industrial emissions, and in crop-spraying, among many 
other applications. It can also be a nuisance. Who hasn’t 
experienced a shock, perhaps when getting out of a car or 
when touching a door handle? Static electric charge has 
built up and gives us a shock when it discharges.

We explain these effects in terms of electric charge. 
Simple observations in the laboratory give us the following 
picture:

■■ Objects are usually electrically neutral (uncharged), but 
they may become electrically charged, for example when 
one material is rubbed against another.

■■ There are two types of charge, which we call positive and 
negative.

■■ Opposite types of charge attract one another; like charges 
repel (Figure 8.2).

■■ A charged object may also be able to attract an uncharged 
one; this is a result of electrostatic induction.

Using a simple model, we can consider matter to be 
made up of three types of particles: electrons (which have 
negative charge), protons (positive) and neutrons (neutral). 
An uncharged object has equal numbers of protons and 
electrons, whose charges therefore cancel out.

When one material is rubbed against another, there is 
friction between them, and electrons may be rubbed of f 
one material onto the other (Figure 8.3). The material that 
has gained electrons is now negatively charged, and the 
other material is positively charged.

cloth

plastic

Figure 8.2  Attraction and repulsion between electric charges.

If a positively charged object is brought close to an 
uncharged one, the electrons in the second object may be 
attracted. We observe this as a force of attraction between 
the two objects. (This is known as electrostatic induction.)

It is important to appreciate that it is usually electrons 
that are involved in moving within a material, or from 
one material to another. This is because electrons, which 
are on the outside of atoms, are less strongly held within a 
material than are protons. They may be free to move about 
within a material (like the conduction electrons in a metal), 
or they may be relatively weakly bound within atoms.

Figure 8.3  Friction can transfer electrons between materials.

These observations are macroscopic. They are 
descriptions of phenomena that we can observe in the 
laboratory, without having to consider what is happening 
on the microscopic scale, at the level of particles such as 
atoms and electrons. However, we can give a more subtle 
explanation if we consider the microscopic picture of static 
electricity.
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The concept of an electric field
A charged object experiences a force in an electric 
field. This is what an electric field is. We say that there 
is an electric field anywhere where an electric charge 
experiences a force. An electric field is a field of force.

This is a rather abstract idea. You will be more familiar 
with the idea of a ‘field of force’ from your experience of 
magnets. There is a magnetic field around a permanent 
magnet; another magnet placed nearby will experience 
a force. You have probably plotted the field lines used to 
represent the field around a magnet. There is a third type of 
force field which we are all familiar with, because we live in 
it – a gravitational field. Our weight is the force exerted on 
us by the gravitational field of the Earth. So we have:

■■ electric fields – act on objects with electric charge
■■ magnetic fields – act on magnetic materials, magnets and 

moving charges (including electric currents)
■■ gravitational fields – act on objects with mass.

Later we will see that the electric force and the magnetic 
force are closely linked. They are generally considered as a 
single entity, the electromagnetic force.

Representing electric fields
We can draw electric fields in much the same way that 
we can draw magnetic fields, by showing field lines 
(sometimes called lines of force). The three most important 
field shapes are shown in Figure 8.6.

As with magnetic fields, this representation tells us two 
things about the field: its direction (from the direction of 
the lines), and how strong it is (from the separation of the 
lines). The arrows go from positive to negative; they tell us 
the direction of the force on a positive charge in the field.

■■ A uniform field has the same strength at all points. Example: 
the electric field between oppositely charged parallel 
plates.

■■ A radial field spreads outwards in all directions. Example: 
the electric field around a point charge or a charged sphere.

BOX 8.1: Investigating electric fields

If you rub a strip of plastic so that it becomes charged, 
and then hold it close to your hair, you feel your hair 
being pulled upwards. The influence of the charged 
plastic spreads into the space around it; we say 
that there is an electric field around the charge. To 
produce an electric field, we need unbalanced charges 
(as with the charged plastic). To observe the field, we 
need to put something in it that will respond to the 
field (as your hair responds). There are two simple 
ways in which you can do this in the laboratory. The 
first uses a charged strip of gold foil, attached to an 
insulating handle (Figure 8.4). The second uses grains 
of a material such as semolina; these line up in an 
electric field (Figure 8.5), rather like the way in which 
iron filings line up in a magnetic field (Figure 8.5).

charged 
metal 
plates

charged 
gold foil

Figure 8.4  Investigating the electric field between two 
charged metal plates.

Figure 8.5  Apparatus showing a uniform electric field 
between two parallel charged plates.

+
+

a b c

earth

+++++++++

–––––––––
– – – – –

Figure 8.6  Field lines are drawn to represent an electric field. 
They show the direction of the force on a positive charge 
placed at a point in the field. a A uniform electric field is 
produced between two oppositely charged plates. b A radial 
electric field surrounds a charged sphere. c The electric field 
between a charged sphere and an earthed plate.
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1	 Which of the three field diagrams in Figure 8.7 
represents:
a	 two positive charges repelling each other?
b	 two negative charges?
c	 two opposite charges?

2	 Many molecules are described as polar; that is, they 
have regions that are positively or negatively charged, 
though they are neutral overall. Draw a diagram to 
show how sausage-shaped polar molecules like those 
shown in Figure 8.8 might realign themselves in a 
solid.

3	 Figure 8.9 shows the electric field pattern between a 
thundercloud and a building. State and explain where 
the electric field strength is greatest.

i

ii

iii

earth

Figure 8.7  Electric fields between charges –  
see Question 1.

Figure 8.8  Polar molecules – see Question 2.

Figure 8.9  Predict where the electric field will be 
strongest – that’s where lightning may strike.

So, to define electric field strength, we imagine putting 
a positive test charge +Q in the field and measuring the 
electric force F that it feels (Figure 8.10). (If you have used 
a charged gold leaf to investigate a field, this illustrates the 
principle of testing the field with a charge.)

QUESTIONS

We can draw electric fields for other arrangements. Note 
the symbol for an earth, which is assumed to be uncharged 
(i.e. at zero volts).

Electric field strength
For an electric field, we define electric field strength E as 
follows:

The electric field strength at a point is the force per unit 
charge exerted on a stationary positive charge at that 
point.

F

E

electric field lines

+Q

Figure 8.10  A field of strength E exerts force F on charge +Q.
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From this equation, we can see that we can write the units 
of electric field strength as volts per metre (V m−1). Note:

1 V m−1 = 1 N C−1

Worked example 2 shows how to solve problems involving 
uniform fields.

high-voltage
power supply

d

+–

From this definition, we can write an equation for E:

E = F
Q

It follows that the units of electric field strength are 
newtons per coulomb (N C−1).

The strength of a uniform field
You can set up a uniform field between two parallel metal 
plates by connecting them to the terminals of a high-
voltage power supply (Figure 8.11). The strength of the field 
between them depends on two factors:

■■ the voltage V between the plates – the higher the voltage, 
the stronger the field: E ∝ V

■■ the separation d between the plates – the greater their 
separation, the weaker the field: E ∝ 

1
d

These factors can be combined to give an equation for E:

E  =  − V
d

Worked example 1 shows a derivation of this. Note that the 
minus sign is necessary because, in Figure 8.11, the voltage 
V increases towards the right while the force F acts in the 
opposite direction, towards the left. E is a vector quantity. 
In calculations, we are often interested in the magnitude 
of the electric field strength, hence we can write:

E = V
d

Figure 8.11  There is a uniform field between two parallel, 
charged plates.

4	 Figure 8.12 shows an arrangement of parallel plates, 
each at a different voltage. The electric field lines are 
shown in the space between the first pair. Copy and 
complete the diagram to show the electric field lines 
in the other two spaces.

5	 Calculate the electric field strength at a point where 
a charge of 20 mC experiences a force vertically 
downwards of 150 N.

6	 Calculate the electric field strength between two 
parallel charged plates, separated by 40 cm and with 
a potential difference between them of 1000 V.

7	 An electron is situated in a uniform electric field. The 
electric force that acts on it is 8 × 10−16 N. What is the 
strength of the electric field?  
(Electron charge e = 1.6  × 10−19 C.)

0V 0V

earth

+2.0kV +6.0kV

Figure 8.12  An arrangement of parallel plates –  
see Question 4.

QUESTIONS
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1	 Two metal plates are separated by a distance d. The 
potential difference between the plates is V. A positive 
charge Q is pulled at a constant speed with a constant 
force F from the negative plate all the way to the positive 
plate. Using the definition for electric field strength and 
the concept of work done, show that the magnitude of 
the electric field strength E is given by the equation:

E  = 
V
d

	 Step 1  We have:
work done on charge = energy transformed

	 From their definitions, we can write:
work done = force × distance  or  W = Fd

energy transformed = VQ

	 Step 2  Substituting gives:
Fd  = VQ

	 and rearranging gives:
F
Q

  =  
V
d

	 Step 3  The left-hand side of the equation is the electric 
field strength E. Hence:

E  =  
V
d

2	 Two parallel metal plates separated by 2.0 cm have a 
potential difference of 5.0 kV. Calculate the electric force 
acting on a dust particle between the plates that has a 
charge of 8.0 × 10−19 C.

	 Step 1  Write down the quantities given in the question:
d  =  2.0 × 10−2 m
V  =  5.0 × 103 V
Q  =  8.0 × 10−19 C

	 Hint: When you write down the quantities it is important 
to include the units and to change them into base units. 
We have used powers of ten to do this.

	 Step 2  To calculate the force F, you first need to 
determine the strength of the electric field:

E  =  
V
d

E  =  
50 × 103

2.0 × 10−2  = 2.5 × 105 V m−1

	 Step 3  Now calculate the force on the dust particle:
	F  =  EQ

	F  =  2.5 × 105 × 8.0 × 10−19

	 =  2.0 × 10−13 N

8	 Air is usually a good insulator. However, a spark 
can jump through dry air when the electric field 
strength is greater than about 40 000 V cm−1. This is 
called electrical breakdown. The spark shows that 
electrical charge is passing through the air – a current 
is flowing. (Do not confuse this with a chemical spark 
such as you might see when watching fireworks; in 
that case, small particles of a chemical substance are 
burning quickly.)
a	 A Van de Graaff generator (Figure 8.13) is able to 

make sparks jump across a 4 cm gap. What is the 
voltage produced by the generator?

b	 The highest voltage reached by the live wire of a 
conventional mains supply is 325 V. In theory (but 
DO NOT try this), how close would you have to get 
to a live wire to get a shock from it?

c	 Estimate the voltage of a thundercloud from which 
lightning strikes the ground 100 m below.

Figure 8.13  A Van de Graaff generator produces voltages 
sufficient to cause sparks in air.

QUESTION

WORKED EXAMPLES
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Force on a charge
Now we can calculate the force F on a charge Q in the 
uniform field between two parallel plates. We have to 
combine the general equation for field strength E = F

Q
 with 

the equation for the strength of a uniform field E = − V
d

. 
This gives:

F = QE = − QV
d

For an electron with charge −e, this becomes:

F = eV
d

Figure 8.14 shows a situation where this force is important. 
A beam of electrons is entering the space between two 
charged parallel plates. How will the beam move?

We have to think about the force on a single electron. 
In the diagram, the upper plate is negative relative to the 
lower plate, and so the electron is pushed downwards. 
(You can think of this simply as the negatively charged 
electron being attracted by the positive plate, and repelled 
by the negative plate.)

If the electron were stationary, it would accelerate 
directly downwards. However, in this example, the 
electron is moving to the right. Its horizontal velocity will 
be unaffected by the force, but as it moves sideways it will 
also accelerate downwards. It will follow a curved path, as 
shown. This curve is a parabola.

electric field lines

electrons

F

Figure 8.14  The parabolic path of a moving electron in a 
uniform electric field.

Note that the force on the electron is the same at all 
points between the plates, and it is always in the same 
direction (downwards, in this example).

This situation is equivalent to a ball being thrown 
horizontally in the Earth’s uniform gravitational field 
(Figure 8.15). It continues to move at a steady speed 
horizontally, but at the same time it accelerates downwards. 
The result is the familiar curved trajectory shown. For 
the electron described above, the force of gravity is tiny – 
negligible compared to the electric force on it.

mg

mg
gravitational
field lines

earth

A C

25 cm

D B

0 V +2 kV

Figure 8.15  A ball, thrown in the uniform gravitational field  
of the Earth, follows a parabolic path.

	 9	 In Figure 8.16, two parallel plates are shown, 
separated by 25 cm.
a	 Copy the diagram and draw field lines to 

represent the field between the plates.
b	 What is the potential difference between 

points A and B?
c	 What is the electric field strength at C, and  

at D?
d	 Calculate the electric force on a charge of 

+5 μC placed at C. In which direction does the 
force act?

	10	 A particle of charge +2 μC is placed between two 
parallel plates, 10 cm apart and with a potential 
difference of 5 kV between them. Calculate the 
field strength between the plates, and the force 
exerted on the charge.

Figure 8.16  Two parallel, charged plates.

QUESTIONS
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	11	 We are used to experiencing accelerations that are 
usually less than 10 m s−2. For example, when we 
fall, our acceleration is about 9.81 m s−2. When a car 
turns a corner sharply at speed, its acceleration is 
unlikely to be more than 5 m s−2. However, if you 
were an electron, you would be used to experiencing 
much greater accelerations than this. Calculate the 
acceleration of an electron in a television tube where 
the electric field strength is 50 000 V cm−1.  
(Electron charge −e  = −1.6 × 10−19 C;  
electron mass me =  9.11 × 10−31 kg.) 

	12	 a	� Use a diagram to explain how the electric force 
on a charged particle could be used to separate 
a beam of electrons (e−) and positrons (e+) into 
two separate beams. (A positron is a positively 
charged particle that has the same mass as an 
electron but opposite charge. Positron–electron 
pairs are often produced in collisions in a particle 
accelerator.)

b	 Explain how this effect could be used to separate 
ions that have different masses and charges.

Summary
■■ An electric field is a field of force, created by electric 

charges, and can be represented by electric field lines.

■■ The strength of the field is the force acting per unit 

	 positive charge at a point in the field, E =   
F
Q

.

■■ In a uniform field (e.g. between two parallel charged 
plates), the force on a charge is the same at all points; 

the strength of the field is given by E  =  − 
V
d

.

■■ An electric charge moving initially at right-angles to a 
uniform electric field follows a parabolic path.

QUESTIONS
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End-of-chapter questions
1 Figure 8.4 on page 118 shows apparatus used to investigate the field between a pair of charged, 

parallel plates.
a Explain why the piece of gold foil deflects in the manner shown. [1]
b State and explain what would be observed if the gold foil momentarily touched the negatively 

charged plate. [2]

2 A charged dust particle in an electric field experiences a force of 4.4 × 10−13 N. The charge on the 
particle is 8.8 × 10−17 C. Calculate the electric field strength. [2]

3 Calculate the potential diff erence that must be applied across a pair of parallel plates, placed 
4 cm apart, to produce an electric field of 4000 V m−1. [2]

4 A potential diff erence of 2.4 kV is applied across a pair of parallel plates. The electric field strength 
between the plates is 3.0 × 104 V m−1.
a Calculate the separation of the plates. [2]
b The plates are now moved so that they are 2.0 cm apart. Calculate the electric field strength 

produced in this new position. [2]

5 A variable power supply is connected across a pair of parallel plates. The potential diff erence 
across the plates is doubled and the distance between the plates is decreased to one-third of the 
original. State by what factor the electric field changes. Explain your reasoning. [3]

6 Figure 8.17 shows a positively charged sphere hanging by an insulating thread close to an earthed metal plate.

Figure 8.17 For End-of-chapter Question 6.

a Copy Figure 8.17 and draw five lines to show the electric field near the plate and the sphere. [3]
b Explain why the sphere is attracted towards the metal plate. [2]
c The sphere is now replaced with a similar negatively charged sphere.

i Explain what would be observed when the sphere is brought near to the earthed metal plate. [2]
ii Describe any changes to the electric field that would occur. [1]

metal
plate positively charged

sphere

Cambridge International AS Level Physics
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7 Figure 8.18 shows a proton as it moves between two charged parallel plates. The charge on the 
proton is +1.6 × 10−19 C.

Figure 8.18 For End-of-chapter Question 7.

a Copy Figure 8.18 and draw the electric field between the parallel plates. [2]
 The force on the proton when it is at position B is 6.4 × 10−14 N.
b In which direction does the force on the proton act when it is at position B? [1]
c What will be the magnitude of the force on the proton when it is at position C? [1]
d Calculate the electric field strength between the plates. [2]
e Calculate the potential diff erence between the plates. [2]

8 a  Define what is meant by the electric field strength at a point. [2]
 In a particle accelerator a proton, initially at rest, is accelerated between two metal plates, as shown 

in Figure 8.19.

Figure 8.19 For End-of-chapter Question 8.

b Calculate the force on the proton due to the electric field. [3]
c Calculate the work done on the proton by the electric field when it moves from plate A to plate B. [2]
d State the energy gained by the proton. [1]
e Assuming that all this energy is converted to kinetic energy of the proton, calculate the speed of the 

proton when it reaches plate B. [3]
 (Charge on a proton = +1.6 × 10−19 C; mass of a proton = 1.7 × 10−27 kg.)

A

proton

B

C
D

2.5 cm

+

–

plate A plate B8.0 cm

–5.0 MV

proton
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9 a  Figure 8.20 shows the structure of a spark plug in an internal combustion engine. Figure 8.21 is 
an enlarged version of the end of the spark plug, showing some of the lines of force representing 
the electric field.

Figure 8.20 Figure 8.21

a i  Copy the field lines from Figure 8.21. On your copy, draw arrows on the lines of force to show the 
direction of the field. [1]

ii What evidence does the diagram give that the field is strongest nea r the tip of the inner electrode? [1]
b The gap between the inner and outer electrodes is 1.25 mm and a field strength of 5.0 × 106 N C −1 is 

required for electrical breakdown. Estimate the minimum potential diff erence that must be applied 
across the inner and outer electrodes for a spark to be produced. (You may treat the two electrodes 
as a pair of parallel plates.) [2]

c When an electron is accelerated through a potential drop of approximately 20 V it will have suff icient 
energy to ionise a nitrogen atom. Show that an electron must move 4.0 μm to gain this energy. [2]

gap between inner
and other electrodes

outer electrode
(screws into engine
block)

inner electrode

field lines

Figure 1 Figure 2

insulator

+

–
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Chapter 9:
Electric current, 
potential 
diff erence and 
resistance

Learning outcomes
You should be able to:

■■ show an understanding of the nature of electric current
■■ define charge and the coulomb
■■ solve problems using the equation  Q = It
■■ derive  I = nAve
■■ solve problems involving the mean drift  velocity of 

charge carriers
■■ define potential diff erence, e.m.f. and the volt
■■ use energy considerations to distinguish between p.d. 

and e.m.f.
■■ define resistance and the ohm
■■ solve problems using  V = IR
■■ solve problems concerning energy and power in 

electric circuits
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Developing ideas
Electricity plays a vital part in our lives. We use 
electricity as a way of transferring energy from place 
to place – for heating, lighting and making things 
move. For people in a developing nation, the arrival 
of a reliable electricity supply marks a great leap 
forward. In Kenya, a micro-hydroelectric scheme 
has been built on Kabiri Falls, on the slopes of Mount 
Kenya. Although this produces just 14 kW of power, 
it has given work to a number of people, as shown in 
Figures 9.1, 9.2 and 9.3.

Figure 9.2  A metal workshop uses electrical welding 
equipment. This allows rapid repairs to farmers’ machinery.

Figure 9.3  A hairdresser can now work in the evenings, thanks 
to electrical lighting.

Figure 9.1  An operator controls the water inlet at the Kabiri 
Falls power plant. The generator is on the right.

Circuit symbols and diagrams
Before we go on to study electricity we need to introduce 
the concept of circuit diagrams. It is impossible to draw 
anything but the simplest circuits in a pictorial manner. 
To make it possible to draw complex circuits, a shorthand 
method using standard circuit symbols is used. You will 
have met many circuit components and their symbols in 
your previous studies. Some are shown in Table 9.1 and 
Figure 9.4.

The symbols in Table 9.1 are a small part of a set of 
internationally agreed conventional symbols for electrical 
components. It is essential that scientists, engineers, 
manufacturers and others around the world use the same 
symbol for a particular component. In addition, many 
circuits are now designed by computers and these need a 
universal language in which to work and to present their 
results.
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Symbol Component name
connecting lead

cell

battery of cells

fixed resistor

power supply

junction of conductors

crossing conductors (no connection)

filament lamp

voltmeter

ammeter

switch

variable resistor

microphone

loudspeaker

fuse

earth

alternating signal

capacitor

thermistor

light-dependent resistor (LDR)

semiconductor diode

light-emitting diode (LED)

Table 9.1  Electrical components and their circuit symbols.

The International Electrotechnical Commission (IEC) 
is the body which establishes agreements on such things 
as electrical symbols, as well as safety standards, working 
practices and so on. The circuit symbols used here form 
part of an international standard known as IEC 60617. 
Because this is a shared ‘language’, there is less likelihood 
that misunderstandings will arise between people working 
in different organisations and different countries.

What’s in a word?
Electricity is a rather tricky word. In everyday life, its 
meaning may be rather vague – sometimes we use it 
to mean electric current; at other times, it may mean 
electrical energy or electrical power. In this chapter 
and the ones which follow, we will avoid using the word 
electricity and try to develop the correct usage of these 
more precise scientific terms.

VV

A

Electric current
You will have carried out many practical activities 
involving electric current. For example, if you connect a 
wire to a cell (Figure 9.5), there will be current in the wire. 
And of course you make use of electric currents every day 
of your life – when you switch on a lamp or a computer, for 
example. 

In the circuit of Figure 9.5, the direction of the current 
is from the positive terminal of the cell, around the circuit 
to the negative terminal. This is a scientific convention: the 
direction of current is from positive to negative, and hence 
the current may be referred to as conventional current. 
But what is going on inside the wire?

Figure 9.4  A selection of electrical components, including 
resistors, fuses, capacitors and microchips.

cell

wire

Figure 9.5  There is current in the wire when it is connected to 
a cell.
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A wire is made of metal. Inside a metal, there are 
negatively charged electrons which are free to move about. 
We call these conduction or free electrons, because they 
are the particles which allow a metal to conduct an electric 
current. The atoms of a metal bind tightly together; they 
usually form a regular array, as shown in Figure 9.6. In a 
typical metal, such as copper or silver, one electron from 
each atom breaks free to become a conduction electron. 
The atom remains as a positively charged ion. Since there 
are equal numbers of free electrons (negative) and ions 
(positive), the metal has no overall charge – it is neutral.

Charge carriers
Sometimes a current is a flow of positive charges – for 
example, a beam of protons produced in a particle 
accelerator. The current is in the same direction as the 
particles. Sometimes a current is due to both positive and 
negative charges – for example, when charged particles 
flow through a solution. A solution which conducts is 
called an electrolyte and it contains both positive and 
negative ions. These move in opposite directions when the 
solution is connected to a cell (Figure 9.7). Any charged 
particles which contribute to an electric current are known 
as charge carriers; these can be electrons, protons or ions. ions electrons

electrolytenegative ion

positive ion

When the cell is connected to the wire, it exerts an 
electrical force on the conduction electrons that makes 
them travel along the length of the wire. Since electrons 
are negatively charged, they flow away from the negative 
terminal of the cell and towards the positive terminal. This 
is in the opposite direction to conventional current. This 
may seem a bit odd; it comes about because the direction 
of conventional current was chosen long before anyone 
had any idea what was going on inside a piece of metal 
carrying a current. If the names positive and negative had 
originally been allocated the other way round, we would 
now label electrons as positively charged, and conventional 
current and electron flow would be in the same direction.

Note that there is a current at all points in the circuit 
as soon as the circuit is completed. We do not have to wait 
for charge to travel around from the cell. This is because 
the charged electrons are already present throughout the 
metal before the cell is connected.

We can use the idea of an electric field to explain why 
charge flows almost instantly. Connect the terminals of 
a cell to the two ends of a wire and we have a complete 
circuit. The cell produces an electric field in the wire; the 
field lines are along the wire, from the positive terminal 
to the negative. This means that there is a force on each 
electron in the wire, so each electron starts to move and 
the current exists almost instantly. 

Figure 9.6  In a metal, conduction electrons are free to move 
among the fixed positive ions. A cell connected across the 
ends of the metal causes the electrons to drift towards its 
positive terminal.

Figure 9.7  Both positive and negative charges are free to 
move in a solution. Both contribute to the electric current.

1	 Look at Figure 9.7 and state the direction of the 
conventional current in the electrolyte (towards 
the left, towards the right or in both directions at 
the same time).

2	 Figure 9.8 shows a circuit with a conducting 
solution having both positive and negative ions.
a	 Copy the diagram and draw in a cell between 

points A and B. Clearly indicate the positive 
and negative terminals of the cell.

b	 Add an arrow to show the direction of the 
conventional current in the solution.

c	 Add arrows to show the direction of the 
conventional current in the connecting wires.

A B

solution

movement of
positive ions

movement of
negative ions

Figure 9.8  For Question 2.

QUESTIONS
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Current and charge
When charged particles flow past a point in a circuit, we 
say that there is a current in the circuit. Electrical current 
is measured in amperes (A). So how much charge is 
moving when there is a current of 1 A? Charge is measured 
in coulombs (C). For a current of 1 A, the rate at which 
charge passes a point in a circuit is 1 C in a time of 1 s. 
Similarly, a current of 2 A gives a charge of 2 C in a time of 
1 s. A current of 3 A gives a charge of 6 C in a time of 2 s, 
and so on. The relationship between charge, current and 
time may be written as the following word equation:

current = charge
time

This equation explains what we mean by current.

Electric current is the rate of flow of electric charge past 
a point.

The equation for current can be rearranged to give an 
equation for charge:

charge = current × time
This gives us the definition of the unit of charge, the 
coulomb.

One coulomb is the charge which flows past a point in a 
circuit in a time of 1 s when the current is 1 A.

In symbols, the charge flowing past a point is given by the 
relationship:

∆Q = I∆t
where ∆Q is the charge which flows during a time ∆t and I 
is the current.

Note that the ampere and the coulomb are both SI 
units; the ampere is a base unit while the coulomb is a 
derived unit (see page 40).

3	 The current in a circuit is 0.40 A. Calculate the 
charge that passes a point in the circuit in a period 
of 15 s.

4	 Calculate the current that gives a charge flow of 
150 C in a time of 30 s.

5	 In a circuit, a charge of 50 C passes a point in 20 s. 
Calculate the current in the circuit.

6	 A car battery is labelled ‘50 A h’. This means that it 
can supply a current of 50 A for one hour.
a	 For how long could the battery supply a 

continuous current of 200 A needed to start  
the car?

b	 Calculate the charge which flows past a point 
in the circuit in this time.

Charged particles
As we have seen, current is the flow of charged particles 
called charge carriers. But how much charge does each 
particle carry?

Electrons each carry a tiny negative charge of 
approximately −1.6 × 10−19 C. This charge is represented 
by −e. The magnitude of the charge is known as the 
elementary charge. This charge is so tiny that you would 
need about six million million million electrons – that’s 
6 000 000 000 000 000 000 of them – to have a charge 
equivalent to one coulomb.

elementary charge  e = 1.6 × 10−19 C

Protons are positively charged, with a charge +e. This 
is equal and opposite to that of an electron. Ions carry 
charges that are multiples of +e and −e.

1	 There is a current of 10 A through a lamp for 1.0 hour. 
Calculate how much charge flows through the lamp in 
this time. 

	 Step 1  We need to find the time t in seconds:
∆t = 60 × 60 = 3600 s

	 Step 2  We know the current I = 10 A, so the charge 
which flows is:
∆Q =  I∆t = 10 × 3600 = 36 000 C = 3.6 × 104 C

2	 Calculate the current in a circuit when a charge of 180 C 
passes a point in a circuit in 2.0 minutes.

	 Step 1  Rearranging Q = It gives:

I = 
∆Q
∆t

  (or current = 
charge

time )

	 Step 2  With time in seconds, we then have:

current I  = 
180
120  = 1.5 A

QUESTIONS

WORKED EXAMPLES
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Because electric charge is carried by particles, it  
must come in amounts which are multiples of e. So, for  
example, 3.2 × 10−19 C is possible, because this is +2e,  
but 2.5 × 10−19 C is impossible, because this is not an 
integer multiple of e.

We say that charge is ‘quantised’; this means that it 
can only come in amounts which are integer multiples 
of the elementary charge. If you are studying chemistry, 
you will know that ions have charges of ±e, ±2e, etc. The 
only exception is in the case of the fundamental particles 
called quarks, which are the building blocks from which 
particles such as protons and neutrons are made. These 
have charges of ± 13 e or ± 23 e. However, quarks always appear 
in twos or threes in such a way that their combined charge 
is zero or a multiple of e. Deriving I = nAve

Look at the wire shown in Figure 9.9. Its length is l. We 
imagine that all of the electrons shown travel at the same 
speed v along the wire. 

Now imagine that you are timing the electrons to 
determine their speed. You start timing when the first 
electron emerges from the right-hand end of the wire. You 
stop timing when the last of the electrons shown in the 
diagram emerges. (This is the electron shown at the left-
hand end of the wire in the diagram.) Your timer shows 
that this electron has taken time t to travel the distance l.

In the time t, all of the electrons in the length l of wire 
have emerged from the wire. We can calculate how many 
electrons this is, and hence the charge that has flowed in 
time t:

	number of electrons = number density × volume of wire

	 = n × A × l 

	 charge of electrons = number × electron charge  
	 = n × A × l × e

We can find the current I because we know that this is the 
charge that flows in time t, and current = charge/time:

I = n × A × l × e / t 
Substituting v for l / t gives

I = nAve
The moving charge carriers that make up a current are 
not always electrons. They might, for example, be ions 
(positive or negative) whose charge q is a multiple of e. 
Hence we can write a more general version of the equation 
as

I = nAvq
Worked example 3 shows how to use this equation to 
calculate a typical value of v.

7	 Calculate the number of protons which would 
have a charge of one coulomb.  
(Proton charge = +1.6 × 10−19 C.)

8	 Which of the following quantities of electric charge 
is possible? Explain how you know.

	 6.0 × 10−19 C, 8.0 × 10−19 C, 10.0 × 10−19 C

An equation for current
Copper, silver and gold are good conductors of electric 
current. There are large numbers of conduction electrons 
in a copper wire – as many conduction electrons as there 
are atoms. The number of conduction electrons per unit 
volume (e.g. in 1 m3 of the metal) is called the number 
density and has the symbol n. For copper, the value of n is 
about 1029 m–3.

Figure 9.9 shows a length of wire, with cross-sectional 
area A, along which there is a current I. How fast do the 
electrons have to travel? The following equation allows us 
to answer this question:

I = nAvq
Here, v is called the mean drift velocity of the electrons 
and q is the charge of each particle carrying the current. 
Since these are usually electrons, we can replace q by 
e, where e is the elementary charge. The equation then 
becomes:

I = nAve

current I

cross-sectional area A

wire (length l)

electrons

v
I

Figure 9.9  A current I in a wire of cross-sectional area A. The 
charge carriers are mobile conduction electrons with mean 
drift velocity v.

QUESTIONS
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Figure 9.10 shows how the mean drift velocity of 
electrons varies in different situations. We can understand 
this using the equation:

v = I
nAe

■■ If the current increases, the drift velocity v must increase. 
That is:
v ∝ I

■■ If the wire is thinner, the electrons move more quicklyfor a 
given current. That is:

v ∝ 
1
A

There are fewer electrons in a thinner piece of wire, so an 
individual electron must travel more quickly.

■■ In a material with a lower density of electrons (smaller n), 
the mean drift velocity must be greater for a given current. 
That is:

v ∝ 1
n

	 9	 Calculate the current in a gold wire of cross-sectional 
area 2.0 mm2 when the mean drift velocity of the 
electrons in the wire is 0.10 mm s−1. The electron 
number density for gold is  
5.9 × 1028 m−3.

	10	 Calculate the mean drift velocity of electrons in a 
copper wire of diameter 1.0 mm with a current  
of 5.0 A. The electron number density for copper is 
8.5 × 1028 m−3.

	11	 A length of copper wire is joined in series to a length 
of silver wire of the same diameter. Both wires have 
a current in them when connected to a battery. 
Explain how the mean drift velocity of the electrons 
will change as they travel from the copper into the 
silver. Electron number densities:

		  	 copper n  =  8.5 × 1028 m−3

		  	 silver n  =  5.9 × 1028 m−3.

2I

I

I

I

I

half the area,
double the speed

double the current,
double the speed

2v

2v

v

smaller electron number 
density, increased speed

2I

Figure 9.10  The mean drift velocity of electrons depends on 
the current, the cross-sectional area and the electron density 
of the material.

Slow flow
It may surprise you to find that, as suggested by the result 
of Worked example 3, electrons in a copper wire drift at 
a fraction of a millimetre per second. To understand this 
result fully, we need to closely examine how electrons 
behave in a metal. The conduction electrons are free 
to move around inside the metal. When the wire is 
connected to a battery or an external power supply, each 
electron within the metal experiences an electrical force 
that causes it to move towards the positive end of the 
battery. The electrons randomly collide with the fixed 
but vibrating metal ions. Their journey along the metal 
is very haphazard. The actual velocity of an electron 
between collisions is of the order of magnitude 105 m s−1, 
but its haphazard journey causes it to have a drift velocity 
towards the positive end of the battery. Since there are 
billions of electrons, we use the term mean drift velocity v 
of the electrons.

QUESTIONS

3	 Calculate the mean drift velocity of the electrons in 
a copper wire of cross-sectional area 5.0 × 10−6 m2 
carrying a current of 1.0 A. The electron number 
density for copper is 8.5 × 1028 m−3.

	 Step 1  Rearrange the equation I = nAve to make v 
the subject:

v  =  I
nAe

	 Step 2  Substitute values and calculate v:

v  =  
1.0

8.5 × 1028 × 5.0 × 10−6 × 1.6 × 10−19 

	 =  1.47 × 10−5 m s−1

	 =  0.015 mm s−1

WORKED EXAMPLE
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It may help you to picture how the drift velocity of 
electrons changes by thinking about the flow of water in 
a river. For a high rate of flow, the water moves fast – this 
corresponds to a greater current I. If the course of the river 
narrows, it speeds up – this corresponds to a smaller cross-
sectional area A.

Metals have a high electron number density – typically 
of the order of 1028 or 1029 m−3. Semiconductors, such as 
silicon and germanium, have much lower values of n – 
perhaps 1023 m−3. In a semiconductor, electron mean drift 
velocities are typically a million times greater than those 
in metals for the same current. Electrical insulators, such 
as rubber and plastic, have very few conduction electrons 
per unit volume to act as charge carriers.

The meaning of voltage
The term voltage is often used in a rather casual way. 
In everyday life, the word is used in a less scientific and 
often incorrect sense – for example, ‘A big voltage can go 
through you and kill you.’ In this section, we will consider 
a bit more carefully just what we mean by voltage and 
potential difference in relation to electric circuits.

Look at the simple circuit in Figure 9.11. Assume 
the power supply has negligible internal resistance. (We 
look at internal resistance later in Chapter 11). The three 
voltmeters are measuring three voltages or potential 
differences. With the switch open, the voltmeter placed 
across the supply measures 12 V. With the switch closed, 
the voltmeter across the power supply still measures 12 V 
and the voltmeters placed across the resistors measure 8 V 
and 4 V. You will not be surprised to see that the voltage 
across the power supply is equal to the sum of the voltages 
across the resistors.

Earlier in this chapter we saw that electric current is 
the rate of flow of electric charge. Figure 9.12 shows the 

same circuit as in Figure 9.11, but here we are looking 
at the movement of one coulomb (1 C) of charge round 
the circuit. Electrical energy is transferred to the charge 
by the power supply. The charge flows round the circuit, 
transferring some of its electrical energy to heat in the first 
resistor, and the rest to heat in the second resistor.

+12 J

–8 J –4 J

12 V

R = 20 Ω R = 10 Ω

1 C 1 C

Figure 9.12  Energy transfers as 1 C of charge flows round a 
circuit. This circuit is the same as that shown in Figure 9.11.

V = 12 V

V = 8 V V = 4 V
V

V

V

12 V

R = 20 Ω R = 10 Ω

Figure 9.11  Measuring voltages in a circuit. Note that each 
voltmeter is connected across the component.

The voltmeter readings indicate the energy transferred 
to the component by each unit of charge. The voltmeter 
placed across the power supply measures the e.m.f. of the 
supply, whereas the voltmeters placed across the resistors 
measure the potential difference (p.d.) across these 
components. The terms e.m.f. and potential difference 
have different meanings – so you have to be very vigilant.

The term potential dif ference is used when charges 
lose energy by transferring electrical energy to other 
forms of energy in a component. Potential difference, V, is 
defined as the energy transferred per unit charge.

The potential difference between two points, A and B, is 
the energy per unit charge as charge moves from point A 
to point B.

A power supply or a battery transfers energy to electrical 
charges in a circuit. The e.m.f., E, of the supply is also 
defined as the energy transferred per unit charge.

e.m.f. is defined as the total work done per unit charge 
when charge flows round a complete circuit.

Note that e.m.f. stands for electromotive force. This is a 
misleading term. It has nothing at all to do with force. This 
term is a legacy from the past and we are stuck with it! It is 
best to forget where it comes from and simply use the term 
e.m.f.
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Electrical resistance
If you connect a lamp to a battery, a current in the lamp 
causes it to glow. But what determines the size of the 
current? This depends on two factors:

■■ the potential difference or voltage V across the lamp – the 
greater the potential difference, the greater the current for a 
given lamp

■■ the resistance R of the lamp – the greater the resistance, the 
smaller the current for a given potential difference.

Now we need to think about the meaning of electrical 
resistance. The resistance of any component is defined as 
the ratio of the potential difference to the current. As a 
word equation, this is written as:

resistance = potential difference
current

or
	 R = V

I
where R is the resistance of the component, V is the 
potential difference across the component and I is the 
current in the component. You can rearrange the equation 
above to give:

I = V
R

    or    V = IR

Table 9.2 summarises these quantities and their units.

Quantity Symbol for 
quantity

Unit Symbol  
for unit

current I ampere (amp) A

voltage (p.d., e.m.f.) V volt V

resistance R ohm Ω

Table 9.2  Basic electrical quantities, their symbols and  
SI units. Take care to understand the difference between  
V (in italics) meaning the quantity voltage and V meaning the 
unit volt.

Defining the ohm
The unit of resistance, the ohm, can be determined from 
the equation that defines resistance:

resistance = potential difference
current

The ohm is equivalent to ‘1 volt per ampere’. That is:
1 Ω = 1 V A−1

The ohm is the resistance of a component when a 
potential difference of 1 volt drives a current of 1 ampere 
through it.

4	 Calculate the current in a lamp given that its 
resistance is 15 Ω and the potential difference across 
its ends is 3.0 V.

	 Step 1  Here we have V = 3.0 V and R = 15 Ω.

	 Step 2  Substituting in I  =  
V
R

  gives:

current  I  = 
3.0
15   =  0.20 A

	 So the current in the lamp is 0.20 A.

	12	 A car headlamp bulb has a resistance of 
36 Ω. Calculate the current in the lamp when 
connected to a ‘12 V’ battery. 

	13	 You can buy lamps of different brightness to 
fit in light fittings at home (Figure 9.13). A ‘100 
watt’ lamp glows more brightly than a ‘60 watt’ 
lamp. Explain which of the lamps has the higher 
resistance.

Figure 9.13  Both of these lamps work from 
the 230 V mains supply, but one has a higher 
resistance than the other. For Question 13.

	14	 a	� Calculate the potential difference across a 
motor carrying a current of 1.0 A and having a 
resistance of 50 Ω .

b	 Calculate the potential difference across the 
same motor when the current is doubled. 
Assume its resistance remains constant.

	15	 Calculate the resistance of a lamp carrying a 
current of 0.40 A when connected to a 230 V 
supply.

WORKED EXAMPLE

QUESTIONS
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Electrical power
The rate at which energy is transferred is known as power. 
Power P is measured in watts (W). (If you are not sure 
about this, refer back to Chapter 5, where we looked at the 
concept of power in relation to forces and work done.) 

power = energy transferred
time taken

	 P = W
∆t

where P is the power and W is the energy transferred in a 
time ∆t. Take care not to confuse W for energy transferred 
or work done with W for watts. 

The rate at which energy is transferred in an electrical 
component is related to two quantities: 

■■ the current I in the component 
■■ the potential difference V across the component.

We can derive an equation for electrical power from 
the equations we have met so far. The amount of energy 
W transferred by a charge ∆Q when it moves through a 
potential difference V is given by:

W = V∆Q
Hence:

P = W
∆t

 = V∆Q
∆t

 = V (∆Q
∆t

)

The ratio of charge to time, ∆Q
∆t

 , is the current I in the 
component. Therefore:

P = VI
As a word equation, we have:

power = potential difference × current
and in units:

watts = amps × volts

5	 Calculate the rate at which energy is transferred by a 
230 V mains supply which provides a current of 8.0 A 
to an electric heater.

	 Step 1  Use the equation for power:

P = VI 

	 with V = 230 V and I = 8.0 A.

	 Step 2  Substitute values:
P = 8 × 230 = 1840 W (1.84 kW)

	17	 Calculate the current in a 60 W light bulb when it 
is connected to a 230 V power supply.

	18	 A large power station supplies electrical energy 
to the grid at a voltage of 25 kV. Calculate the 
output power of the station when the current it 
supplies is 40 kA.

	16	 In Figure 9.14 the reading on the ammeter 
is 2.4 A and the reading on the voltmeter is 
6.0 V. Calculate the resistance of the metallic 
conductor.

BOX 9.1: Determining resistance

As we have seen, the equation for resistance is:

R = 
V
I

To determine the resistance of a component, we 
therefore need to measure both the potential 
difference V across it and the current I through 
it. To measure the current, we need an ammeter. 
To measure the potential difference, we need a 
voltmeter. Figure 9.14 shows how these meters 
should be connected to determine the resistance of  
a metallic conductor, such as a length of wire.

■■ The ammeter is connected in series with the 
conductor, so that there is the same current in both.

■■ The voltmeter is connected across (in parallel 
with) the conductor, to measure the potential 
difference across it.

Figure 9.14  Connecting an ammeter and a voltmeter 
to determine the resistance of a metallic conductor in 
a circuit.

I metallic
conductor

A

V

QUESTIONS

QUESTION

WORKED EXAMPLE
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	19	 An electric cooker is usually connected to the 
mains supply in a separate circuit from other 
appliances, because it draws a high current. A 
particular cooker is rated at 10 kW, 230 V.
a	 Calculate the current in the cooker when it is 

fully switched on.
b	 Suggest a suitable current rating for the fuse 

for this cooker.

Figure 9.15  Fuses of different current ratings.

Fuses
A fuse is a device which is fitted in an electric circuit; it is 
usually there to protect the wiring from excessive currents. 
For example, the fuses in a domestic fuse box will ‘blow’ 
if the current is too large. High currents cause wires to 
get hot, and this can lead to damaged wires, fumes from 
melting insulation, and even fires.

Fuses (Figure 9.15) are usually marked with their 
current rating; that is, the maximum current which they 
will permit. Inside the fuse cartridge is a thin wire which 
gets hot and melts if the current exceeds this value. This 
breaks the circuit and stops any hazardous current. Worked 
example 7 shows how an appropriate fuse is chosen.

6	 a	� A power station produces 20 MW of power at a 
voltage of 200 kV. Calculate the current supplied 
to the grid cables.

	 Step 1  Here we have P and V and we have to  
find I, so we can use P = VI.

	 Step 2  Rearranging the equation and 
substituting the values we know gives:

current I  =  
P
V

  =  
20 × 106

200 × 103 = 100 A

	 Hint: Remember to convert megawatts into watts 
and kilovolts into volts.

	 So the power station supplies a current of 100 A.
b	 The grid cables are 15 km long, with a resistance 

per unit length of 0.20 Ω km−1. How much power is 
wasted as heat in these cables?

	 Step 1  First we must calculate the resistance of 
the cables:
resistance R = 15 km × 0.20 Ω km−1 = 3.0 Ω

	 Step 2  Now we know I and R and we want to  
find P. We can use P = I 2R:
power wasted as heat, P = I 2R = (100)2 × 3.0
	 = 3.0 × 104 W
	 = 30 kW

	 Hence, of the 20 MW of power produced by the 
power station, 30 kW is wasted – just 0.15%.

7	 An electric kettle is rated at 2.5 kW, 230 V. Determine 
a suitable current rating of the fuse to put in the 
three-pin plug. Choose from 1 A, 5 A, 13 A, 30 A.

	 Step 1  Calculate the current in the kettle in normal 
operation. Rearranging P = VI to make I the subject 
gives:

I = 
P
V

So: 

I = 
2500
230  = 10.9 A

	 Step 2  Now we know that the normal current in the 
kettle is 10.9 A. We must choose a fuse with a slightly 
higher rating than this. Therefore the value of the 
fuse rating is 13 A.

	 Hint: A 5 A fuse would not be suitable because it would 
melt as soon as the kettle is switched on. A 30 A fuse 
would allow more than twice the normal current 
before blowing, which would not provide suitable 
protection.

QUESTION

WORKED EXAMPLES
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Power and resistance
A current I in a resistor of resistance R transfers energy 
to it. The resistor dissipates the energy as heat. The p.d. V 
across the resistor is given by V = IR. Combining this with 
the equation for power, P = VI, gives us two further forms 
of the equation for power dissipated in the resistor:

P = I 2R

P = V
2

R
Which form of the equation we use in any particular 
situation depends on the information we have available 
to us. This is illustrated in Worked examples 6a and 6b, 
which relate to a power station and to the grid cables 
which lead from it (Figure 9.16).

	20	 A calculator is powered by a 3.0 V battery. The 
calculator’s resistance is 20 kΩ. Calculate the 
power transferred to the calculator.

	21	 An energy-efficient light bulb is labelled ‘230 V, 
15 W’. This means that when connected to the 
230 V mains supply it is fully lit and changes 
electrical energy to heat and light at the rate of 
15 W. Calculate:

a	 the current which flows through the bulb when 
fully lit

b	 its resistance when fully lit.

	22	 Calculate the resistance of a 100 W light bulb that 
draws a current of 0.43 A from a power supply.

	23	 A 12 V car battery can supply a current of 10 A for 
5.0 hours. Calculate how many joules of energy 
the battery transfers in this time.

	24	 A lamp is operated for 20 s. The current in the 
lamp is 10 A. In this time, it transfers 400 J of 
energy to the lamp. Calculate:
a	 how much charge flows through the lamp
b	 how much energy each coulomb of charge 

transfers to the lamp
c	 the p.d. across the lamp.

Figure 9.16  A power station and electrical transmission lines. 
How much electrical power is lost as heat in these cables? 
(See Worked examples 6a and 6b.)

Calculating energy
We can use the relationship for power as energy 
transferred per unit time and the equation for electrical 
power to find the energy transferred in a circuit. 
Since:

power = current × voltage
and:

energy = power × time
we have:

energy transferred = current × voltage × time

W = IV∆t
Working in SI units, this gives energy transferred in joules.

QUESTIONS

QUESTIONS
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Summary
■■ Electric current is the rate of flow of charge. In a 

metal this is due to the flow of electrons. In an 
electrolyte, the flow of positive and negative ions 
produces the current.

■■ The direction of conventional current is from positive 
to negative; the direction of electron flow is from 
negative to positive.

■■ The SI unit of charge is the coulomb (C). One coulomb 
is the charge which passes a point when a current of 
1 A flows for 1 s.

charge = current × time  (∆Q = I∆t)

■■ The elementary charge e = 1.6 × 10−19 C.

■■ The current I in a conductor of cross-sectional area 
A depends on the mean drift velocity v of the charge 
carriers and their number density n.

I = nAvq

■■ The term potential difference (p.d.) is used when 
charges lose energy in a component. It is defined as 
the energy transferred per unit charge.

V  =  
W

∆Q
  or  W = V∆Q

■■ The term electromotive force (e.m.f.) is used when 
charges gain electrical energy from a battery or 
similar device. It is also defined as the energy 
transferred per unit charge.

E =  
W

∆Q
  or  W = E∆Q

■■ A volt is a joule per coulomb. That is, 1 V = 1 J C−1.

■■ Power is the rate of energy transfer. In electrical 
terms, power is the product of voltage and current. 
That is, P = VI.

■■ Resistance is defined as the ratio of voltage to 
current. That is:

resistance =  
voltage
current  (R =  

V
I  

)

■■ The resistance of a component is 1 ohm when a 
potential difference of 1 volt is produced per ampere.

■■ For a resistance R, the power dissipated is given by:

P = I2R  or  P =  
V 2

R

■■ Energy transferred in a circuit in a time ∆t is given by:

W = IV∆t
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End-of-chapter questions
1 Calculate the charge which passes through a lamp when there is a current of 150 mA for 40 minutes. [3]

2 A generator produces a current of 40 A. How long will it take for a total of 2000 C to flow through the output? [2]

3 In a lightning strike there is an average current of 30 kA, which lasts for 2000 µs. Calculate the charge which 
is transferred in this process. [3]

4 a  A lamp of resistance 15 Ω is connected to a battery of e.m.f. 4.5 V. Calculate the current in the lamp. [2]
b Calculate the resistance of the filament of an electric heater which takes a current of 6.5 A when it is 

connected across a mains supply of 230 V. [2]
c Calculate the voltage which is require to drive a current of 2.4 A through a wire of resistance 3.5 Ω. [2]

5 A battery of e.m.f. 6 V produces a steady current of 2.4 A for 10 minutes. Calculate:
a the charge which it supplied [2]
b the energy that it transferred. [2]

6 Calculate the energy gained by an electron when it is accelerated through a potential diff erence of 50 kV. 
(Charge on the electron = −1.6 × 10−19 C.) [2]

7 A woman has available 1 A, 3 A, 5 A, 10 A and 13 A fuses. Explain which fuse she should use for a 120 V, 
450 W hairdryer. [3]

8 Figure 9.17 shows the electrolysis of copper chloride.

Figure 9.17 For End-of-chapter Question 8.

a i  On a copy of the diagram, mark the direction of the conventional current in the electrolyte. 
Label it conventional current. [1]

ii Mark the direction of the electron flow in the connecting wires. Label this electron flow. [1]
b In a time period of 8 minutes, 3.6 × 1016 chloride (Cl−) ions are neutralised and liberated at the 

anode and 1.8 × 1016 copper (Cu2+) ions are neutralised and deposited on the cathode.
i Calculate the total charge passing through the electrolyte in this time. [2]
ii Calculate the current in the circuit. [2]

Cu2+ ionsCl– ions

cathode

A

anode
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 9 Figure 9.18 shows an electron tube. Electrons moving from the cathode to the anode constitute a current. 
 The current in the ammeter is 4.5 mA.

Figure 9.18 For End-of-chapter Question 9.

a Calculate the charge passing through the ammeter in 3 minutes. [3]
b Calculate the number of electrons which hit the anode in 3 minutes. [3]
c The potential diff erence between the cathode and the anode is 75 V. Calculate the energy gained by 

an electron as it travels from the cathode to the anode. [2]

10 A length of copper track on a printed circuit board has a cross-sectional area of 5.0 × 10−8 m2. 
The current in the track is 3.5 mA. You are provided with some useful information about copper:

 1 m3 of copper has a mass of 8.9 × 103 kg
 54 kg of copper contains 6.0 × 1026 atoms
 In copper, there is roughly one electron liberated from each copper atom.

a Show that the electron number density n for copper is about 1029 m−3. [2]
b Calculate the mean drift  velocity of the electrons. [3]

11 a  Explain the diff erence between potential diff erence and e.m.f. [2]
b A battery has negligible internal resistance, an e.m.f. of 12.0 V and a capacity of 100 A h (ampere-hours). 

Calculate:
i the total charge that it can supply [2]
ii the total energy that it can transfer. [2]

c The battery is connected to a 27 W lamp. Calculate the resistance of the lamp. [3]

anode

A

electronscathode

–+



12 Some electricity-generating companies use a unit called the kilowatt-hour (kW h) to calculate energy bills. 
1 kW h is the energy a kilowatt appliance transfers in 1 hour.
a Show that 1 kW h is equal to 3.6 MJ. [2]
b An electric shower heater is rated at 230 V, 9.5 kW.

i Calculate the current it will take from the mains supply. [2]
ii Suggest why the shower requires a separate circuit from other appliances. [1]
iii Suggest a suitable current rating for the fuse in this circuit. [1]

c Calculate the energy transferred when a boy uses the shower for 5 minutes. [2]
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Learning outcomes
You should be able to:

■■ recall and apply Kirchhoff ’s laws
■■ use Kirchhoff ’s laws to derive the formulae for the 

combined resistance of two or more resistors in series 
and in parallel

■■ recognise that ammeters are connected in series within 
a circuit and therefore should have low resistance

■■ recognise that voltmeters are connected in parallel 
across a component, or components, and therefore 
should have high resistance

Chapter 10:
Kirchhoff ’s laws
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Circuit design
Over the years, electrical circuits have become 
increasingly complex, with more and more 
components combining to achieve very precise results 
(Figure 10.1). Such circuits typically include power 
supplies, sensing devices, potential dividers and 
output devices. At one time, circuit designers would 
start with a simple circuit and gradually modify it until 
the desired result was achieved. This is impossible 
today when circuits include many hundreds or 
thousands of components.

Instead, electronics engineers (Figure 10.2) rely on 
computer-based design software which can work out 

Kirchhoff’s first law
You should be familiar with the idea that current may 
divide up where a circuit splits into two separate branches. 
For example, a current of 5.0 A may split at a junction 
or a point in a circuit into two separate currents of 2.0 A 
and 3.0 A. The total amount of current remains the same 
after it splits. We would not expect some of the current to 
disappear, or extra current to appear from nowhere. This is 
the basis of Kirchhoff’s first law, which states that:

The sum of the currents entering any point in a circuit is 
equal to the sum of the currents leaving that same point.

This is illustrated in Figure 10.3. In the first part, the 
current into point P must equal the current out, so:

I1 = I2

In the second part of the figure, we have one current 
coming into point Q, and two currents leaving. The 
current divides at Q. Kirchhoff’s first law gives:

I1 = I2 + I3

Kirchhoff’s first law is an expression of the conservation of 
charge. The idea is that the total amount of charge entering 
a point must exit the point. To put it another way, if a 
billion electrons enter a point in a circuit in a time interval 
of 1.0 s, then one billion electrons must exit this point in 
1.0 s. The law can be tested by connecting ammeters at 
different points in a circuit where the current divides. You 
should recall that an ammeter must be connected in series 
so the current to be measured passes through it.
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Figure 10.2  A computer engineer uses a computer-aided 
design (CAD) software tool to design a circuit which will form 
part of a microprocessor, the device at the heart of every 
computer.

I1 I2P I1

I2
Q

I3

Figure 10.3  Kirchhoff’s first law: current is conserved because 
charge is conserved.

Figure 10.1  A complex electronic circuit – this is the circuit 
board which controls a computer’s hard drive.

the effect of any combination of components. This is 
only possible because computers can be programmed 
with the equations that describe how current and 
voltage behave in a circuit. These equations, which 
include Ohm’s law and Kirchhoff’s two laws, were 
established in the 18th century, but they have come 
into their own in the 21st century through their use in 
computer-aided design (CAD) systems.
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Formal statement of Kirchhoff’s first law
We can write Kirchhoff’s first law as an equation:

ΣIin = ΣIout

Here, the symbol Σ (Greek letter sigma) means ‘the sum 
of all’, so ΣIin means ‘the sum of all currents entering into 
a point’ and ΣIout means ‘the sum of all currents leaving 
that point’. This is the sort of equation which a computer 
program can use to predict the behaviour of a complex 
circuit. 

1	 Use Kirchhoff’s first law to deduce the value of the 
current I in Figure 10.4.

Figure 10.4  For Question 1.

2	 In Figure 10.5, calculate the current in the wire X. 
State the direction of this current (towards P or 
away from P).

Figure 10.5  For Question 2.

3	 Calculate ΣIin and ΣIout in Figure 10.6. Is Kirchhoff’s first 
law satisfied?

Figure 10.6  For Question 3.

4	 Use Kirchhoff’s first law to deduce the value and 
direction of the current I in Figure 10.7.

Figure 10.7  For Question 4.

3.0 A 
7.5 A 

I

7.0 A 

3.0 A 2.5 AP
wire X

3.0 A

4.0 A

2.5 A

0.5 A

1.0 A2.0 A

3.0 A

7.0 A

P

2.0 A

I

Kirchhoff’s second law
This law deals with e.m.f.s and voltages in a circuit. We 
will start by considering a simple circuit which contains a 
cell and two resistors of resistances R1 and R2 (Figure 10.8). 
Since this is a simple series circuit, the current I must be 
the same all the way around, and we need not concern 
ourselves further with Kirchhoff’s first law. For this circuit, 
we can write the following equation:

	 E = IR1 + IR2

e.m.f. of battery = sum of p.d.s across the resistors 

R1

loop

E

R2

II

You should not find these equations surprising. 
However, you may not realise that they are a consequence 
of applying Kirchhoff’s second law to the circuit. T his law 
states that:

The sum of the e.m.f.s around any loop in a circuit is equal 
to the sum of the p.d.s around the loop.

Figure 10.8  A simple series circuit.

QUESTIONS

QUESTIONS
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Applying Kirchhoff’s laws
Figure 10.11 shows a more complex circuit, with more than 
one ‘loop’. Again there are two batteries and two resistors. 
The problem is to find the current in each resistor. There 
are several steps in this; Worked example 2 shows how 
such a problem is solved.

You will see later (page 148) that Kirchhoff’s second law is 
an expression of the conservation of energy. We shall look 
at another example of how this law can be applied, and 
then look at how it can be applied in general.

1	 Use Kirchhoff’s laws to find the current in the circuit in 
Figure 10.9.

Figure 10.9  A circuit with two opposing batteries.

	 This is a series circuit so the current is the same all the 
way round the circuit.

	 Step 1  We calculate the sum of the e.m.f.s:
sum of e.m.f.s = 6.0 V − 2.0 V = 4.0 V 

	 The batteries are connected in opposite directions so we 
must consider one of the e.m.f.s as negative.

	 Step 2  We calculate the sum of the p.d.s.
sum of p.d.s = (I  × 10) + (I  × 30) = 40 I

	 Step 3  We equate these:
	 4.0 = 40 I
and so I = 0.1 A

	 No doubt, you could have solved this problem without 
formally applying Kirchhoff’s second law, but you will 
find that in more complex problems the use of these 
laws will help you to avoid errors.

10 Ω

II

30 Ω 

6.0 V 2.0 V

loop

++ ––

5	 Use Kirchhoff’s second law to deduce the p.d. 
across the resistor of resistance R in the circuit 
shown in Figure 10.10, and hence find the value  
of R. (Assume the battery of e.m.f. 10 V has 
negligible internal resistance.)

Figure 10.10  Circuit for Question 5.

20 Ω

10 V

0.1 A

R

An equation for Kirchhoff’s second law
In a similar manner to the formal statement of the first 
law, the second law can be written as an equation:

ΣE = ΣV
where ΣE is the sum of the e.m.f.s and ΣV is the sum of the 
potential differences.

6.0 V

P

I1

I2

I1

I2

I3

2.0 V

10 Ω
30 Ω

Figure 10.11  Kirchhoff’s laws are needed to determine the 
currents in this circuit.

Signs and directions
Caution is necessary when applying Kirchhoff’s second 
law. You need to take account of the ways in which the 
sources of e.m.f. are connected and the directions of 
the currents. Figure 10.12 shows one loop from a larger 
complicated circuit to illustrate this point. Only the 
components and currents in this particular are shown.

WORKED EXAMPLE

QUESTION
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e.m.f.s
Starting with the cell of e.m.f. E1 and working 
anticlockwise around the loop (because E1 is ‘pushing 
current’ anticlockwise):

sum of e.m.f.s = E1 + E2 − E3

Note that E3 is opposing the other two e.m.f.s.

p.d.s
Starting from the same point, and working anticlockwise 
again:

sum of p.d.s = I1R1 − I2R2 − I2R3 + I1R4

Note that the direction of current I2 is clockwise, so the 
p.d.s that involve I2 are negative.

2	 Calculate the current in each of the resistors in the 
circuit shown in Figure 10.11.

	 Step 1  Mark the currents flowing. The diagram  
shows I1, I2 and I3.

	 Hint: It does not matter if we mark these flowing in the 
wrong directions, as they will simply appear as negative 
quantities in the solutions.

	 Step 2  Apply Kirchhoff’s first law. At point P, this gives:
I1 +  I2 = I3� (1)

	 Step 3  Choose a loop and apply Kirchhoff’s second law. 
Around the upper loop, this gives:
6.0 =  (I3 × 30) + (I1 × 10)� (2)

	 Step 4  Repeat step 3 around other loops until there are 
the same number of equations as unknown currents. 
Around the lower loop, this gives:
2.0 =  I3 × 30� (3)

	 We now have three equations with three unknowns (the 
three currents).

	 Step 5  Solve these equations as simultaneous 
equations. In this case, the situation has been chosen to 
give simple solutions. Equation 3 gives I3 = 0.067 A, and 
substituting this value in equation 2 gives I1 = 0.400 A. We 
can now find I2 by substituting in equation 1:
I2 =  I3 −  I1 = 0.067 − 0.400 = −0.333 A
	 ≈ −0.33 A

	 Thus I2 is negative – it is in the opposite direction to the 
arrow shown in Figure 11.11.

	 Note that there is a third ‘loop’ in this circuit; we could 
have applied Kirchhoff’s second law to the outermost 
loop of the circuit. This would give a fourth equation:
6 − 2 =  I1  × 10

	 However, this is not an independent equation; we 
could have arrived at it by subtracting equation 3 from 
equation 2.

R4

E1

E2

E3

I2 I2

I1

R3R2

I1

R1

Figure 10.12  A loop extracted from a complicated circuit.

6	 You can use Kirchhoff’s second law to find the 
current I in the circuit shown in Figure 10.13. 
Choosing the best loop can simplify the problem.
a	 Which loop in the circuit should you choose?
b	 Calculate the current I.

Figure 10.13  Careful choice of a suitable loop  
can make it easier to solve problems like this.  
For Question 6.

5.0 V 

5.0 V 

5.0 V 

20 Ω

10 Ω 

10 Ω 

I

2.0 V 

WORKED EXAMPLE

QUESTION
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Resistor combinations
You are already familiar with the formulae used to 
calculate the combined resistance R of two or more 
resistors connected in series or in parallel. To derive these 
formulae we have to make use of Kirchhoff’s laws.

Resistors in series
Take two resistors of resistances R1 and R2 connected in 
series (Figure 10.16). According to Kirchhoff’s first law, the 
current in each resistor is the same. The p.d. V across the 
combination is equal to the sum of the p.d.s across the  
two resistors:

V = V1 + V2

Since V = IR, V1 = IR1 and V2 = IR2, we can write:
IR = IR1 + IR2

Cancelling the common factor of current I gives:
R = R1 + R2

For three or more resistors, the equation for total 
resistance R becomes:

R = R1 + R2 + R3 + …

Conservation of energy
Kirchhoff’s second law is a consequence of the principle of 
conservation of energy. If a charge, say 1 C, moves around 
the circuit, it gains energy as it moves through each source 
of e.m.f. and loses energy as it passes through each p.d. If 
the charge moves all the way round the circuit, so that it 
ends up where it started, it must have the same energy at 
the end as at the beginning. (Otherwise we would be able 
to create energy from nothing simply by moving charges 
around circuits.) So: 

energy gained passing through sources of e.m.f.  
   = energy lost passing through components with p.d.s

You should recall that an e.m.f. in volts is simply the 
energy gained per 1 C of charge as it passes through a 
source. Similarly, a p.d. is the energy lost per 1 C as it 
passes through a component.

1 volt = 1 joule per coulomb
Hence we can think of Kirchhoff’s second law as:

energy gained per coulomb around loop  
	 = energy lost per coulomb around loop

Here is another way to think of the meaning of e.m.f.  
A 1.5 V cell gives 1.5 J of energy to each coulomb of charge 
which passes through it. The charge then moves round 
the circuit, transferring the energy to components in the 
circuit. The consequence is that, by driving 1 C of charge 
around the circuit, the cell transfers 1.5 J of energy.  
Hence the e.m.f. of a source simply tells us the amount of 
energy (in joules) transferred by the source in driving unit 
charge (1 C) around a circuit.

7	 Use Kirchhoff’s second law to deduce the 
resistance R of the resistor shown in the circuit 
loop of Figure 10.14.

Figure 10.14  For Question 7.

8	 Use the idea of the energy gained and lost by a 1 C 
charge to explain why two  6 V batteries connected 
together in series can give an e.m.f. of 12 V or 0 V, 
but connected in parallel they give an e.m.f. of 6 V.

9	 Apply Kirchhoff’s laws to the circuit shown in 
Figure 10.15 to determine the current that will be 
shown by the ammeters A1, A2 and A3.

0.5 A

0.2 A
10 V

30 V

R

10 Ω

10 Ω20 Ω

20 Ω

20 Ω5.0 V

10 V A1

A2

A3

Figure 10.15  Kirchhoff’s laws make it possible to 
deduce the ammeter readings.

V
I IR1 R2

V2V1

Figure 10.16  Resistors in series.

QUESTION QUESTIONS
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This equation states that the two resistors have the same 
p.d. V across them. Hence we can write:

I = V
R

I1 = V
R1

I2 = V
R2

Substituting in I = I1 + I2 and cancelling the common 
factor V gives:

1
R

 = 1
R1

  + 1
R2

For three or more resistors, the equation for total 
resistance R becomes:

1
R

 = 1
R1

  + 1
R2

  + 1
R3

 + …

To summarise, when components are connected  
in parallel:

■■ all have the same p.d. across their ends 
■■ the current is shared between them 
■■ we use the reciprocal formula to calculate their  

combined resistance.

Resistors in parallel
For two resistors of resistances R1 and R2 connected in 
parallel (Figure 10.18), we have a situation where the 
current divides between them. Hence, using Kirchhoff’s 
first law, we can write:

I = I1 + I2

If we apply Kirchhoff’s second law to the loop that 
contains the two resistors, we have:

I1R1 − I2R2 = 0 V
(because there is no source of e.m.f. in the loop). 

	10	 Calculate the combined resistance of two 5 Ω 
resistors and a 10 Ω resistor connected in series.

	11	 The cell shown in Figure 10.17 provides an 
e.m.f. of 2.0 V. The p.d. across one lamp is 1.2 V. 
Determine the p.d. across the other lamp.

Figure 10.17  A series circuit for Question 11.

	12	 You have five 1.5 V cells. How would you connect 
all five of them in series to give an e.m.f. of:
a	 7.5 V?	 b	 1.5 V?	 c	 4.5 V?

I

II

I

V

V1 V2

R1

R2

I2

I1

I
V

I

Figure 10.18  Resistors connected in parallel.

3	 Two 10 Ω resistors are connected in parallel. 
Calculate the total resistance.

	 Step 1  We have R1 = R2 = 10 Ω, so:
1
R  =  

1
R1

  +  
1

R2

1
R  =  

1
10  +  

1
10  =  

2
10  =  

1
5

	 Step 2  Inverting both sides of the equation gives:
R = 5 Ω

	 Hint: Take care not to forget this step! Nor should 

	 you write 
1
R  =  

1
5  = 5 Ω, as then you are saying 

1
5 = 5).

	 You can also determine the resistance as follows:
	R = (R1

−1 +  R2
−1)−1

	 = (10−1 + 10−1)−1 = 5 Ω

QUESTIONS

WORKED EXAMPLE
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Solving problems with parallel circuits
Here are some useful ideas which may prove helpful 
when you are solving problems with parallel circuits 
(or checking your answers to see whether they seem 
reasonable).

■■ When two or more resistors are connected in parallel, their 
combined resistance is smaller than any of their individual 
resistances. For example, three resistors of 2 Ω, 3 Ω and 6 Ω 
connected together in parallel have a combined resistance 
of 1 Ω. This is less than the smallest of the individual 
resistances. This comes about because, by connecting the 
resistors in parallel, you are providing extra pathways for 
the current. Since the combined resistance is lower than 
the individual resistances, it follows that connecting two 
or more resistors in parallel will increase the current drawn 
from a supply. Figure 10.19 shows a hazard which can arise 
when electrical appliances are connected in parallel. 

■■ When components are connected in parallel, they all have 
the same p.d. across them. This means that you can often 
ignore parts of the circuit which are not relevant to your 
calculation. 

■■ Similarly, for resistors in parallel, you may be able to 
calculate the current in each one individually, then add 
them up to find the total current. This may be easier than 
working out their combined resistance using the reciprocal 
formula. (This is illustrated in Question 19.)

	13	 Calculate the total resistance of four 10 Ω 
resistors connected in parallel.

	14	 Calculate the resistances of the following 
combinations:
a	 100 Ω and 200 Ω in series
b	 100 Ω and 200 Ω in parallel
c	 100 Ω and 200 Ω in series and this in parallel 

with 200 Ω.

	15	 Calculate the current drawn from a 12 V battery 
of negligible internal resistance connected to the 
ends of the following:
a	 500 Ω resistor
b	 500 Ω and 1000 Ω resistors in series
c	 500 Ω and 1000 Ω resistors in parallel.

	16	 You are given one 200 Ω resistor and two 100 Ω 
resistors. What total resistances can you obtain 
by connecting some, none, or all of these 
resistors in various combinations?

a

b

Figure 10.19  a Correct use of an electrical socket. b Here, too 
many appliances (resistances) are connected in parallel. This 
reduces the total resistance and increases the current drawn, 
to the point where it becomes dangerous.

	17	 Three resistors of resistances 20 Ω, 30 Ω and 60 Ω 
are connected together in parallel. Select which 
of the following gives their combined resistance:

		  110 Ω,  50 Ω,  20 Ω,  10 Ω
		  (No need to do the calculation!)

QUESTIONS

QUESTION



Chapter 10: Kirchhoff’s laws

151

	18	 In the circuit in Figure 10.20 the battery of e.m.f. 
10 V has negligible internal resistance. Calculate the 
current in the 20 Ω resistor shown in the circuit.

	19	 Determine the current drawn from the battery in 
Figure 10.20.

10 V

20 Ω

40 Ω

50 Ω

Figure 10.20  Circuit diagram for Questions 18 and 19.

	20	 What value of resistor must be connected in 
parallel with a 20 Ω resistor so that their combined 
resistance is 10 Ω?

	21	 You are supplied with a number of 100 Ω resistors. 
Describe how you could combine the minimum 
number of these to make a 250 Ω resistor.

	22	 Calculate the current at each point (A–E) in the 
circuit shown in Figure 10.21.

300 Ω

600 V

50 Ω
C

DB

A

E

+ –

60 Ω

Figure 10.21  For Question 22.

BOX 10.1: Ammeters and voltmeters

Ammeters and voltmeters are connected differently in 
circuits (Figure 10.22). Ammeters are always connected 
in series, since they measure the current in a circuit. 
For this reason, an ammeter should have as low a 
resistance as possible so that as little energy as possible 
is dissipated in the ammeter itself. Inserting an ammeter 
with a higher resistance could significantly reduce the 
current flowing in the circuit. The ideal resistance of 
an ammeter is zero. Digital ammeters have very low 
resistances. 

Voltmeters measure the potential difference 
between two points in the circuit. For this reason, they 
are connected in parallel (i.e. between the two points), 
and they should have a very high resistance to take 
as little current as possible. The ideal resistance of a 
voltmeter would be infinite. In practice, voltmeters have 
typical resistance of about 1 MΩ. A voltmeter with a 
resistance of 10 MΩ measuring a p.d. of 2.5 V will take a 
current of 2.5 × 10−7 A and dissipate just 0.625 μJ of heat 
energy from the circuit every second.

Figure 10.23 shows some measuring instruments.

V

A
ammeter

voltmeterV

A
ammeter

voltmeter

Figure 10.22  How to 
connect up an ammeter 
and a voltmeter.

Figure 10.23  Electrical measuring instruments: 
an ammeter, a voltmeter and an oscilloscope. The 
oscilloscope can display rapidly changing voltages.

QUESTIONS
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 23 a  A 10 V power supply of negligible internal 
resistance is connected to a 100 Ω resistor. 
Calculate the current in the resistor.

b An ammeter is now connected in the circuit, 
to measure the current. The resistance of 
the ammeter is 5.0 Ω. Calculate the ammeter 
reading.

Summary
■■ Kirchhoff ’s first law states that the sum of the current 

currents entering any point in a circuit is equal to the 
sum of the currents leaving that point.

■■ Kirchhoff ’s second law states that the sum of the 
e.m.f.s around any loop in a circuit is equal to the sum 
of the p.d.s around the loop.

■■ The combined resistance of resistors in series is given 
by the formula: 

R  = R1 + R2 + … 

■■ The combined resistance of resistors in parallel is 
given by the formula: 
1
R  =  

1
R1

 +  
1

R2
 + …

■■ Ammeters have a low resistance and are connected in 
series in a circuit.

■■ Voltmeters have a high resistance and are connected 
in parallel in a circuit.

End-of-chapter questions
1 Use Kirchhoff ’s first law to calculate the unknown currents in the examples in Figure 10.24. In each 

example state the direction of the current. [4]

Figure 10.24 For End-of-chapter Question 1.

W

a cb d
Y 

Z

3.6 A

2.7 A
4.3 mA 4.3 mA

X4.3 A

2.4 A

4.8 A

QUESTION
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2 Figure 10.25 shows a part of a circuit.

Figure 10.25 For End-of-chapter Question 2.

 Copy the circuit and write in the currents at X and at Y, and show their directions. [2]

3 Figure 10.26 shows four circuits. Find the unknown potential diff erence (or diff erences) in each case. [5]

Figure 10.26 For End-of-chapter Question 3.

4 A filament lamp and a 220  Ω resistor are connected in series to a battery of e.m.f. 6.0  V. The battery has 
negligible internal resistance. A high-resistance voltmeter placed across the resistor measures 1.8  V.

 Calculate:
a the current drawn from the battery  [1]
b the p.d. across the lamp  [1]
c the total resistance of the circuit  [1]
d the number of electrons passing through the battery in a time of 1.0 minute. [4]

 (The elementary charge is 1.6  × 10−19 C.)

2.2 Va b

c d6.0 V

6.3 V

5.0 V

2.4 V

X

1.4 V 4.3 V 4.7 V

Y

X

X2.4 V

1.4 V X

2.2 Va b

c d6.0 V

6.3 V

5.0 V

2.4 V

X

1.4 V 4.3 V 4.7 V

Y

X

X2.4 V

1.4 V X

6.5 mA 4.2 mA

2.0 mA

X

Y



5 The circuit diagram in Figure 10.27 shows a 12  V power supply connected to some resistors.

Figure 10.27 For End-of-chapter Question 5.

 The current in the resistor X is 2.0 A and the current in the 6.0  Ω resistor is 0.5 A. Calculate:
a the current in resistor Y [1]
b the resistance of resistor Y [2]
c the resistance of resistor X. [2]

6 a  Explain the diff erence between the terms e.m.f. and potential diff erence. [2]
b Figure 10.28 shows a circuit containing batteries and resistors. You may assume that the batteries 

have negligible internal resistance.

Figure 10.28 For End-of-chapter Question 6b.

i Use Kirchhoff ’s first law to find the current in the 4.00  Ω and 8.00  Ω resistors. [1]
ii Calculate the e.m.f. of E1. [2]
iii Calculate the value of E2. [2]
iv Calculate the current in the 12.00  Ω resistor. [2]
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E1

E2

1.75 A

1.00 A

4.00 Ω 8.00 Ω

3.00 Ω

12.00 Ω

Y

X

12 V

6.0 Ω
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7 a  Explain why an ammeter is designed to have a low resistance. [2]

 A student builds the circuit in Figure 10.29, using a battery of negligible internal resistance. 
The reading on the voltmeter is 9.0  V.

Figure 10.29 For End-of-chapter Question 7a.

b i  The voltmeter has a resistance of 1200  Ω. Calculate the e.m.f. of the battery. [4]
ii The student now repeats the experiment using a voltmeter of resistance 12  kΩ. Show that the 

reading on this voltmeter would be 9.5  V. [3]
iii Refer to your answers to i and ii and explain why a voltmeter should have as high a resistance 

as possible. [2]

8 a Explain what is meant by the resistance of a resistor. [1]
b Figure 10.30 shows a network of resistors connected to a cell of e.m.f. 6.0  V.

Figure 10.30 For End-of-chapter Question 8b.

 Show that the resistance of the network of resistors is 40  Ω. [3]
c Calculate the current in the 60  Ω  resistor. [3]

Chapter 10: Kirchhoff ’s laws
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100 Ω

400 Ω

V

40 Ω 20 Ω

6.0 V

60 Ω

40 Ω
96 Ω



Learning outcomes
You should be able to:

■■ state Ohm’s law
■■ sketch and explain the I–V characteristics for various 

components
■■ sketch the temperature characteristic for an NTC 

thermistor
■■ solve problems involving the resistivity of a material
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Superconductivity
As metals are cooled, their resistance decreases. It was 
discovered as long ago as 1911 that when mercury was 
cooled using liquid helium to 4.1 K (4.1 degrees above 
absolute zero), its resistance suddenly fell to zero. 
This phenomenon was named superconductivity. 
Other metals, such as lead at 7.2 K, also become 
superconductors.

When charge flows in a superconductor it can 
continue in that superconductor without the need 
for any potential difference and without dissipating 
any energy. This means that large currents can occur 
without the unwanted heating effect that would occur 
in a normal metallic or semiconducting conductor.

Initially superconductivity was only of scientific 
interest and had little practical use, as the liquid 
helium that was required to cool the superconductors 
is very expensive to produce. In 1986 it was discovered 
that particular ceramics became superconducting at 
much higher temperatures – above 77 K, the boiling 
point of liquid nitrogen. This meant that liquid 
nitrogen, which is readily available, could be used to 
cool the superconductors and expensive liquid helium 
was no longer needed. Consequently superconductor 
technology became a feasible proposition.

Uses of superconductors
The JR-Maglev train in Japan’s Yamanashi province 
floats above the track using superconducting magnets 
(Figure 11.1). This means that not only is the heating 
effect of the current in the magnet coils reduced to 
zero – it also means that the friction between the train 
and the track is eliminated and that the train can reach 
incredibly high speeds of up to 581 km h−1.

across the conductor. The results of such a series of 
measurements shown graphically in Figure 11.2.

Look at the graph of Figure 11.2. Such a graph is known 
as an I–V characteristic. The points are slightly scattered, 
but they clearly lie on a straight line. A line of best fit has 
been drawn. You will see that it passes through the origin 
of the graph. In other words, the current I is directly 
proportional to the voltage V.

The I–V characteristic for a 
metallic conductor
In Chapter 9 we saw how we could measure the resistance 
of a resistor using a voltmeter and ammeter. In this section 
we are going to investigate the variation of the current, 
and hence resistance, as the potential difference across a 
conductor changes.

The potential difference across a metal conductor can 
be altered using a variable power supply or by placing a 
variable resistor in series with the conductor. This allows 
us to measure the current at different potential differences 

Figure 11.1  The Japanese JR-Maglev train, capable of speeds 
approaching 600 km h−1.

Particle accelerators, such as the Large Hadron 
Collider (LHC) at the CERN research facility in 
Switzerland, accelerate beams of charged particles 
to very high energies by making them orbit around a 
circular track many times. The particles are kept moving 
in the circular path by very strong magnetic fields 
produced by electromagnets whose coils are made 
from superconductors. Much of our understanding 
of the fundamental nature of matter is from doing 
experiments in which beams of these very high speed 
particles are made to collide with each other.

Magnetic resonance imaging (MRI) was developed 
in the 1940s. It is used by doctors to examine internal 
organs without invasive surgery. Superconducting 
magnets can be made much smaller than conventional 
magnets, and this has enabled the magnetic fields 
produced to be much more precise, resulting in better 
imaging. You will find out more about MRI in Chapter 27.
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The straight-line graph passing through the origin 
shows that the resistance of the conductor remains 
constant. If you double the current, the voltage will also 
double. However, its resistance, which is the ratio of the 
voltage to the current, remains the same. Instead of using:

R = V
I

to determine the resistance, for a graph of I against V 
which is a straight line passing through the origin you can 
also use:

resistance = 1
gradient of graph

(T his will give a more accurate value for R than if you were 
to take a single experimental data point. Take care! You 
can only find resistance from the gradient if the I–V graph 
is a straight line through the origin.)

By reversing the connections to the resistor, the p.d. 
across it will be reversed, i.e. negative. The current will 
flow in the opposite direction – it is also negative. The 
graph is symmetrical, showing that if a p.d. of, say, 2.0 V 
produces a current of 0.5 A, then a p.d. of −2.0 V will 
produce a current of −0.5 A. This is true for most simple 
metallic conductors but is not true for some electronic 
components, such as diodes.

You get results similar to those shown in Figure 11.2  
for a commercial resistor. Resistors have different 
resistances, hence the gradient of the I–V graph will be 
different for dif ferent resistors. 

A

I

V

metallic
conductor

V 

I

0

Figure 11.2  To determine the resistance of a component, you 
need to measure both current and potential difference.

1	 Table 11.1 shows the results of an experiment to 
measure the resistance of a carbon resistor  
whose resistance is given by the manufacturer as 
47 Ω  ± 10%.
a	 Plot a graph to show the I–V characteristic of 

this resistor.
b	 Do the points appear to fall on a straight line 

which passes through the origin of the graph?
c	 Use the graph to determine the resistance of 

the resistor.
d	 Does the value of the resistance fall within the 

range given by the manufacturer?

Potential difference / V Current / A
2.1 0.040

4.0 0.079

6.3 0.128

7.9 0.192

10.0 0.202

12.1 0.250

Table 11.1  Potential difference V and current I data 
for Question 1.

Ohm’s law
For the metallic conductor whose I–V characteristic 
is shown in Figure 11.2, the current in it is directly 
proportional to the p.d. across it. This means that its 
resistance is independent of both the current and 
the p.d. This is because the ratio V

I
 is a constant. Any 

component which behaves like this is described as an 
ohmic component, and we say that it obeys Ohm’s law. 
The statement of Ohm’s law is very precise and you must 

not confuse this with the equation ‘V
I

 = R’.

Ohm’s law

A conductor obeys Ohm’s law if the current in it is directly 
proportional to the potential difference across its ends.

QUESTION
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2	 An electrical component allows a current of 10 mA 
through it when a voltage of 2.0 V is applied. 
When the voltage is increased to 8.0 V, the current 
becomes 60 mA. Does the component obey Ohm’s 
law? Give numerical values for the resistance to 
justify your answer.

Resistance and temperature
A conductor that does not obey Ohm’s law is described as 
non-ohmic. An example is a filament lamp. Figure 11.3 
shows such a lamp; you can clearly see the wire filament 
glowing as the current passes through it. Figure 11.4 shows 
the I–V characteristic for a similar lamp.

Figure 11.3  The metal filament in a lamp glows as the current 
passes through it. It also feels warm. This shows that the lamp 
produces both heat and light.

QUESTION

I

0
V

Figure 11.4  The I–V characteristic for a filament lamp.

There are some points you should notice about the 
graph in Figure 11.4:

■■ The line passes through the origin (as for an ohmic 
component). 

■■ For very small currents and voltages, the graph is roughly a 
straight line. 

■■ At higher voltages, the line starts to curve. The current is a 
bit less than we would have expected from a straight line. 
This suggests that the lamp’s resistance has increased. You 
can also tell that the resistance has increased because the 

ratio  
V
I

  is larger for higher voltages than for low voltages.

The fact that the graph of Figure 11.4 is not a straight 
line shows that the resistance of the lamp depends on the 
temperature of its filament. Its resistance may increase by a 
factor as large as ten between when it is cold and when it is 
brightest (when its temperature may be as high as 1750 °C).

Thermistors
Thermistors are components that are designed to have 
a resistance which changes rapidly with temperature. 
Thermistors (‘thermal resistors’) are made from metal 
oxides such as those of manganese and nickel. There are 
two distinct types of thermistor:

■■ Negative temperature coefficient (NTC) thermistors – 
the resistance of this type of thermistor decreases with 
increasing temperature. Those commonly used for physics 
teaching may have a resistance of many thousands of ohms 
at room temperature, falling to a few tens of ohms at 100 °C. 
You should become familiar with the properties of NTC 
thermistors. 

■■ Positive temperature coefficient (PTC) thermistors – the 
resistance of this type of thermistor rises abruptly at a 
definite temperature, usually around 100–150 °C.

The change in their resistance with temperature gives 
thermistors many uses:

■■ Water temperature sensors in cars and ice sensors on 
aircraft wings – if ice builds up on the wings, the thermistor 
‘senses’ this temperature drop and a small heater is 
activated to melt the ice. 

■■ Baby alarms – the baby rests on an air-filled pad, and 
as he or she breathes, air from the pad passes over a 
thermistor, keeping it cool; if the baby stops breathing, the 
air movement stops, the thermistor warms up and an alarm 
sounds. 

■■ Fire sensors – a rise in temperature activates an alarm. 
■■ Overload protection in electric razor sockets – if the razor 

overheats, the thermistor’s resistance rises rapidly and cuts 
off the circuit.
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Diodes
The semiconductor diode is another example of a non-ohmic 
conductor. A diode is any component that allows electric 
current in only one direction. Nowadays, most diodes are 
made of semiconductor materials. One type, the light-
emitting diode or LED, gives out light when it conducts.

Figure 11.7 shows the I–V characteristic for a diode. 
There are some points you should notice about this graph.

■■ We have included positive and negative values of current 
and voltage. This is because, when connected one way 
round (positively biased), the diode conducts and has 
a fairly low resistance. Connected the other way round 
(negatively biased), it allows only a tiny current and has 
almost infinite resistance.

■■ For positive voltages less than about 0.6 V, the current 
is almost zero and hence the diode has almost infinite 
resistance. It starts to conduct suddenly at its threshold 
voltage. The resistance of the diode decreases dramatically 
for voltages greater than 0.6 V.

The resistance of a diode depends on the potential 
difference across it. From this we can conclude that it does 
not obey Ohm’s law; it is a non-ohmic component.

3	 The two graphs in Figure 11.5 
show the I–V characteristics of 
a metal wire at two different 
temperatures, θ1 and θ2.
a	 Calculate the resistance of 

the wire at each temperature.
b	 State which is the higher 

temperature, θ1 or θ2.

4	 The graph of Figure 11.6 shows the I–V characteristics 
of two electrical components, a filament lamp and a 
length of steel wire.
a	 Identify which curve relates to each component.
b	 State the voltage at which both have the same 

resistance.
c	 Determine the resistance at the voltage stated  

in b.
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Figure 11.5  I–V graphs for a wire at two different temperatures. For Question 3. 

Figure 11.6  For Question 4.

QUESTIONS

+

+ V

I

–

– 0

≈ 0.6 V

0

Figure 11.7  The current against potential difference (I–V ) 
characteristic for a diode. The graph is not a straight line. A 
diode does not obey Ohm’s law.

Diodes are used as rectifiers. They allow current to 
pass in one direction only and so can be used to convert 
alternating current into direct current. (There is more 
about this in Chapter 29.) Most modern diodes are made 
from silicon and will start conducting when there is a 
potential difference of about 0.6 V across them. You need 
to remember this key 0.6 V value.
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Understanding the origin of resistance
To understand a little more about the origins of resistance, 
it is helpful to look at how the resistance of a pure metal 
wire changes as its temperature is increased. This is shown 
in the graph of Figure 11.9. You will see that the resistance 
of the pure metal increases linearly as the temperature 
increases from 0 °C to 100 °C. Compare this with the graph 
of Figure 11.10 for an NTC thermistor; the thermistor’s 
resistance decreases very dramatically over a narrow 
temperature range.

5	 The graph in Figure 11.10 was obtained by measuring 
the resistance R of a particular thermistor as its 
temperature θ changed.
a	 Determine its resistance at:

i	 20 °C
ii	 45 °C.

b	 Determine the temperature when its resistance is:
i	 5000 Ω
ii	 2000 Ω.

6	 A student connects a circuit with an NTC thermistor, 
a filament lamp and a battery in series. The lamp 
glows dimly. The student warms the thermistor with a 
hair dryer. What change will the student notice in the 
brightness of the lamp? Explain your answer.

0

2

4

6

0

5

3

1

10 20 30 40 50 60 70

R / kΩ

θ / °C

Figure 11.10  The resistance of an NTC thermistor decreases 
as the temperature increases. For Question 5.

Temperature  / °C
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Figure 11.9  The resistance of a metal increases gradually 
as its temperature is increased. The resistance of an impure 
metal wire is greater than that of a pure metal wire of the 
same dimensions.

QUESTIONS

Figure 11.8  This torch has seven white LEDs, giving a brighter, 
whiter light than a traditional filament lamp.

LEDs have traditionally been used as indicator lamps 
to show when an appliance is switched on. Newer versions, 
some of which produce white light, are replacing filament 
lamps, for example in traffic lights and torches (flashlights) 
– see Figure 11.8. Although they are more expensive to 
manufacture, they are more energy-efficient and hence 
cheaper to run, so that the overall cost is less.

The threshold voltage at which an LED starts to 
conduct and emit light is higher than 0.6 V and depends 
on the colour of light it emits, but may be taken to be 
about 2 V. 
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You can see that electrons tend to lose energy when 
they collide with vibrating ions or impurity atoms. They 
give up energy to the metal, so it gets hotter. The resistance 
of the metal increases with the temperature of the wire 
because of the decrease in the mean drift velocity of the 
electrons.

Conduction in semiconductors is different. At low 
temperatures, there are few delocalised, or free, electrons. 
For conduction to occur, electrons must have sufficient 
energy to free themselves from the atom they are bound to. 
As the temperature increases, a few electrons gain enough 
energy to break free of their atoms to become conduction 
electrons. The number of conduction electrons thus 
increases and so the material becomes a better conductor. 
At the same time, there are more electron–ion collisions, 
but this effect is small compared with the increase in the 
number of conduction electrons.

Figure 11.10 also shows how the resistance of the 
metal changes if it is slightly impure. The resistance of an 
impure metal is greater than that of the pure metal and 
follows the same gradual upward slope. The resistance 
of a metal changes in this gradual way over a wide range 
of temperatures – from close to absolute zero up to its 
melting point, which may be over 2000 °C.

This suggests that there are two factors which affect the 
resistance of a metal: 

■■ the temperature 
■■ the presence of impurities.

Figure 11.11 shows a simple model which explains what 
happens in a metal when electrons flow through it.
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Figure 11.11  A model of the origins of resistance in a metal.  
a	At low temperatures, electrons flow relatively freely.  
b	At higher temperatures, the electrons are obstructed by the 
vibrating ions and they make very frequent collisions with 
the ions. c Impurity atoms can also obstruct the free flow of 
electrons.

In a metal, a current is due to the movement of free 
electrons. At low temperatures, they can move easily 
past the positive ions (Figure 11.11a). However, as the 
temperature is raised, the ions vibrate with larger 
amplitudes. The electrons collide more frequently with the 
vibrating ions, and this decreases their mean drift velocity. 
They lose energy to the vibrating ions (Figure 11.11b).

If the metal contains impurities, some of the atoms will 
be of different sizes (Figure 11.11c). Again, this disrupts the 
free flow of electrons. In colliding with impurity atoms, 
the electrons lose energy to the vibrating atoms.

7	 The resistance of a metal wire changes with 
temperature. This means that a wire could be 
used to sense changes in temperature, in the 
same way that a thermistor is used.
a	 Suggest one advantage a thermistor has over a 

metal wire for this purpose.
b	 Suggest one advantage a metal wire has over a 

thermistor.

Resistivity
The resistance of a particular wire depends on its size and 
shape. A long wire has a greater resistance than a short 
one, provided it is of the same thickness and material. A 
thick wire has less resistance than a thin one. For a metal 
in the shape of a wire, R depends on the following factors:

■■ length L
■■ cross-sectional area A
■■ the material the wire is made from
■■ the temperature of the wire.

At a constant temperature, the resistance is directly 
proportional to the length of the wire and inversely 
proportional to its cross-sectional area. That is: 

resistance ∝ length
and

resistance ∝ 1
cross-sectional area

QUESTION
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We can see how these relate to the formulae for adding 
resistors in series and in parallel:

■■ If we double the length of a wire it is like connecting two 
identical resistors in series; their resistances add to give 
double the resistance. The resistance is proportional to  
the length.

■■ Doubling the cross-sectional area of a wire is like connecting 
two identical resistors in parallel; their combined resistance 

is halved (since 
1

Rtotal
  =  

1
R

  +  
1
R 

). Hence the resistance is 

inversely proportional to the cross-sectional area.

Combining the two proportionalities for length and cross-
sectional area, we get:

resistance ∝ length
cross-sectional area

or
R ∝ L

A
But the resistance of a wire also depends on the material 
it is made of. Copper is a better conductor than steel, steel 
is a better conductor than silicon, and so on. So if we are 
to determine the resistance R of a particular wire, we need 
to take into account its length, its cross-sectional area and 
the material. The relevant property of the material is its 
resistivity, for which the symbol is ρ (Greek letter rho).

The word equation for resistance is:

resistance =  resistivity × length
cross-sectional area

R =  ρL
A

We can rearrange this equation to give an equation for 
resistivity. The resistivity of a material is defined by the 
following word equation:

resistivity =  resistance × cross-sectional area
length

ρ =  RA
L

Values of the resistivities of some typical materials are 
shown in Table 11.2. Notice that the units of resistivity are 
ohm metres (Ω m); this is not the same as ohms per metre.

Material Resistivity /  
Ω m 

Material Resistivity /  
Ω m

silver 1.60 × 10−8 mercury 69.0 × 10−8

copper 1.69 × 10−8 graphite 800 × 10−8

nichrome(a) 1.30 × 10−8 germanium 0.65

aluminium 3.21 × 10−8 silicon 2.3 × 103

lead 20.8 × 10−8 Pyrex glass 1012

manganin(b) 44.0 × 10−8 PTFE(d) 1013–1016

eureka(c) 49.0 × 10−8 quartz 5 × 1016

(a) Nichrome – an alloy of nickel, copper and aluminium used in electric 
heaters because it does not oxidise at 1000 °C.
(b) Manganin – an alloy of 84% copper, 12% manganese and 4% nickel.
(c) Eureka (constantan) – an alloy of 60% copper and 40% nickel.
(d) Poly(tetrafluoroethene) or Teflon.

Table 11.2  Resistivities of various materials at 20 °C.

1	 Find the resistance of a 2.6 m length of eureka wire 
with cross-sectional area 2.5 × 10−7 m2.

	 Step 1  Use the equation for resistance: 

resistance =  
resistivity × length

area

	 R =  
ρL
A

	 Step 2  Substitute values from the question and use 
the value for ρ from Table 11.2:

R =  
49.0 × 10−8 × 2.6

2.5 × 10−7  
 =  5.1 Ω

	 So the wire has a resistance of 5.1 Ω.

Resistivity and temperature
Resistivity, like resistance, depends on temperature. For 
a metal, resistivity increases with temperature. As we saw 
above, this is because there are more frequent collisions 
between the conduction electrons and the vibrating ions of 
the metal.

WORKED EXAMPLE
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Summary
■■ A conductor obeys Ohm’s law if the current in it is 

directly proportional to the potential difference across 
its ends.

■■ Ohmic components include a wire at constant 
temperature and a resistor.

■■ Non-ohmic components include a filament lamp and 
a light-emitting diode.

■■ A semiconductor diode allows current in one direction 
only. 

■■ As the temperature of a metal increases, so does its 
resistance.

■■ A thermistor is a component which shows a rapid 
change in resistance over a narrow temperature range.  
The resistance of an NTC thermistor decreases as its 
temperature is increased.

■■ The resistivity ρ of a material is defined as ρ =  
RA
L

, 

where R is the resistance of a wire of that material,  
A is its cross-sectional area and L is its length. The unit 
of resistivity is the ohm metre (Ω m).

	 8	 Use the resistivity value quoted in Table 11.2 
to calculate the lengths of 0.50 mm diameter 
manganin wire needed to make resistance coils with 
resistances of:
a	 1.0 Ω
b	 5.0 Ω
c	 10 Ω.

	 9	 1.0 cm3 of copper is drawn out into the form of a long 
wire of cross-sectional area 4.0 × 10−7 m2. Calculate 
its resistance. (Use the resistivity value for copper 
from Table 11.2.)

	10	 A 1.0 m length of copper wire has a resistance  
of 0.50 Ω.
a	 Calculate the resistance of a 5.0 m length of the 

same wire.
b	 What will be the resistance of a 1.0 m length 

of copper wire having half the diameter of the 
original wire?

	11	 A piece of steel wire has a resistance of 10 Ω. It is 
stretched to twice its original length. Compare its 
new resistance with its original resistance.

QUESTIONS

Cambridge International AS Level Physics
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End-of-chapter questions
1 The graph in Figure 11.12 shows the I –V characteristic of an electrical component. 

a Calculate the resistance of the component when the potential diff erence across it is:
i 2.0 V [2]
ii 5.0 V. [1]

b Suggest what the component is. [1]

2 A student connects an NTC thermistor to a battery and an ammeter. He places the thermistor in a beaker 
of water and gradually heats the water from 10 °C to its boiling point, recording the value of the current as 
he does so. He then plots a graph of the current in the thermistor against the temperature of the water.
a Sketch the graph you would expect the student to obtain from the experiment. [1]
b Explain how the student could now use the thermistor as a thermometer. [2]

3 a  Describe the diff erence between the conduction processes in copper and in silicon, a semiconductor. [2]
b Explain why the resistance of a metallic conductor increases with temperature while that of a 

semiconductor decreases. [4]

4 A nichrome wire has a length of 1.5 m and a cross-sectional area of 0.080 mm2.The resistivity of nichrome 
is 1.30 × 10−8 Ω m.
a Calculate the resistance of the wire. [2]
b Calculate the length of this wire which would be needed to make an element of an electric heater of 

resistance 30 Ω. [2]

0.40

0.20

0
–2.0 2.0 4.0 6.0 V / V

I / A

–4.0–6.0

–0.20

–0.40

Figure 11.12 For End-of-chapter Question 1.
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5 Figure 11.13 shows a circuit.

Figure 11.13 For End-of-chapter Question 5.

a When switch S is open the current in ammeter A is 0.48 A. Calculate the e.m.f. of the battery. 
You may assume the battery has negligible internal resistance. [2]

b When switch S is closed the current in the ammeter increases to 0.72 A.
i Deduce the current in the 6.4 Ω resistor. [1]
ii State the current in the thermistor. [1]

c State and explain how the reading on the ammeter changes when the temperature of the thermistor 
is increased. [3]

6 a  Explain why the resistance of a metal increases when its temperature increases. [2]
b State two other factors which determine the resistance of a stated length of wire. [2]
c When a potential diff erence of 1.5 V is applied across a 5.0 m length of insulated copper wire, a current 

of 0.24 A is measured in it.
i Calculate the resistance of the length of wire. [2]
ii The resistivity of copper is 1.69 × 10−8 Ω m. Calculate the diameter of the wire. [3]

d The wire is now made into a tight bundle. State and explain how you would expect the current in
it to change. [3]

7 Figure 11.14 shows a piece of silicon of width 32 mm and length 36 mm. The resistance of the silicon 
between the points P and Q is 1.1 MΩ. Silicon has a resistivity of 2.3 × 103 Ω m.

Figure 11.14 For End-of-chapter Question 7.

a Calculate the thickness of the piece of silicon. [3]
b Calculate the current which would pass through the silicon if a potential diff erence of 12 V were 

applied across P and Q. [2]
c Discuss how the current would change if it were large enough to cause the silicon to become 

significantly warmer. [3]

E

5.0 Ω

6.4 ΩS

A

P Q32 mm

36 mm
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8 A student is investigating the properties of a semiconducting diode. Figure 11.15 shows the circuit 
she builds.

Figure 11.15 For End-of-chapter Question 8.

a i  Sketch a graph to show how the current in the diode would vary as the voltage across 
it is increased from 0 V to 1.0 V. [1]

ii The supply is now connected in the reverse direction and once more the potential diff erence 
across the diode is increased from 0 V to 1.0 V. Complete the I –V graph. [1]

b Suggest why the safety resistor is required. [2]
c When the potential diff erence across the safety resistor is 1.4 V, the current in it is 20 mA. 

Calculate the resistance of the safety resistor. [2]

9 a Explain what is meant by an ohmic conductor. [2]
b i  Sketch a graph of resistance R against voltage V for a wire of pure iron kept at constant 

temperature. Label this line X. [1]
ii Sketch a graph of resistance R against voltage V for a second wire of impure iron, of the same 

diameter and the same length, which is kept at the same temperature. Label this line Y. [1]
iii Explain how the graphs would change if the wires were kept at a higher, but still constant, 

temperature. [2]
c Deduce how the resistance of a wire made of pure iron would change if both the diameter and 

the length were doubled. [3]

A

safety resistor

+ –

variable power supply

V



Chapter 12:
Practical circuits

Learning outcomes
You should be able to:

■■ explain the eff ects of internal resistance on terminal p.d. 
and power output of a source of e.m.f.

■■ explain the use of potential divider circuits
■■ solve problems involving the potentiometer as a means 

of comparing voltages
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The first electrical cell – an 
historical mystery
The Italian Alessandro Volta (Figure 12.1a) is generally 
credited with inventing the first battery. He devised 
it after his friend and rival Luigi Galvani had shown 
that a (dead) frog’s leg could be made to twitch if an 
electrically charged plate was connected to it. Volta’s 
battery consisted of alternate discs of copper and zinc, 
separated by felt soaked in brine – see Figure 12.1b. 

However, there is evidence that earlier technologists 
may have beaten him by over 1000 years. In 1936 a 
small pot was discovered during an archaeological 
dig near Baghdad. The pot was sealed with pitch, and 
inside the pot there was a copper cylinder surrounding 
an iron rod. When filled with an acid, perhaps vinegar, 
a potential difference of around 1.5 volts could be 
produced between the copper and the iron.

It has been suggested that this battery might have 
been used to electroplate metal objects with gold.  
So did Volta really invent the battery, or did he just 
rekindle an art that had been lost for more than a 
millennium?

as the charges pass through the external components and 
through the internal resistance of the power supply. Power 
supplies and batteries get warm when they are being used. 
(Try using a cell to light a small torch bulb; feel the cell 
before connecting to the bulb, and then feel it again after 
the bulb has been lit for about 15 seconds.)

The reason for this heating effect is that some of  the 
electrical potential energy of the charges is transformed 
to internal energy as they do work against the internal 
resistance of the cell.

Internal resistance
You will be familiar with the idea that, when you use 
a power supply or other source of e.m.f., you cannot 
assume that it is providing you with the exact voltage 
across its terminals as suggested by the value of its e.m.f. 
There are several reasons for this. For example, the 
supply may not be made to a high degree of precision, 
batteries become flat, and so on. However, there is a more 
important factor, which is that all sources of e.m.f. have 
an internal resistance. For a power supply, this may be 
due to the wires and components inside, whereas for a cell 
the internal resistance is due to the chemicals within it. 
Experiments show that the voltage across the terminals 
of the power supply depends on the circuit of which it is 
part. In particular, the voltage across the power supply 
terminals decreases if it is required to supply more current.

Figure 12.2 shows a circuit you can use to investigate 
this effect, and a sketch graph showing how the voltage 
across the terminals of a power supply might decrease as 
the supplied current increases.

The charges moving round a circuit have to pass 
through the external components and through the internal 
resistance of the power supply. These charges gain electrical 
energy from the power supply. This energy is lost as heat 

Figure 12.1  a Alessandro 
Volta demonstrating his newly 
invented pile (battery) to the 
French Emperor Napoleon.  
b Volta’s pile, showing (top to 
bottom) discs of copper, wet felt 
and zinc.

power 
supply

rheostat 
(variable resistor)

V

a b

I
0

0

A

V

Figure 12.2  a A circuit for determining the e.m.f. and internal 
resistance of a supply; b typical form of results.

a

b
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It can often help to solve problems if we show the 
internal resistance r of a source of e.m.f. explicitly in 
circuit diagrams (Figure 12.3). Here, we are representing 
a cell as if it were a ‘perfect’ cell of e.m.f. E, together with a 
separate resistor of resistance r. The dashed line enclosing 
E and r represents the fact that these two are, in fact, a 
single component.

r

R

I I

E

Figure 12.3  It can be helpful to show the internal resistance r 
of a cell (or a supply) in a circuit diagram.

Now we can determine the current when this cell is 
connected to an external resistor of resistance R. You can 
see that R and r are in series with each other. The current 
I is the same for both of these resistors. The combined 
resistance of the circuit is thus R + r, and we can write:

E = I(R + r)    or    E = IR + Ir
We cannot measure the e.m.f. E of the cell directly, because 
we can only connect a voltmeter across its terminals. This 
terminal p.d. V across the cell is always the same as the 
p.d. across the external resistor. Therefore, we have:

V = IR
This will be less than the e.m.f. E by an amount Ir. The 
quantity Ir is the potential difference across the internal 
resistor and is referred to as the lost volts. If we combine 
these two equations, we get:

V = E − Ir
or

terminal p.d. = e.m.f. − ‘lost volts’
The ‘lost volts’ indicates the energy transferred to the 
internal resistance of the supply. If you short-circuit a 
battery with a piece of wire, a large current will flow, and 
the battery will get warm as energy is transferred within it. 
This is also why you may damage a power supply by trying 
to make it supply a larger current than it is designed to give.

1	 A battery of e.m.f. 5.0 V and internal resistance 
2.0 Ω is connected to an 8.0 Ω resistor. Draw a 
circuit diagram and calculate the current in the 
circuit.

2	 a	� Calculate the current in each circuit in  
Figure 12.4. 

	 b	� Calculate also the ‘lost volts’ for each cell, and 
the terminal p.d.

Figure 12.4  For Question 2.

3	 Four identical cells, each of e.m.f. 1.5 V and 
internal resistance 0.10 Ω, are connected in series. 
A lamp of resistance 2.0 Ω is connected across the 
four cells. Calculate the current in the lamp.

10 Ω

10 Ω10 Ω

10 Ω

i

ii E = 3.0 V, r = 4.0 Ω

E = 3.0 V, r = 4.0 Ω

1	 There is a current of 0.40 A when a battery of e.m.f. 
6.0 V is connected to a resistor of 13.5 Ω. Calculate 
the internal resistance of the cell.

	 Step 1  Substitute values from the question in the 
equation for e.m.f.:
E = 6.0 V,  I = 0.40 A,  R = 13.5 Ω
E = IR + Ir

6.0 = 0.40 × 13.5 + 0.40 × r
	 = 5.4 + 0.40r 

	 Step 2  Rearrange the equation to make r the subject 
and solve:
	6.0 − 5.4 = 0.40r

	 0.60 = 0.40r

	 r =  
0.60
0.40 = 1.5 Ω

QUESTIONS

WORKED EXAMPLE
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The effects of internal resistance
You cannot ignore the effects of internal resistance. 
Consider a battery of e.m.f. 3.0 V and of internal resistance 
1.0 Ω. The maximum current that can be drawn from this 
battery is when its terminals are shorted-out. (The external 
resistance R ≈ 0.) The maximum current is given by: 

maximum current = E
r

 = 3.0
1.0

  = 3.0 A

I

gradient = –r

intercept = E
V

0
0

4	 When a high-resistance voltmeter is placed across 
an isolated battery, its reading is 3.0 V. When a 
10 Ω resistor is connected across the terminals of 
the battery, the voltmeter reading drops to 2.8 V. 
Use this information to determine the internal 
resistance of the battery. 

5	 The results of an experiment to determine the 
e.m.f. E and internal resistance r of a power supply 
are shown in Table 12.1. Plot a suitable graph and 
use it to find E and r.

V / V 1.43 1.33 1.18 1.10 0.98

I / A 0.10 0.30 0.60 0.75 1.00

Table 12.1  Results for Question 5.

6	 A car battery has an e.m.f. of 12 V and an internal 
resistance of 0.04 Ω. The starter motor draws a 
current of 100 A.
a	 Calculate the terminal p.d. of the battery when 

the starter motor is in operation.
b	 Each headlamp is rated as ‘12 V, 36 W’. Calculate 

the resistance of a headlamp.
c	 To what value will the power output of each 

headlamp decrease when the starter motor is 
in operation? (Assume that the resistance of 
the headlamp remains constant.)

BOX  12.1: Determining e.m.f. and internal resistance

You can get a good idea of the e.m.f. of an isolated power 
supply or a battery by connecting a digital voltmeter 
across it. A digital voltmeter has a very high resistance 
(~107 Ω), so only a tiny current will pass through it. The 
‘lost volts’ will then only be a tiny fraction of the e.m.f.  
If you want to determine the internal resistance r as well 
as the e.m.f. E, you need to use a circuit like that shown 
in Figure 12.2. When the variable resistor is altered, the 
current in the circuit changes, and measurements can 
be recorded of the circuit current I and terminal p.d. V. 
The internal resistance r can be found from a graph of V 
against I (Figure 12.5).

Compare the equation V = E − Ir with the equation of 
a straight line y = mx + c. By plotting V on the y-axis and I 
on the x-axis, a straight line should result. The intercept 
on the y-axis is E, and the gradient is −r.

Figure 12.5  E and r can be found from this graph.

The terminal p.d. of the battery depends on the resistance 
of the external resistor. For an external resistor of 
resistance 1.0 Ω, the terminal p.d. is 1.5 V – half of the 
e.m.f. The terminal p.d. approaches the value of the e.m.f. 
when the external resistance R is very much greater 
than the internal resistance of the battery. For example, 
a resistor of resistance 1000 Ω connected to the battery 
gives a terminal p.d. of 2.997 V. This is almost equal to the 
e.m.f. of the battery. The more current a battery supplies, 
the more its terminal p.d. will decrease. An example of 
this can be seen when a driver tries to start a car with the 
headlamps on. The starter motor requires a large current 
from the battery, the battery’s terminal p.d. drops, and the 
headlamps dim. 

QUESTIONS

QUESTION
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Potential dividers
How can we get an output of 3.0 V from a battery of e.m.f. 
6.0 V? Sometimes we want to use only part of the e.m.f. 
of a supply. To do this, we use an arrangement of resistors 
called a potential divider circuit. 

Figure 12.6 shows two potential divider circuits, each 
connected across a battery of e.m.f. 6.0 V and of negligible 

Vin = 6.0 V

Vin = 6.0 V

R1= 200 Ω

R2
= 200 Ω

Vout = 3.0 V

R2 Vout

R1

b

a

V

V

Figure 12.6  Two potential divider circuits.

Potentiometer circuits
A potentiometer is a device used for comparing potential 
differences. For example, it can be used to measure the 
e.m.f. of a cell, provided you already have a source whose 
e.m.f. is known accurately. As we will see, a potentiometer 
can be thought of as a type of potential divider circuit.

A potentiometer consists of a piece of resistance wire, 
usually 1 m in length, stretched horizontally between two 
points. In Figure 12.8, the ends of the wire are labelled A 
and B. A driver cell is connected across the length of wire. 
Suppose this cell has an e.m.f. Eo of 2.0 V. We can then 
say that point A is at a voltage of 2.0 V, B is at 0 V, and the 
midpoint of the wire is at 1.0 V. In other words, the voltage 
decreases steadily along the length of the wire.

A BY

jockey

driver cell

potentiometer
wire

sensitive
galvanometer

cell X
(unknown e.m.f.)

Eo

EX

Figure 12.8  A potentiometer connected to measure the e.m.f. 
of cell X.

7	 Determine the range of Vout for the circuit in Figure 
12.7 as the variable resistor R2 is adjusted over its 
full range from 0 Ω to 40 Ω. (Assume the supply of 
e.m.f. 10 V has negligible internal resistance.)

Figure 12.7  For Question 7.

10 V

10 Ω

R2
Vout

QUESTION

internal resistance. The high-resistance voltmeter 
measures the voltage across the resistor of resistance R2.  
We refer to this voltage as the output voltage, Vout, of 
the circuit. The first circuit, a, consists of two resistors 
of values R1 and R2. The voltage across the resistor of 
resistance R2 is half of the 6.0 V of the battery. The second 
potential divider, b, is more useful. It consists of a single 
variable resistor. By moving the sliding contact, we can 
achieve any value of Vout between 0.0 V (slider at the 
bottom) and 6.0 V (slider at the top).

The output voltage Vout depends on the relative values 
of R1 and R2. You can calculate the value of Vout using the 
following potential divider equation:

Vout = ( R2
R1  + R2

) × Vin

In this equation, Vin is the total voltage across the two 
resistors.
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Now, suppose we wish to measure the e.m.f. EX 
of cell X (this must have a value less than that of the 
driver cell). The positive terminal of cell X is connected 
to point A. (Note that both cells have their positive 
terminals connected to A.) A lead from the negative 
terminal is connected to a sensitive galvanometer (e.g. a 
microammeter), and a lead from the other terminal of the 
galvanometer ends with a metal jockey. This is a simple 
connecting device with a very sharp edge that allows very 
precise positioning on the wire.

If the jockey is touched onto the wire close to point A, 
the galvanometer needle will deflect in one direction. If 
the jockey is touched close to B, the galvanometer needle 
will deflect in the opposite direction. Clearly there must be 
some point Y along the wire which, when touched by the 
jockey, gives zero deflection – the needle moves neither to 
the left nor the right. 

In finding this position, the jockey must be touched 
gently and briefly onto the wire; the deflection of the 
galvanometer shows whether the jockey is too far to the 
left or right. It is important not to slide the jockey along 
the potentiometer wire as this may scrape its surface, 
making it non-uniform so that the voltage does not vary 
uniformly along its length.

When the jockey is positioned at Y, the galvanometer 
gives zero deflection, showing that there is no current 
through it. This can only happen if the potential difference 
across the length of wire AY is equal to the e.m.f. of cell 
X. We can say that the potentiometer is balanced. If the 
balance point was exactly half-way along the wire, we 
would be able to say that the e.m.f. of X was half that of the 
driver cell.

To calculate the unknown e.m.f. EX we measure the 
length AY. Then we have:

EX = AY
AB

 × Eo

where Eo is the e.m.f. of the driver cell.
The potentiometer can be thought of as a potential 

divider because the point of contact Y divides the 
resistance wire into two parts, equivalent to the two 
resistors of a potential divider.

Comparing e.m.f.s with a potentiometer
When a potentiometer is balanced, no current flows from 
the cell being investigated. This means that its terminal 
p.d. is equal to its e.m.f.; we do not have to worry about any 
‘lost volts’. This is a great advantage that a potentiometer 
has over a voltmeter, which must draw a small current in 
order to work.

However, there is a problem: the driver cell is supplying 
current to the potentiometer, and so the p.d. between 
A and B will be less than the e.m.f. of the driver cell 
(some volts are lost because of its internal resistance). 
To overcome this problem, we use the potentiometer to 
compare p.d.s. Suppose we have two cells whose e.m.f.s EX 
and EY we want to compare. Each is connected in turn to 
the potentiometer, giving balance points at C and D – see 
Figure 12.9. (In the diagram, you can see immediately that 
EY must be greater than EX because D is further to the 
right than C.)

A BC D

Eo

EX

EY

Figure 12.9  Comparing two e.m.f.s using a potentiometer.

The ratio of the e.m.f.s of the two cells will be equal to 
the ratio of the two lengths AC and AD:

EX
EY

 = AC
AD

If one of the cells used has an accurately known e.m.f., the 
other can be calculated with the same degree of accuracy.
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 Comparing p.d.s
The same technique can be used to compare potential 
differences. For example, two resistors could be connected 
in series with a cell (Figure 12.10). The p.d. across one 
resistor is first connected to the potentiometer and the 
balance length found. This is repeated with the other 
resistor and the new balance point is found. The ratio of 
the lengths is the ratio of the p.d.s.

Since both resistors have the same current flowing 
through them, the ratio of the p.d.s is also the ratio of their 
resistances.

Eo

R1 R2

Figure 12.10  Comparing two potential differences using a 
potentiometer.

8	 To make a potentiometer, a driver cell of  
e.m.f. 4.0 V is connected across a 1.00 m length  
of resistance wire.
a	 What is the potential difference across each 

1 cm length of the wire? What length of wire has 
a p.d. of 1.0 V across it?

b	 A cell of unknown e.m.f. E is connected to the 
potentiometer and the balance point is found 
at a distance of 37.0 cm from the end of the 
wire to which the galvanometer is connected. 
Estimate the value of E. Explain why this can 
only be an estimate.

c	 A standard cell of e.m.f. 1.230 V gives a balance 
length of 31.2 cm. Use this value to obtain a 
more accurate value for E.

Summary
■■ A source of e.m.f., such as a battery, has an internal 

resistance. We can think of the source as having an 
internal resistance r in series with an e.m.f. E.

■■ The terminal p.d. of a source of e.m.f. is less than 
the e.m.f. because of ‘lost volts’ across the internal 
resistor:

terminal p.d. = e.m.f. − ‘lost volts’

	 V  = E − Ir

■■ A potential divider circuit consists of two or more 
resistors connected in series to a supply. The output 
voltage Vout across the resistor of resistance R2 is given 
by:

Vout = ( 
R2

R1 + R2 
) × Vin

■■ A potentiometer can be used to compare potential 
differences.

QUESTION
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End-of-chapter questions
1 A single cell of e.m.f. 1.5 V is connected across a 0.30 Ω resistor. The current in the circuit is 2.5 A.

a Calculate the terminal p.d. and explain why it is not equal to the e.m.f. of the cell. [2]
b Show that the internal resistance r of the cell is 0.30 Ω. [3]
c It is suggested that the power dissipated in the external resistor is a maximum when its resistance R 

is equal to the internal resistance r of the cell.
i Calculate the power dissipated when R = r. [1]
ii Show that the power dissipated when R = 0.50 Ω and R = 0.20 Ω is less than that dissipated when R = r, 

as the statement above suggests. [4]

2 A student is asked to compare the e.m.f.s of a standard cell and a test cell. He sets up the 
circuit shown in Figure 12.11 using the test cell.

Figure 12.11 For End-of-chapter Question 2.

a i  Explain why he is unable to find a balance point and state the change he must make 
in order to achieve balance. [2]

ii State how he would recognise the balance point. [1]
b He achieves balance when the distance AB is 22.5 cm. He repeats the experiment with a 

standard cell of e.m.f. of 1.434 V. The balance point using this cell is at 34.6 cm. Calculate the 
e.m.f. of the test cell. [2]

3 a  Explain what is meant by the internal resistance of a cell. [2]
b When a cell is connected in series with a resistor of 2.00 Ω there is a current of 0.625 A. 

If a second resistor of 2.00  Ω is put in series with the first, the current falls to 0.341 A. 
 Calculate:

i the internal resistance of the cell [2]
ii the e.m.f. of the cell. [2]

c A car battery needs to supply a current of 200 A to turn over the starter motor. Explain why 
a battery made of a series of cells would not be suitable for a car battery. [2]

4 a State what is meant by the term e.m.f. of a cell. [2]
 A student connects a high-resistance voltmeter across the terminals of a battery and 

observes a reading of 8.94 V. He then connects a 12 Ω resistor across the terminals and 
finds that the potential diff erence falls to 8.40 V.

b Explain why the measured voltage falls. [2]
c i Calculate the current in the circuit. [2]

ii Calculate the internal resistance of the cell. [2]
iii State any assumptions you made in your calculations. [1]

driving cell

test cell
V

BA
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5 Figure 12.12 shows two circuits which could be used to act as a dimmer switch for a lamp.

Figure 12.12 For End-of-chapter Question 5.

a Explain one advantage circuit 1 has over circuit 2. [2]
b i  The lamp is rated at 60 W at 240 V. Calculate the resistance of the lamp filament at its 

normal operating temperature. [2]
ii State and explain how the resistance of the filament at room temperature would compare 

with the value calculated in b i. [2]

6 Figure 12.13 shows a potential divider. The battery has negligible internal resistance and the voltmeter 
has infinite resistance.

Figure 12.13 For End-of-chapter Question 6.

a State and explain how the reading on the voltmeter will change when the resistance of the 
variable resistor is increased. [2]

b Resistor R2 has a resistance of 470 Ω. Calculate the value of the variable resistor when the reading 
on the voltmeter is 2.0 V. [2]

c The voltmeter is now replaced with one of resistance 2 kΩ. Calculate the reading on this voltmeter. [2]

Circuit 1 Circuit 2

60 Ω 60 Ω

240 V ~ 240 V ~

9.0 V

V

R1

R2

Cambridge International AS Level Physics
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7 Figure 12.14 shows a potentiometer circuit.

Figure 12.14 For End-of-chapter Question 7.

a i  Sketch a graph of the reading on the voltmeter against I as the jockey is moved from point A 
to point B. [2]

ii State the readings on the voltmeter when the jockey is connected to A and when it is connected 
to B. (You may assume that the driver cell has negligible internal resistance.) [1]

iii Draw a circuit diagram to show how the potentiometer could be used to compare the e.m.f.s of 
two batteries. [3]

b When a pair of 4 Ω resistors are connected in series with a battery, there is a current of 0.60 A current 
through the battery. When the same two resistors are connected in parallel and then connected 
across the battery, there is a current of 1.50 A through it. Calculate the e.m.f. and the internal resistance 
of the battery. [4]

A B

uniform
resistance wire

jockeyV

Eo = 2.2 V

l



Chapter 13:
Waves

Learning outcomes
You should be able to:

■■ describe the motion of transverse and longitudinal waves
■■ describe waves in terms of their wavelength, amplitude, 

frequency, speed and intensity
■■ determine the frequency of sound waves using a 

cathode-ray oscilloscope
■■ state the wavelengths of the principal radiations of the 

electromagnetic spectrum
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Vibrations making waves
The wind blowing across the surface of the sea 
produces waves. The surface of the water starts to 
move up and down, and these vibrations spread 
outwards – big waves may travel thousands of 
kilometres across the ocean before they break on a 
beach (Figure 13.1).

Describing waves
When you pluck the string of a guitar, it vibrates. The 
vibrations create a wave in the air which we call sound. In 
fact, all vibrations produce waves of one type or another 
(Figure 13.2). Waves that move through a material (or a 
vacuum) are called progressive waves. A progressive wave 
transfers energy from one position to another.

At the seaside, a wave is what we see on the surface of 
the sea. The water moves around and a wave travels across 
the surface. In physics, we extend the idea of a wave to 
describe many other phenomena, including light, sound, 
etc. We do this by imagining an idealised wave, as shown 
in Figure 13.3 – you will never see such a perfect wave on 
the sea!

Figure 13.1  This photograph shows a wave breaking on the 
shore and dissipating the energy it has drawn from the wind 
in its journey across the ocean. The two scientists are ‘storm 
chasers’ who are recording the waves produced by a hurricane 
in the Gulf of Mexico.
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Figure 13.2  Radio telescopes detect radio waves from distant 
stars and galaxies; a rainbow is an effect caused by the 
reflection and refraction of light waves by water droplets in 
the atmosphere.

Figure 13.3  A displacement–
distance graph illustrating the 
terms displacement, amplitude 
and wavelength.
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Figure 13.3 or a similar graph of displacement against 
time illustrates the following important definitions about 
waves and wave motion:

■■ The distance of a point on the wave from its undisturbed 
position or equilibrium position is called the displacement x. 

■■ The maximum displacement of any point on the wave 
from its undisturbed position is called the amplitude A. 
The amplitude of a wave on the sea is measured in units 
of distance, e.g. metres. The greater the amplitude of the 
wave, the louder the sound or the rougher the sea! 

■■ The distance from any point on a wave to the next exactly 
similar point (e.g. crest to crest) is called the wavelength λ 
(the Greek letter lambda). The wavelength of a wave on the 
sea is measured in units of distance, e.g. metres.

■■ The time taken for one complete oscillation of a point in a 
wave is called the period T. It is the time taken for a point to 
move from one particular position and return to that same 
position, moving in the same direction. It is measured in 
units of time, e.g. seconds..

■■ The number of oscillations per unit time of a point in a 
wave is called its frequency f. For sound waves, the higher 
the frequency of a musical note, the higher is its pitch. 
Frequency is measured in hertz (Hz), where 1 Hz = one 
oscillation per second (1 kHz = 103 Hz and 1 MHz = 106 Hz). 
The frequency f of a wave is the reciprocal of the period T:

f  =  
1
T

Waves are called mechanical waves if they need a 
substance (medium) through which to travel. Sound is one 
example of such a wave. Other cases are waves on strings, 
seismic waves and water waves (Figure 13.4).

Some properties of typical waves are given on page 183 
in Table 13.1.

Figure 13.4  The impact of a droplet on the surface of a liquid 
creates a vibration, which in turn gives rise to waves on the 
surface.

1	 Determine the wavelength and amplitude of each 
of the two waves shown in Figure 13.5.
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Figure 13.5  Two waves – for Question 1.

BOX 13.1: Measuring frequency

You can measure the frequency of sound waves 
using a cathode-ray oscilloscope (c.r.o.). Figure 13.6 
shows how.

A microphone is connected to the input of the 
c.r.o. Sound waves are captured by the microphone 
and converted into a varying voltage which has the 
same frequency as the sound waves. This voltage is 
displayed on the c.r.o. screen.

It is best to think of a c.r.o. as a voltmeter which 
is capable of displaying a rapidly varying voltage. To 
do this, its spot moves across the screen at a steady 
speed, set by the time-base control. At the same 
time, the spot moves up and down according to the 
voltage of the input.

Hence the display on the screen is a graph of the 
varying voltage, with time on the (horizontal) x-axis. 
If we know the horizontal scale, we can determine 
the period and hence the frequency of the sound 
wave. Worked example 1 shows how to do this. (In 
Chapter 15 we will look at one method of measuring 
the wavelength of sound waves.)

Figure 13.6  Measuring the frequency of sound waves 
from a tuning fork.

QUESTION
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Longitudinal and transverse 
waves
There are two distinct types of wave, longitudinal and 
transverse. Both can be demonstrated using a slinky 
spring lying along a bench.

Push the end of the spring back and forth; the segments 
of the spring become compressed and then stretched out, 
along the length of the spring. Wave pulses run along the 
spring. These are longitudinal waves.

Waggle the end of the slinky spring from side to side. 
The segments of the spring move from side to side as the 
wave travels along the spring. These are transverse waves.

So the distinction between longitudinal and transverse 
waves is as follows: 

■■ In longitudinal waves, the particles of the medium vibrate 
parallel to the direction of the wave velocity.

■■ In transverse waves, the particles of the medium vibrate at 
right angles to the direction of the wave velocity. 

Sound waves are an example of a longitudinal wave. Light 
and all other electromagnetic waves are transverse waves. 
Waves in water are quite complex. Particles of the water 
may move both up and down and from side to side as a 
water wave travels through the water. You can investigate 
water waves in a ripple tank. There is more about water 
waves in Table 13.1 (page 183) and in Chapter 14.

Representing waves
Figure 13.8 shows how we can represent longitudinal 
and transverse waves. The longitudinal wave shows how 
the material through which it is travelling is alternately 
compressed and expanded. This gives rise to high and low 
pressure regions, respectively.

2	 When a sound wave is displayed on a c.r.o. screen, 
two complete waves occupy five scale divisions. 
The calibrated time-base is set on 0.005 s per 
division. Determine the frequency of the waves.

1	 Figure 13.7 shows the trace on an oscilloscope screen 
when sound waves are detected by a microphone. 
The time-base is set at 1 ms div−1. Determine the 
frequency of the sound waves.

Figure 13.7  A c.r.o. trace – what is the frequency of 
these waves?

	 Step 1  Determine the period of the waves on the 
screen, in scale divisions. From Figure 13.7, you can 
see that one complete wave occupies three scale 
divisions (div). 
period T = 3.0 div

	 Step 2  Determine the time interval represented by 
each scale division. The time-base control is set at 
1 ms div−1, so:
scale factor = 1 ms div−1

	 Step 3  Convert the period in divisions to ms:
period T  = 3.0 div × 1 ms div−1

	 = 3.0 ms = 3.0 × 10−3 s

	 Hint: Notice how div and div−1 cancel out.

	 Step 4  Calculate the frequency from the period:

frequency f  =  
1
T  =  

1
3.0 × 10−3  = 333 Hz

	 So the wave frequency is approximately 330 Hz.
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Figure 13.8  a Longitudinal waves and b transverse waves.  
A = amplitude, λ = wavelength.
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Wave energy
It is important to realise that, for both types of mechanical 
wave, the particles that make up the material through 
which the wave is travelling do not move along – they only 
oscillate about a fixed point. It is energy that is transmitted 
by the wave. Each particle vibrates; as it does so, it pushes 
its neighbour, transferring energy to it. Then that particle 
pushes its neighbour, which pushes its neighbour. In this 
way, energy is transmitted from one particle to the next, to 
the next, and so on down the line.

Intensity
The term intensity has a very precise meaning in physics. The 
intensity of a wave is defined as the rate of energy transmitted 
(i.e. power) per unit area at right angles to the wave velocity.

intensity = power
cross-sectional area

Intensity is measured in watts per square metre (W m−2). 
For example, when the Sun is directly overhead, the 
intensity of its radiation is about 1.0 kW m−2 (1 kilowatt per 
square metre). This means that energy arrives at the rate of 
about 1 kW (1000 J s−1) on each square metre of the surface 
of the Earth. At the top of the atmosphere, the intensity of 
sunlight is greater, about 1.37 kW m−2.

However, this is rather difficult to draw, so you will 
often see a longitudinal wave represented as if it were a 
sine wave. The displacement referred to in the graph is the 
displacement of the particles in the wave. 

We can compare the compressions and rarefactions 
(or expansions) of the longitudinal wave with the peaks 
and troughs of the transverse wave. 

Phase and phase difference
All points along a wave have the same pattern of vibration. 
However, different points do not necessarily vibrate in 
step with one another. As one point on a wave vibrates, 
the point next to it vibrates slightly out-of-step with it. We 
say that they vibrate out of phase with each other – there 
is a phase difference between them. This is the amount by 
which one oscillation leads or lags behind another.

Phase difference is measured in degrees. As you can see 
from Figure 13.9, two points A and B, with a separation of 
one whole wavelength λ, vibrate in phase with each other. 
The phase difference between these two points is 360°. 
(You can also say it is 0°.) The phase difference between 
any other two points between A and B can have any value 
between 0° and 360°. A complete cycle of the wave is 
thought of as 360°. In Chapter 14 we will see what it means 
to say that two waves are ‘in phase’ or ‘out of phase’ with 
one another.

C

D

A B

Points A and B are vibrating; they have a phase
di	erence of 360° or 0°. They are ‘in phase’

Points C and D have a phase di	erence of 90°.
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Figure 13.9  Different points along a wave have different 
phases.

3	 Using axes of displacement and distance, sketch 
two waves A and B such that A has twice the 
wavelength and half the amplitude of B.

4	 A 100 W lamp emits electromagnetic radiation in 
all directions. Assuming the lamp to be a point 
source, calculate the intensity of the radiation:
a	 at a distance of 1.0 m from the lamp
b	 at a distance of 2.0 m from the lamp.

	 Hint: Think of the area of a sphere at each of the 
two radii.

Intensity and amplitude
The intensity of a wave generally decreases as it travels 
along. There are two reasons for this:

■■ The wave may ‘spread out’ (as in the example of light 
spreading out from a light bulb in Question 4). 

■■ The wave may be absorbed or scattered (as when light 
passes through the Earth’s atmosphere).

As a wave spreads out, its amplitude decreases. This 
suggests that the intensity I of a wave is related to its 
amplitude A. In fact, intensity is proportional to the  
square of the amplitude:

intensity ∝ amplitude2  (I ∝ A2)

QUESTION

QUESTION
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go past. So the total length of the waves going past in 1 s is 
15 m. The distance covered by the wave in one second is its 
speed, therefore the speed of the wave is 15 m s−1.

Clearly, for a given speed of wave, the greater the 
wavelength, the smaller the frequency and vice versa. The 
speed of sound in air is constant (for a given temperature 
and pressure). The wavelength of sound can be made 
smaller by increasing the frequency of the source of sound.

Table 13.1 gives typical values of speed (v), frequency  
(f  ) and wavelength (λ) for some mechanical waves. You 
can check for yourself that v = f λ is satisfied.

Water 
waves in a 
ripple tank 

Sound waves 
in air 

Waves on 
a slinky 
spring

Speed / m s−1 about 0.12 about 300 about 1

Frequency / Hz  about 6 20 to 20 000 
(limits of 
human hearing)

about 2

Wavelength  / m about 0.2 15 to 0.015 about 0.5

Table 13.1  Speed (v), frequency (f ) and wavelength (λ) 
data for some mechanical waves readily investigated in the 
laboratory.

The relationship also implies that, for a particular wave:
intensity

amplitude 2
 = constant

So, if one wave has twice the amplitude of another, it has 
four times the intensity. This means that it is carrying 
energy at four times the rate.

5	 Waves from a source have an amplitude of 5.0 cm 
and an intensity of 400 W m−2.
a	 The amplitude of the waves is increased to 

10.0 cm. What is their intensity now?
b	 The intensity of the waves is decreased to 

100 W m−2. What is their amplitude?

Wave speed
The speed with which energy is transmitted by a wave is 
known as the wave speed v. This is measured in m s−1. The 
wave speed for sound in air at a pressure of 105 Pa and a 
temperature of 0 °C is about 340 m s−1, while for light in a 
vacuum it is almost 300 000 000 m s−1.

The wave equation
An important equation connecting the speed v of a wave 
with its frequency f and wavelength λ can be determined 
as follows. We can find the speed of the wave using:

speed = distance
time

But a wave will travel a distance of one whole wavelength 
in a time equal to one period T. So: 

wave speed = wavelength
period

or

v = λ
T

v = ( 1
T

) × λ

However, f = 1
T

 and so:

wave speed = frequency × wavelength
v = f  × λ

A numerical example may help to make this clear. Imagine 
a wave of frequency 5 Hz and wavelength 3 m going past 
you. In 1 s, five complete wave cycles, each of length 3 m, 

2	 Middle C on a piano tuned to concert pitch should 
have a frequency of 264 Hz (Figure 13.10). If the 
speed of sound is 330 m s−1, calculate the wavelength 
of the sound produced when this key is played.

	 Step 1  We use the above equation in slightly 
rewritten form:

wavelength =  
speed

frequency

	 Step 2  Substituting the values for middle C we get:

wavelength =  
330
264  = 1.25 m

	 The human ear can detect sounds of frequencies 
between 20 Hz and 20 kHz, i.e. with wavelengths 
between 15 m and 15 mm.

Figure 13.10  Each string in a piano produces a 
different note.

QUESTION

WORKED EXAMPLE
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the waves arriving at B have been stretched out and B will 
observe a frequency lower than fs.

An equation for observed frequency
There are two different speeds involved in this situation. 
The source is moving with speed vs. The sound waves 
travel through the air with speed v, which is unaffected by 
the speed of the source. (Remember, the speed of a wave 
depends only on the medium it is travelling through.)

The frequency and wavelength observed by an observer 
will change according to the speed vs at which the source 
is moving. Figure 13.12 shows how we can calculate the 
observed wavelength λo and the observed frequency fo.

The wave trains shown in Figure 13.12 represent the 
fs waves emitted by the source in 1 s. Provided the source 
is stationary (Figure 13.12a), the length of this train is 
equal to the wave speed v since this is the distance the first 
wave travels away from the source in 1 s. The wavelength 
observed by the observer is simply λo = v

fs  
.

The situation is different when the source is moving 
away from the observer (Figure 13.12b). In 1 s, the source 
moves a distance vs. Now the train of fs waves will have a 
length equal to v + vs.

The Doppler effect
You may have noticed a change in pitch of the note heard 
when an emergency vehicle passes you while sounding its 
siren. The pitch is higher as it approaches you, and lower 
as it recedes into the distance. This is an example of the 
Doppler effect; you can hear the same thing if a train 
passes at speed while sounding its whistle.

Figure 13.11 shows why this change in frequency is 
observed. It shows a source of sound emitting waves with a 
constant frequency fs, together with two observers A and B.

■■ If the source is stationary (Figure 13.11a), waves arrive at A 
and B at the same rate, and so both observers hear sounds 
of the same frequency fs.

■■ If the source is moving towards A and away from B (Figure 
13.11b), the situation is different. From the diagram you can 
see that the waves are squashed together in the direction of 
A and spread apart in the direction of B. 

Observer A will observe waves whose wavelength is 
shortened. More waves per second arrive at A, and so A 
observes a sound of higher frequency than fs. Similarly, 

6	 Sound is a mechanical wave that can be 
transmitted through a solid. Calculate the 
frequency of sound of wavelength 0.25 m that 
travels through steel at a speed of 5060 m s−1.

7	 A cello string vibrates with a frequency of 64 Hz. 
Calculate the speed of the transverse waves on 
the string given that the wavelength is 140 cm.

8	 An oscillator is used to send waves along a cord. 
Four complete wave cycles fit on a 20 cm length 
of the cord when the frequency of the oscillator is 
30 Hz. For this wave, calculate:
a	 its wavelength
b	 its frequency
c	 its speed.

9	 Copy and complete Table 13.2. (You may assume 
that the speed of radio waves is 3.0 × 108 m s−1.)

Station Wavelength / m Frequency / MHz
Radio A (FM) 97.6

Radio B (FM) 94.6

Radio B (LW) 1515

Radio C (MW) 693

Table 13.2  For Question 9.

a

A B

b

A B

source stationary

waves stretched

waves squashed source moving

Figure 13.11  Sound waves, represented by wavefronts, 
emitted at constant frequency by a a stationary source, and  
b a source moving with speed vs.

QUESTIONS
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The observed wavelength is now given by λo = (v + vs)
fs  

. 
The observed frequency is given by:

fo = v
λo

 = fs × v
(v + vs)

This tells us how to calculate the observed frequency when 
the source is moving away from the observer. If the source 
is moving towards the observer, the train of fs waves will 
be compressed into a shorter length equal to v − vs, and the 
observed frequency will be given by:

fo = v
λo

 = fs × v
(v − vs)

We can combine these two equations to give a single 
equation for the Doppler shift in frequency due to a 
moving source:

observed frequency fo = fs × v
(v ± vs)

where the plus sign applies to a receding source and 
the minus sign to an approaching source. Note these 
important points:

■■ The frequency fs of the source is not affected by the 
movement of the source – it still emits fs waves per second.

■■ The speed v of the waves as they travel through the air (or 
other medium) is also unaffected by the movement of the 
source.

Note that a Doppler effect can also be heard when an 
observer is moving relative to a stationary source, and also 
when both source and observer are moving. There is more 
about the Doppler effect and light later in this chapter.

a

b

stationary
source

direction of wave travel

v

vs

moving
source

Figure 13.12  Sound waves, emitted at constant frequency 
by a a stationary source, and b a source moving with speed vs 
away from the observer. 

3	 A train with a whistle that emits a note of frequency 
800 Hz is approaching an observer at a speed of 
60 m s−1. What frequency of note will the observer 
hear? (Speed of sound in air = 330 m s−1.)

	 Step 1  Select the appropriate form of the Doppler 
equation. Here the source is approaching the 
observer so we choose the minus sign:

fo =  
fs × v

(v − vs)

	 Step 2  Substitute values from the question and 
solve:

fo =  
800 × 330
(330 − 60)  =  

800 × 330
270

	 =  978 Hz

	 So the observer hears a note whose pitch is raised 
significantly, because the train is travelling at a 
speed which is an appreciable fraction of the speed 
of sound.

	10	 A plane’s engine emits a note of constant 
frequency 120 Hz. It is flying away from an 
observer at a speed of 80 m s–1. Determine:
a	 the observed wavelength of the sound 

received by the observer
b	 its observed frequency.
	 (Speed of sound in air = 330 m s−1.)

Electromagnetic waves
You should be familiar with the idea that light is a region 
of the electromagnetic spectrum. It is not immediately 
obvious that light has any connection at all with electricity, 
magnetism and waves. These topics had been the subject 
of study by physicists for centuries before the connections 
between them became apparent.

An electric current always gives rise to a magnetic field 
(this is known as electromagnetism). A magnetic field is 
created by any moving charged particles such as electrons. 
Similarly, a changing magnetic field will induce a current 
in a nearby conductor. These observations led to the 
unification of the theories of electricity and magnetism by 
Michael Faraday in the mid-19th century. A vast technology 
based on the theories of electromagnetism developed 
rapidly, and continues to expand today (Figure 13.13).

WORKED EXAMPLE

QUESTION
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Electromagnetic radiation
By the end of the 19th century, several types of 
electromagnetic wave had been discovered:

■■ radio waves – these were discovered by Heinrich Hertz 
when he was investigating electrical sparks

■■ infrared and ultraviolet waves – these lie beyond either end 
of the visible spectrum

■■ X-rays – these were discovered by Wilhelm Röntgen and 
were produced when a beam of electrons collided with a 
metal target such as tungsten

■■ γ-rays – these were discovered by Henri Becquerel when he 
was investigating radioactive substances.

We now regard all of these types of radiation as parts of 
the same electromagnetic spectrum, and we know that 
they can be produced in a variety of different ways.

The speed of light
James Clerk Maxwell showed that the speed c of 
electromagnetic radiation in a vacuum (free space) was 
independent of the frequency of the waves. In other words, 
all types of electromagnetic wave travel at the same speed 
in a vacuum. In the SI system of units, c has the value:

c = 299 792 458 m s−1

The approximate value for the speed of light in a vacuum 
(often used in calculations) is 3.0 × 108 m s−1.

The wavelength λ and frequency f of the radiation are 
related by the equation:

c = fλ
When light travels from a vacuum into a material medium 
such as glass, its speed decreases but its frequency 
remains the same, and so we conclude that its wavelength 
must decrease. We often think of different forms of 
electromagnetic radiation as being characterised by 
their different wavelengths, but it is better to think of 
their different frequencies as being their fundamental 
characteristic, since their wavelengths depend on the 
medium through which they are travelling.

Light waves show the Doppler effect in the same way 
that sound waves do. So, for example, if an astronomer 
looks at the light from a distant star which is receding 
from Earth at speed vs, its wavelength will be increased 
and its frequency will be decreased. The change in 
wavelength Δλ is simply given by Δλ/λ = vs/c.

Since longer wavelengths are towards the red end of the 
visible spectrum, the light from the star will look redder 
than if it were stationary. This is the origin of the ‘red shift’ 
which allows astronomers to determine the speed at which 
stars and galaxies are moving away from us, and which 
first provided evidence that the Universe is expanding.

Faraday’s studies were extended by James Clerk 
Maxwell. He produced mathematical equations that 
predicted that a changing electric or magnetic field would 
give rise to waves travelling through space. When he 
calculated the speed of these waves, it turned out to be 
the known speed of light. He concluded that light is a 
wave, known as an electromagnetic wave, that can travel 
through space (including a vacuum) as a disturbance of 
electric and magnetic fields.

Faraday had unified electricity and magnetism; now 
Maxwell had unified electromagnetism and light. In the 
20th century, Abdus Salam (Figure 13.14) managed to 
unify electromagnetic forces with the weak nuclear force, 
responsible for radioactive decay. Physicists continue 
to strive to unify the big ideas of physics; you may 
occasionally hear talk of a theory of everything. This 
would not truly explain everything, but it would explain 
all known forces, as well as the existence of the various 
fundamental particles of matter.

Figure 13.13  These telecommunications masts are situated 
4500 metres above sea level in Ecuador. They transmit 
microwaves, a form of electromagnetic radiation, across the 
mountain range of the Andes.

Figure 13.14  Abdus Salam, the Pakistani physicist, won the 
1979 Nobel Prize for Physics for his work on unification of the 
fundamental forces.
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or when they hit a target metal at high speeds. γ-rays are 
produced by nuclear reactions such as radioactive decay. There 
is no difference whatsoever in the radiation between an X-ray 
and a γ-ray of wavelength, say, 10−11 m.

Radiation Wavelength range / m
radio waves >106 to 10−1

microwaves 10−1 to 10−3

infrared 10−3 to 7 × 10−7

visible 7 × 10−7 (red) to 4 × 10−7 (violet)

ultraviolet 4 × 10−7 to 10−8

X-rays 10−8 to 10−13

γ-rays 10−10 to 10−16

Table 13.3  Wavelengths (in a vacuum) of the electromagnetic 
spectrum.

The observed frequency of light from a moving source 
can be calculated using the same equation as for sound, 
fobs = f × c

(c ± vs)
 but there is an important condition. The 

speed of the source vs must be small compared to the speed 
of light c. For speeds approaching c, the equation must be 
altered to take account of the theory of relativity.

	11	 Red light of wavelength 700 nm in a vacuum 
travels into glass, where its speed decreases to 
2.0 × 108 m s−1. Determine:
a	 the frequency of the light in a vacuum
b	 its frequency and wavelength in the glass.

	12	 An astronomer observes light from a distant star. 
A particular line in its spectrum has a wavelength 
of 550 nm. When measured in the laboratory, the 
same spectral line has a wavelength of 535 nm. 
Determine:
a	 the change in wavelength of the spectral line
b	 the speed of the star
c	 the direction of movement of the star 

(towards or away from the observer).
	 (Speed of light in free space = 3.0 × 108 m s−1)

	13	 Copy Table 13.3. Add a third column showing the 
range of frequencies of each type of radiation.

	14	 Study Table 13.3 and answer the questions.
a	 Which type of radiation has the narrowest 

range of wavelengths?
b	 Which has the second narrowest range?
c	 What is the range of wavelengths of 

microwaves, in millimetres?
d	 What is the range of wavelengths of visible 

light, in nanometres?
e	 What is the frequency range of visible light?

	15	 For each of the following wavelengths measured 
in a vacuum, state the type of electromagnetic 
radiation to which it corresponds.
a	 1 km
b	 3 cm

c	 5000 nm
d	 500 nm

e	 50 nm
f	 10−12 m

	16	 For each of the following frequencies, state the 
type of electromagnetic radiation to which it 
corresponds.
a	 200 kHz
b	 100 MHz

c	 5 × 1014 Hz
d	 1018 Hz

Orders of magnitude
Table 13.3 shows the approximate ranges of wavelengths 
in a vacuum of the principal bands which make up the 
electromagnetic spectrum. This information is shown as a 
diagram in Figure 13.15.

Here are some points to note:

■■ There are no clear divisions between the different ranges 
or bands in the spectrum. The divisions shown in Table 13.3 
are somewhat arbitrary. 

■■ The naming of subdivisions is also arbitrary. For example, 
microwaves are sometimes regarded as a subdivision of 
radio waves. 

■■ The ranges of X-rays and γ-rays overlap. The distinction is 
that X-rays are produced when electrons decelerate rapidly 

1061041021

X-rays visible microwaves

γ-rays infraredultraviolet radio waves

10–210–410–610–810–1010–1210–14

Wavelength / m

Figure 13.15  Wavelengths 
of the electromagnetic 
spectrum. The boundaries 
between some regions are 
fuzzy.
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The nature of electromagnetic 
waves
An electromagnetic wave is a disturbance in the electric 
and magnetic fields in space. Figure 13.16 shows how we 
can represent such a wave. In this diagram, the wave is 
travelling from left to right.

The electric field is shown oscillating in the vertical 
plane. The magnetic field is shown oscillating in the 
horizontal plane. These are arbitrary choices; the point is 
that the two fields vary at right angles to each other, and 
also at right angles to the direction in which the wave 
is travelling. This shows that electromagnetic waves are 
transverse waves.

Electric field strength

Magnetic field strength

Distance
wave speed = c

Figure 13.16  An electromagnetic wave is a periodic variation 
in electric and magnetic fields.

Summary
■■ Mechanical waves are produced by vibrating objects.

■■ A progressive wave carries energy from one place to 
another.

■■ Two points on a wave separated by a distance of one 
wavelength have a phase difference of 0° or 360°.

■■ There are two types of wave – longitudinal and 
transverse. Longitudinal waves have vibrations parallel 
to the direction in which the wave travels, whereas 
transverse waves have vibrations at right angles to  
the direction in which the wave travels. 

■■ The frequency f of a wave is related to its period T by 
the equation:

f = 
1
T

■■ The frequency of a sound wave can be measured using 
a calibrated cathode-ray oscilloscope.

■■ The speed of all waves is given by the wave equation:

wave speed = frequency × wavelength

	 v = f λ

■■ The Doppler effect is the change in an observed wave 
frequency when a source moves with speed vs. The 
observed frequency is given by:

fo = 
fs × v

(v ± vs)

■■ The intensity of a wave is defined as the wave power 
transmitted per unit area at right angles to the wave 
velocity. Hence:

intensity = 
power

cross-sectional area

Intensity has units of W m−2.

■■ The intensity I of a wave is proportional to the square 
of the amplitude A (I ∝ A2).

■■ All electromagnetic waves travel at the same speed 
of 3.0 × 108 m s−1 in a vacuum, but have different 
wavelengths and frequencies.

■■ The regions of the electromagnetic spectrum in order 
of increasing wavelength are: γ-rays, X-rays, ultraviolet, 
visible, infrared, microwaves and radio waves.

Cambridge International AS Level Physics
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End-of-chapter questions
1 Figure 13.17 shows the screen of an oscilloscope. The time-base of the oscilloscope is set at 500  μs  div−1. 

Calculate the time period of the signal and hence its frequency.  [3]

Figure 13.17 For End-of-chapter Question 1.

2 a State two main properties of electromagnetic waves. [2]
b State one major diff erence between microwaves and radio waves. [1]
c i Estimate the wavelength in metres of X-rays. [1]

ii Use your answer to i to determine the frequency of the X-rays. [1]

3 A student is sitting on the beach, observing a power boat moving at speed on the sea. The boat has a 
siren emitting a constant sound of frequency 420 Hz.

 The boat moves around in a circular path with a speed of 25 m s−1. The student notices that the pitch 
of the siren changes with a regular pattern.
a Explain why the pitch of the siren changes, as observed by the student. [1]
b Determine the maximum and minimum frequencies that the student will hear. [4]
c At which point in the boat’s motion will the student hear the most high-pitched note? [1]
 (Speed of sound in air = 330 m s−1)

4 Figure 13.18 shows some air particles as a sound wave passes.

Figure 13.18 For End-of-chapter Question 4.

a On a copy of the diagram, mark:
i a region of the wave which shows a compression – label it C [1]
ii a region of the wave which shows a rarefaction – label it R. [1]

b Describe how the particle labelled P moves as the wave passes. [2]
c The sound wave has a frequency of 240 Hz. Explain, in terms of the movement of an individual particle, 

what this means. [2]
d The wave speed of the sound is 320 m s−1. Calculate the wavelength of the wave. [2]

P
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5 The diagram represents a wave on the surface of water at one instant of time. The speed of the wave is 7.0 cm s–1. 
 Calculate the amplitude, wavelength and time period for one oscillation.

Figure 13.19 For End-of-chapter Question 5.

6 a  Light is referred to as a type of electromagnetic wave. Explain what is meant by the term 
electromagnetic wave. [2]

b i  Two stars emit radiation with the same power. Star A is twice as far from the Earth as star B. 
Explain how the intensities of the radiations compare to an observer on the Earth. [2]

ii State how the amplitudes of the two signals received by the observer compare. [2]
c The main signal from star A is in the ultraviolet region of the spectrum with a wavelength 

of 7.5 × 108 m. Calculate the wavelength of this radiation. [2]

7 Figure 13.20 shows a loudspeaker producing a sound and a microphone connected to a 
cathode-ray oscilloscope. 

Figure 13.20 For End-of-chapter Question 7.

a Sound is described as a longitudinal wave. Explain how the trace on the oscilloscope relates 
to the movements of the air particles in the sound wave. [3]

b The time-base on the oscilloscope is set at 5 ms div−1. Calculate the frequency of the wave. [2]
c The wavelength of the wave is found to be 1.98 m. Calculate the speed of the wave. [2]

loudspeaker microphone

12 mm

9.0 cm
20 mm
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 8 Figure 13.21 shows the traces of two sound waves displayed on an oscilloscope screen.

Figure 13.21 For End-of-chapter Question 8.

a State and explain how the wavelengths of the two waves compare. [2]
b Explain the meaning of the term phase diff erence. Illustrate your answer by estimating the 

phase diff erence between the two waves shown on the screen. [3]
c Calculate the ratio of the intensities of the two waves. [2]

 9 a State what is meant by the Doppler eff ect. [2]
b A star is moving away from the Earth at a speed of 6.4 × 105 m s−1. Light of frequency 6.500 × 1014 Hz 

emitted by the star is received on Earth. Calculate the change in frequency caused by the 
Doppler eff ect. Give your answer to 2 significant figures. [3]

c When looking at distant stars and galaxies, the further a star or galaxy is from Earth, the 
more the light emitted from the star is shift ed towards the red end of the spectrum.
i State and explain whether the stars and galaxies are moving towards or away from the Earth. [2]
ii Explain what the greater shift  in frequency for stars that are further away implies. [1]

10 The Doppler eff ect can be used to measure the speed of blood. Ultrasound, which is sound of high 
frequency, is passed from a transmitter into the body, where it reflects off  particles in the blood. 
The shift  in frequency is measured by a stationary detector, placed outside the body and close 
to the transmitter.

 In one patient, particles in the blood are moving at a speed of 30 cm s−1 in a direction directly 
away from the transmitter. The speed of ultrasound in the body is 1500 cm s−1.

 This situation is partly modelled by considering the particles to be emitting sound of frequency 
4.000 MHz as they move away from the detector. This sound passes to the detector outside the 
body and the frequency measured by the detector is not 4.000 MHz. 
a i  State whether the frequency received by the stationary detector is higher or lower than the 

frequency emitted by the moving particles. [1]
 ii Explain your answer to i. [3]
b Calculate the diff erence between the frequency emitted by the moving particles and the frequency 

measured by the detector. [3]
c Suggest why there is also a frequency diff erence between the sound received by the particles and 

the sound emitted by the transmitter. [1]
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Chapter 14:
Superposition of 
waves

Learning outcomes
You should be able to:

■■ explain and use the principle of superposition of waves
■■ explain experiments that show diff raction and 

interference
■■ solve problems involving two-slit and multiple-slit 

interference
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Combining waves
Light travels as waves and can produce beautiful, 
natural effects such as the iridescent colours of a 
butterfly’s wing (Figure 14.1). However, these colours 
do not come from pigments in the wing. Instead, they 
arise when light waves, scattered from different points 
on the wing, meet in your eye and combine to produce 
the colours that we see.

very different from the behaviour of particles. Two bullets 
meeting in mid-air would ricochet off one another in a 
very un-wave-like way. If we look carefully at how two sets 
of waves interact when they meet, we find some surprising 
results.

When two waves meet they combine, with the 
displacements of the two waves adding together. Figure 
14.3 shows the displacement–distance graphs for two 
sinusoidal waves (blue and green) of different wavelengths. 
It also shows the resultant wave (red), which comes from 
combining these two. How do we find this resultant 
displacement shown in red?

Consider position A. Here the displacement of both 
waves is zero, and so the resultant must also be zero.

At position B, both waves have positive displacement. The 
resultant displacement is found by adding these together.

The principle of superposition 
of waves
In Chapter 13, we studied the production of waves and the 
difference between longitudinal and transverse waves. In 
this chapter we are going to consider what happens when 
two or more waves meet at a point in space and combine 
together (Figure 14.2).

So what happens when two waves arrive together at 
the same place? We can answer this from our everyday 
experience. What happens when the beams of light waves 
from two torches cross over? They pass straight through 
one another. Similarly, sound waves pass through one 
another, apparently without affecting each other. This is 

Figure 14.1  The iridescent colours on a butterfly’s wing 
demonstrate the beauty of nature. In this chapter we will 
study the effect known as interference, which leads to the 
production of these glorious colours.
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Figure 14.2  Here we see ripples produced when drops 
of water fall into a swimming pool. The ripples overlap to 
produce a complex pattern of crests and troughs.

Figure 14.3  Adding two waves by the principle of 
superposition – the red line is the resultant wave.
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At position C, the displacement of one wave is positive 
while the other is negative. The resultant displacement 
lies between the two displacements. In fact, the resultant 
displacement is the algebraic sum of the displacements of 
waves A and B; that is, their sum, taking account of their 
signs (positive or negative).

We can work our way along the distance axis in 
this way, calculating the resultant of the two waves by 
algebraically adding them up at intervals. Notice that, for 
these two waves, the resultant wave is a rather complex 
wave with dips and bumps along its length.

The idea that we can find the resultant of two 
waves which meet at a point simply by adding up the 
displacements at each point is called the principle of 
superposition of waves. This principle can be applied to 
more than two waves and also to all types of waves. A 
statement of the principle of superposition is shown below: 

When two or more waves meet at a point, the resultant 
displacement is the algebraic sum of the displacements 
of the individual waves.

1	 On graph paper, draw two ‘triangular’ waves like 
those shown in Figure 14.4. (These are easier to 
work with than sinusoidal waves.) One should 
have wavelength 8 cm and amplitude 2 cm; the 
other wavelength 16 cm and amplitude 3 cm. 
Use the principle of superposition of waves to 
determine the resultant displacement at suitable 
points along the waves, and draw the complete 
resultant wave.
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Figure 14.4  Two triangular waves – for Question 1.

Diffraction of waves
You should be aware that all waves (such as sound and light) 
can be reflected and refracted. Another wave phenomenon 
that applies to all waves is that they can be diffracted. 
Diffraction is the spreading of a wave as it passes through a 
gap or around an edge. It is easy to observe and investigate 
diffraction effects using water waves, as shown in Box 14.1.

Diffraction of sound and light
Diffraction effects are greatest when waves pass through a 
gap with a width roughly equal to their wavelength. This 
is useful in explaining why we can observe diffraction 
readily for some waves, but not for others. For example, 
sound waves in the audible range have wavelengths from a 
few millimetres to a few metres. Thus we might expect to 
observe diffraction effects for sound in our environment. 
Sounds, for example, diffract as they pass through 
doorways. The width of a doorway is comparable to the 
wavelength of a sound and so a noise in one room spreads 
out into the next room.

Visible light has much shorter wavelengths (about 
5 × 10−7 m). It is not diffracted noticeably by doorways 
because the width of the gap is a million times larger 
than the wavelength of light. However, we can observe 
diffraction of light by passing it through a very narrow 
slit or a small hole. When laser light is directed onto a 
slit whose width is comparable to the wavelength of the 
incident light, it spreads out into the space beyond to form 
a smear on the screen (Figure 14.5). An adjustable slit 
allows you to see the effect of gradually narrowing the gap.

You can see the effects of diffraction for yourself by 
making a narrow slit with your two thumbs and looking 
through the slit at a distant light source (Figure 14.8). By 
gently pressing your thumbs together to narrow the gap 
between them, you can see the effect of narrowing the slit.

Figure 14.5  Light is diffracted as it passes through a slit.

QUESTION
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BOX 14.1: Observing diff raction in a ripple tank

A ripple tank can be used to show diff raction. Plane 
waves are generated using a vibrating bar, and move 
towards a gap in a barrier (Figure 14.6). Where the 
ripples strike the barrier, they are reflected back. Where 

they arrive at the gap, however, they pass through and 
spread out into the space beyond. It is this spreading 
out of waves as they travel through a gap (or past the 
edge of a barrier) that is called diff raction.

The extent to which ripples are diff racted depends 
on the width of the gap. This is illustrated in Figure 14.6. 
The lines in this diagram show the wavefronts. It is as 
if we are looking down on the ripples from above, and 
drawing lines to represent the tops of the ripples at 
some instant in time. The separation between adjacent 
wavefronts is equal to the wavelength λ of the ripples.

When the waves encounter a gap in a barrier, the 
amount of diff raction depends on the width of the gap. 
There is hardly any noticeable diff raction when the gap 
is very much larger than the wavelength. As the gap 
becomes narrower, the diff raction eff ect becomes more 
pronounced. It is greatest when the width of the gap is 
roughly equal to the wavelength of the ripples.

a b c

λ

λ

λλ

λ

λ

Figure 14.6 Ripples, initially straight, spread out into the 
space beyond the gap in the barrier.

Figure 14.7 The extent to which ripples spread out depends on the relationship between their wavelength and 
the width of the gap. In a, the width of the gap is very much greater than the wavelength and there is hardly any 
noticeable diff raction. In b, the width of the gap is greater than the wavelength and there is limited diff raction. 
In c, the gap width is approximately equal to the wavelength and the diff raction eff ect is greatest.

Figure 14.8 You can see the eff ects of diff raction by looking 
through a narrow slit. What happens when you make the slit 
narrower? What happens to the amount of diff raction when 
you put diff erent coloured filters in front of the lamp? What 
does this tell you about the wavelengths of the diff erent 
colours?
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the effect of an infinite number of ripples, we can say that 
in some directions the ripples add together while in other 
directions they cancel out.

Diffraction of radio and microwaves
Radio waves can have wavelengths of the order of a 
kilometre. These waves are easily diffracted by gaps in 
the hills and by the tall buildings around our towns and 
cities. Microwaves, used by the mobile phone network, 
have wavelengths of about 10 cm. These waves are not 
easily diffracted (because their wavelengths are much 
smaller than the dimensions of the gaps) and mostly travel 
through space in straight lines.

Cars need external radio aerials because radio waves 
have wavelengths longer than the size of the windows, so 
they cannot diffract into the car. If you try listening to a 
radio in a train without an external aerial, you will find 
that FM signals can be picked up weakly (their wavelength 
is about 3 m), but AM signals, with longer wavelengths, 
cannot get in at all.

Interference
Adding waves of different wavelengths and amplitudes 
results in complex waves. We can find some interesting 
effects if we consider what happens when two waves of the 
same wavelength overlap at a point. Again, we will use the 
principle of superposition to explain what we observe.

A

ripples from A

ripples from B

ripples from C

B
C

2	 A microwave oven (Figure 14.9) uses microwaves 
with a wavelength of 12.5 cm. The front door of 
the oven is made of glass with a metal grid inside; 
the gaps in the grid are a few millimetres across. 
Explain how this design allows us to see the food 
inside the oven, while the microwaves are not 
allowed to escape into the kitchen (where they 
might cook us).

Figure 14.9  A microwave oven has a metal grid in 
the door to keep microwaves in and let light out.

Figure 14.10  Ripples from all points across the gap contribute 
to the pattern in the space beyond.

Explaining diffraction
Diffraction is a wave effect that can be explained by the 
principle of superposition. We have to think about what 
happens when a plane ripple reaches a gap in a barrier 
(Figure 14.10). Each point on the surface of the water in the 
gap is moving up and down. Each of these moving points 
can be thought of as a source of new ripples spreading out 
into the space beyond the barrier. Now we have a lot of 
new ripples, and we can use the principle of superposition 
to find their resultant effect. Without trying to calculate 

BOX 14.2: Observing interference

Interference of sound waves
A simple experiment shows what happens when 
two sets of sound waves meet. Two loudspeakers 
are connected to a single signal generator (Figure 
14.11). They each produce sound waves of the same 
wavelength. Walk around in the space in front of 
the loudspeakers; you will hear the resultant effect. 

Figure 14.11  The sound waves from two loudspeakers 
combine to give an interference pattern. This 
experiment is best done outside so that reflections of 
sounds (or echoes) do not affect the results.

signal generator

500 Hz

QUESTION
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BOX 14.2: Observing interference (continued)

A naive view might be that we would hear a sound 
twice as loud as that from a single loudspeaker. 
However, this is not what we hear. At some points, 
the sound is louder than for a single speaker. At 
other points, the sound is much quieter. The space 
around the two loudspeakers consists of a series 
of loud and quiet regions. We are observing the 
phenomenon known as interference.

Interference in a ripple tank
The two dippers in the ripple tank (Figure 14.12) 
should be positioned so that they are just touching 
the surface of the water. When the bar vibrates, each 
dipper acts as a source of circular ripples spreading 
outwards. Where these sets of ripples overlap, we 
observe an interference pattern. Another way to 
observe interference in a ripple tank is to use plane 
waves passing through two gaps in a barrier. The 
water waves are diffracted at the two gaps and then 
interfere beyond the gaps. Figure 14.13 shows the 
interference pattern produced by two vibrating 
sources in a ripple tank. 

Figure 14.12  A ripple tank can be used to show how 
two sets of circular ripples combine.

Figure 14.13  Ripples from two point sources produce 
an interference pattern.

Explaining interference
Figure 14.14 shows how interference arises. The 
loudspeakers in Figure 14.11 (Box 14.2) are emitting 
waves that are in phase because both are connected 
to the same signal generator. At each point in front 
of the loudspeakers, waves are arriving from the two 
loudspeakers. At some points, the two waves arrive in 
phase (in step) with one another and with equal amplitude 
(Figure 14.14a). The principle of superposition predicts 
that the resultant wave has twice the amplitude of a single 
wave. We hear a louder sound.
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Figure 14.14  Adding waves by the principle of superposition. 
Blue and green waves of the same amplitude may give  
a constructive or b destructive interference, according to 
the phase difference between them. c Waves of different 
amplitudes can also interfere constructively.

At other points, something different happens. The 
two waves arrive completely out of phase or in antiphase 
(phase difference is 180°) with one another (Figure 14.14b). 
There is a cancelling out, and the resultant wave has zero 
amplitude. At this point, we would expect silence. At other 
points again, the waves are neither perfectly out of step nor 
perfectly in step, and the resultant wave has amplitude less 
than that at the loudest point. 

Where two waves arrive at a point in phase with one 
another so that they add up, we call this effect constructive 
interference. Where they cancel out, the effect is known as 
destructive interference. Where two waves have different 
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to a phase difference of 180°. The waves interfere 
destructively because they are in antiphase. In general, the 
conditions for constructive interference and destructive 
interference are outlined below. These conditions apply 
to all waves (water waves, light, microwaves, radio waves, 
sound, etc.) that show interference effects. In the equations 
below, n stands for any integer (any whole number, 
including zero).

■■ For constructive interference the path difference is a whole 
number of wavelengths: 
	 path difference = 0, λ, 2λ, 3λ, etc.
or	 path difference = n λ

■■ For destructive interference the path difference is an odd 
number of half wavelengths:
	 path difference =  12 λ, 1 12 λ, 2 12 λ, etc.
or	 path difference = (n +  12 ) λ

A B

3	 Explain why the two loudspeakers must produce 
sounds of precisely the same frequency if we are 
to hear the effects of interference.

amplitudes but are in phase (Figure 14.14c), constructive 
interference results in a wave whose amplitude is the sum 
of the two individual amplitudes.

Figure 14.15  The result of interference depends on the path 
difference between the two waves.

How can we explain the interference pattern observed 
in a ripple tank (Box 14.2)? Look at Figure 14.15 and 
compare it to Figure 14.13. Figure 14.15 shows two sets of 
waves setting out from their sources. At a position such 
as A, ripples from the two sources arrive in phase with 
one another, and constructive interference occurs. At B, 
the two sets of ripples arrive out of phase, and there is 
destructive interference. Although waves are arriving at B, 
the surface of the water remains approximately flat.

BOX 14.3: Interference of radiation

Interference of light
Here is one way to show the interference effects 
produced by light. A simple arrangement involves 
directing the light from a laser through two slits 
(Figure 14.16). The slits are two clear lines on a black 
slide, separated by a fraction of a millimetre. Where 
the light falls on the screen, a series of equally 
spaced dots of light are seen (see Figure 14.21 on 
page 201). These bright dots are referred to as 
interference ‘fringes’, and they are regions where 

screen

slide with
double slit

Figure 14.16  Light beams from the two slits interfere 
in the space beyond.

Whether the waves combine constructively or 
destructively at a point depends on the path difference 
of the waves from the two sources. The path difference is 
defined as the extra distance travelled by one of the waves 
compared with the other.

At point A in Figure 14.15, the waves from the red 
source have travelled 3 whole wavelengths. The waves 
from the yellow source have travelled 4 whole wavelengths. 
The path difference between the two sets of waves is 
1 wavelength. A path difference of 1 wavelength is 
equivalent to a phase difference of zero. This means that 
they are in phase, so they interfere constructively.

Now think about destructive interference. At 
point B, the waves from the red source have travelled 
3 wavelengths; the waves from the yellow source have 
travelled 2.5 wavelengths. The path difference between the 
two sets of waves is 0.5 wavelengths, which is equivalent 

QUESTION
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Coherence
We are surrounded by many types of wave – light, infrared 
radiation, radio waves, sound, and so on. There are waves 
coming at us from all directions. So why do we not observe 
interference patterns all the time? Why do we need 
specialised equipment in a laboratory to observe these 
effects?

In fact, we can see interference of light occurring in 
everyday life. For example, you may have noticed haloes 
of light around street lamps or the Moon on a foggy night. 

4	 Look at the experimental arrangement shown 
in Figure 14.17. Suppose that the microwave 
probe is placed at a point of low intensity in the 
interference pattern. What do you predict will 
happen if one of the gaps in the barrier is now 
blocked?

BOX 14.3: Interference of radiation (continued)

light waves from the two slits are arriving in phase with 
each other, i.e. there is constructive interference. The 
dark regions in between are the result of destructive 
interference. 

Safety note

If you carry out experiments using a laser, you 
should follow correct safety procedures. In 
particular, you should wear eye protection and 
avoid allowing the beam to enter your eye 
directly.

These bright and dark fringes are the equivalent of 
the loud and quiet regions that you detected if you 
investigated the interference pattern of sounds from 
the two loudspeakers described in Box 14.2. Bright 
fringes correspond to loud sound, dark fringes to quiet 
sound or silence.

You can check that light is indeed reaching the 
screen from both slits as follows. Mark a point on the 
screen where there is a dark fringe. Now carefully 
cover up one of the slits so that light from the laser is 
only passing through one slit. You should find that the 
pattern of interference fringes disappears. Instead, a 
broad band of light appears across the screen. This 
broad band of light is the diffraction pattern produced 
by a single slit. The point that was dark is now light. 
Cover up the other slit instead, and you will see the 
same effect. You have now shown that light is arriving at 
the screen from both slits, but at some points (the dark 
fringes) the two beams of light cancel each other out.

You can achieve similar results with a bright light 
bulb rather than a laser, but a laser is much more 
convenient because the light is concentrated into a 

narrow, more intense beam. This famous experiment is 
called the Young double-slit experiment (see page 200), 
although Thomas Young had no laser available to him 
when he first carried it out in 1801.

Interference of microwaves
Using 2.8 cm wavelength microwave equipment (Figure 
14.17), you can observe an interference pattern. The 
microwave transmitter is directed towards the double 
gap in a metal barrier. The microwaves are diffracted 
at the two gaps so that they spread out into the region 
beyond, where they can be detected using the probe 
receiver. By moving the probe around, it is possible 
to detect regions of high intensity (constructive 
interference) and low intensity (destructive 
interference). The probe may be connected to a meter, 
or to an audio amplifier and loudspeaker to give an 
audible output.

microwave
probe

meter

metal
sheetsmicrowave

transmitter

Figure 14.17  Microwaves can also be used to show 
interference effects.

QUESTION
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The Young double-slit 
experiment
Now we will take a close look at a famous experiment 
which Thomas Young performed in 1801. He used this 
experiment to show the wave nature of light. A beam 
of light is shone on a pair of parallel slits placed at right 
angles to the beam. Light diffracts and spreads outwards 
from each slit into the space beyond; the light from the two 
slits overlaps on a screen. An interference pattern of light 
and dark bands called ‘fringes’ is formed on the screen.

Explaining the experiment
In order to observe interference, we need two sets of waves. 
The sources of the waves must be coherent – the phase 
difference between the waves emitted at the sources must 
remain constant. This also means that the waves must have 
the same wavelength. Today, this is readily achieved by 
passing a single beam of laser light through the two slits. 
A laser produces intense coherent light. As the light passes 
through the slits, it is diffracted so that it spreads out into the 
space beyond (Figure 14.20). Now we have two overlapping 

You may have noticed light and dark bands of light if you 
look through fabric at a bright source of light. These are 
interference effects.

We usually need specially arranged conditions to 
produce interference effects that we can measure. Think 
about the demonstration with two loudspeakers. If they 
were connected to different signal generators with slightly 
different frequencies, the sound waves might start off in 
phase with one another, but they would soon go out of 
phase (Figure 14.18). We would hear loud, then soft, then 
loud again. The interference pattern would keep shifting 
around the room.
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Figure 14.18  Waves of slightly different wavelengths (and 
therefore frequencies) move in and out of phase with one 
another.

By connecting the two loudspeakers to the same signal 
generator, we can be sure that the sound waves that they 
produce are constantly in phase with one another. We 
say that they act as two coherent sources of sound waves 
(coherent means sticking together). Coherent sources emit 
waves that have a constant phase difference. Note that 
the two waves can only have a constant phase difference if 
their frequency is the same and remains constant.

Now think about the laser experiment. Could we have 
used two lasers producing exactly the same frequency and 
hence wavelength of light? Figure 14.19a represents the 
light from a laser. We can think of it as being made up of 
many separate bursts of light. We cannot guarantee that 
these bursts from two lasers will always be in phase with 
one another. 

This problem is overcome by using a single laser 
and dividing its light using the two slits (Figure 14.19b). 
The slits act as two coherent sources of light. They are 
constantly in phase with one another (or there is a 
constant phase difference between them). 

If they were not coherent sources, the interference 
pattern would be constantly changing, far too fast for our 
eyes to detect. We would simply see a uniform band of 
light, without any definite bright and dark regions. From 
this you should be able to see that, in order to observe 
interference, we need two coherent sources of waves.

b

a

sudden change
of phase

double slit

Figure 14.19  Waves must be coherent if they are to produce a 
clear interference pattern.

5	 Draw sketches of displacement against time to 
illustrate the following:
a	 two waves having the same amplitude and in 

phase with one another
b	 two waves having the same amplitude and 

with a phase difference of 90°
c	 two waves initially in phase but with slightly 

different wavelengths.

	 Use your sketches to explain why two coherent 
sources of waves are needed to observe 
interference.

QUESTION
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time, it has travelled an extra distance equal to a whole 
wavelength λ. The path difference between the rays of 
light is now a whole wavelength. The two rays are in phase 
at the screen. They interfere constructively and we see a 
bright fringe.

The complete interference pattern (Figure 14.21) can be 
explained in this way.

sets of waves, and the pattern of fringes on the screen shows 
us the result of their interference (Figure 14.21).

How does this pattern arise? We will consider three 
points on the screen (Figure 14.22), and work out what we 
would expect to observe at each. 

Point A
This point is directly opposite the midpoint of the slits. 
Two rays of light arrive at A, one from slit 1 and the other 
from slit 2. Point A is equidistant from the two slits, and so 
the two rays of light have travelled the same distance. The 
path difference between the two rays of light is zero. If we 
assume that they were in phase (in step) with each other 
when they left the slits, then they will be in phase when 
they arrive at A. Hence they will interfere constructively, 
and we will observe a bright fringe at A.

Point B
This point is slightly to the side of point A, and is the 
midpoint of the first dark fringe. Again, two rays of light 
arrive at B, one from each slit. The light from slit 1 has 
to travel slightly further than the light from slit 2, and 
so the two rays are no longer in step. Since point B is at 
the midpoint of the dark fringe, the two rays must be in 
antiphase (phase difference of 180°). The path difference 
between the two rays of light must be half a wavelength 
and so the two rays interfere destructively.

Point C
This point is the midpoint of the next bright fringe, with 
AB = BC. Again, ray 1 has travelled further than ray 2; this 

A  bright

screen

B  dark

C  bright

double slit

D

E

1

a
D

2
x

6	 Consider points D and E on the screen, where  
BC = CD = DE. State and explain what you would 
expect to observe at D and E.

double slit interference
in this region

laser

Figure 14.20  Interference occurs where diffracted beams 
from the two slits overlap.

Figure 14.21  Interference fringes obtained using a laser and a 
double slit. 

Figure 14.22  Rays from the two slits travel different distances 
to reach the screen.

Determining wavelength λ
The double-slit experiment can be used to determine the 
wavelength λ of light. The following three quantities have 
to be measured:

■■ Slit separation a – This is the distance between the centres 
of the slits, which is the distance between slits 1 and 2 in 
Figure 14.22. 

■■ Fringe separation x – This is the distance between the 
centres of adjacent bright (or dark) fringes, which is the 
distance AC in Figure 14.22.

■■ Slit-to-screen distance D – This is the distance from the 
midpoint of the slits to the central fringe on the screen.

Once these three quantities have been measured, the 
wavelength λ of the light can be found using the relationship:

λ = ax
D

QUESTION
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1	 In a double-slit experiment using light from a helium–
neon laser, a student obtained the following results:
	 width of 10 fringes 10x = 1.5 cm
	 separation of slits a = 1.0 mm
	 slit-to-screen distance D = 2.40 m

	 Determine the wavelength of the light.

	 Step 1  Work out the fringe separation:

fringe separation x =  
1.5 × 10−2

10  = 1.5 × 10−3 m

	 Step 2  Substitute the values of a, x and D in the 
expression for wavelength λ:

λ =  
ax
D

	 Therefore:

λ =  
1.0 × 10−3 × 1.5 × 10−3

2.40  = 6.3 × 10−7 m

	 Hint: Don’t forget to convert all the distances into metres.

	 So the wavelength is 6.3 × 10−7 m or 630 nm.

7	 If the student in Worked example 1 moved the 
screen to a distance of 4.8 m from the slits, what 
would the fringe separation become?

BOX 14.4: Using Young’s slits to measure λ

The Young double-slit experiment can be used to 
determine the wavelength of light λ. Here we look at 
a number of practical features of the experiment and 
consider how the uncertainty in the value of λ can be 
reduced.

One way to carry out the double-slit experiment is 
shown in Figure 14.23. Here, a white light source is used, 
rather than a laser. A monochromatic filter allows only 
one wavelength of light to pass through. A single slit 
diffracts the light. This diffracted light arrives in phase 
at the double slit, which ensures that the two parts of 
the double slit behave as coherent sources of light. The 
double slit is placed a centimetre or two beyond the 

single slit, and the fringes are observed on a screen a 
metre or so away. The experiment has to be carried out 
in a darkened room, as the intensity of the light is low 
and the fringes are hard to see.

There are three important factors involved in the 
way the equipment is set up:

■■ All slits are a fraction of a millimetre in width. Since 
the wavelength of light is less than a micrometre 
(10−6 m), this gives a small amount of diffraction in the 
space beyond. If the slits were narrower, the intensity 
of the light would be too low for visible fringes to be 
achieved.

■■ The double slits are about a millimetre apart. If they 
were much further apart, the fringes would be too 
close together to be distinguishable.

■■ The screen is about a metre from the slits. The fringes 
produced are clearly separated without being too dim.

Measuring a, x and D
Measuring slit separation a: a travelling microscope 
is suitable for measuring a. It is difficult to judge the 
position of the centre of a slit. If the slits are the same 
width, the separation of their left-hand edges is the 
same as the separation of their centres. 

screendouble
slit

single
slit

shield around
bright light source

monochromatic
filter

Figure 14.23  To observe interference fringes with white 
light, you must use a single slit before the double slit.

QUESTION

WORKED EXAMPLE
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Diffraction gratings
A transmission diffraction grating is similar to the slide 
used in the double-slit experiment, but with many more slits 
than just two. It consists of a large number of equally spaced 
lines ruled on a glass or plastic slide. Each line is capable 
of diffracting the incident light. There may be as many as 
10 000 lines per centimetre. When light is shone through 
this grating, a pattern of interference fringes is seen.

A reflection diffraction grating consists of lines made 
on a reflecting surface so that light is both reflected and 
diffracted by the grating. The shiny surface of a compact 
disc (CD) or DVD is an everyday example of a reflection 
diffraction grating. Hold a CD in your hand so that you 
are looking at the reflection of light from a lamp. You 
will observe coloured bands (Figure 14.24). A CD has 

	 8	 Use λ =  
ax
D  to explain the following observations:

a	 With the slits closer together, the fringes are 
further apart.

b	 Interference fringes for blue light are closer 
together than for red light.

c	 In an experiment to measure the wavelength of 
light, it is desirable to have the screen as far from 
the slits as possible.

	 9	 Yellow sodium light of wavelength 589 nm is used in 
the Young double-slit experiment. The slit separation 
is 0.20 mm, and the screen is placed 1.20 m from 
the slits. Calculate the separation of neighbouring 
fringes formed on the screen.

	10	 In a double-slit experiment, filters were placed in 
front of a white light source to investigate the effect 
of changing the wavelength of the light. At first, a red 
filter was used instead (λ = 600 nm) and the fringe 
separation was found to be 2.40 mm. A blue filter was 
then used instead (λ = 450 nm). Determine the fringe 
separation with the blue filter.

BOX 14.4: Using Young’s slits to measure λ (continued)

Measuring fringe width x: it is best to measure 
across several fringes (say, ten) and then to calculate 
the average separation later. A metre rule or travelling 
microscope can be used.

Measuring the slit-to-screen distance D: this can be 
measured using a metre rule or a tape measure.

Reducing percentage errors
Why use a laser rather than white light? With a laser, 
the light beam is more concentrated, and the initial 
single slit is not necessary. The greater intensity of the 
beam means that the screen can be further from the 
slits, so that the fringes are further apart; this reduces 
the percentage error in measurements of x and D, and 
hence λ can be determined more accurately.

A laser has a second advantage. The light from a 
laser is monochromatic; that is, it consists of a single 
wavelength. This makes the fringes very clear, and they 
are present in large numbers across the screen. With 
white light, a range of wavelengths is present. Different 
wavelengths form fringes at different points across the 
screen, smearing them out so that they are not as clear.

Using white light with no filter results in a central 
fringe which is white (because all wavelengths are 
in phase here), but the other fringes show coloured 
effects, as the different wavelengths interfere 
constructively at different points. In addition, only a few 
fringes are visible in the interference pattern.

QUESTIONS

Figure 14.24  A CD acts 
as a reflection diffraction 
grating. White light is 
reflected and diffracted 
at its surface, producing 
a display of spectral 
colours.
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source, which is far away. All the rays with θ = 0 come 
together at the back of your eye, where an image is formed. 
It is here that interference occurs.

Th e fi rst-order maximum forms as follows. Rays of 
light emerge from all of the slits; to form a bright fringe, 
all the rays must be in phase. In the direction of the fi rst-
order maximum, ray 1 has travelled the smallest distance 
(Figure 14.26b). Ray 2 has travelled an extra distance 
equal to one whole wavelength and is therefore in phase 
with ray 1. Th e path diff erence between ray 1 and ray 2 is 
equal to one wavelength λ. Ray 3 has travelled two extra 
wavelengths and is in phase with rays 1 and 2. In fact, the 
rays from all of the slits are in step in this direction, and a 
bright fringe results.

thousands of equally spaced lines of microscopic pits on 
its surface; these carry the digital information. It is the 
diff raction from these lines that produces the coloured 
bands of light from the surface of the CD.

Observing diff raction with a 
transmission grating
In Figure 14.25, monochromatic light from a laser is 
incident normally on a transmission diff raction grating. 
In the space beyond, interference fringes are formed. 
Th ese can be observed on a screen, as with the double slit. 
However, it is usual to measure the angle θ at which they 
are formed, rather than measuring their separation. With 
double slits, the fringes are equally spaced and the angles 
are very small. With a diff raction grating, the angles are 
much greater and the fringes are not equally spaced.

Th e fringes are also referred to as maxima. Th e central 
fringe is called the zeroth-order maximum, the next 
fringe is the fi rst-order maximum, and so on. Th e pattern 
is symmetrical, so there are two fi rst-order maxima, two 
second-order maxima, and so on.

screen

di�raction
grating

n = +1

n = –1
n = –2

n = +2

n = 0

θ

Figure 14.25 The diff racted beams form a symmetrical 
pattern on either side of the undiff racted central beam.

Explaining the experiment
Th e principle is the same as for the double-slit experiment, 
but here we have light passing through many slits. As it 
passes through each slit, it diff racts into the space beyond. 
So now we have many overlapping beams of light, and 
these interfere with one another. It is diffi  cult to achieve 
constructive interference with many beams, because they 
all have to be in phase with one another.

Th ere is a bright fringe, the zeroth-order maximum, 
in the straight-through direction (θ = 0) because all of 
the rays here are travelling parallel to one another and in 
phase, so the interference is constructive (Figure 14.26a).

Imagine if you could look through the grating at the 
source of light. Your eye would be focused on the light 

ray 1
ray 2

a b

 ray 3grating
ray 4

ray 5
ray 6

grating

Figure 14.26 a Waves from each slit are in phase in the 
straight-through direction. b In the direction of the first-order 
maximum, the waves are in phase, but each one has travelled 
one wavelength further than the one below it.

 11 Explain how the second-order maximum arises. 
Use the term path diff erence in your explanation.

Determining wavelength λ with a grating
By measuring the angles at which the maxima occur, we 
can determine the wavelength of the incident light. Th e 
wavelength λ of the monochromatic light is related to the 
angle θ by:

d sin θ = nλ
where d is the distance between adjacent lines of the 
grating and n is known as the order of the maximum; n 
can only have integer values 0, 1, 2, 3, etc. Th e distance d 
is known as the grating element or grating spacing. Th is is 
illustrated in Worked example 2.

QUESTION
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Diffracting white light
A diffraction grating can be used to split white light up 
into its constituent colours (wavelengths). This splitting 
of light is known as dispersion, shown in Figure 14.27. A 
beam of white light is shone onto the grating. A zeroth-
order, white maximum is observed at θ = 0°, because all 
waves of each wavelength are in phase in this direction.

On either side, a series of spectra appear, with violet 
closest to the centre and red furthest away. We can see 
why different wavelengths have their maxima at different 
angles if we rearrange the equation d sin θ = nλ to give:

sin θ = nλ
d

	12	 a	� For the case described in Worked example 2, 
at what angle would you expect to find the 
second-order maximum (n = 2)?

b	 Repeat the calculation of θ for n = 3, 4, etc. 
What is the limit to this calculation? How 
many maxima will there be altogether in this 
interference pattern?

	13	 Consider the equation d sin θ  = nλ. How will the 
diffraction pattern change if:
a	 the wavelength of the light is increased?
b	 the diffraction grating is changed for one with 

more lines per centimetre (slits that are more 
closely spaced)?

	14	 A student is trying to make an accurate 
measurement of the wavelength of green light 
from a mercury lamp (λ = 546 nm). Using a double 
slit of separation 0.50 mm, he finds he can see ten 
clear fringes on a screen at a distance of 0.80 m 
from the slits. The student can measure their 
overall width to within ±1 mm. He then tries an 
alternative experiment using a diffraction grating 
that has 3000 lines per centimetre. The angle 
between the two second-order maxima can be 
measured to within ±0.1°.
a	 What will be the width of the ten fringes that 

he can measure in the first experiment?
b	 What will be the angle of the second-order 

maximum in the second experiment?
c	 Suggest which experiment you think will give 

the more accurate measurement of λ.

2	 Monochromatic light is incident normally on a 
diffraction grating having 3000 lines per centimetre. 
The angular separation of the zeroth- and first-order 
maxima is found to be 10°. Calculate the wavelength 
of the incident light.

	 Step 1  Calculate the slit separation (grating 
spacing) d. Since there are 3000 slits per centimetre, 
their separation must be:

d  = 
1 cm
3000 = 3.33 × 10−4 cm = 3.33 × 10−6 m

	 Step 2  Rearrange the equation d sin θ = nλ and 
substitute values:
θ  = 10.0°, n = 1

λ =  
d sin θ

n   =  
3.36 × 10−6 × sin 10°

1

λ = 5.8 × 10−7 m = 580 nm

BOX 14.5: Diffraction gratings versus double slits

It is worth comparing the use of a diffraction grating to 
determine wavelength with the Young two-slit experiment.

■■ With a diffraction grating, the maxima are very sharp.
■■ With a diffraction grating, the maxima are also very 

bright. This is because rather than contributions from 
only two slits, there are contributions from a thousand 
or more slits.

■■ With two slits, there may be a large inaccuracy in the 
measurement of the slit separation a. The fringes 
are close together, so their separation may also be 
measured imprecisely.

■■ With a diffraction grating, there are many slits per 
centimetre, so d can be measured precisely. Because 
the maxima are widely separated, the angle θ can 
also be measured to a high degree of precision. So an 
experiment with a diffraction grating can be expected 
to give measurements of wavelength to a much 
higher degree of precision than a simple double-slit 
arrangement.

QUESTIONWORKED EXAMPLE

QUESTIONS
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From this it follows that the greater the wavelength λ, the 
greater the value of sin θ and hence the greater the angle θ.  
Red light is at the long wavelength end of the visible 
spectrum, and so it appears at the greatest angle. 

screen

white light

di�raction
grating

n = 0

Figure 14.27  A diffraction grating is a simple way of 
separating white light into its constituent wavelengths.

	15	 White light is incident normally on a diffraction 
grating with a slit separation d of 2.00 × 10−6 m.
a	 Calculate the angle between the red and 

violet ends of the first-order spectrum. The 
visible spectrum has wavelengths between 
400 nm and 700 nm.

b	 Explain why the second- and third-order 
spectra overlap.

Summary
■■ The principle of superposition states that 

when two or more waves meet at a point, the 
resultant displacement is the algebraic sum of the 
displacements of the individual waves.

■■ When waves pass through a slit, they may be 
diffracted so that they spread out into the space 
beyond. The diffraction effect is greatest when the 
wavelength of the waves is similar to the width of  
the gap.

■■ Interference is the superposition of waves from two 
coherent sources.

■■ Two sources are coherent when they emit waves that 
have a constant phase difference. (This can only 
happen if the waves have the same frequency or 
wavelength.)

■■ For constructive interference the path difference is a 
whole number of wavelengths:

path difference = 0, λ, 2λ, 3λ, etc.  or 

path difference = nλ

■■ For destructive interference the path difference is an 
odd number of half wavelengths:

path difference =  12  λ, 1 12  λ, 2 12  λ, etc.  or 

path difference = (n  +  12 ) λ

■■ When light passes through a double slit, it is diffracted 
and an interference pattern of equally spaced light 
and dark fringes is observed. This can be used to 
determine the wavelength of light using the equation:

λ = 
ax
D

This equation can be used for all waves, including 
sound and microwaves.

■■ A diffraction grating diffracts light at its many slits 
or lines. The diffracted light interferes in the space 
beyond the grating. The equation for a diffraction 
grating is:

d sin θ  = nλ

QUESTION
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End-of-chapter questions
1 a  Copy the waves shown in Figure 14.28 onto a sheet of graph paper and use the principle of 

superposition to show the resultant wave.  [2]
b How does the wavelength of the resulting wave compare with that of the component waves? [1]

Figure 14.28 For End-of-chapter Question 1.

2 Figure 14.29 shows a ripple tank being used to demonstrate diff raction of water waves.

Figure 14.29 For End-of-chapter Question 2.

 Suggest how the diff racted wave shape will change if:
a the wavelength of the incident wave is increased [1]
b the wavelength of the incident wave is decreased. [1]

3 Explain why, in remote mountainous regions, such as the Hindu Kush, radio signals from 
terrestrial transmitters can be received, but television reception can only be received from 
satellite transmissions. [2]

4 Damita and Jamal are organising a disco. Damita suggests that feeding the sound from the music 
centre to a second loudspeaker will increase the loudness of the music. Jamal says it won’t work as 
there will be places where the sound will be very loud, due to constructive interference, and places 
where it will be much quieter, due to destructive interference. State who is correct and explain your 
reasoning. [2]

5 The constant frequency signal from a signal generator is fed to two loudspeakers placed 1.5 m apart. 
A girl, who is 8 metres away from the speakers, walks across in a line parallel to the line between the 
speakers. She finds that there is a distance of 1.2 m between successive spots where the sound is very 
quiet. Calculate the wavelength of the sound. [2]

6 Two signal generators feed signals with slightly diff erent frequencies to two separate loudspeakers. 
Suggest why a sound of continuously rising and falling loudness is heard. [3]
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7 A hydrogen discharge lamp produces a spectral line of wavelength 656 nm. Calculate the angles 
at which a diff raction grating, with 5000 lines cm−1, would produce the first and second maxima for 
this light. [5]

8 a Explain what is meant by the term superposition. [2]
b In a Young double-slit experiment using yellow light of wavelength 590 nm from a sodium 

discharge tube, a student sets up a screen 1.8 m from the double slit. He measures the distance 
between 12 fringes as 16.8 mm. Calculate the separation of the slits. [3]

c State the eff ect of:
i using slits of narrower width (but the same separation) [2]
ii using slits with a smaller separation but of the same width [2]

9 a  A laser light is described as producing light which is both highly coherent and highly monochromatic.
 Explain what is meant by the terms coherent and monochromatic. [2]
b Figure 14.30 shows the setup used to analyse the spectrum of a sodium discharge lamp using a 

diff raction grating with 5000 lines cm−1. Figure 14.31 shows the spectral lines observed in the 
developed photographic film.

Figure 14.30 Experimental setup for End-of-chapter Question 9.  

Figure 14.31 Spectral lines produced. 

i Explain why two spectra are observed. [2]
ii Study the two spectra and describe two diff erences between them. [2]
iii The green maximum near end A is at an angle θ of 19.5°. Calculate the wavelength of the green light. [3]
iv Calculate the angle produced by the second green line. [2]
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10 a  Explain what is meant by the term destructive interference. [2]
b A student sets up an experiment to investigate the interference pattern formed by microwaves of 

wavelength 1.5 cm. The apparatus is set up as in Figure 14.17 on page 199. The distance between the 
centres of the two slits is 12.5 cm. The detector is centrally placed 1.2 m from the metal plates where 
it detects a maximum. The student moves the detector 450 cm across the bench parallel to the plates. 
Calculate how many maxima the detector will be moved through. [3]

c Calculate the frequency of these microwaves. [2]

11 a  Explain what is meant by the diff raction of a wave. [2]
b Figure 14.32 shows waves, in a ripple tank, spreading out from two slits.

Figure 14.32 For End-of-chapter Question 11. 

 On a copy of Figure 14.32, draw:
i a line showing points along the central maximum – label this line 0 [1]
ii a line showing the points along first maximum – label this line 1 [1]
iii a line showing points along one of the first minima – label this line min. [1]

c The centres of the slits are 12 cm apart. At a distance of 60 cm from the barrier, the first maxima are 
18 cm either side of the central maximum. Calculate the wavelength of the waves. You may assume 
that the formula developed for light waves is applicable in this example.  [3]
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Chapter 15:
Stationary waves

Learning outcomes
You should be able to:

■■ demonstrate and explain the formation of stationary 
waves

■■ identify nodes and antinodes on a stationary wave
■■ determine the wavelength of sound waves using 

stationary waves

210



The bridge that broke
Figure 15.1a shows the Normandy Bridge under 
construction in France. When designing bridges, 
engineers must take into account the possibility of the 
wind causing a build-up of stationary waves, which 
may lead the bridge to oscillate violently. Famously, 

this happened in October 1940 to the Tacoma 
Narrows Bridge in Washington State, USA. High 
winds caused the bridge to vibrate with increasing 
amplitude until it fell apart (Figure 15.1b).

Figure 15.1  a A suspension bridge under construction. b One that failed – the Tacoma Narrows Bridge.

a b
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stable pattern like one of those shown in Figure 15.3. Alter 
the frequency in order to achieve one of the other patterns.

You should notice that you have to move the end of 
the spring with just the right frequency to get one of these 
interesting patterns. The pattern disappears when the 
frequency of the shaking of the free end of the spring is 
slightly increased or decreased.

From moving to stationary
The waves we have considered so far in Chapters 13 and 
14 have been progressive waves; they start from a source 
and travel outwards, transferring energy from one place to 
another. A second important class of waves is stationary 
waves (standing waves). These can be observed as follows. 
Use a long spring or a slinky spring. A long rope or piece 
of rubber tubing will also do. Lay it on the floor and fix 
one end firmly. Move the other end from side to side so 
that transverse waves travel along the length of the spring 
and reflect off the fixed end (Figure 15.2). If you adjust the 
frequency of the shaking, you should be able to achieve a 
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Figure 15.2  A slinky spring is used to generate a stationary 
wave pattern.

Figure 15.3  Different stationary wave patterns are possible, 
depending on the frequency of vibration.
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Nodes and antinodes
What you have observed is a stationary wave on the long 
spring. There are points along the spring that remain 
(almost) motionless while points on either side are 
oscillating with the greatest amplitude. The points that 
do not move are called the nodes and the points where 
the spring oscillates with maximum amplitude are called 
the antinodes. At the same time, it is clear that the wave 
profile is not travelling along the length of the spring. 
Hence we call it a stationary wave or a standing wave.

We normally represent a stationary wave by drawing 
the shape of the spring in its two extreme positions  
(Figure 15.4). The spring appears as a series of loops, 
separated by nodes. In this diagram, point A is moving 
downwards. At the same time, point B in the next loop 
is moving upwards. The phase difference between points 
A and B is 180°. Hence the sections of spring in adjacent 
loops are always moving in antiphase; they are half a cycle 
out of phase with one another.
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Figure 15.4  The fixed ends of a long spring must be nodes in 
the stationary wave pattern.

Formation of stationary waves
Imagine a string stretched between two fixed points, for 
example a guitar string. Pulling the middle of the string 
and then releasing it produces a stationary wave. There 
is a node at each of the fixed ends and an antinode in the 
middle. Releasing the string produces two progressive 
waves travelling in opposite directions. These are reflected 
at the fixed ends. The reflected waves combine to produce 
the stationary wave. 

Figure 15.3 shows how a stationary wave can be set up 
using a long spring. A stationary wave is formed whenever 
two progressive waves of the same amplitude and 
wavelength, travelling in opposite directions, superpose. 
Figure 15.5 uses a displacement–distance graph (s–x) to 
illustrate the formation of a stationary wave along a long 
spring (or a stretched length of string): 

■■ At time t  =  0, the progressive waves travelling to the left 
and right are in phase. The waves combine constructively, 
giving an amplitude twice that of each wave. 

■■ After a time equal to one-quarter of a period (t  =  T4), each 
wave has travelled a distance of one quarter of a 
wavelength to the left or right. Consequently, the two 
waves are in antiphase (phase difference = 180°). The waves 
combine destructively, giving zero displacement.

■■ After a time equal to one-half of a period (t  =  T2 
), the two 

waves are back in phase again. They once again combine 
constructively. 

■■ After a time equal to three-quarters of a period (t  =  3T
4  

), the 
waves are in antiphase again. They combine destructively, 
with the resultant wave showing zero displacement. 

■■ After a time equal to one whole period (t  = T), the waves 
combine constructively. The profile of the spring is as it was 
at t  =  0.

Figure 15.5  The blue-coloured wave is moving to the left 
and the red-coloured wave to the right. The principle of 
superposition of waves is used to determine the resultant 
displacement. The profile of the long spring is shown in green.
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This cycle repeats itself, with the long spring showing 
nodes and antinodes along its length. The separation 
between adjacent nodes or antinodes tells us about the 
progressive waves that produce the stationary wave.

A closer inspection of the graphs in Figure 15.5 shows 
that the separation between adjacent nodes or antinodes 
is related to the wavelength λ of the progressive wave. The 
important conclusions are:

separation between two adjacent nodes 
	 (or between two adjacent antinodes) = λ

2

separation between adjacent node and antinode = λ
4

The wavelength λ of any progressive wave can be 
determined from the separation between neighbouring 
nodes or antinodes of the resulting standing wave pattern. 
(This separation is = λ

2
.) This can then be used to 

determine either the speed v of the progressive wave or its 
frequency f  by using the wave equation:

v = f λ

1	 A stationary (standing) wave is set up on a 
vibrating spring. Adjacent nodes are separated  
by 25 cm. Determine:
a	 the wavelength of the stationary wave
b	 the distance from a node to an adjacent 

antinode.

It is worth noting that a stationary wave does not travel 
and therefore has no speed. It does not transfer energy 
between two points like a progressive wave. Table 15.1 
shows some of the key features of a progressive wave and 
its stationary wave.

Progressive wave Stationary wave
wavelength λ λ 

frequency f f

speed v zero

Table 15.1  A summary of progressive and stationary waves.

BOX 15.1: Observing stationary waves 

Here we look at experimental arrangements for 
observing stationary waves, for mechanical waves on 
strings, microwaves, and sound waves in air columns.

Stretched strings – Melde’s experiment
A string is attached at one end to a vibration generator, 
driven by a signal generator (Figure 15.6). The other end 
hangs over a pulley and weights maintain the tension in the 
string. When the signal generator is switched on, the string 
vibrates with small amplitude. Larger amplitude stationary 
waves can be produced by adjusting the frequency.

The pulley end of the string cannot vibrate; this is 
a node. Similarly, the end attached to the vibrator can 
only move a small amount, and this is also a node. As 
the frequency is increased, it is possible to observe 
one loop (one antinode), two loops, three loops and 
more. Figure 15.7 shows a vibrating string where the 
frequency of the vibrator has been set to produce two 
loops.

A flashing stroboscope is useful to reveal the motion 
of the string at these frequencies, which look blurred to 
the eye. The frequency of vibration is set so that there 
are two loops along the string; the frequency of the 
stroboscope is set so that it almost matches that of the 
vibrations. Now we can see the string moving ‘in slow 
motion’, and it is easy to see the opposite movements of 
the two adjacent loops.

pulley
vibration
generator

weights

signal
generator

Figure 15.6  Melde’s experiment for investigating 
stationary waves on a string.

Figure 15.7  When a stationary wave is established, one 
half of the string moves upwards as the other half moves 
downwards. In this photograph, the string is moving too 
fast to observe the effect.

QUESTION
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BOX 15.1: Observing stationary waves (continued)

This experiment is known as Melde’s experiment, 
and it can be extended to investigate the effect of 
changing the length of the string, the tension in the 
string and the thickness of the string.

Microwaves
Start by directing the microwave transmitter at a metal 
plate, which reflects the microwaves back towards the 
source (Figure 15.8). Move the probe receiver around 
in the space between the transmitter and the reflector 
and you will observe positions of high and low intensity. 
This is because a stationary wave is set up between the 
transmitter and the sheet; the positions of high and low 
intensity are the antinodes and nodes respectively.

If the probe is moved along the direct line from 
the transmitter to the plate, the wavelength of the 
microwaves can be determined from the distance 
between the nodes. Knowing that microwaves travel 
at the speed of light c (3.0 × 108 m s−1), we can then 
determine their frequency f using the wave equation:

c  =  f λ

An air column closed at one end
A glass tube (open at both ends) is clamped so that 
one end dips into a cylinder of water. By adjusting its 
height in the clamp, you can change the length of the 
column of air in the tube (Figure 15.9). When you hold 
a vibrating tuning fork above the open end, the air 
column may be forced to vibrate, and the note of the 
tuning fork sounds much louder. This is an example 

of a phenomenon called resonance. The experiment 
described here is known as the resonance tube.

For resonance to occur, the length of the air column 
must be just right. The air at the bottom of the tube is 
unable to vibrate, so this point must be a node. The air 
at the open end of the tube can vibrate most freely, so 
this is an antinode. Hence the length of the air column 
must be one-quarter of a wavelength (Figure 15.10a). 
(Alternatively, the length of the air column could be  
set to equal three-quarters of a wavelength – see  
Figure 15.10b.)

Figure 15.8  A stationary wave is created when 
microwaves are reflected from the metal sheet.

reflecting
sheet

probe

meter

microwave 
transmitter

Figure 15.9  A stationary wave is created in the air in the 
tube when the length of the air column is adjusted to the 
correct length.

tuning
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water

4
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node

antinode

node
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4

4
λ

λ

Figure 15.10  Stationary 
wave patterns for air 
in a tube with one end 
closed. 
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2	 Look at the stationary (standing) wave on the string 
in Figure 15.7 on page 213. The length of the vibrating 
section of the string is 60 cm.
a	 Determine the wavelength of the stationary 

wave and the separation of the two neighbouring 
antinodes. 

	 The frequency of vibration is increased until a 
stationary wave with three antinodes appears on the 
string.
b	 Sketch a stationary wave pattern to illustrate the 

appearance of the string.
c	 What is the wavelength of this stationary wave?

3	 a	� Draw a stationary wave pattern for the microwave 
experiment in Box 15.1. Clearly show whether 
there is a node or an antinode at the reflecting 
sheet.

b	 The separation of two adjacent points of high 
intensity is found to be 14 mm. Calculate the 
wavelength and frequency of the microwaves.

4	 Explain how two sets of identical but oppositely 
travelling waves are established in the microwave and 
air column experiments described in Box 15.1.

BOX 15.1: Observing stationary waves (continued)

Take care! The representation of standing sound 
waves can be misleading. Remember that a sound wave 
is a longitudinal wave, but the diagram we draw is more 
like a transverse wave. Figure 15.11a shows how we 
normally represent a standing sound wave, while Figure 
15.11b shows the direction of vibration of the particles 
along the wave.

Open-ended air columns
The air in a tube which is open at both ends will vibrate 
in a similar way to that in a closed column. Take an 
open-ended tube and blow gently across the top. You 

should hear a note whose pitch depends on the length 
of the tube. Now cover the bottom of the tube with the 
palm of your hand and repeat the process. The pitch of 
the note now produced will be about an octave higher 
than the previous note, which means that the frequency 
is approximately twice the original frequency.

It is rather surprising that a standing wave can be set 
up in an open column of air in this way. What is going 
on? Figure 15.12 compares the situation for open and 
closed tubes. An open-ended tube has two open ends, 
so there must be an antinode at each end. There is a 
node at the midpoint.

For a tube of length l you can see that in the closed 
tube the standing wave formed is one-quarter of a 
wavelength, so the wavelength is 4l, whereas in the 
open tube it is half a wavelength, giving a wavelength 
of 2l. Closing one end of the tube thus halves the 
wavelength of the note and so the frequency doubles.

a b

Figure 15.11  a The standard 
representation of a standing 
sound wave may suggest that it 
is a transverse wave. b A sound 
wave is really a longitudinal wave, 
so that the particles vibrate as 
shown.

Figure 15.12  Standing wave patterns for sound waves in  
a a closed tube, and b an open tube.

a b

l

QUESTIONS
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Stationary waves and musical 
instruments
The production of different notes by musical instruments 
often depends on the creation of stationary waves (Figure 
15.13). For a stringed instrument such as a guitar, the two 
ends of a string are fixed, so nodes must be established at 
these points. When the string is plucked half-way along 
its length, it vibrates with an antinode at its midpoint. 
This is known as the fundamental mode of vibration of 
the string. The fundamental frequency is the minimum 
frequency of a standing wave for a given system or 
arrangement. 
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wavelength frequency

λ = 2l

second
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harmonic

λ = l
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Figure 15.13  When a 
guitar string is plucked, 
the vibrations of the 
strings continue for some 
time afterwards. Here you 
can clearly see a node 
close to the end of each 
string.

Similarly, the air column inside a wind instrument is 
caused to vibrate by blowing, and the note that is heard 
depends on a stationary wave being established. By 
changing the length of the air column, as in a trombone, 
the note can be changed. Alternatively, holes can be 
uncovered so that the air can vibrate more freely, giving a 
different pattern of nodes and antinodes.

In practice, the sounds that are produced are made 
up of several different stationary waves having different 
patterns of nodes and antinodes. For example, a guitar 
string may vibrate with two antinodes along its length. 
This gives a note having twice the frequency of the 
fundamental, and is described as a harmonic of the 
fundamental. The musician’s skill is in stimulating the 
string or air column to produce a desired mixture of 
frequencies.

The frequency of a harmonic is always a multiple of the 
fundamental frequency. The diagrams show some of the 
modes of vibration of a fixed length of string (Figure 15.14) 
and an air column in a tube of a given length that is closed 
at one end (Figure 15.15).

Determining the wavelength 
and speed of sound
Since we know that adjacent nodes (or antinodes) of a 
stationary wave are separated by half a wavelength, we can 
use this fact to determine the wavelength λ of a progressive 
wave. If we also know the frequency f of the waves, we can 
find their speed v using the wave equation v = f λ.

Figure 15.14  Some of the possible stationary waves for a 
fixed string of length l. The frequency of the harmonics is a 
multiple of the fundamental frequency f0.

Figure 15.15  Some of the possible stationary waves for an air 
column, closed at one end. The frequency of each harmonic is 
an odd multiple of the fundamental frequency f0.
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Figure 15.16  Kundt’s dust tube can be used to determine the 
speed of sound.
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One approach uses Kundt’s dust tube (Figure 15.16). A 
loudspeaker sends sound waves along the inside of a tube. 
The sound is reflected at the closed end. When a stationary 
wave is established, the dust (fine powder) at the antinodes 
vibrates violently. It tends to accumulate at the nodes, 
where the movement of the air is zero. Hence the positions 
of the nodes and antinodes can be clearly seen.

BOX 15.2: Using stationary sound waves to  
determine λ and v

This method is shown in Figure 15.17; it is the same 
arrangement as used for microwaves (Box 15.1 
above). The loudspeaker produces sound waves, 
and these are reflected from the vertical board. 
The microphone detects the stationary sound wave 
in the space between the speaker and the board, 
and its output is displayed on the oscilloscope. 
It is simplest to turn off the time-base of the 
oscilloscope, so that the spot no longer moves 
across the screen. The spot moves up and down the 
screen, and the height of the vertical trace gives a 
measure of the intensity of the sound.

By moving the microphone along the line 
between the speaker and the board, it is easy 
to detect nodes and antinodes. For maximum 
accuracy, we do not measure the separation of 
adjacent nodes; it is better to measure the distance 
across several nodes.

oscilloscope

loudspeaker

microphone
to signal 
generator
(2 kHz)

reflecting
board

Figure 15.17  A stationary sound wave is established 
between the loudspeaker and the board.

Figure 15.18  The antinode 
at the open end of a 
resonance tube is formed 
at a distance c beyond the 
open end of the tube.

5	 a	� For the arrangement shown in Figure 15.17, 
suggest why it is easier to determine accurately 
the position of a node rather than an antinode. 

b	 Explain why it is better to measure the distance 
across several nodes.

6	 For sound waves of frequency 2500 Hz, it is found 
that two nodes are separated by 20 cm, with three 
antinodes between them.
a	 Determine the wavelength of these sound 

waves.
b	 Use the wave equation v  =  f λ to determine the 

speed of sound in air.

c

3l
4

l
4

BOX 15.3: Reducing and eliminating errors

The resonance tube experiment (Figure 15.9 on 
page 214) can be used to determine the wavelength 
and speed of sound with a high degree of accuracy. 
However, to do this, it is necessary to take account 
of a systematic error in the experiment. 

Look at the representation of the stationary 
waves in the tubes shown in Figure 15.10 on  
page 214. In each case, the antinode at the top of the 
tube is shown extending slightly beyond the open 
end of the tube. This is because experiment shows 
that the air slightly beyond the end of the tube 
vibrates as part of the stationary wave. This is shown 
more clearly in Figure 15.18.

QUESTIONS
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BOX 15.3: Reducing and eliminating errors (continued)

So, although we do not know the value of c, we can 
make two measurements (l1 and l2) and obtain an 
accurate value of λ. (You may be able to see from Figure 
15.18 that the difference in lengths of the two tubes is 
indeed equal to half a wavelength.)

The end-correction c is an example of a systematic 
error. When we measure the length l of the tube, we 
are measuring a length which is consistently less than 
the quantity we really need to know (l + c). However, 
by understanding how the systematic error affects 
the results, we have been able to remove it from our 
measurements.

You will find more detailed discussion of systematic 
errors in Chapter P1: Practical skills at AS level.

The antinode is at a distance c beyond the end 
of the tube, where c is called the end-correction. 
Unfortunately, we do not know the value of c. It cannot 
be measured directly. However, we can write:

for the shorter tube, 
λ
4

  =  l1 + c

for the longer tube, 
3 λ
4

  =  l2 + c

Subtracting the first equation from the second equation 
gives:

3 λ
4

  −  
λ
4

 = (l2 + c) − (l1 + c)

Simplifying gives:
λ
2

  =  l2 −  l1

Hence:
λ  =  2(l2 −  l1)

Summary
■■ Stationary waves are formed when two identical waves 

travelling in opposite directions meet and superpose.  
This usually happens when one wave is a reflection of 
the other.

■■ A stationary wave has a characteristic pattern of nodes 
and antinodes.

■■ A node is a point where the amplitude is always zero.

■■ An antinode is a point of maximum amplitude.

■■ Adjacent nodes (or adjacent antinodes) are separated 
by a distance equal to half a wavelength.

■■ We can use the wave equation v  = f λ to determine the 
speed v or the frequency f of a progressive wave.  
The wavelength λ is found using the nodes or 
antinodes of the stationary wave pattern.

7	 In a resonance tube experiment, resonance is 
obtained for sound waves of frequency 630 Hz 
when the length of the air column is 12.6 cm and 
again when it is 38.8 cm. Determine:
a	 the wavelength of the sound waves causing 

resonance
b	 the end-correction for this tube
c	 the speed of sound in air.

QUESTION
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End-of-chapter questions
1 Figure 15.19 shows a stationary wave on a string.

Figure 15.19 For End-of-chapter Question 1.

a On a copy of Figure 15.19, label one node (N) and one antinode (A). [1]
b Mark on your diagram the wavelength of the standing wave and label it λ. [1]
c The frequency of the vibrator is doubled. Describe the changes in the standing wave pattern. [1]

2 A tuning fork which produces a note of 256 Hz is placed above a tube which is nearly filled with water. 
The water level is lowered until resonance is first heard.
a Explain what is meant by the term resonance. [1]
b The length of the column of air above the water when resonance is first heard is 31.2 cm.
 Calculate the speed of the sound wave. [2]

3 a  State two similarities and two diff erences between progressive waves and stationary waves. [4]
b Figure 15.20 shows an experiment to measure the speed of a sound in a string. The frequency of the 

vibrator is adjusted until the standing wave shown in Figure 15.20 is formed.

Figure 15.20 For End-of-chapter Question 3.

i On a copy of the diagram, mark a node (label it N) and an antinode (label it A). [2]
ii The frequency of the vibrator is 120 Hz. Calculate the speed at which a progressive wave would 

travel along the string. [3]
c The experiment is now repeated with the load on the string halved. In order to get a similar standing 

wave the frequency has to be decreased to 30 Hz. Explain, in terms of the speed of the wave in the 
string, why the frequency must be adjusted. [2]

vibrator

vibrator pulley

slotted masses

75 cm
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4 Figure 15.21 shows a standing wave, of frequency 400 Hz, produced by a loudspeaker in a closed tube.

Figure 15.21 For End-of-chapter Question 4.

a Describe the movement of the air particles at:
i A [2]
ii B. [1]

b The piston is slowly moved outwards. The next resonant peak is heard when the length of 
the column of air is 99.4 cm.

 Calculate:
i the speed of the sound [4]
ii the end correction which must be applied when using this tube. [1]

5 a Explain what is meant by:
i a coherent source of waves. [2]
ii phase diff erence. [2]

b A student, experimenting with microwaves, sets up the arrangement shown in Figure 15.22. 

Figure 15.22 For End-of-chapter Question 5.

 With the metal plate at position A there is a very small signal. He slowly moves the plate back, 
leaving the receiver in the same position. As he does so he finds that the intensity initially 
rises until it becomes a maximum, then falls back to a minimum. This cycle repeats a total 
of five times until the plate reaches position B, where once again there is a minimum.
i Explain why a series of maxima and minima are heard. [2]
ii Calculate the frequency of the microwaves. [5]

c Explain why there was a minimum when the plate was at position A, next to the detector. [2]

A B
piston

59.0 cm loudspeaker

to signal generator

A B

42.0 cm

microwave
transmitter

microwave
receiver

metal
plate
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6 Figure 15.23 shows an experiment to measure the speed of sound in air.

Figure 15.23 For End-of-chapter Question 6.

 A small amount of dust is scattered along the tube. The loudspeaker is switched on. When the frequency 
is set at 512 Hz the dust collects in small piles as shown in Figure 15.23.
a Determine the wavelength of the sound wave and calculate the speed of sound in the air in the tube. [3]
b On a copy of the diagram, show the movement of the air particles at positions P, Q, R, S and T. [3]
c Mark two points on your diagram where the movements of the air particles are 180° out of phase with 

each other – label them A and B. [1]
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Chapter 16:
Radioactivity

Learning outcomes
You should be able to:

■■ describe the nuclear model of the atom and the evidence 
for it

■■ represent nuclides using their nucleon and proton 
numbers

■■ use a simple quark model to describe protons and 
neutrons

■■ appreciate that electrons and neutrinos are leptons
■■ show an understanding of the nature and properties of 

-, - and -radiations
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Radioactivity at work
Radioactive substances have many uses, for example 
in engineering and medicine. They must be handled 
with great care to ensure that no-one becomes 
contaminated and so exposed to the radiation which 
comes from these substances (Figure 16.1). In this 
chapter we will look at the nature of radioactive 
substances and the different types of radiation they 
produce.

These α-particles were known to be smaller than 
atoms, and had relatively high kinetic energies. Hence 
they were useful in experiments designed to discover the 
composition of atoms.

Looking inside the atom
The idea that matter is composed of very small particles 
called atoms was first suggested by the Greeks some 2000 
years ago. However, it was not until the middle of the 19th 
century that any ideas about the inside of the atom were 
proposed.

It was the English scientist J.J. Thomson who suggested 
that the atom is a neutral particle made of a positive charge 
with lumps of negative charge (electrons) in it. He could 
not determine the charge and the mass of the negative 
particles separately, but it was clear that a new particle, 
probably much smaller than the hydrogen atom, had been 
discovered. Since atoms are neutral and physicists had 
discovered a negatively charged part of an atom, it meant 
that there were both positive and negative charges in an 
atom. We now call this the plum pudding model of the 
atom (positive pudding with negative plums!).

Other experiments show that the electron has a mass 
of approximately 9.11 × 10−31 kg (me) and a charge of 
−1.60 × 10−19 C (−e). Today we use the idea of the electron 
to explain all sorts of phenomena, including electrostatics, 
current electricity and electronics. 

Alpha-particle scattering and 
the nucleus
Early in the 20th century, many physicists were 
investigating the recently discovered phenomenon of 
radioactivity, the process whereby unstable nuclei emit 
radiation. One kind of radiation they found consisted of 
what they called α-particles (alpha-particles).

Figure 16.1  A worker at a nuclear power station is checked for 
any radioactive material on his body.

Figure 16.2  Ernest Rutherford (on the right) in the 
Cavendish Laboratory, Cambridge, England. He had a loud 
voice that could disturb sensitive apparatus and so the 
notice was a joke aimed at him.
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■■ The α-particles were detected when they struck a solid 
‘scintillating’ material. Each α-particle gave a tiny flash of 
light and these were counted by the experimenters (Geiger 
and Marsden).

■■ The detector could be moved round to detect α-particles 
scattered through different angles.

Geiger and Marsden had the difficult task of observing and 
counting the tiny flashes of light produced by individual 
α-particles striking the scintillation screen. They had to 
spend several minutes in the darkened laboratory to allow 
the pupils of their eyes to become dilated so that they 
could see the faint flashes. Each experimenter could only 
stare into the detector for about a minute before the strain 
was too much and they had to change places.

Explaining α-scattering
How can we explain the back-scattering of α-particles by 
the gold atoms?

If the atom was as Thomson pictured it, with negatively 
charged electrons scattered through a ‘pudding’ of positive 
charge, an individual α-particle would pass through it like 
a bullet, hardly being deflected at all. This is because the 
α-particles are more massive than electrons – they might 
push an electron out of the atom, but their own path would 
be scarcely affected.

On the other hand, if the mass and positive charge 
of the atom were concentrated at one point in the atom, 
as Rutherford suggested, an α-particle striking this part 
would be striking something more massive than itself and 
with a greater charge. A head-on collision would send the 
α-particle backwards.

The paths of an α-particle near a nucleus are shown in 
Figure 16.5. Rutherford reasoned that the large deflection 
of the α-particle must be due to a very small charged 
nucleus. From his experiments he calculated that the 
diameter of the gold nucleus was about 10−14 m. It has since 
been shown that the very large deflection of the α-particle 
is due to the electrostatic repulsion between the positive 
charge of the α-particle and the positive charge of the 
nucleus of the atom. The closer the path of the α-particle 
gets to the nucleus, the greater will be this repulsion. An 
α-particle making a ‘head-on’ collision with a nucleus 
is back-scattered through 180°. The α-particle and 
nucleus both experience an equal but opposite repulsive 
electrostatic force F. This force has a much greater effect on 
the motion of the α-particle than on the massive nucleus 
of gold. 

In 1906, while experimenting with the passage of 
α-particles through a thin mica sheet, Ernest Rutherford 
(Figure 16.2) noticed that most of the α-particles passed 
straight through. This suggested to him that there might be 
a large amount of empty space in the atom, and by 1909 he 
had developed what we now call the nuclear model of the 
atom.

In 1911 Rutherford carried out a further series of 
experiments with Hans Geiger and Ernest Marsden at the 
University of Manchester using gold foil in place of the 
mica. They directed parallel beams of α-particles at a piece 
of gold foil only 10−6 m thick. Most of the α-particles went 
straight through. Some were deflected slightly, but about 
1 in 20 000 were deflected through an angle of more than 
90°, so that they appeared to bounce back off the foil. This 
helped to confirm Rutherford in his thinking about the 
atom – that it was mostly empty space, with most of the 
mass and all of the positive charge concentrated in a tiny 
region at the centre. This central nucleus only affected the 
α-particles when they came close to it.

Later, Rutherford wrote: ‘It was quite the most 
incredible event that has happened to me in my life. It was 
almost as incredible as if you fired a 15-inch shell at a piece 
of tissue paper and it came back and hit you.’ In fact, he was 
not quite as surprised as this suggests, because the results 
confirmed ideas he had used in designing the experiment.

source of
α-particles

scintillation
screen

microscope

to vacuum pump

side view

gold foil

Figure 16.3  The apparatus used for the α-scattering 
experiment. The microscope can be moved round to detect 
scattered radiation at different angles. 

Figure 16.3 shows the apparatus used in the 
α-scattering experiment. Notice the following points:

■■ The α-particle source was encased in metal with a small 
aperture, allowing a fine beam of α-particles to emerge.

■■ Air in the apparatus was pumped out to leave a vacuum; 
α-radiation is absorbed by a few centimetres of air.

■■ One reason for choosing gold was that it can be made into 
a very thin sheet or foil. Rutherford’s foil was only a few 
hundreds of atoms thick.
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From the α-particle scattering experiment, Rutherford 
deduced the following.

■■ An α-particle is deviated due to the repulsive force 
between the α-particle and the positive charge in the 
atom.

■■ Most α-particles have little or no deviation – so most 
of an atom is empty space.

■■ A very few α-particles are deviated more than 90° – 
so most of the mass of an atom is concentrated in 
a small space (the nucleus) and most of the atom is 
empty space.

A very simple analogy (or model) of the experiment 
is shown in Figure 16.4. When you roll a ball-
bearing down a slope towards the ‘cymbal’, it may 
be deflected, but even if it is rolled directly at the 
cymbal’s centre, it does not come back – it rolls over 
the centre and carries on to the other side. However, 
using the ‘tin hat’ shape, with a much narrower but 
higher central bulge, any ball-bearings rolled close 
to the centre will be markedly deflected, and those 
rolled directly towards it will come straight back.

The shape of the cymbal represents the shape 
of the electric field of an atom in the ‘plum pudding’ 
model: low central intensity and spread out. The 
‘tin hat’ represents the shape of the electric field 
for the nuclear model: high central intensity and 
concentrated.

‘cymbal’

‘tin hat’
also known 
as 1/r hill

nucleus

force

force
α-particles

Figure 16.4  An analogy for Rutherford’s experiment.

Figure 16.5  Possible paths of an α-particle near a nucleus. 
The nucleus and the α-particle both experience electrostatic 
repulsion.

1	 Rutherford’s scattering experiments were done 
in an evacuated container. Explain why this is 
necessary.

2	 In Rutherford’s experiment, α-particles were 
directed at a thin gold foil. A small fraction of the 
α-particles were back-scattered through 180°.

	 Describe and explain how the fraction back-
scattered changes if each of the following changes 
are (separately) made.
a	 A thicker foil is used.
b	 Faster α-particles are used.
c	 A silver foil is used – a silver nucleus has less 

positive charge than a gold nucleus.

A simple model of the atom 
After Rutherford had presented his findings, the nuclear 
model of the atom gained rapid acceptance. This 
was partly because it helped chemists to explain the 
phenomenon of chemical bonding (the way in which 
atoms bond together to form molecules). Subsequently, 
the proton was discovered. It had a positive charge, equal 
and opposite to that of the electron. However, its mass was 
too small to account for the entire mass of the atom and it 
was not until the early 1930s that this puzzle was solved by 
the discovery of the neutron, an uncharged particle with 
a similar mass to that of the proton. This suggests a model 
for the atom like the one shown in Figure 16.6:

■■ Protons and neutrons make up the nucleus of the atom.
■■ The electrons move around the nucleus in a cloud, some 

closer to and some further from the centre of the nucleus.

BOX 16.1: An analogy for Rutherford scattering

QUESTIONS
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So the proton has a density of roughly 1018 kg m−3. This is 
also the density of a neutron, and of an atomic nucleus, 
because nuclei are made of protons and neutrons held 
closely together. 

Compare the density of nuclear material with that of 
water whose density is 1000 kg m−3 – the nucleus is 1015 

times as dense. Nuclear matter the size of a tiny grain of 
sand would have a mass of about a million tonnes! This is 
a consequence of the fact that the nucleus occupies only 
a tiny fraction of the volume of an atom. The remainder 
is occupied by the cloud of orbiting electrons whose mass 
makes up less than one-thousandth of the atomic mass.

From this model it looks as though all matter, including 
ourselves, is mostly empty space. For example, if we scaled 
up the hydrogen atom so that the nucleus was the size of 
a 1 cm diameter marble, the orbiting electron would be a 
grain of sand some 800 m away! 

The scale of things
It is useful to have an idea of the approximate sizes of 
typical particles:

■■ radius of proton ~ radius of neutron ~ 10−15 m
■■ radius of nucleus ~ 10−15 m to 10−14 m
■■ radius of atom ~ 10−10 m
■■ size of molecule ~ 10−10 m to 10−6 m.

(Some molecules, such as large protein molecules, are very 
large indeed – compared to an atom!)

The radii of nuclear particles are often quoted in 
femtometres (fm), where 1 fm = 10−15 m.

Nuclear density
We can picture a proton as a small, positively charged 
sphere. Knowing its mass and radius, we can calculate its 
density:

mass of proton mp
 = 1.67 × 10−27 kg

radius of proton r = 0.80 fm = 0.80 × 10−15 m
(In fact, the radius of the proton is not very accurately 
known; it is probably between 0.80 × 10−15 m and 
0.86 × 10−15 m.)

volume of proton = 43  πr 3 = 43  π × (0.80 × 10−15)3

	 = 2.14 × 10−45 m3 ≈ 2.1 × 10−45 m3

density = mass
volume

density = 1.67 × 10−27

2.14 × 10−45 ≈ 7.8 × 1017 kg m−3

Figure 16.6  A simple model of the atom. If the nucleus were 
drawn to scale, it would be invisible (and the electrons are 
even smaller!).

= n, neutron
= p, proton
= e, electron

nucleus

Key

3	 Gold has a density of 19 700 kg m−3.A mass of 
193 g of gold contains 6.02 × 1023 atoms. Use this 
information to estimate the volume of a gold 
atom, and hence its radius. State any assumptions 
you make.

Nucleons and electrons
We will start this section with a summary of the particles 
mentioned so far (Table 16.1). All nuclei, except the lightest 
form of hydrogen, contain protons and neutrons, and 
each nucleus is described by the number of protons and 
neutrons that it contains.

■■ Protons and neutrons in a nucleus are collectively called 
nucleons. For example, in a nucleus of gold, there are 79 
protons and 118 neutrons, giving a total of 197 nucleons 
altogether.

■■ The total number of nucleons in a nucleus is called the 
nucleon number (or mass number) A.

■■ The nucleon number is equal to the sum of the number of 
neutrons in the nucleus, the neutron number N, and the 
number of protons, the proton number (or atomic number) 
Z, i.e.
A = N + Z

Particle Relative mass (proton = 1)(a) Charge(b)

proton (p) 1 +e

neutron (n) 1 0

electron (e) 0.0005 −e

alpha-particle (α) 4 +2e

(a)The numbers given for the masses are approximate.
(b)e = 1.60 × 10−19 C.

Table 16.1  Summary of the particles that we have met so far 
in this chapter. The α-particle is in fact a helium nucleus (with 
two protons and two neutrons).

QUESTION
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Isotopes
Although atoms of the same element may be identical 
chemically, their nuclei may be slightly different. The 
number of protons in the nucleus of an atom determines 
what element it is: helium always has 2 protons, carbon 
6 protons, oxygen 8 protons, neon 10 protons, radium 88 
protons, uranium 92 protons, and so on.

However, the number of neutrons in the nuclei for a 
given element can vary. Take neon as an example. Three 
different naturally occurring forms of neon are:

20
10 Ne          21

10 Ne          22
10 Ne

The first has 10 neutrons in the nucleus, the second 11 
neutrons and the third 12 neutrons. These three types of 
neon nuclei are called isotopes of neon. Each isotope has 
the same number of protons (for neon this is 10) but a 
different number of neutrons. The word ‘isotope’ comes 
from the Greek isotopos (same place), because all isotopes 
of the same element have the same place in the Periodic 
Table of elements.

Isotopes are nuclei of the same element with different 
numbers of neutrons but the same number of protons.

The nucleus of any atom can be represented by the 
symbol for the element along with the nucleon number 
and proton number, as shown below:

nucleon number
proton number element symbol    A

ZX

oxygen 16
8O      gold 197

79 Au      uranium 238
92 U

A specific combination of protons and neutrons in a 
nucleus is called a nuclide.

The proton and nucleon numbers of some common 
nuclides are shown in Table 16.2.

4	 Table 16.2 shows the proton and nucleon numbers 
of several nuclei. Determine the number of 
neutrons in the nuclei of the following elements 
shown in the table:
a	 nitrogen
b	 bromine
c	 silver

d	 gold
e	 mercury.

5	 State the charge of each of the following in terms 
of the elementary charge e:
a	 proton
b	 neutron
c	 nucleus

d	 molecule
e	 α-particle.

Element Nucleon 
number A

Proton 
number Z

Element Nucleon 
number A

Proton 
number Z

hydrogen 1 1 bromine 79 35

helium 4 2 silver 107 47

lithium 7 3 tin 120 50

beryllium 9 4 iodine 130 53

boron 11 5 caesium 133 55

carbon 12 6 barium 138 56

nitrogen 14 7 tungsten 184 74

oxygen 16 8 platinum 195 78

neon 20 10 gold 197 79

sodium 23 11 mercury 202 80

magnesium 24 12 lead 206 82

aluminium 27 13 bismuth 209 83

chlorine 35 17 radium 226 88

calcium 40 20 uranium 238 92

iron 56 26 plutonium 239 94

nickel 58 28 americium 241 95

Table 16.2  Proton and nucleon numbers of some nuclides.

QUESTIONS
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Table 16.3 gives details of some other commonly 
occurring isotopes.

Element Nucleon 
number A

Proton 
number Z

Neutron 
number N

hydrogen 1 1 0

2 1 1

carbon 12 6 6

14 6 8

oxygen 16 8 8

18 8 10

neon 20 10 10

21 10 11

potassium 39 19 20

40 19 21

strontium 88 38 50

90 38 52

caesium 135 55 80

137 55 82

lead 206 82 124

208 82 126

radium 226 88 138

228 88 140

uranium 235 92 143

238 92 146

Table 16.3  Some commonly occurring isotopes.

Any atom is electrically neutral (it has no net positive or 
negative charge), so the number of electrons surrounding 
the nucleus must equal the number of protons in the 
nucleus of the atom. If an atom gains or loses an electron, 
it is no longer electrically neutral and is called an ion.

For an atom, the number of protons (and hence the 
number of electrons) determines the chemical properties 
of the atom. The number of protons and the number of 
neutrons determine the nuclear properties. It is important 
to realise that, since the number of protons, and therefore 
the number of electrons, in isotopes of the same element 
are identical, they will all have the same chemical 
properties but very different nuclear properties.

Hydrogen has three important isotopes, 11H, 21H  
(deuterium) and 31H (tritium) (Figure 16.7). 11H and 
deuterium occur naturally, but tritium has to be made. 
Deuterium and tritium form the fuel of many fusion 
research reactors. Hydrogen is the most abundant element 
in the Universe (Figure 16.8), because it consists of just one 
proton and one electron, which is the simplest structure 
possible for an atom.

The different numbers of neutrons in the isotopes of 
an element means that the isotopes will have different 
relative atomic masses. There are differences too in some 
of their physical properties, such as density and boiling 
point. For example, heavy water, which is water containing 
deuterium, has a boiling point of 104 °C under normal 
atmospheric pressure.

H (sometimes called ‘protium’) H, deuterium2
1

3
1

1
1

H, tritium

Key
= n, neutron
= p, proton
= e, electron

Figure 16.7  The isotopes of hydrogen.

Figure 16.8  The Horsehead Nebula in Orion. The large 
coloured regions are expanses of dust and gas, mostly 
hydrogen, that are ionised by nearby stars so that they emit 
light. The dark ‘horse head’ is where the areas of gas and dust 
remain in atomic form and block out the light from behind.
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tightly, and this can make the nucleus unstable. The more 
protons there are in a nucleus, the greater the electric 
forces between them, and we need a few extra neutrons to 
help ‘keep the protons apart’. This is why heavy nuclei have 
more neutrons than protons.

The proton and neutron numbers for some common 
nuclides are shown in Table 16.3. You can see that for light 
elements these two numbers are the same, but they become 
very different for heavy elements. Adding more neutrons 
helps to keep the nucleus stable, but when the number of 
protons is greater than 83, adding more neutrons is not 
enough. Elements with a proton number greater than 83 
are all unstable – they undergo radioactive decay.

Most atoms that make up our world have stable nuclei; 
that is, they do not change as time goes by, which is quite 
fortunate really! However, some are less stable and give 
out radiation. Whether or not an atom is unstable depends 
on the numbers of protons and neutrons in its nucleus. 
Hydrogen-1 (1p), helium-4 (2p, 2n), carbon-12 (6p, 6n) 
and oxygen-16 (8p, 8n) are all stable – but add or subtract 
neutrons and the situation changes.

For example, add a neutron to helium-4 and you 
get helium-5, a very unstable nucleus – it undergoes 
radioactive emission. (There is much more about 
radioactive decay later in this chapter.)

Forces in the nucleus
As you know from earlier in this chapter, there are two 
kinds of particle in the nucleus of an atom: protons, which 
each carry positive charge +e; and neutrons, which are 
uncharged. It is therefore quite surprising that the nucleus 
holds together at all. You would expect the electrostatic 
repulsions from all those positively charged protons to 
blow it apart. The fact that this does not happen is very 
good evidence for the existence of an attractive force 
between the nucleons. This is called the strong nuclear 
force. It only acts over very short distances (10−14 m), and it 
is what holds the nucleus together.

Diluting the protons
In small nuclei the strong nuclear force from all the 
nucleons reaches most of the others in the nucleus, but 
as we go on adding protons and neutrons the balance 
becomes much finer. The longer-range electrostatic force 
affects the whole nucleus, but the short-range strong 
nuclear force of any particular nucleon only affects those 
nucleons around it – the rest of the nucleus is unaffected. 
In a large nucleus the nucleons are not held together so 

6	 Uranium has atomic number 92. Two of its 
common isotopes have nucleon numbers 235  
and 238. Determine the number of neutrons for 
these isotopes.

7	 There are seven naturally occurring isotopes of 
mercury, with nucleon numbers (and relative 
abundances) of 196 (0.2%), 198 (10%), 199 (16.8%), 
200 (23.1%), 201 (13.2%), 202 (29.8%) and  
204 (6.9%).
a	 Determine the proton and neutron numbers 

for each isotope.
b	 Determine the average relative atomic mass 

(equivalent to the ‘average nucleon number’) 
of naturally occurring mercury.

8	 Group the following imaginary elements A–H into 
isotopes and name them using the Periodic Table 
in the back of the book (Appendix 3).

A B C D E F G H
Proton 
number 20 23 21 22 20 22 22 23

Nucleon 
number 44 50 46 46 46 48 50 51

9	 State which of the following forces act between 
protons and neutrons in a nucleus.
a	 gravitational
b	 electrostatic
c	 strong nuclear.

Fundamental particles?
Chemistry is very complicated because there are literally 
billions of different molecules that can exist. The discovery 
of the Periodic Table simplified things because it suggested 
that there were roughly 92 different elements whose atoms 
could be arranged to make these various molecules. The 
idea that atoms are made up of just three types of particle 
(protons, neutrons and electrons) seemed to simplify 
things still more, and scientists were very happy with it 
because it seemed to provide a very simple explanation of 
a complex world. Protons, neutrons and electrons were 
thought of as fundamental particles, which could not be 
subdivided further.

QUESTION

QUESTIONS
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fundamental questions about this family of particles. In 
2013, they announced the discovery of the Higgs boson, a 
particle which was predicted 50 years earlier and which is 
required to explain why matter has mass. 

Inside hadrons
To sort out the complicated picture of the hadron family 
of particles, Murray Gell-Mann in 1964 proposed a new 
model. He suggested that they were made up of just a few 
different particles, which he called quarks.

Figure 16.11 shows icons used to represent three 
quarks, together with the corresponding antiquarks. These 
are called the up (u), down (d) and strange (s) quarks. 
Gell-Mann’s idea was that there are two types of hadron: 
baryons, made up of three quarks, and mesons, made up 
of two quarks. In either case, the quarks are held together 
by the strong nuclear force. For example:

■■ A proton is made up of two up quarks and a down quark; 
proton = (uud).

■■ A neutron is made up of one up quark and two down quarks; 
neutron = (udd).

■■ A pi+ meson is made up of an up quark and a down 
antiquark; pi+ meson = (ud

–
).

■■ A phi meson is made up of a strange quark and an 
antistrange quark; phi meson = (ss–).

Antiquarks are shown with a ‘bar’ on top of the letter 
for the quark. Antiquarks are needed to account for the 
existence of antimatter. This is matter that is made of 
antiparticles; when a particle meets its antiparticle, they 
annihilate each other, leaving only photons of energy.  

However, in the middle decades of the 20th century, 
physicists discovered many other particles that did not fit 
this pattern. They gave them names such as pions, kaons, 
muons, etc., using up most of the letters of the Greek 
alphabet.

These new particles were found in two ways:

■■ by looking at cosmic rays, which are particles that arrive at 
the Earth from outer space

■■ by looking at the particles produced by high-energy 
collisions in particle accelerators (Figure 16.9).

Figure 16.9  Particle tracks in a bubble chamber detector. 
A particle has entered from the left and then struck another 
particle just to the right of the centre. Four new particles fly 
out from the point of impact. 

The discovery of new particles with masses different 
from those of protons, neutrons and electrons suggested 
that these were not fundamental particles. Various 
attempts were made to tidy up this very confusing picture.

In principle, we can never know for certain whether 
a particle such as the electron is truly fundamental; the 
possibility will always remain that a physicist will discover 
some deeper underlying structure.

Families of particles
Today, sub-atomic particles are divided into two families:

■■ Hadrons such as protons and neutrons. These are all 
particles that are affected by the strong nuclear force.

■■ Leptons such as electrons. These are particles that are 
unaffected by the strong nuclear force.

The word ‘hadron’ comes from a Greek word meaning 
‘bulky’, while ‘lepton’ means ‘light’ (in mass). It is certainly 
true that protons and neutrons are bulky compared to 
electrons.

At the Large Hadron Collider (Figure 16.10) at the 
CERN laboratory in Geneva, physicists are experimenting 
with hadrons in the hope of finding answers to some 

Figure 16.10  Particle accelerators have become bigger and 
bigger as scientists have sought to look further and further into 
the fundamental nature of matter. This is one of the particle 
detectors of the Large Hadron Collider (LHC), as it was about to 
be installed. The entire collider is 27 km in circumference. 
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In fact, there are two types of β-radiation. The more 
familiar is beta-minus (β−) radiation, which is simply 
an electron, with negative charge of −e. However, there 
are also many unstable nuclei that emit beta-plus (β+) 
radiation. This radiation is in the form of positrons, 
similar to electrons in terms of mass but with positive 
charge of +e. Positrons are a form of antimatter. When a 
positron collides with an electron, they annihilate each 
other. Their mass is converted into electromagnetic energy 
in the form of two gamma photons (Figure 16.13).

Discovering radioactivity
The French physicist Henri Becquerel (Figure 16.12) is 
credited with the discovery of radioactivity in 1896. He 
had been looking at the properties of uranium compounds 
when he noticed that they affected photographic film – he 
realised that they were giving out radiation all the time 
and he performed several ingenious experiments to shed 
light on the phenomenon.

Up Down Strange

Quarks

Antiquarks

Figure 16.11  Icons representing three ‘flavours’ of quark,  
up, down and strange, and their antiquarks. 

Figure 16.12  Henri Becquerel, the discoverer of radioactivity, 
in his laboratory. His father and grandfather had been 
professors of physics in Paris before him.

e–

e–
+

electron
e+ γ + γ

positron gamma-ray photons

γ

e+

γ

Figure 16.13  Energy is released in the annihilation of matter 
and antimatter. 

Table 16.4 shows the basic characteristics of the 
different types of radiation. The masses are given relative 
to the mass of a proton; charge is measured in units of e, 
the elementary charge.

Radiation Symbol
Mass 
(relative 
to proton)

Charge Typical speed

-particle , 42He 4 +2e ‘slow’ (106 m s−1)
−-particle , −, e,  –1

0e 1
1840

−e ‘fast’ (108 m s−1)

+-particle , +, e+,  

+1
0e

1
1840

+e ‘fast’ (108 m s−1)

-ray 0 0 speed of light  
(3 × 108 m s−1)

Table 16.4  The basic characteristics of ionising radiations. 

Note the following points:

■■ α- and β-radiation are particles of matter. A γ-ray 
is a photon of electromagnetic radiation, similar to 
an X-ray. (X-rays are produced when electrons are 
decelerated; γ-rays are produced in nuclear reactions.)

■■ An α-particle consists of two protons and two 
neutrons; it is a nucleus of helium-4. A β−-particle is 
simply an electron and a β+-particle is a positron.

■■ The mass of an α-particle is nearly 10 000 times that of 
an electron and it travels at roughly one-hundredth of 
the speed of an electron. 

Radiation from radioactive 
substances
There are three types of radiation which are emitted by 
radioactive substances: alpha (α), beta (β) and gamma (γ) 
radiations come from the unstable nuclei of atoms. Nuclei 
consist of protons and neutrons, and if the balance between 
these two types of particles is too far to one side, the 
nucleus may emit α- or β-radiation as a way of achieving 
greater stability. Gamma-radiation is usually emitted after 
α or β decay, to release excess energy from the nuclei.
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In α decay, an alpha particle (two protons and two 
neutrons) is emitted by a nucleus. Although these nucleons 
are now outside the nucleus, the equation shows that there 
is the same number of nucleons after the decay (218 + 4) as 
before the decay (222). So nucleon number A is conserved. 
Similarly, proton number Z is conserved (84 + 2 = 86).

The conservation of nucleon number and proton 
number are important laws in nuclear physics. They apply 
to all nuclear changes, not just to α and β decay. 

There is a third quantity that is conserved. You 
might expect mass to be conserved, but this is not so. 
For example, in the α decay equation given above, the 
combined mass of the polonium nucleus and the alpha 
particle is slightly less than that of the original radon 
nucleus. The ‘lost’ mass has become energy – this is where 
the fast-moving alpha particle gets its kinetic energy. The 
relationship between mass m and energy E is given by 
Einstein’s equation E = mc2, where c is the speed of light 
in free space. So, instead of saying that mass is conserved 
in nuclear processes, we have to say that mass–energy is 
conserved. There is much more about this in Chapter 31.

Fundamental families
Electrons and neutrinos both belong to the family of 
fundamental particles called leptons. These are particles 
that do not feel the strong nuclear force. Recall from 
page 230 that particles that experience the strong force 
are hadrons, and that these are made up of fundamental 
particles called quarks.

So we have two families of fundamental particles, 
quarks and leptons. How can we understand β decay in 
terms of these particles?

Consider first β− decay, in which a neutron decays. A 
neutron consists of three quarks (up, down, down or u d 
d). It decays to become a proton (u u d). Comparing these 
shows that one of the down quarks has become an up quark. 
In the process, it emits a β-particle and an antineutrino:

d → u +  0
−1e + ν–

In β+ decay, a proton decays to become a neutron. In this 
case, an up quark becomes a down quark:

u → d +  0
+1e + ν

Fundamental forces
The nucleus is held together by the strong nuclear force, 
acting against the repulsive electrostatic or Coulomb 
force between protons. This force explains α decay, when 
a positively charged α-particle flies out of the nucleus, 
leaving it with less positive charge.

Discovering neutrinos
There is a further type of particle which we need to 
consider. These are the neutrinos. When β decay was first 
studied, it was realised that β-particles were electrons 
coming from the nucleus of an atom. There are no 
electrons in the nucleus (they ‘orbit’ outside the nucleus), 
so the process was pictured as the decay of a neutron to 
give a proton and an electron.

It was noticed that β-particles were emitted with a 
range of speeds – some travelled more slowly than others. 
It was deduced that some other particle must be carrying 
off some of the energy and momentum released in the 
decay. This particle is now known as the antineutrino (or, 
more correctly, the electron antineutrino), with symbol ν–. 
The decay equation for β− decay is written as: 

beta-minus (β−) decay:  1
0n → 11p +   0−1e + ν–

Neutrinos are bizarre particles. They have very little mass 
(much less than an electron) and no electric charge, which 
makes them very difficult to detect. The Austrian physicist 
Wolfgang Pauli predicted their existence in 1930, long 
before they were first detected in 1956.

In β+ decay, a proton decays to become a neutron and 
an electron neutrino (symbol ν) is released:

beta-plus (β+) decay:  1
1p → 10n +   0+1e + ν

The two equations highlighted above show two important 
features of radioactive decay. Firstly, nucleon number 
A is conserved; that is, there are as many nucleons after 
the decay as there were before. In β– decay, a neutron has 
become a proton so that the total number of nucleons is 
unchanged. In β+ decay, a proton becomes a neutron, so 
again A is conserved.

Secondly, proton number Z is also conserved. In β– 
decay, we start with a neutron (Z = 0). After the decay, we 
have a proton (Z = +1) and a β– particle (Z = –1). Together 
these have Z = 1 – 1 = 0. Since Z tells us about the charge of 
each particle, we would be surprised if we had a different 
amount of charge after the decay than before the decay. A 
similar analysis shows that Z is conserved in β+ decay.

Do these conservation laws apply to α decay? Here is an 
equation that represents a typical α decay:

222
86Rn → 218

84Po + 42He
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Properties of ionising radiation
Radiation affects the matter it passes through by causing 
ionisation. Both α- and β-particles are fast-moving 
charged particles, and if they collide with or pass close 
to atoms, they may knock or drag electrons away from 
the atoms (Figure 16.14). The resulting atoms are said to 
be ionised, and the process is called ionisation. In the 
process, the radiation loses some of its kinetic energy. 
After many ionisations, the radiation loses all of its energy 
and no longer has any ionising effect.

However, the strong force cannot explain β decay. 
Instead, we have to take account of a further force within 
the nucleus, the weak interaction, also known as the weak 
nuclear force. This is a force that acts on both quarks and 
leptons. The weak interaction is responsible for β decay.

	10	 The equation 1
1p → 1

0n + 0
+1e + ν represents β+ decay. 

Use the equation to explain why the neutrino ν can 
have no charge and very little mass.

	11	 What are the differences between a proton, a 
positron and a photon? You can describe how 
their masses differ, how their charges differ, or 
whether they are particles or antiparticles.

	12	 State the names of:
a	 all the hadrons that are mentioned in this 

chapter
b	 all the leptons that are mentioned in this 

chapter.

	13	 State two differences between hadrons and 
leptons.

QUESTIONS

α-particle
–

––

	14	 a	� Explain why you would expect β−-particles to 
travel further through air than α-particles.

b	 Explain why you would expect β−-particles to 
travel further through air than through metal.

Figure 16.14  As an α-particle passes through a material, it 
causes ionisation of atoms. 

QUESTION

Alpha-radiation is the most strongly ionising, because 
the mass and charge of an α-particle are greater than 
those of a β-particle, and it usually travels more slowly. 
This means that an α-particle interacts more strongly with 
any atom that it passes, and so it is more likely to cause 
ionisation. Beta-particles are much lighter and faster, and 
so their effect is smaller. Gamma-radiation also causes 
ionisation, but not as strongly as α- and β-particles, as 
γ-rays are not charged.

+

–

α
γ

   β−  

Figure 16.15  An electric field can be used to separate α-, β−- 
and γ- radiations. (The deflection of the α-radiation has been 
greatly exaggerated here.)

Behaviour of radiations in electric and 
magnetic fields
Because α-, β−- and γ-radiations have different charges, 
or no charge, they behave differently in electric and 
magnetic fields. This can be used to distinguish one kind 
of radiation from another.

Figure 16.15 shows the effect of an electric field. A 
mixture of α-, β−- and γ-radiations is passing through the 
gap between two parallel plates; the electric field in this 
space is uniform (Chapter 8). Since α- and β−-particles 
are charged, they are attracted to the plate that has the 
opposite charge to their own. β−-particles are deflected 
more than α-particles, since their mass is so much less. 
Gamma-rays are undeflected since they are uncharged.
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Figure 16.16 shows the effect of a magnetic field. In this 
case, the deflecting force on the particles is at right angles 
to their motion.

Alpha-particles can also be detected by a solid-state 
detector, or by a Geiger–Müller (GM) tube with a thin 
end-window (Figure 16.18) connected to an electronic 
counter. By moving the source back and forth in front of 
the detector, it is simple to show that the particles only 
penetrate 5 or 6 cm of air. Similarly, with the source close 
to the detector, it can be shown that a single sheet of paper 
is adequate to absorb all of the α-radiation.Radiation penetration

Safety note

When working with radioactive sources, it is essential to 
follow the relevant safety regulations, which your teacher 
will explain to you.

Alpha-radiation
Because α-radiation is highly ionising, it cannot penetrate 
very far into matter. A cloud chamber can be used to show 
the tracks of α-particles in air (Figure 16.17). The tracks 
are very dense, because of the dense concentration of ions 
produced, and they extend for only a few centimetres 
into the air. By the time the α-particles have travelled 
this far, they have lost virtually all of their kinetic energy. 
The α-particle, which is a nucleus of helium-4, grabs two 
drifting electrons in the air and becomes a neutral atom of 
helium gas.

paper GM tube

α-source

Figure 16.17  Alpha-particle tracks show up in this photograph 
of a cloud chamber. Notice that all the particles travel roughly 
the same distance through the air, indicating that they all have 
roughly the same initial kinetic energy.

Figure 16.18  Alpha-radiation can be absorbed by a single 
sheet of paper.

magnetic field
into paper in

this region

α

γ

β−

Figure 16.16  A magnetic field may also be used to separate 
α-, β−- and γ- radiations. The deflection of the α-radiation has 
been greatly exaggerated here.

	15	 a	� Some radioactive substances emit α-particles 
having two different speeds. Draw a diagram 
similar to Figure 16.16 to show how these 
particles would move in a uniform electric 
field. Label your diagram to show the tracks 
of the faster and slower α-particles.

b	 A β−-emitting radioactive substance emits 
β−-particles with a range of speeds. Add to 
the diagram you drew in a to show how these 
particles would behave in a uniform electric 
field.

QUESTION

Beta-radiation
A Geiger–Müller tube can detect β−-radiation. The source 
is placed close to the tube, and different materials are 
positioned between source and tube. Paper has little effect; 
a denser material such as aluminium or lead is a more 
effective absorber. A few millimetres of aluminium will 
almost completely absorb β−-radiation.
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paper

~1 mm ~2 mm ~2 cm

aluminium lead

α

β−

γ

Figure 16.19  A summary of the penetrating powers of α-, β−- 
and γ-radiations. The approximate thickness of the absorbing 
material is also shown.

	16	 Explain why the most strongly ionising radiation 
(α-particles) is the least penetrating, while the 
least ionising (γ-rays) is the most penetrating.

	17	 A smoke detector (Figure 16.20) uses a source of 
α-radiation to detect the presence of smoke in 
the air. Find out how the smoke detector works 
and suggest why an α source is more suitable for 
this than a β− or γ source.

Figure 16.20  A smoke detector that uses the absorption 
of α-radiation as the principle of its operation.

QUESTIONS

Gamma-radiation
Since γ-radiation is the least strongly ionising, it is the 
most penetrating. Lead can be used to absorb γ-rays. The 
intensity of the radiation decreases gradually as it passes 
through the lead. In principle, an infinite thickness of 
lead would be needed to absorb the radiation completely; 
in practice, a couple of centimetres of lead will reduce the 
intensity by half and 10 cm will reduce the intensity to a 
safe level in most situations.

The different penetrating properties of α-, β−- and 
γ-radiations can be summarised as follows: 

■■ α-radiation is absorbed by a thin sheet of paper or a 
few centimetres of air.

■■ β−-radiation is absorbed by a few millimetres of 
metal.

■■ γ-radiation is never completely absorbed but a few 
centimetres of lead, or several metres of concrete, 
greatly reduces the intensity.

This is illustrated in Figure 16.19.

The electronvolt (eV)
Alpha and beta particles move quickly; gamma photons 
travel at the speed of light. These types of radiation all have 
energy, but the energy of a single particle or photon is very 
small and far less than a joule. So we use another, much 
smaller unit of energy, the electronvolt, when considering 
the energy of individual particles or photons.

When an electron (with a charge of magnitude 1.60 × 
10–19 C) travels through a potential difference, energy is 
transferred. The energy change W is given by:

W = QV = 1.60 × 10–19 × 1 = 1.60 × 10–19 J
So we define the electronvolt as follows:

One electronvolt (1 eV) is the energy transferred when an 
electron travels through a potential difference of one volt.

Therefore:
1 eV = 1.60 × 10–19 J

There is more about the electronvolt and its use in energy 
calculations in Chapter 30.



Cambridge International AS Level Physics

236

End-of-chapter questions
1 Before Rutherford’s model, scientists believed that the atom was made up of negatively charged 

electrons embedded in a ‘plum pudding’ of positive charge that was spread throughout the atom. 
Explain how the α-particle scattering experiment proved that this old model of the atom was 
incorrect. [3]

2 A nucleus of strontium has a nucleon number of 90 and a proton number of 38. Describe the 
structure of this strontium nucleus. [1]

3 State the changes that take place in a nucleus when it emits an α-particle and then two β−-particles. [5]

4 The nuclide of iodine with a nucleon number of 131 and a proton number 53 emits a β−-particle. 
Write a nuclear equation for this decay. [3]

5 An isotope of carbon 14
6 C emits a β−-particle and changes into an isotope of nitrogen (N).

a What are β−-particles? [1]
b Write a nuclear decay equation for the decay. [2]
c Draw a graph with the y-axis representing nucleon numbers between 10 and 16 and the x-axis 

representing proton numbers between 4 and 10. On your graph mark:
i the isotope 14

6 C [2]
ii the daughter nucleus produced in the decay. [1]

Summary
■■ The α-particle scattering experiment provides 

evidence for the existence of a small, massive and 
positively charged nucleus at the centre of the atom.

■■ Most of the mass of an atom is concentrated in its 
nucleus.

■■ The nucleus consists of protons and neutrons, and is 
surrounded by a cloud of electrons.

■■ The number of protons and neutrons in the nucleus of 
an atom is called its nucleon number A.

■■ The number of protons in the nucleus of an atom is 
called its proton number (or atomic number) Z.

■■ Hadrons (e.g. the neutron) are particles that consist of 
quarks and hence are aff ected by the strong nuclear 
force. Leptons (e.g. the electron) are particles that are 
unaff ected by the strong nuclear force.

■■ The weak interaction acts between quarks and is 
responsible for β-decay.

■■ Isotopes are nuclei of the same element with a 
diff erent number of neutrons but the same number 
of protons.

■■ Diff erent isotopes (or nuclides, if referring to the 
nucleus only) can be represented by the notation AZX, 
where X is the chemical symbol for the element.

■■ There are three types of ionising radiation produced 
by radioactive substances: α-particles, β-particles and 
γ-rays.

■■ In radioactive decay, the following quantities are 
conserved: proton number, nucleon number and 
mass–energy.

■■ The most strongly ionising, and hence the least 
penetrating, is α-radiation. The least strongly ionising 
is γ-radiation.

■■ Because of their diff erent charges, masses and speeds, 
the diff erent types of radiation can be identified by the 
eff ect of an electric or magnetic field.
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6 The uranium isotopes U-236 and U-237 both emit radioactive particles. A nucleus of uranium-237 
may be written as 237

92 U and emits a β−-particle. A nucleus of uranium-236 emits an α-particle. The 
number of protons in a nucleus of uranium is 92.
a Describe the diff erences between an α-particle and a β−-particle. [4]
b Explain how uranium can exist in a number of diff erent isotopes.  [2]
c Write down the nuclear equation for the decay of U-236. [2]

7 Approximate values for the radius of a gold atom and the radius of a gold nucleus are 10−10 m and 
10−15 m, respectively.
a Estimate the ratio of the volume of a gold atom to the volume of a gold nucleus. [2]
b The density of gold is 19 000 kg m−3. Estimate the density of a gold nucleus, stating any 

assumptions that you make in your answer. [3]

8 The nuclide of lead 210
82 Pb decays in three separate stages by α- and β− emission to another 

lead nuclide, 206
82 Pb. 

a Describe the structure of a nucleus of 210
82 Pb. [2]

b α- and β−-particles are known as ionising radiations. State and explain why such radiations 
can be described as ionising. [2]

c The two lead nuclides are shown in the graph in Figure 16.22 of nucleon number A against 
proton number Z. 

 Copy the graph and on your copy draw three arrows to represent one possible route for the 
three decays between the two isotopes of lead. Label each arrow to show whether an α-particle 
or a β−-particle is emitted. [3]

Figure 16.22 For End-of-chapter Question 8. 

210
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 9 Geiger and Marsden carried out an experiment to investigate the structure of the atom. In this 
experiment α-particles were scattered by a thin film of gold. 
a When Rutherford analysed their results, what conclusions did he draw about the distribution 

of mass and charge in the atom?  [2]
b Describe and explain the experimental observations that led to these conclusions. [3]

10 Beta decay occurs as either β+-decay or β−-decay. An isotope of calcium 46
20 Ca decays by 

β-emission into the isotope 46
21 Sc, and an isotope of magnesium 23

12 Mg decays by β-emission into 
the isotope 23

11 Na.
a Copy and complete the following decay equations for the calcium and magnesium isotopes.

i decay of calcium: 46
20 Ca → …

…e + …
…Sc+ + …

ii decay of magnesium: 23
12 Mg → …

…e + …
…Na+ + … [3]

b State what happens in each type of β-decay in terms of the quark model of nucleons.
i β−-decay [1]
ii β+-decay. [1]

c Name the force responsible for β-decay. [1]

11 a  A quark is a fundamental particle but a neutron is not. Explain what this statement means.
b A proton and a neutron each contain three quarks, either up or down quarks. 

i Copy and complete the table to show the charge on a proton and a neutron and the quarks 
that they contain. 

Charge Quarks

[2]

proton

neutron

ii Using information from your table, suggest why some quarks must have a positive charge 
and some quarks a negative charge.  [2]

c State what interaction is responsible for holding the nucleus together. [1]
d When a neutron decays it produces an electron and two other particles. Copy and complete the 

decay equation for a neutron.
 1

0 n →  [2]
e The electron and the neutron belong to diff erent groups of particles.
 Copy and complete the table to show the group of particles to which the electron and neutron 

belong and state the name of another member of each group.

Group to which it belongs Another particle in the same group

[2]

electron

neutron



Learning outcomes
You should be able to:

■■ understand random, systematic and zero errors
■■ calculate uncertainties in measurements made with a 

range of instruments
■■ produce best fit straight-line graphs and obtain the 

intercept and gradient
■■ use readings to test a relationship 
■■ suggest problems and improvements in a range of 

experiments

P1:
Practical skills at 
AS level
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Calipers
Calipers are designed to grip an object with two jaws 
and, in the example shown in Figure P1.3, to measure the 
diameter of the object. They can also be used to measure 
the internal diameter of a tube, for example, if the two 
prongs are placed inside the tube and the moving part of 
the calipers is adjusted until the prongs just grip the inside 
of the tube.

The calipers shown in Figure P1.3 are dial calipers, 
although other versions such as vernier calipers are 
still sometimes used. As the sliding scale moves along, 
one rotation of the dial moves the jaws 1 mm further 
apart. Since the dial shown has 100 divisions, each of 
these divisions is 1

100 = 0.01 mm. The object shown has 
a diameter of 12 mm on the fixed scale and 25 divisions 
or 0.25 mm on the dial, so the diameter of the object is 
12.25 mm.

Practical work in physics
Throughout your A level physics course you will develop 
your skills in practical work, and they will be assessed at 
both AS and A level. This chapter outlines the skills you 
will develop in the first year of the course; it includes some 
activities to test your understanding as you go along.

The sciences differ from most other subjects in that 
they involve not only theory but also practical work. The 
very essence of science is that theory can be tested by 
practical experiment. So the ability to carry out practical 
exercises in a logical and scientific manner is essential.

Using apparatus and following 
instructions
You need to familiarise yourself with the use of simple 
measuring instruments such as metre rules, balances, 
protractors, stopwatches, ammeters and voltmeters, and 
even more complicated ones such as a micrometer screw 
gauge and calipers.

When using measuring instruments like these you 
need to ensure that you are fully aware of what each 
division on a scale represents. If you look at Figure P1.1 
you will see that on the first ruler each division is 1 mm, 
and on the second each division is 2 mm.

0 10 20 30mm

0 10 20 30mm

dial

movable part
of calipers

fixed scale

0 1 2 3 4 5 6 7 8 9 10 11 12

0

×0.01 mm

50

1090
2080

3070
4060

prongs
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10
m

m
0
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Figure P1.1  When reading from a scale, make sure that you 
know what each division on the scale represents. 

If you use instruments incorrectly, you may introduce 
errors into your readings. For example, when taking a 
reading your line of sight should always be perpendicular 
to the scale that you are using. Otherwise you will 
introduce a parallax error; this is shown in Figure P1.2. 
Looking from point A the length of the rod appears to 
be 21 mm, from point C it appears to be 25 mm and from 
point B, the correct position, the length is 23 mm.

A rule, for example a metre rule, or a ruler, for example 
an ordinary school ruler of length 30 cm, are simple 
measuring instruments with a smallest division of 1 mm. 
Other instruments have a greater precision because their 
smallest scale division is less than 1 mm. Here we will look 
at two of these.

Figure P1.2  Parallax error.

Figure P1.3  Using dial calipers. 
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parallel. A good piece of advice here is to build the main 
circuit fi rst, and then add the components which need to 
be connected in parallel. 

Gathering evidence
When gathering evidence you should take into account 
the range of results that you are going to obtain. If you are 
investigating the extension of a spring with load, for loads 
of between 0 N and 20 N, you should take a fair spread of 
readings throughout that range. For instance, six readings 
between 12 N and 20 N would not be sensible because you 
are not investigating what happens with smaller loads. 
Equally, taking three readings below 5 N and three more 
between 15 N and 20 N does not test what happens with 
intermediate loads.

A sensible set of readings might be at 0 N, 4 N, 8 N, 
12 N, 16 N and 20 N. Th is covers the whole range in equal 
steps.

Micrometer screw gauge
A micrometer screw gauge, or more simply a micrometer, 
is shown in Figure P1.4. Th is has also has two scales. Th e 
main scale is on the shaft  and the fractional scale is on the 
rotating barrel. One rotation of the barrel moves the end 
of the barrel 0.50 mm along the shaft . Th e barrel has 50 
divisions so each division represents 0.50

50
 = 0.01 mm.

Figure P1.4 Using a micrometer screw gauge. 

To use the micrometer, turn the barrel until the jaws 
just tighten on the object. Some micrometers have a ratchet 
or slip mechanism to prevent the user from tightening too 
hard and damaging the micrometer or object. Read the 
main scale to the nearest 0.5 mm, then read the number 
of divisions on the sleeve, which will be in 0.01 mm, and 
fi nally add the two readings. You should realise that the 
smallest division on the micrometer is 0.01 mm.

Before you start to use a micrometer or dial calipers 
it is usual to check if there is a zero error. Th is is done by 
bringing the jaws together without any object between 
them. Obviously the reading should be zero, but if the 
instrument is worn or has been used badly the reading 
may not be zero. When you have taken this zero error 
reading it should be added or subtracted to every other 
reading that you take with the instrument. If the jaws do 
not quite close to the zero mark there is a positive zero 
error, and this zero error reading should be subtracted. 
Th e zero error is an example of a systematic error, which is 
dealt with later in this chapter.

It is also important that you become familiar with 
setting up apparatus. When instructions are given, the 
only way to become confi dent is through practice. You 
may face a variety of tasks, from setting up a pendulum 
system to measuring the angle at which a tilted bottle falls.

You should also learn to set up simple circuits from 
circuit diagrams. Th e most common error in building 
circuits comes where components need to be connected in 

1 You are investigating how the current through 
a resistor depends on its resistance when 
connected in a circuit. You are given resistors of 
the following values:

 50 Ω, 100 Ω, 150 Ω, 200 Ω, 250 Ω, 300 Ω, 350 Ω, 
400 Ω, 450 Ω, 500 Ω

 You are asked to take measurements with just six 
of these resistors. Which six resistors would you 
choose? Explain your choice.

Precision, accuracy, errors and 
uncertainties
Whenever you make a measurement, you are trying to 
fi nd the true value of a quantity. Th is is the value you 
would fi nd if your measurement was perfect. However, 
no measurement can ever be perfect; there will always 
be some uncertainty. Your equipment may be imperfect 
or your technique may be capable of improvement. So, 
whenever you carry out practical work, you should think 
about two things:

■■ how the equipment or your technique could be improved to 
give better results, with less uncertainty

■■ how to present the uncertainty in your findings.

As you will see later in this chapter, both of these need to 
be refl ected in the way you present your fi ndings.

0 20
15

0 20
15

QUESTION
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uncertainty of 0.5 mm, giving a total uncertainty of 1 mm.
The uncertainty will depend not only on the precision 

of the calibrations on the instrument you are using, but 
also on your ability to observe and on errors introduced 
by less than perfect equipment or poor technique in 
taking the observations. Here are some examples of where 
uncertainties might arise:

■■ Systematic error – A spring on a force meter might, 
over time, become weaker so that the force meter reads 
consistently high. Similarly the magnet in an ammeter 
might, over the years, become weaker and the needle 
may not move quite as far round the scale as might be 
expected. Parallax errors, described earlier, may be 
another example of a systematic error if one always looks 
from the same angle, and not directly from above, when 
taking a measurement. In principle, systematic errors 
can be corrected for by recalibrating the instrument or by 
correcting the technique being used.

■■ Zero error – The zero on a ruler might not be at the very 
beginning of the ruler. This will introduce a fixed error 
into any reading unless it is allowed for. This is a type of 
systematic error.

■■ Random errors – When a judgement has to be made by the 
observer, a measurement will sometimes be above and 
sometimes below the true value. Random errors can be 
reduced by making multiple measurements and averaging 
the results. 

Good equipment and good technique will reduce the 
uncertainties introduced, but difficulties and judgements 
in making observations will limit the precision of your 
measurements. Here are two examples of how difficulties 
in observation will determine the uncertainty in your 
measurement.

Example 1: Using a stopwatch
Tambo has a digital stopwatch which measures to the 
nearest one-hundredth of a second. He is timing Nana in a 
100 metre race (Figure P1.6). He shows her the stopwatch, 
which reads 11.87 s. She records in her notebook the time 
11.9 s. She explains to Tambo that he cannot possibly 

We will first consider the precision of a measurement. 
The level of precision is high if you make several 
measurements of a quantity and they are all very similar. 
A precise measurement, when repeated, will be the same, 
or nearly so. However, if your measurements are spread 
widely around the average, they are less precise. This 
can arise because of practical difficulties in making the 
measurements. 

Precision is reflected in how the results are recorded. 
If a distance is quoted as ‘15 m’ then it implies that it was 
only measured to the nearest metre, whereas if it is quoted 
as ‘15.0 m’ then it suggests that it was measured to the 
nearest 0.1 m.

Take care not to confuse precision with accuracy. 
A measurement is described as ‘accurate’ if the value 
obtained is close to the true value. Even if a measurement 
is precise, and always produces the same result, it may 
not be accurate because every reading may have the 
same error. For example, you can make very precise 
measurements of the diameter of a wire using a 
micrometer screw gauge to the nearest 0.01 mm, but every 
reading may be inaccurate if the gauge has a zero error. 

Figure P1.5 shows two attempts at making holes in 
the centre of a target. Imagine that the positions of the 
holes represent readings, with the true value at the centre. 
On the left, the readings are close together so we can 
say that they are precise. However, they are not accurate 
as the average is far from the centre. In the second, the 
measurement can be said to be accurate as the average 
position of the holes is close to the centre, but the readings 
are not precise as the holes are spread out.

Whenever you make a measurement you should be 
aware of the uncertainty in the measurement. It will often, 
but not always, be determined by the smallest division 
on the measuring instrument. On a metre ruler which is 
graduated in millimetres we should be able to read to the 
nearest half millimetre, but beware! If we are measuring 
the length of a rod there are two readings to be taken, 
one at each end of the rod. Each of these readings has an 

Figure P1.5  The left-hand diagram represents readings 
which are precise but not accurate; the right-hand diagram 
represents readings which are accurate but without precision. Figure P1.6  Uncertainty in timing using a stopwatch.
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Finding the value of an 
uncertainty
We have used the terms uncertainty and error; they are not 
quite the same thing. In general an ‘error’ is just a problem 
which causes the reading to be different from the true 
value (although a zero error can have an actual value). The 
uncertainty, however, is an actual range of values around 
a measurement, within which you expect the true value to 
lie. The uncertainty is an actual number with a unit.

For example, if you happen to know that the true value of 
a length is 21.0 cm and an ‘error’ or problem causes the actual 
reading to be 21.5 cm, then, since the true value is 0.5 cm 
away from the measurement, the uncertainty is ± 0.5 cm.

But how do you estimate the uncertainty in your 
reading without knowing the true value? Obviously if a 
reading is 21.5 cm and you know the true value is 21.0 cm, 
then the uncertainty in the reading is 0.5 cm. However, you 
may still have to estimate the uncertainty in your reading 
without knowing the true value. So how is this done?

First, it should be understood that the uncertainty 
is only an estimate of the difference between the actual 
reading and the true value. We should not feel too worried 
if the difference between a single measurement and the 
true value is as much as twice the uncertainty. Because 
it is an estimate, the uncertainty is likely to be given to 
only one significant figure. For example, we write the 
uncertainty as 0.5 cm and not 0.50 cm.

The uncertainty can be estimated in two ways.

Using the division on the scale – Look at the smallest 
division on the scale used for the reading. You then have to 
decide whether you can read the scale to better than this 
smallest division. For example, what is the uncertainty in 
the level of point B in Figure P1.2? The smallest division on 
the scale is 1 mm but is it possible to measure to better than 
1 mm? This will depend on the instrument being used and 
whether the scale itself is accurate. In Figure P1.2, the width 
of the line itself is quite small but there may be some parallax 
error which would lead you to think that 0.5 mm or 1 mm is 
a reasonable uncertainty. In general, the position of a mark 
on a ruler can generally be measured to an uncertainty of 
± 0.5 mm. In Figure P1.8, the smallest division on the scale is 
20 g. Can you read more accurately than this? In this case it 
is doubtful that every marking on the scale is accurate and so 
20 g would be reasonable as the uncertainty. 

You need to think carefully about the smallest division 
you can read on any scale. As another example, look at 
a protractor. The smallest division is probably 1° but it is 
unlikely you can use a protractor to measure an angle to 
better than ± 0.5° with your eye. 

measure to the nearest one-hundredth of a second as he 
has to judge both when the starting pistol was fired and 
the exact moment at which she crossed the finishing line. 
To do this to any closer than the nearest one-tenth of a 
second is impossible. In addition, sometimes he will press 
the button too early and sometimes too late.

Example 2: Measuring displacement of a 
pendulum
Fatima is asked to measure the maximum displacement of 
a pendulum bob as it oscillates, as shown in Figure P1.7.  
She uses a ruler calibrated in millimetres. She argues 
that she can measure the displacement to the nearest 
millimetre. Joanne, however, correctly argues that she can 
only measure it to the nearest two millimetres, as not only 
is there the uncertainty at either end (0.5 mm) but she also 
has to judge precisely the point at which the bob is at its 
greatest displacement, which adds an extra millimetre to 
the uncertainty.

2	 Look at Figure P1.5 on page 242. Draw similar 
diagrams to represent:
a	 a target where the holes are both precise and 

accurate
b	 a target where the holes are neither precise nor 

accurate.

3	 The position of the holes in Figure P1.5 on  
page 242 represents attempts at measuring the 
position of the centre of the circle. Which one 
shows more random error and which shows more 
systematic error?

x

Figure P1.7  Displacement of a pendulum bob.

QUESTIONS
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Repeating the readings – Repeat the reading several 
times. The uncertainty can then be taken as half of the 
range of the values obtained, in other words the smallest 
reading is subtracted from the largest and the result is 
halved. This method deals with random errors made in the 
readings but does not account for systematic errors. This 
method should always be tried, wherever possible, because 
it may reveal random errors and gives an easy way to 
estimate the uncertainty. However, if the repeated readings 
are all the same, do not think that the uncertainty is zero. 
The uncertainty can never be less than the value you 
obtained by looking at the smallest scale division. 

Which method should you actually use to estimate the 
uncertainty? If possible, readings should be repeated and 
the second method used. But if all the readings are the 
same, you have to try both methods!

The uncertainty in using a stopwatch is something 
of a special case as you may not be able to repeat the 
measurement. Usually the smallest division on a stopwatch 
is 0.01 s, so can you measure a time interval with this 
uncertainty? You may know that your own reaction time 
is larger than this and is likely to be at least 0.1 s. The 
stopwatch is recording the time when you press the switch 
but this is not pressed at exactly the correct moment. If 
you do not repeat the reading then the uncertainty is likely 
to be at least 0.1 s, as shown in Figure P1.7. If several people 
take the reading at the same time you are likely to see that 
0.01 s is far too small to be the uncertainty. 

Even using a digital meter is not without difficulties. 
For example if a digital ammeter reads 0.35 A then, 
without any more information, the uncertainty is ± 0.01 A, 
the smallest digit on the meter. But if you look at the 
handbook for the ammeter you may well find that the 
uncertainty is ± 0.02 or 0.03 A (although you cannot be 
expected to know this).

300

flexible joint

pivot
counter 
balance

300
200

100 0

standard 
200 g mass

200
100

0grams grams

Figure P1.8  The scales on a lever-arm balance. 

4	 Figure P1.8 shows a lever-arm balance, initially 
with no mass in the pan and then with a standard 
200 g mass in the pan.

	 Explain what types of errors might arise in using 
this equipment.

5	 Estimate the uncertainty when a student 
measures the length of a room using a steel tape 
measure calibrated in millimetres.

6	 Estimate the uncertainty when a girl measures 
the temperature of a bath of water using the 
thermometer in Figure P1.9.

Figure P1.9  For Question 6. 

7	 A student is asked to measure the wavelength 
of waves on a ripple tank using a metre rule 
which is graduated in millimetres. Estimate the 
uncertainty in his measurement.

8	 Estimate the uncertainty when a student 
attempts to measure the time for a single swing of 
a pendulum.

9	 What is the average value and uncertainty in the 
following sets of readings? All are quoted to be 
consistent with the smallest scale division used.
a	 20.6, 20.8
b	 20, 30, 36
c	 0.6, 1.0, 0.8, 1.2
d	 20.5, 20.5

0 10 20 30 40 50 °C

QUESTIONS
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	10	 The depth of water in a bottle is measured as 
24.3 cm, with an uncertainty of 0.2 cm. (This 
could be written as 24.3 ± 0.2 cm.) Calculate the 
percentage uncertainty in this measurement.

	11	 The angular amplitude of a pendulum is 
measured as 35 ± 2°.
a	 Calculate the percentage uncertainty in the 

measurement of this angle.
b	 The protractor used in this measurement was 

calibrated in degrees. Suggest why the user 
only feels confident to give the reading to 
within 2°.

	12	 A student measures the potential difference 
across a battery as 12.4 V and states that his 
measurement has a percentage uncertainty of 
2%. Calculate the absolute uncertainty in his 
measurement.

uncertainty is 0.2 s. Then we have:

percentage uncertainty = uncertainty
measured value

 × 100%

	 = 0.2
1.4

 × 100% = 14%

This gives a percentage uncertainty of 14%. We can show 
our measurement in two ways:

■■ with absolute uncertainty:  
time for a single swing = 1.4 s ± 0.2 s 

■■ with percentage uncertainty:  
time for a single swing = 1.4 s ± 14%

(Note that the absolute uncertainty has a unit whereas the 
percentage uncertainty is a fraction, shown with a % sign.)

A percentage uncertainty of 14% is very high. This 
could be reduced by measuring the time for 20 swings. In 
doing so the absolute uncertainty remains 0.2 s (it is the 
uncertainty in starting and stopping the stopwatch which is 
the important thing here, not the accuracy of the stopwatch 
itself), but the total time recorded might now be 28.4 s.

percentage uncertainty = 0.2
28.4

 × 100% = 0.7%

So measuring 20 oscillations rather than just one reduces 
the percentage uncertainty to less than 1%. The time for 
one swing is now calculated by dividing the total time by 
20, giving 1.42 s. Note that, with a smaller uncertainty, 
we can give the result to 2 decimal places. The percentage 
uncertainty remains at 0.7%:

time for a single swing = 1.42 s ± 0.7%

1	 A length is measured five times with a ruler whose 
smallest division is 0.1 cm and the readings obtained, 
in cm, are 22.9, 22.7, 22.9, 23.0, 23.1. What is the 
reading obtained and the uncertainty?

	 Step 1  Find the average by adding the values and 
dividing by the number of values:

	
22.9 + 22.7 + 22.9 + 23.0 + 23.1

5  = 22.92 cm

	 This is written to 4 significant figures. At this stage 
you are not sure how many figures to write in the 
answer.

	 Step 2  The maximum value is 23.1 and the 
minimum value is 22.7. Use these values to find half 
the range.

	 half the range = 
23.1 − 22.7

2  = 0.2 cm

	 Step 3  Check that the uncertainty calculated in Step 
2 is larger than the smallest division you can read on 
the scale. 

	 Step 4  Write down the average value, the 
uncertainty to a reasonable number of significant 
figures and the unit. Obviously the last digit in 
22.92 is meaningless as it is much smaller than the 
uncertainty; it should not be written down.

	 the final value is 22.9 ± 0.2 cm

	 You do not usually write down the final value of the 
answer to a greater number of decimal places than 
the uncertainty. Uncertainties are usually quoted to 
1 or perhaps 2 significant figures. QUESTIONS

WORKED EXAMPLE

Percentage uncertainty
The uncertainties we have found so far are sometimes 
called absolute uncertainties, but percentage uncertainties 
are also very useful. 

The percentage uncertainty expresses the absolute 
uncertainty as a fraction of the measured value and is 
found by dividing the uncertainty by the measured value 
and multiplying by 100%.

percentage uncertainty = uncertainty
measured value

 × 100%

For example, suppose a student times a single swing of a 
pendulum. The measured time is 1.4 s and the estimated 
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Length of wire / cm Current / A 	 1	  / A−1
	 current

10.3 0.682 1.47

19.0 0.350 2.86

Table P1.1  A typical results table.

Analysing results
When you have obtained your results the next thing to do 
is to analyse them. Very often this will be done by plotting 
a graph.

You may be asked to plot a graph in a particular way 
however, the general rule is that the variable you control 
(the independent variable) is plotted on the x-axis and 
the variable which that changes as a result (the dependent 
variable) is plotted on the y-axis.

In the example in Table P1.1, the length of the wire 
would be plotted on the x-axis and the current 
(or 1

current
) would be plotted on the y-axis.

You should label your axes with both the quantities 
you are using and their units. You should then choose 
your scales to use as much of the graph paper as possible. 
However, you also need to keep the scales simple. Never 
choose scales which are multiples of 3, 7, 11 or 13. Try and 
stick to scales which are simple multiples of 1, 2 or 5.

Plot your points carefully using small crosses; dots tend 
to disappear into the page and larger dots become blobs, 
the centre of which is difficult to ascertain.

Recording results
It is important that you develop the skill of recording 
results in a clear and concise manner.

Generally, numerical results will be recorded in a table. 
The table should be neatly drawn using a ruler and each 
heading in the table should include both the quantity 
being measured and the unit it is measured in.

Table P1.1 shows how a table may be laid out. The 
measured quantities are the length of the wire and the 
current though it; both have their units included. Similarly 
the calculated quantity, 1

current
, is included and this too 

has a unit, A−1.
When recording your results, you need to think once 

more about the precision to which the quantities are 
measured. In the example in Table P1.1, the length of the 
wire might be measured to the nearest millimetre and the 
current might be measured to the nearest milliampere.

Note how ‘.0’ is included in the second result for the 
length of the wire, to show that the measurement is to the 
nearest millimetre, not the nearest centimetre. Similarly 
the zero after the 0.35 shows that it is measured to the 
nearest milliampere or 1

1000 of an ampere.
The third column is calculated and should show the 

same number of significant figures, or one more than 
the quantity (or quantities) it is calculated from. In this 
example the current is measured to three significant 
figures so the inverse of the current is calculated to three 
significant figures.

	13	 A ball is allowed to roll down a ramp from different 
starting points. Figure P1.10 shows the apparatus 
used. The ramp is placed at a fixed height above the 
floor. You are asked to measure the vertical height h 
of the starting point above the bottom of the ramp 
and the horizontal distance d the ball travels after it 
leaves the ramp.

		  You are also asked to find the square of the 
horizontal distance the ball travels after it leaves 
the ramp.

		  Table P1.2 shows the raw results for the 
experiment. Copy and complete the table.

h / cm d / cm d 2 / 
1.0 18.0

2.5 28.4

4.0 35.8

5.5 41.6

7.0 47.3

9.0 53.6

Table P1.2  For Question 13. 

ball’s flight path

h

d
Figure P1.10  For Question 13.

QUESTION
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Curves and tangents
You also need to develop the skill of drawing smooth curves 
through a set of points, and drawing tangents to those 
points. When drawing curves you need to draw a single 
smooth curve, without any jerks or feathering. As with a 
straight line, not every point will lie precisely on the curve, 
and there should be a balance of points on either side.

In the first graph of Figure P1.13, the student has joined 
each of the points using a series of straight lines. This 
should never be done. The second graph is much better, 
although there is some feathering at the left-hand side, as 
two lines can be seen. The third graph shows a well-drawn 
curve.

Many, but not all, graphs you meet will be straight 
lines. The points may not all lie exactly on the straight 
line and it is your job to choose the best fit line. Choosing 
this line is a skill which you will develop through the 
experience of doing practical work.

Generally, there should be equal points either side 
of the line (but not three on one side at one end and 
three on the other at the other end). Sometimes all the 
points, bar one, lie on the line. The point not on the line 
is often referred to as an anomalous point, and it should 
be checked if possible. If it still appears to be off the 
line it might be best to ignore it and use the remaining 
points to give the best line. It is best to mark it clearly as 
‘anomalous’.

In Figure P1.11, the line chosen on the first graph is too 
shallow. By swinging it round so that it is steeper, it goes 
closer to more points and they are more evenly distributed 
above and below the line.
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Graph 3

Figure P1.11 

Figure P1.12 

Figure P1.13 

Deductions from graphs
There are two major points of information that can be 
obtained from straight-line graphs: the gradient and the 
intercept with the y-axis. When measuring the gradient 
a triangle should drawn, as in Figure P1.12, using at least 
half of the line that has been drawn.

gradient = change in y
change in x

 = Δy
Δx

In the mathematical equation y = mx + c, m is equal to the 
gradient of the graph and c is the intercept with the y-axis. 
If c is equal to zero, the graph passes through the origin, 
the equation becomes y = mx and we can say that y is 
proportional to x.

	14	 a	� Use your results from Question 13 to plot a 
graph of the height h from which the ball is 
released against the square of the horizontal 
distance d2 it travels before it hits the ground. 
Draw the best fit line.

b	 Determine the gradient of the line on your 
graph and the intercept with the y-axis. 
Remember, both the gradient and the 
intercept have units; these should be included 
in your answer.

QUESTION
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Criterion 1
A simple approach is to assume that the percentage 
uncertainty in the value of k is about equal to the 
percentage uncertainty in either x or y; choose the larger 
percentage uncertainty of x or y. 

You first look at the percentage uncertainty in both x 
and y and decide which is bigger. Let us assume that the 
larger percentage uncertainty is in x. Your stated criterion 
is then that ‘if the difference in the percentage uncertainty 
in the two values of k is less than the percentage 
uncertainty in x, then the readings are consistent with the 
relationship’.

If the % difference in k values is less than the % 
uncertainty in x (or y), the readings are consistent with  
the relationship.

Criterion 2
Another criterion is to state that the k values should be the 
same within 10% or 20%, depending on the experiment 
and the uncertainty that you think sensible. It is helpful if 
the figure of 10% or 20% is related to some uncertainty in 
the actual experiment.

Whatever criterion you use, it should be stated clearly 
and a clear conclusion given. The procedure to check 
whether two values of k are reasonably constant is as 
follows: 

■■ Calculate two values of the constant k. The number of 
significant figures chosen when writing down these values 
should be equal to the least number of significant figures 
in the data used. If you are asked to justify the number of 
significant figures you give for your value of k, state the 
number of significant figures that x and y were measured 
to and that you will choose the smallest. Do not quote your 
values of k to 1 significant figure to make them look equal 
when x and y were measured to 2 significant figures.

■■ Calculate the percentage difference in the two calculated 
values of k. It is worthwhile using one more significant figure 
in each actual value of k than is completely justified in this 
calculation.

■■ Compare the percentage difference in the two values of k 
with your clearly stated criterion. You could compare your 
percentage difference in k values with the larger of the 
percentage differences in x and y. 

Testing a relationship
The readings from an experiment are often used to test a 
relationship between two quantities, typically whether two 
quantities are proportional or inversely proportional.

You should know that if two quantities y and x are 
directly proportional:

■■ the formula that relates them is y = kx, where k is a constant 
■■ if a graph is plotted of y against x then the graph is a straight 

line through the origin and the gradient is the value of k.

If the two quantities are inversely proportional then  
y = k/x and a graph of y against 1/x gives a straight line 
through the origin.

These statements can be used as a basis for a test. If a 
graph of y against x is a straight line through the origin, 
then y and x are directly proportional. If you know the 
values of y and x for two points, you can then calculate 
two values of k with the formula k = y/x and see whether 
these two values of k are actually the same. But what if the 
points are not exactly on a straight line or the two values 
of k are not exactly the same – is the relationship actually 
false or is it just that errors caused large uncertainties in 
the readings? 

In Chapter P2 we will look at how to combine 
the uncertainties in the values for y and x to find an 
uncertainty for k. However, you can use a simple check 
to see whether the difference in the two values of k may 
be due to the uncertainties in the readings. For example, 
if you found that the two values of k differ by 2% but the 
uncertainties in the readings of y and x are 5%, then you 
cannot say that the relationship is proved false. Indeed, 
you are able to say that the readings are consistent with the 
relationship.

You should first write down a criterion for checking 
whether the values of k are the same. This criterion is just a 
simple rule you can invent for yourself and use to compare 
the two values of k with the uncertainties in the readings. 
If the criterion is obeyed, you can then write down that the 
readings are consistent with the relationship.
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2	 A student investigates the depth D of a crater made when 
ball-bearings of different diameters d are dropped into 
sand. He drops two ball bearings from the same height 
and measures the depth of the craters using a 30 cm ruler. 
The results are shown in Table P1.3.

Diameter of ball 
bearing 
d / mm

Depth of the crater 
D / mm D/d

5.42 ± 0.01 36 ± 2 6.64

3.39 ± 0.01 21 ± 2 6.19

Table P1.3  For Worked example 2. 

	 It is suggested that the depth D of the crater is directly 
proportional to the diameter d of the ball-bearing, that is: 

	 D = kd or 
D
d

 = k 

	 Do the readings support this hypothesis?

	 Step 1  Calculate the values of k =  
D
d  

. These values are 

	 shown in the third column in Table P1.3, although they 
should only be given to 2 significant figures as values of 
D are given to 2 significant figures and values of d to 3 
significant figures. The more precise values for k are to be 
used in the next step.

	 Step 2  Calculate the percentage difference in the k 
values. The percentage difference is:

	 0.45
6.19

 × 100% = 7.2%

	 So the k values differ by 7% of the smaller value.

	 Step 3  State a criterion and check it.

	 ‘My criterion is that, if the hypothesis is true, then the 
percentage difference in the k values will be less than the 
percentage uncertainty in D. I chose D as it obviously has 
the higher percentage uncertainty.’

	 The uncertainty in the smaller measurement of D can be 
calculated as:

	 uncertainty in D =   2
21 

 × 100% = 9.5%

	 The percentage difference in the k values is less than the 
uncertainty in the experimental results; therefore the 
experiment is consistent with the hypothesis.

	 Of course we cannot say for sure that the hypothesis is 
correct. To do that we would need to greatly reduce the 
percentage uncertainties.

3	 A student obtains data shown in Table P1.4.

x / cm d / cm
2.0 3.0

3.5 8.0

Table P1.4  For Worked example 3. 

	 The first reading of x was found to have an uncertainty 
of ± 0.1. Do the results show that d is proportional to x?

	 Step 1  Calculate the ratio of  
d
x  

 in both cases:

	   
d
x  

  
1
 = 1.50	   

d
x  

  
2
 = 2.29

	 Step 2  Calculate how close to each other the two ratios 
are:

	 2.29 − 1.50 = 0.79

	 So the two values of   
d
x  

   are  0.79
1.5

  = 53% different.

	 Step 3  Compare the values and write a conclusion.

	 The uncertainty in the first value of x is 5% and, since the 
percentage difference between the ratios is 53% is much 
greater, the evidence does not support the suggested 
relationship.

	15	 A student obtains the following data for two 
variables T and m (Table P1.5).

T / s m / kg
4.6 0.90

6.3 1.20

Table P1.5  Data for Question 15. 

		  The first value of T has an uncertainty of ± 0.2 s. Do 
the results show that T is proportional to m?

	16	 A student obtains the following values of two 
variables r and t (Table P1.6).

r / cm t / s
6.2 4.6

12.0 6.0

Table P1.6  Data for Question 16. 

		  The first value of r has an uncertainty of ± 0.2 cm, which 
is much greater than the percentage uncertainty in t. 
Do the results show that t 2 is proportional to r ?

QUESTIONS

WORKED EXAMPLES



250

Cambridge International AS Level Physics

It is worth making some points regarding these 
suggestions.
1	 This is a simple idea but it is important to explain how 

the extra results are to be used. In this case a graph 
	 is suggested – alternatively the ratio D

d
 could be 

calculated for each set of readings.
2	 The problem is clearly explained. It is not enough to 

just say that the depth is difficult to measure.
3	 It is not enough to just say ‘parallax errors’. We need 

to be specific as to where they might occur. Likewise, 
make sure you make it clear where you look from when 
you suggest a cure.

4	 There is no evidence that this will affect the crater 
depth, but it is a point worthy of consideration.

5	 An interesting point: does the crater depth include 
the lip or is it just to the horizontal sand surface? 
Consistency in measurement is what is needed here.

Experiment 2: Timing with a stopwatch
Many years ago, Galileo suggested that heavy and light 
objects take the same time to fall to the ground from the 
same height, as illustrated in Figure P1.14. Imagine that 
you want to test this hypothesis. 

Identifying limitations in 
procedures and suggesting 
improvements
No experiment is perfect and the ability to see weaknesses 
in the experimental setup and the techniques used is an 
important skill. You should also take the opportunity to 
think of ways to improve the experimental technique, 
thereby reducing the overall percentage uncertainty.

In this section, we will look at five experiments and 
discuss problems which might arise and the improvements 
that might be made to overcome them. It will help if you 
try out some of the experiments yourself so that you 
get a feel for the methods described. The table for each 
experiment is a summary of ideas that you might use in 
your answer.

Experiment 1: Ball bearings and craters
In Worked example 2, the student dropped a ball bearing 
of diameter d into sand and measured the depth D of the 
crater produced. He dropped two ball bearings of different 
diameters from the same height and measured the depth 
of the crater using a 30 cm ruler. Table P1.7 suggests some 
of the problems with the simple method used, together 
with some improvements.

old idea Galileo’s idea
Figure P1.14  It was reputed that Galileo dropped two different 
masses from the top of the Leaning Tower of Pisa to prove his 
idea, but this is now thought unlikely to have taken place. 

This is an experiment you can do yourself with two 
objects and a stopwatch, or even a digital wrist watch or a 
cell phone with a timing app. Drop two different objects, 
for example two stones, and measure the time they take to 
fall the same distance to the ground.

Of course the times you obtain are likely to be 
different. Does this prove Galileo wrong? You can test 
the relationship and establish whether your readings 
are consistent with his hypothesis. However, if you 
improve the experiment and reduce the uncertainties, the 
conclusion will be much more useful.

Suggestion Problem Improvement
1 ‘Two results are not 

enough to draw a valid 
conclusion.’

‘Take more results 
and plot a graph of D 
against d.’

2 ‘The ruler is too wide 
to measure the depth 
of the crater.’

‘Use a knitting needle 
and mark the sand 
level on the needle 
and then measure with 
a ruler.’

3 ‘There may be a 
parallax error when 
measuring the top 
level of the crater.’

‘Keep the eye parallel 
to the horizontal level 
of the sand, or use a 
stiff card.’

4 ‘It is difficult to release 
the ball bearing 
without giving it a 
sideways velocity, 
leading to a distorted 
crater.’

‘Use an electromagnet 
to release the ball.’

5 ‘The crater lip is of 
varying height.’

‘Always measure to the 
highest point.’

Table P1.7  Suggestions for improving Experiment 1. 
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When you consider improving an experiment, first 
consider any practical difficulties and possible sources of 
inaccuracy. Write them down in detail. Do not just write, 
for example, ‘reaction time’ or ‘parallax error’. It is always 
a good idea to start with the idea that more readings need 
to be taken, possibly over a greater range (for example, in 
this case, if the masses of the stones were almost equal). 
Table P1.8 gives other possibilities.

Problem Improvement
‘Taking readings for just two masses was not 
enough.’

‘I should use a great range of different masses and plot a graph of the average 
time to fall to the ground against the mass of the object.’

‘It was difficult to start the stopwatch at the same 
instant that I dropped the stone and to stop it 
exactly as it hit the ground. I may have been late 
because of my reaction time.’

‘Film the fall of each stone with a video camera which has a timer in the 
background. When the video is played back, frame by frame, I will see the time 
when the ball hits the ground on the timer.’ 
(Alternatively you can use light gates connected to a timer to measure the time 
electronically. You should draw a diagram, explaining that the timer starts when 
the first light gate is broken and stops when the second is broken.)

‘My hand was not steady and so I may not have 
dropped the stones from exactly the same height 
each time.’

‘Use iron objects which hang from an electromagnet. When the current in the 
electromagnet is switched off, the object falls.’ (A diagram would help – see 
Figure P.15.)

‘The heavier stone was larger in size and it was 
important that the bottom of each stone started 
at the same height. There may have been parallax 
error.’

‘Clamp a metre rule vertically and start the bottom of each stone at exactly the 
top of the ruler each time. To avoid parallax error, I will make sure my line of 
sight is horizontal, at right angles to the rule.’ (A diagram will show this clearly – 
see Figure P1.15.)

‘The times that I measured were very short – not 
much greater than my reaction time – so reaction 
time had a great effect.’

‘Increase the distance of fall so that the times are larger. This will make the 
uncertainty in each time measurement smaller in proportion to the time being 
measured.’

Table P1.8  Suggestions for improving Experiment 2. 

electromagnet
holding iron ball

set square
to make
rule vertical

line of sight

eye

Figure P1.15  Using an electromagnet to release iron objects. 
The line of sight is clearly shown.

	17	 Use a stopwatch and a rule to measure the 
average speed as an object falls from a table to 
the ground. What are the difficulties and how 
might they be reduced? Some of the suggestions 
will be the same as those above but you should 
also consider difficulties in measuring the 
distance to the ground and how they can be 
avoided. Remember, rules have battered ends 
and the ends may not be at 0 and 100 cm.

Experiment 3: Timing oscillations
In physics, the study of oscillations is of great importance. 
Indeed, the observation of a pendulum led Galileo to 
study time intervals and allowed pendulum clocks to be 
developed. 

One skill you will need to develop is finding the time 
for an oscillation. Figure P1.16 shows a simple pendulum 
and one complete oscillation. The pendulum is just a small 
weight, the bob, which hangs on a string. 

Figure P1.16 shows that one complete oscillation can 
be measured in two ways. Which way is better? In fact the 
second way is better. This is because it is difficult to judge 
exactly when the pendulum bob is at the end of its swing.  
It is easier to start timing when the bob is moving quickly 
past a point; this happens in the middle of the swing. To 
time from the middle of the swing you should use a  

QUESTION
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Experiment 4: Using force meters 
You need to be able to read instruments, estimating the 
uncertainty, looking for sources of error and trying to 
improve their use. One such instrument is a force meter or 
newton-meter, shown in Figure P1.17.

In this experiment, the block is pulled using the force 
meter to find the force F needed to make a block just start 
to move. An extra mass is added on top of the block to see 
whether the relationship F = km is obeyed, where m is the 
total mass of the block and k is a constant.

fiducial mark. This can be a line on the bench underneath 
the bob at the centre of the swing, or it can be another 
object in the laboratory which appears to be in line with the 
bob when it hangs stationary, as seen from where you are 
standing. As long as you do not move your position, every 
time the bob passes this point it passes the centre.

Another way to reduce the uncertainty in the time 
for one oscillation is to time more than one swing, as 
explained above in the section on percentage uncertainty.

A simple practical task is to test the hypothesis that 
the time for one oscillation T is related to the length l of 
a simple pendulum by the formula T 2 = kl, where k is a 
constant. 

What difficulties would you face and what are possible 
improvements? Table P1.9 gives some possibilities.

	18	 Hang a mass from a spring or from a rubber 
band. Use a stopwatch to time the mass as it 
oscillates up and down. Measure the time for just 
one oscillation, the time for 10 oscillations and 
the time for 20 oscillations. Repeat each reading 
several times. Use your readings to find the time 
for one complete oscillation and the uncertainty 
in each time. Draw up a table to show the 
problems of such measurements and how to 
reduce them.

pendulum bob

CA
B

Figure P1.16  One complete oscillation is either from A to C 
and then back to A, or from B to C then back to B, then to A 
and back to B, as shown. 

Problem Improvement
‘Taking readings for just two lengths was not enough.’ ‘Use more than two lengths and plot a graph of the average time squared 

against the length of the string.’

‘It was difficult to judge the end of the swing.’ ‘Use a fiducial mark at the centre of the oscillation as the position to start 
and stop the stopwatch.’
‘Use an electronic timer placed at the centre of the oscillation to measure 
the time.’
‘Make a video of the oscillation with a timer in the background and play it 
back frame by frame.’

‘The oscillations died away too quickly.’ ‘Use a heavier mass which swings longer.’

‘The times were too small to measure accurately, as my 
reaction time was a significant fraction of the total time.’

‘Use longer strings.’
‘Time 20 rather than 10 oscillations.’

‘It was difficult to measure the length to the centre of 
gravity of the weight accurately.’

‘Use a longer string so any errors are less important.’
‘Measure the length to the top of the weight and use a micrometer to 
measure the diameter of the bob and add on half the diameter to the 
length of the string.’

Table P1.9  Suggestions for improving Experiment 3.

weight newton-meter

block

0 1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

8.
0

9.
0

10

Figure P1.17  A newton-meter, just before it pulls a block 
along the bench.

QUESTION
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Look closely at Figure P1.17. When reading the meter, 
the uncertainty is the smallest scale division on the meter, 
unless one can reasonably read between the markings. 
This is difficult and so an uncertainty of 0.5 N, the smallest 
scale division, is reasonable. 

Another problem in using the meter is that it reads less 
than zero before it is pulled. It needs a small force to bring 
the meter to zero. This is a zero error and all the actual 
readings will be too large by the same amount. This is 
probably because the meter was adjusted to read zero when 
hanging vertically and it is now being used horizontally. 

power
source

crocodile
clip metre rule

V

10 20 30 40 50 60 70 80 90

A

	19	 A laboratory thermometer can be used to 
measure an increase in temperature.
a	 Suggest a value for the uncertainty in such 

a reading. (You may need to look at some 
different thermometers.)

	 If you grip the bulb of the thermometer gently 
in your fingers, the reading rises to a new 
value. The reading will be different depending 
on whether you cover the bulb entirely or only 
partially with your fingers.

b	 Describe how you would test whether the 
temperature rise is proportional to the area 
of the bulb covered by your fingers You can 
take the surface area of the bulb to be 1 cm2 
and when you cover half of the bulb the area 
covered is 0.5 cm2. The exact value of the 
surface area is not important; just the ratio  
is important.

c	 Suggest difficulties with this experiment, and 
how it might be improved. One problem with 
a thermometer is that it takes time for the 
reading to rise. What can you do about this?

Problem Improvement
‘Taking readings for just two masses was not 
enough.’

‘Use more than two masses and plot a graph of the force against the mass.’

‘It was difficult to zero the newton-meter used 
horizontally.’

‘Use a force sensor and computer.’
‘Use a pulley and string to connect a tray to the block. Then tip sand onto a tray 
until the block starts to move. The weight of the sand and tray is then the force.’

‘The reading of F was very low on the scale and 
gave a large percentage uncertainty.’

‘Use heavier masses on top of the block.’

‘The block starts to move suddenly and it is difficult 
to take the reading as this happens.’

‘Video the experiment and play back frame by frame to see the largest force.’
‘Use a force sensor and computer.’

‘Different parts of the board are rougher than 
others.’

‘Mark round the block with a pencil at the start and put it back in the same place 
each time.’

Table P1.10  Suggestions for improving Experiment 4.

Fortunately the meter can be adjusted to read zero before 
starting to pull.

Table P1.10 describes the problems which may be 
encountered with this experiment, together with suggested 
improvements.

Experiment 5: Electrical measurements
Electrical experiments have their own problems. Figure 
P1.18 shows an apparatus used to test the hypothesis 
that the resistance R of a wire is related to its length l by 
the formula R = kl, where k is a constant. The current is 
kept constant and the voltmeter reading is taken at two 
different values of l, for l = 0.30 m and 0.50 m.

What problems are likely to arise when using 
this apparatus? Table P1.11 identifies some possible 
problems with this experiment, and some suggestions for 
improvement.

Figure P1.18  Apparatus used to check the hypothesis R = kl. 

QUESTION
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Problem Improvement
‘Taking readings for just two lengths was not enough.’ ‘Use more than two lengths and plot a graph of the voltmeter 

reading against the length.’
‘Calculate more than just two values of k.’

‘Diff icult to measure the length of the wire as the clips have width 
and I don’t know where inside they grip the wire.’

‘Use narrower clips.’
‘Solder the contacts onto the wire.’

‘The scale is not sensitive enough and can only measure to 0.05 V.’ ‘Use a voltmeter that reads to 0.01 V.’
‘Use a digital voltmeter.’

‘The values of voltage are small, particularly at 0.30 m.’ ‘Use a larger current so that when l = 0.50 m the voltmeter reading 
is at the top of the scale.’

‘The voltmeter reading fluctuates because of contact resistance.’ ‘Clean the wires with wire wool first.’

‘Other factors may have changed the resistance; for example, the 
temperature may have increased because of the current.’

‘Wait a long time until the wire has reached a constant 
temperature.’
‘Use smaller currents, but with a more sensitive voltmeter.’

Table P1.11 Suggestions for improving Experiment 5. 

End-of-chapter questions
1 What is the uncertainty in the following sets of readings? All of them are written down to the smallest 

division on the instrument used in their measurement.
a 24.6, 24.9, 30.2, 23.6 cm [1]
b 2.66, 2.73, 3.02 s [1]
c 24.0, 24.0, 24.0 g [1]

2 Electrical experiments usually involve the reading of meters such as the voltmeters shown in Figure P1.19.
a What is the reading shown by each voltmeter, and the uncertainty in each reading? [3]

Figure P1.19 Two voltmeter scales – for End-of-chapter Question 2. 

b The voltmeters show the readings obtained when they were connected across two wires which were 
identical apart from their diff erent lengths. The current in each wire was 0.500 A and the length l of 
the wire was 30.0 cm in the right diagram and 50.0 cm in the left  diagram.

 Use the scale readings to test the hypothesis that the resistance R of the wire is proportional to length l. 
Consider the eff ect of the uncertainties on your conclusion. [4]

1

V
1.50.5

20

1

V
1.50.5

20
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3 The apparatus shown in Figure P1.20 can be used to test the hypothesis that T, the time taken for a ball 
to roll down a plane from rest, is related to the distance s by the formula T 2 = ks, where k is a constant. 
The ball is timed using a stopwatch over two diff erent values of s.

Figure P1.20 For end-of-chapter Question 3. 

 Suggest problems with the experiment and how they might be overcome. You should consider problems 
in measuring the distance as well as the time. Also note what happens to the ball; it may not roll in the 
way that you expect. [8]

 Questions 4-6 are designed to illustrate some aspects of practical questions. They are not formal practical 
questions as, ideally, you should perform the experiment yourself and take some readings. This helps 
you to see the problems.

4 An experiment explores the relationship between the period of a vibrating spring and the mass m in a 
pan holder. The student is instructed to set up the apparatus as in Figure P1.21, with a mass of 200 g in 
the pan. He is then told to move the pan downwards by approximately 1 cm and to release it so that it 
vibrates in a vertical direction.

Figure P1.21 For end-of-chapter Question 4. 

 The student is asked to record the time taken for 20 oscillations of the spring, and then to repeat the 
procedure, using masses between 20 g and 200 g until he has six sets of readings. Columns are provided 
in the table for    m and T, the period of the pendulum.

s

clamp

spring

mass

pan to hold
masses
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 Table P1.12 shows the readings taken by a student with the diff erent masses.

Mass / g Time for 20 
oscillations / s m T

20 12.2

50 15.0

100 18.7

150 21.8

200 24.5

190 24.0

Table P1.12 For end-of-chapter Question 4.

a Copy the table and include values for    m and T. [2]
b Plot a graph of T on the y-axis against    m on the x-axis. Draw the straight line of best fit. [4]
c Determine the gradient and y-intercept of this line.  [2]
d The quantities T and m are related by the equation
 T = C + k    m 
 where C and k are constants.
 Find the values of the two constants C and k. Give appropriate units. [2]

5 A student releases a toy car to roll down a ramp, as shown in Figure P1.22. He measures the 
distance l from the middle of the car as it is released to the bottom of the ramp and the distance 
s travelled along the straight section before the car stops. He also measures the time t taken to 
travel the distance s. He then repeats the experiment using a diff erent value of l.

Figure P1.22 For End-of-chapter Question 5. 

 The student obtained readings with l = 40 and 60 cm, taking each reading for s and t twice. The readings were:

 l = 40.0 cm: values for s were 124 and 130 cm; values for t were 4.6 and 4.8 s

 l = 60.0 cm: values for s were 186 and 194 cm; values for t were 4.9 and 5.2 s.

a For the smaller value of l, obtain a value for:
i the average value of s [1]
ii the absolute and percentage uncertainty in the value of s [2]
iii the average value of t [1]
iv the absolute and percentage uncertainty in the value of t. [2]

l

s
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b i  For both values of l, calculate the average speed v of the car along the straight section of track 
using the relationship v = s/t. [1]

ii Justify the number of significant figures that you have given for your values of v. [1]
c i  It is suggested that s is proportional to l. Explain whether the readings support this relationship. [2]

ii (HARDER) It is suggested that v2 is proportional to l. Explain whether the readings support this 
relationship. [2]

d Describe four sources of uncertainty or limitations of the procedure for this experiment. [4]
e Describe four improvements that could be made to this experiment. You may suggest the use of other 

apparatus or diff erent procedures. [4]

6 The apparatus in Figure P1.23 shows a resistor in some water. 

Figure P1.23 Apparatus for end-of-chapter Question 6. 

 A student measures the rise in temperature θ of the water in 100 s using two diff erent values of voltage.

 The student wrote:

 ‘When the voltage was set at 6.0 V the rise in temperature of the water in 100 s was 14.5 °C. The voltmeter 
reading decreased by about 0.2 V during the experiment and so the final voltmeter reading was 5.8 V.

 ‘The reading fluctuated from time to time by about 0.2 V. The smallest scale division on the thermometer 
was 1 °C but I could read it to 0.5 °C. I did not have time to repeat the reading.

 ‘When the voltage was set at 12.0 V the rise in temperature in 100 s was 51.0 °C and the voltage was 
almost the same at the end but fluctuated by about 0.2 V.’
a Estimate the percentage uncertainty in the measurement of the first voltage. [1]
b It is suggested that θ is related to V according to the formula θ = kV 2, where k is a constant.

i Calculate two values for k. Include the units in your answer. [2]
ii Justify the number of significant figures you have given for your value of k. [1]
iii Explain whether the results support the suggested relationship. [1]

c Describe four sources of uncertainty or limitations of the procedure for this experiment. [4]
d Describe four improvements that could be made to this experiment. You may suggest the use of 

other apparatus or diff erent procedures.  [4]

variable power supply

beaker

crocodile clips

resistor
water

V



Chapter 17:
Circular motion

Learning outcomes
You should be able to:

■■ express angular displacement in radians
■■ solve problems using the concept of angular velocity
■■ describe motion along a circular path as due to 

a perpendicular force which causes a centripetal 
acceleration

■■ recall and use equations for centripetal acceleration 
and for centripetal force

258
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Moving in circles
The racing car in Figure 17.1 shows two examples of 
circular motion. The car’s wheels spin around the 
axles, and the car follows a curved path as it speeds 
round the bend.

Describing circular motion
Many things move in circles. Here are some examples:

■■ the wheels of a car or a bicycle
■■ the Earth in its (approximately circular) orbit round the Sun
■■ the hands of a clock
■■ a spinning DVD in a laptop
■■ the drum of a washing machine.

Sometimes, things move along a path that is part of a 
circle. For example, the car in Figure 17.1 is travelling 
around a bend in the road which is an arc of a circle.

Circular motion is different from the straight-line 
motion that we have discussed previously in our study of 
kinematics and dynamics in Chapters 1–6. However, we 
can extend these ideas of dynamics to build up a picture of 
circular motion.

Around the clock
The second hand of a clock moves steadily round the clock 
face. It takes one minute for it to travel all the way round 
the circle. There are 360° in a complete circle and  
60 seconds in a minute. So the hand moves 6° every 
second. If we know the angle θ through which the hand 
has moved from the vertical (12 o’clock) position, we can 
predict the position of the hand.

In the same way, we can describe the position of any 
object as it moves around a circle simply by stating the 
angle θ of the arc through which it has moved from its 
starting position. This is shown in Figure 17.2.

The angle θ through which the object has moved 
is known as its angular displacement. For an object 
moving in a straight line, its position was defined by its 
displacement s, the distance it has travelled from its starting 
position. The corresponding quantity for circular motion is 
angular displacement θ, the angle of the arc through which 
the object has moved from its starting position.

Figure 17.1  Circular motion: the car’s wheels go round in 
circles as the car itself follows a curved path. 

  θ = 0θ

Figure 17.2  To know how far an object has moved round the 
circle, we need to know the angle θ.

1	 a	� By how many degrees does the angular 
displacement of the hour hand of a clock 
change each hour?

b	 A clock is showing 3.30. Calculate the angular 
displacements in degrees from the 12.00 
position of the clock to:
i	 the minute hand
ii	 the hour hand.

QUESTION
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Angles in radians
When dealing with circles and circular motion, it is more 
convenient to measure angles and angular displacements 
in units called radians rather than in degrees. If an object 
moves a distance s around a circular path of radius r 
(Figure 17.3a), its angular displacement θ in radians is 
defined as follows:

angle (in radians) =  length of arc
radius

or	 θ = s
r

Since both s and r are distances measured in metres, 
it follows that the angle θ is simply a ratio. It is a 
dimensionless quantity. If the object moves twice as 
far around a circle of twice the radius (Figure 17.3b), its 
angular displacement θ will be the same.

θ  =  length of arc
radius

  =  2s
2r

  =  s
r

Defining the radian
An angle of one radian is defined as follows (see Figure 17.4):

One radian is the angle subtended at the centre of a circle 
by an arc of length equal to the radius of the circle.

2rr

2s
s

a b

θθ

1 radian

r r

Figure 17.3  The size of an angle depends on the radius 
and the length of the arc. Doubling both leaves the angle 
unchanged. 

An angle of 360° is equivalent to an angle of 2π radians. 
We can therefore determine what 1 radian is equivalent to 
in degrees.

	 1 radian = 360°
2π

or	 1 radian ≈ 57.3°
If you can remember that there are 2π rad in a full circle, 
you will be able to convert between radians and degrees:

■■ to convert from degrees to radians, multiply by 
2π

360°  or  
π

180°

■■ to convert from radians to degrees, multiply by 
360°
2π   or  

180°
π

Now look at Worked example 1.

Figure 17.4  The length of the arc is equal to the radius when 
the angle is 1 radian.

1	 If θ = 60°, what is the value of θ in radians?

	 The angle θ  is 60°. 360° is equivalent to 2π radians. 
Therefore:

	θ  =  60  ×  
2π

360

	 =  
π
3  = 1.05 rad

	 (Note that it is often useful to express an angle as a 
multiple of π radians.)

WORKED EXAMPLE

When we define θ in this way, its units are radians rather 
than degrees. How are radians related to degrees? If an 
object moves all the way round the circumference of the 
circle, it moves a distance of 2πr. We can calculate its 
angular displacement in radians:

θ  =  circumference
radius

  = 2πr
r

  =  2π

Hence a complete circle contains 2π radians. But we can 
also say that the object has moved through 360°. Hence:

360° = 2π rad
Similarly, we have:

180° = π rad	 90° = π
2

 rad

45° = π
4

 rad	 and so on
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Steady speed, changing velocity
If we are to use Newton’s laws of motion to explain 
circular motion, we must consider the velocity of an object 
going round in a circle, rather than its speed.

There is an important distinction between speed and 
velocity: speed is a scalar quantity which has magnitude 
only, whereas velocity is a vector quantity, with both 
magnitude and direction. We need to think about the 
direction of motion of an orbiting object.

2	 a	� Convert the following angles from degrees into 
radians: 30°, 90°, 105°.

b	 Convert these angles from radians to degrees: 
0.5 rad, 0.75 rad, π rad, π2 

rad.
c	 Express the following angles as multiples  

of π radians: 30°, 120°, 270°, 720°.

5	 Show that the angular velocity of the second hand 
of a clock is about 0.105 rad s−1.

6	 The drum of a washing machine spins at a rate of 
1200 rpm (revolutions per minute).
a	 Determine the number of revolutions per 

second of the drum.
b	 Determine the angular velocity of the drum.

3	 Explain why all the velocity arrows in Figure 17.5 are 
drawn the same length.

4	 A toy train travels at a steady speed of 0.2 m s−1 
around a circular track (Figure 17.6). A and B are  
two points diametrically opposite to one another on 
the track.
a	 Determine the change in the speed of the train as 

it travels from A to B.
b	 Determine the change in the velocity of the train  

as it travels from A to B.

A

v

v

v

B

C

0.2 ms–1

0.2 ms–1

A B

Figure 17.5  The velocity v of an object changes direction as it 
moves along a circular path. 

Figure 17.5 shows how we can represent the velocity of 
an object at various points around its circular path. The 
arrows are straight and show the direction of motion at 
a particular instant. They are drawn as tangents to the 
circular path. As the object travels through points A, B, C, 
etc., its speed remains constant but its direction changes. 
Since the direction of the velocity v is changing, it follows 
that v itself (a vector quantity) is changing as the object 
moves in a circle.

Angular velocity
As the hands of a clock travel steadily around the clock 
face, their velocity is constantly changing. The minute 
hand travels round 360° or 2π radians in 3600 seconds. 
Although its velocity is changing, we can say that its 
angular velocity is constant, because it moves through the 
same angle each second:

	angular velocity = angular displacement
time taken

	 ω = Δθ
Δt

We use the symbol ω (Greek letter omega) for angular 
velocity, measured in radians per second (rad s−1). For the 
minute hand of a clock, we have ω = 2π

3600
 ≈ 0.001 75 rad s−1.

Figure 17.6  A toy train travelling around a circular track – 
for Question 4. 

QUESTION

QUESTIONS

QUESTIONS
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Centripetal forces
When an object’s velocity is changing, it has acceleration. 
In the case of uniform circular motion, the acceleration is 
rather unusual because, as we have seen, the object’s speed 
does not change but its velocity does. How can an object 
accelerate and at the same time have a steady speed?

One way to understand this is to think about what 
Newton’s laws of motion can tell us about this situation. 
Newton’s fi rst law states that an object remains at rest 
or in a state of uniform motion (at constant speed in a 
straight line) unless it is acted on by an external force. In 
the case of an object moving at steady speed in a circle, we 
have a body whose velocity is not constant; therefore, there 
must be a resultant (unbalanced) force acting on it.

Now we can think about diff erent situations where 
objects are going round in a circle and try to fi nd the force 
that is acting on them.

■■ Consider a rubber bung on the end of a string. Imagine 
whirling it in a horizontal circle above your head (Figure 17.7). 
To make it go round in a circle, you have to pull on the string. 
The pull of the string on the bung is the unbalanced force, 
which is constantly acting to change the bung’s velocity as it 
orbits your head. If you let go of the string, suddenly there is 
no tension in the string and the bung will fly off  at a tangent 
to the circle.

■■ Similarly, as the Earth orbits the Sun, it has a constantly 
changing velocity. Newton’s first law suggests that there 
must be an unbalanced force acting on it. That force is the 
gravitational pull of the Sun. If the force disappeared, the 
Earth would travel off  in a straight line.

Relating velocity and angular velocity
Th ink again about the second hand of a clock. As it goes 
round, each point on the hand has the same angular 
velocity. However, diff erent points on the hand have 
diff erent velocities. Th e tip of the hand moves fastest; points 
closer to the centre of the clock face move more slowly.

Th is shows that the speed v of an object travelling 
around a circle depends on two quantities: its angular 
velocity ω and its distance from the centre of the circle r. 
We can write the relationship as an equation:

 speed = angular velocity × radius

 v = ωr
Worked example 2 shows how to use this equation.

7 The angular velocity of the second hand of a clock 
is 0.105 rad s−1. If the length of the hand is 1.8 cm, 
calculate the speed of the tip of the hand as it 
moves round.

8 A car travels around a 90° bend in 15 s. The radius 
of the bend is 50 m.
a Determine the angular velocity of the car.
b Determine the speed of the car.

9 A spacecraft  orbits the Earth in a circular path of 
radius 7000 km at a speed of 7800 m s−1. Determine 
its angular velocity.

2 A toy train travels around a circular track of radius 
2.5 m in a time of 40 s. What is its speed?

 Step 1 Calculate the train’s angular velocity ω. One 
circuit of the track is equivalent to 2π radians. The 
rain travels around in 10 s. Therefore:

ω  =  
2π
40  =  0.157 rad−1

 Step 2 Calculate the train’s speed:
v  =  ωr  = 0.157  ×  2.5  =  0.39 m s−1

 Hint: You could have arrived at the same answer by 
calculating the distance travelled (the circumference 
of the circle) and dividing by the time taken.

tension

In both of these cases, you should be able to see why 
the direction of the force is as shown in Figure 17.8. Th e 
force on the object is directed towards the centre of the 
circle. We describe each of these forces as a centripetal 
force – that is, directed towards the centre.

It is important to note that the word centripetal is 
an adjective. We use it to describe a force that is making 

Figure 17.7 Whirling a rubber bung.

WORKED EXAMPLE

QUESTIONS
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it follows that the acceleration of the object must be in the 
same direction as the change in the velocity – towards 
the centre of the circle. This is not surprising because, 
according to F = ma, the acceleration a of the object is in 
the same direction as the centripetal force F.

Acceleration at steady speed
Now that we know that the centripetal force F and 
acceleration are always at right angles to the object’s 
velocity, we can explain why its speed remains constant. 
If the force is to make the object change its speed, it must 
have a component in the direction of the object’s velocity; 
it must provide a push in the direction in which the object 
is already travelling. However, here we have a force at 90° 
to the velocity, so it has no component in the required 
direction. (Its component in the direction of the velocity 
is F cos 90° = 0.) It acts to pull the object around the circle, 
without ever making it speed up or slow down.

You can also use the idea of work done to show that the 
speed of the object moving in a circle remains the same. 
The work done by a force is equal to the product of the force 
and the distance moved by the object in the direction of the 
force. The distance moved by the object in the direction of 
the centripetal force is zero; hence the work done is zero. 
If no work is done on the object, its kinetic energy must 
remain the same and hence its speed is unchanged.

something travel along a circular path. It does not tell 
us what causes this force, which might be gravitational, 
electrostatic, magnetic, frictional or whatever.

gravitational
pull of Sun

Earth

velocity

Sun

Figure 17.8  The gravitational pull of the Sun provides the 
centripetal force that keeps the Earth in its orbit. 

	10	 In each of the following cases, state what 
provides the centripetal force:
a	 the Moon orbiting the Earth
b	 a car going round a bend on a flat, rough road
c	 the weight on the end of a swinging 

pendulum.

	11	 A car is travelling along a flat road. Explain why 
it cannot go around a bend if the road surface is 
perfectly smooth. Suggest what might happen if 
the driver tries turning the steering wheel.

	12	 An object follows a circular path at a steady 
speed. Describe how each of the following 
quantities changes as it follows this path: speed, 
velocity, kinetic energy, momentum, centripetal 
force, centripetal acceleration. (Refer to both 
magnitude and direction, as appropriate.)

Vector diagrams
Figure 17.9a shows an object travelling along a circular 
path, at two positions in its orbit. It reaches position B a 
short time after A. How has its velocity changed between 
these two positions?

The change in the velocity of the object can be 
determined using a vector triangle. The vector triangle in 
Figure 17.9b shows the difference between the final velocity 
vB and initial velocity vA. The change in the velocity of the 
object between the points B and A is shown by the smaller 
arrow labelled Δv. Note that the change in the velocity of 
the object is (more or less):

■■ at right angles to the velocity at A
■■ directed towards the centre of the circle.

The object is accelerating because its velocity changes. 
Since acceleration is the rate of change of velocity:

a = Δv
Δt

A

B

vB

vB vA

vA

a

b vector representing
change in velocity (Δv)Δv

Figure 17.9  Changes in the velocity vector.

QUESTIONS

QUESTION
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a constant speed. Figure 17.11 shows a particle moving 
round a circle. In time Δt it moves through an angle Δθ 
from A to B. Its speed remains constant but its velocity 
changes by Δv, as shown in the vector diagram. Since the 
narrow angle in this triangle is also Δθ, we can say that:

Δθ  =  Δv
v

Dividing both sides of this equation by Δt and rearranging 
gives:

Δv
Δt

  =  vΔθ
Δt

The quantity on the left is Δv
Δt

  = a, the particle’s acceleration. 

The quantity on the right is Δθ
Δt

  = ω, the angular velocity. 
Substituting for these gives:

a  = vω
Using v = ωr, we can eliminate ω from this equation:

a  =  v
2

r

Understanding circular motion
Isaac Newton devised an ingenious thought experiment 
that allows us to think about how an object can remain in 
a circular orbit around the Earth. Consider a large cannon 
on some high point on the Earth’s surface, capable of 
firing objects horizontally. Figure 17.10 shows what will 
happen if we fire them at different speeds.

	13	 Show that an alternative equation for the 
centripetal acceleration is a  =  ω 2r.

just the right
speed to orbit

too fast

slow
too slow

Δθ 

Δθ 

Δθ

vA

vB vA

Δv
vB

r
B

A

Figure 17.10  Newton’s ‘thought experiment’. 

If the object is fired too slowly, gravity will pull it down 
towards the ground and it will land at some distance from 
the cannon. A faster initial speed results in the object 
landing further from the cannon.

Now, if we try a bit faster than this, the object will 
travel all the way round the Earth. We have to get just 
the right speed to do this. As the object is pulled down 
towards the Earth, the curved surface of the Earth falls 
away beneath it. The object follows a circular path, 
constantly falling under gravity but never getting any 
closer to the surface.

If the object is fired too fast, it travels off into space, 
and fails to get into a circular orbit. So we can see that 
there is just one correct speed to achieve a circular orbit 
under gravity. (Note that we have ignored the effects of air 
resistance in this discussion.)

Calculating acceleration and 
force
If we spin a bung around in a circle (Figure 17.7), we get 
a feeling for the factors which determine the centripetal 
force F required to keep it in its circular orbit. The greater 
the mass m of the bung and the greater its speed v, the 
greater is the force F that is required. However if the radius 
r of the circle is increased, F is smaller.

Now we will deduce an expression for the centripetal 
acceleration of an object moving around a circle with 

Newton’s second law of motion
Now that we have an equation for centripetal acceleration, 
we can use Newton’s second law of motion to deduce an 
equation for centripetal force. If we write this law as  
F = ma, we find:

centripetal force F = mv 2
r

 = mr ω 2

Figure 17.11  Deducing an expression for centripetal 
acceleration.

QUESTION
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The origins of centripetal forces
It is useful to look at one or two situations where the 
physical origin of the centripetal force may not be 
immediately obvious. In each case, you will notice that 
the forces acting on the moving object are not balanced 
– there is a resultant force. An object moving along a 
circular path is not in equilibrium and the resultant force 
acting on it is the centripetal force.
1 A car cornering on a level road (Figure 17.13). Here, 

the road provides two forces. Th e force N is the normal 
contact force which balances the weight mg of the car – 
the car has no acceleration in the vertical direction. 

Remembering that an object accelerates in the direction of 
the resultant force on it, it follows that both F and a are in 
the same direction, towards the centre of the circle.

Calculating orbital speed
We can use the force equation to calculate the speed that 
an object must have to orbit the Earth under gravity, as in 
Newton’s thought experiment. Th e necessary centripetal 
force  mv2

r
 is provided by the Earth’s gravitational pull mg.

Hence:

mg =  mv2

r

g  =  v
2

r
where g = 9.81 m s−2 is the acceleration of free fall close to 
the Earth’s surface. Th e radius of its orbit is equal to the 
Earth’s radius, approximately 6400 km. Hence, we have:

 9.81 =    v2

(6.4 × 106)

 v =    9.81 × 6.4 × 106 ≈ 7.92 × 103 ms−1

Th us if you were to throw or hit a ball horizontally at 
almost 8 km s−1, it would go into orbit around the Earth.

 14 Calculate how long it would take a ball to orbit the 
Earth once, just above the surface, at a speed of 
7920 m s−1. (The radius of the Earth is 6400 km.)

 15 A stone of mass 0.20 kg is whirled round on the end 
of a string of length 30 cm. The string will break 
when the tension in it exceeds 8.0 N. Calculate the 
maximum speed at which the stone can be whirled 
without the string breaking.

 16 The International Space Station (Figure 17.12) has 
a mass of 350 tonnes, and orbits the Earth at an 
average height of 340 km, where the gravitational 
acceleration is 8.8 m s−2. The radius of the Earth is 
6400 km. Calculate:
a the centripetal force on the space station
b the speed at which it orbits
c the time taken for each orbit
d the number of times it orbits the Earth each day.

 17 A stone of mass 0.40 kg is whirled round on the end 
of a string 0.50 m long. It makes three complete 
revolutions each second. Calculate:
a its speed
b its centripetal acceleration
c the tension in the string.

 18 Mars orbits the Sun once every 687 days at a 
distance of 2.3 × 1011 m. The mass of Mars is 
6.4 × 1023 kg. Calculate:
a its orbital speed
b its centripetal acceleration
c the gravitational force exerted on Mars by the Sun.

Figure 17.12 The view from the International Space 
Station, orbiting Earth over Australia. 

mg

F

N

road

Figure 17.13 This car is moving away from us and turning to 
the left . Friction provides the centripetal force. N and F are 
the total normal contact and friction forces (respectively) 
provided by the contact of all four tyres with the road. 

QUESTIONS
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mg

Na

b N

F

mg

vertical
component

N

horizontal
component

road

road

θ

θ

θ

θ

Figure 17.14 a On a banked road, the horizontal component 
of the normal contact force from the road can provide the 
centripetal force needed for cornering. b For a slow car, 
friction acts up the slope to stop it from sliding down. 

Th e second force is the force of friction F between the 
tyres and the road surface. Th is is the unbalanced, 
centripetal force. If the road or tyres do not provide 
enough friction, the car will not go round the bend 
along the desired path. Th e friction between the tyres 
and the road provides the centripetal force necessary 
for the car’s circular motion.

2 A car cornering on a banked road (Figure 17.14a). Here, 
the normal contact force N has a horizontal component 
which can provide the centripetal force. Th e vertical 
component of N balances the car’s weight. Th erefore:
vertically N cos θ = mg

horizontally N sin θ = mv2

r
 where r is the radius of the circular corner and v is the 

car’s speed.

mg

F
N

mg

L

mg

T

a b c

θ θ

Note that the three situations shown in Figure 17.14a, Figure 
17.15a and Figure 17.15b are equivalent. Th e moving object’s 
weight acts downwards. Th e second force has a vertical 
component, which balances the weight, and a horizontal 
component, which provides the centripetal force.

Figure 17.15 Three more ways of providing a centripetal force. 

 19 Explain why it is impossible to whirl a bung 
around on the end of a string in such a way that 
the string remains perfectly horizontal.

 20 Explain why an aircraft  will tend to lose height 
when banking, unless the pilot increases its 
speed to provide more lift .

 21 If you have ever been down a water-slide (a 
flume) (Figure 17.16) you will know that you tend 
to slide up the side as you go around a bend. 
Explain how this provides the centripetal force 
needed to push you around the bend. Explain 
why you slide higher if you are going faster.

Figure 17.16 
A water-slide 
is a good place 
to experience 
centripetal forces. 

QUESTIONS

 If a car travels around the bend too slowly, it will tend to 
slide down the slope and friction will act up the slope to 
keep it on course (Figure 17.14b). If it travels too fast, it 
will tend to slide up the slope. If friction is insuffi  cient, 
it will move up the slope and come off  the road.

3 An aircraft  banking (Figure 17.15a). To change 
direction, the pilot tips the aircraft ’s wings. Th e vertical 
component of the lift  force L on the wings balances the 
weight. Th e horizontal component of L provides the 
centripetal force.

4 A stone being whirled in a horizontal circle on the end 
of a string – this arrangement is known as a conical 
pendulum (Figure 17.15b). Th e vertical component of 
the tension T is equal to the weight of the stone. Th e 

horizontal component of the tension provides the 
centripetal force for the circular motion.

5 At the fairground (Figure 17.15c). As the cylinder 
spins, the fl oor drops away. Friction balances your 
weight. Th e normal contact force of the wall provides 
the centripetal force. You feel as though you are being 
pushed back against the wall; what you are feeling is 
the push of the wall on your back.
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End-of-chapter questions
1 a Explain what is meant by a radian. [1]

b A body moves round a circle at a constant speed and completes one revolution in 15 s. Calculate the 
angular velocity of the body. [2]

2 Figure 17.17 shows part of the track of a roller-coaster ride in which a truck loops the loop. When the truck 
is at the position shown, there is no reaction force between the wheels of the truck and the track. The 
diameter of the loop in the track is 8.0 m.

Figure 17.17 For End-of-chapter Question 2.

a Explain what provides the centripetal force to keep the truck moving in a circle. [1]
b Given that the acceleration due to gravity g is 9.8 m s−2, calculate the speed of the truck. [3]

Summary
■■ Angles can be measured in radians. An angle of 2π rad 

is equal to 360°.

■■ An object moving at a steady speed along a circular 
path has uniform circular motion.

■■ The angular displacement θ is a measure of the angle 
through which an object moves in a circle.

■■ The angular velocity ω is the rate at which the angular 

■  displacement changes: ω = 
Δθ
Δt

■■ For an object moving with uniform circular motion, 
speed and angular velocity are related by v =  ωr.

■■ An object moving in a circle is not in equilibrium; 
it has a resultant force acting on it.

■■ The resultant force acting on an object moving in 
a circle is called the centripetal force. This force is 
directed towards the centre of the circle and is at right 
angles to the velocity of the object.

■■ An object moving in a circle has a centripetal 
acceleration a given by:

a  =  
v2

r
  =  rω 2

■■ The magnitude of the centripetal force F acting on 
an object of mass m moving at a speed v in a circle 
of radius r is given by:

F  =  
mv2

r
  =  mrω 2
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3 a Describe what is meant by centripetal force.  [1]

Figure 17.18 For End-of-chapter Question 3. 

b Figure 17.18 shows a toy of mass 60 g placed on the edge of a rotating turntable.
i The diameter of the turntable is 15.0 cm. The turntable rotates, making 20 revolutions every minute. 

Calculate the centripetal force acting on the toy.  [4]
ii Explain why the toy falls off  when the speed of the turntable is increased.  [2]

4 One end of a string is secured to the ceiling and a metal ball of mass 50 g is tied to its other end. The ball is 
initially at rest in the vertical position. The ball is raised through a vertical height of 70 cm (see Figure 17.19). 
The ball is then released. It describes a circular arc as it passes through the vertical position.

Figure 17.19 For End-of-chapter Question 4.

 The length of the string is 1.50 m.
a Ignoring the eff ects of air resistance, determine the speed v of the ball as it passes through the 

vertical position.  [2]
b Calculate the tension T in the string when the string is vertical.  [4]
c Explain why your answer to b is not equal to the weight of the ball.  [2]

5 A car is travelling round a bend when it hits a patch of oil. The car slides off  the road onto the grass verge. 
Explain, using your understanding of circular motion, why the car came off  the road.  [2]

toy

15.0 cm

turntable

string

v

metal ball

70 cm
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6 Figure 17.20 shows an aeroplane banking to make a horizontal turn. The aeroplane is travelling 
at a speed of 75 m s−1 and the radius of the turning circle is 80 m.
a Copy the diagram. On your copy, draw and label the forces acting on the aeroplane.  [2]
b Calculate the angle which the aeroplane makes with the horizontal.  [4]

Figure 17.20 For End-of-chapter Question 6.

7 a Explain what is meant by the term angular velocity. [2]
b Figure 17.21 shows a rubber bung, of mass 200 g, on the end of a length of string being swung 

in a horizontal circle of radius 40 cm. The string makes an angle of 56° with the vertical.

Figure 17.21 For End-of-chapter Question 7.

 Calculate:
i the tension in the string [2]
ii the angular velocity of the bung [3]
iii the time it takes to make one complete revolution. [1]

8 a Explain what is meant by a centripetal force. [2]
b A teacher swings a bucket of water, of total mass 5.4 kg, round in a vertical circle of diameter 1.8 m.

i Calculate the minimum speed which the bucket must be swung at so that the water remains in 
the bucket at the top of the circle. [3]

ii Assuming that the speed remains constant, what will be the force on the teacher’s hand when 
the bucket is at the bottom of the circle? [2]
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 9 In training, military pilots are given various tests. One test puts them in a seat on the end of a large 
arm which is then spun round at a high speed, as shown in Figure 17.22.

Figure 17.22 For End-of-chapter Question 9. 

a Describe what the pilot will feel and relate this to the centripetal force. [3]
b At top speed the pilot will experience a centripetal force equivalent to six times his own weight (6 mg).

i Calculate the speed of the pilot in this test. [3]
ii Calculate the number of revolutions of the pilot per minute. [2]

c Suggest why it is necessary for pilots to be able to be able to withstand forces of this type. [2]

10 a Show that in one revolution there are 2π radians. [2]
b Figure 17.23 shows a centrifuge used to separate solid particles suspended in a liquid of lower density. 

The container is spun at a rate of 540 revolutions per minute.

Figure 17.23 For End-of-chapter Question 10.

i Calculate the angular velocity of the container. [2]
ii Calculate the centripetal force on a particle of mass 20 mg at the end of the test tube. [2]

c An alternative method of separating the particles from the liquid is to allow them to settle to the
bottom of a stationary container under gravity.

 By comparing the forces involved, explain why the centrifuge is a more eff ective method of separating 
the mixture. [2]

5.0 m

10 cm
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Chapter 18:
Gravitational 
fields

Learning outcomes
You should be able to:

■■ describe a gravitational field as a field of force and define 
gravitational field strength g

■■ recall and use Newton’s law of gravitation
■■ solve problems involving the gravitational field strength 

of a uniform field and the field of a point mass
■■ define and solve problems involving gravitational 

potential 
■■ analyse circular orbits in an inverse square law field, 

including geostationary orbits
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Gravitational forces and fields
According to Newton, all masses create a 

gravitational field in the space around them. This field 
gives rise to a force on any object having mass which is 
placed in this field. The Moon orbits the Earth because 
it experiences a gravitational force due to the Earth’s 
gravitational field.

In physics, the idea of a field is a very general one. 
If an object is placed in a gravitational field, a force will 
act on the object because of its mass. In Chapter 8, we 
saw that a charged object experiences a force when it is 
placed in an electric field. You are probably familiar with 
the idea that a magnet produces a magnetic field around 
itself, and that this will produce a force (attractive or 
repulsive) on another magnet placed nearby.

Moon

Earth

Figure 18.1  Skydivers balance the forces of gravity and air 
resistance.

We live our lives with the constant experience of 
gravity. We know that things fall when we drop them. 
The free-fall parachutists in Figure 18.1 are enjoying 
the experience of falling through the air under the 
influence of gravity.

The Earth’s gravitational force extends well beyond 
its surface. The Moon stays in its orbit, at a distance 
of about 400 000 km away, because of the Earth’s 
gravitational pull (Figure 18.2). The Earth orbits the 
Sun at a distance of 150 000 000 km because of the 
gravitational force between them.

Figure 18.2  The Moon orbits the Earth. There is an attractive 
gravitational force acting on the Moon due to its mass and the 
mass of the Earth. 

Representing a gravitational 
field
In Chapter 8 we saw how to represent an electric field 
using field lines. In a similar way, we can represent the 
Earth’s gravitational field by drawing field lines, as shown 
in Figure 18.3. The field lines show two things:

■■ The arrows on the field lines show us the direction of the 
gravitational force on a mass placed in the field.

■■ The spacing of the field lines indicates the strength of the 
gravitational field – the further apart they are, the weaker 
the field.

The drawing of the Earth’s gravitational field shows that 
all objects are attracted towards the centre of the Earth. 
This is true even if they are below the surface of the Earth. 
The gravitational force gets weaker as you get further away 
from the Earth’s surface – this is shown by the greater 
separation between the field lines. The Earth is almost a 

uniform spherical mass – it bulges a bit at the equator. The 
gravitational field of the Earth is as if its entire mass was 
concentrated at its centre. As far as any object beyond the 
Earth’s surface is concerned, the Earth behaves as a  
point mass.

field 
lines

Figure 18.3  The Earth’s gravitational field is represented by 
field lines. 

272
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Figure 18.4 shows the Earth’s gravitational field 
closer to its surface. The gravitational field in and 
around a building on the Earth’s surface shows that the 
gravitational force is directed downwards everywhere and 
(because the field lines are parallel and evenly spaced) the 
strength of the gravitational field is the same at all points 
in and around the building. This means that your weight 
is the same everywhere in this gravitational field. Your 
weight does not get significantly less when you go upstairs.

particle of the other body and we would have to add all 
these forces together to work out the force each body has 
on the other. Newton was able to show that two uniform 
spheres attract one another with a force which is the same as 
if their masses were concentrated at their centres (provided 
their radii are much smaller than their separation).

According to Newton’s law of gravitation, we have:
force ∝ product of the masses	 or  F ∝ Mm

force ∝ 1
distance2	 or  F ∝ 1

r 2

Therefore:

F ∝ Mm
r 2

To make this into an equation, we introduce the 
gravitational constant G: 

F = GMm
r 2

(The force is attractive, so F is in the opposite direction  
to r.) The gravitational constant G is sometimes referred 
to as the universal gravitational constant because it is 
believed to have the same value, 6.67 × 10−11 N m2 kg−2, 
throughout the Universe. This is important for our 
understanding of the history and likely long-term future of 
the Universe.

The equation above can also be applied to spherical 
objects (such as the Earth and the Moon) provided we 
remember to measure the separation r between the centres 
of the objects. You may also come across the equation in 
the form:

F = Gm1m2
r 2

where m1 and m2 are the masses of the two bodies.
Let us examine this equation to see why it seems 

reasonable. First, each of the two masses is important. 
Your weight (the gravitational force on you) depends on 
your mass and on the mass of the planet you happen to be 
standing on.

Second, the further away you are from the planet, the 
weaker its pull. Twice as far away gives one-quarter of 

field 
lines

M F F m

r

Figure 18.4  The Earth’s gravitational field is uniform on the 
scale of a building. 

We describe the Earth’s gravitational field as radial, 
since the field lines diverge (spread out) radially from the 
centre of the Earth. However, on the scale of a building, 
the gravitational field is uniform, since the field lines are 
equally spaced. Jupiter is a more massive planet than the 
Earth and so we would represent its gravitational field by 
showing more closely spaced field lines.

Newton’s law of gravitation
Newton used his ideas about mass and gravity to suggest 
a law of gravitation for two point masses (Figure 18.5). 
He considered two point masses M and m separated by 
a distance r. Each point mass attracts the other with a 
force F. (According to Newton’s third law of motion, the 
point masses interact with each other and therefore exert 
equal but opposite forces on each other.) A statement of 
Newton’s law of gravitation is shown below.

Any two point masses attract each other with a force 
that is directly proportional to the product of their 
masses and inversely proportional to the square of their 
separation.

Note that the law refers to ‘point masses’ – you can 
alternatively use the term ‘particles’. Things are more 
complicated if we think about solid bodies which occupy 
a volume of space. Each particle of one body attracts every 

Figure 18.5  Two point masses separated by distance r. 



274

Cambridge International A Level Physics

the force. Th is can be seen from the diagram of the fi eld 
lines in Figure 18.6. If the distance is doubled, the lines 
are spread out over four times the surface area, so their 
concentration is reduced to one-quarter. Th is is called an 
inverse square law – you may have come across a similar 
law for radiation such as light or γ-rays spreading out 
uniformly from a point source.

Gravitational field strength g
We can describe how strong or weak a gravitational fi eld 
is by stating its gravitational fi eld strength. We are used 
to this idea for objects on or near the Earth’s surface. Th e 
gravitational fi eld strength is the familiar quantity g. Its 
value is approximately 9.81 m s−2. Th e weight of a body of 
mass m is mg.

To make the meaning of g clearer, we should write 
it as 9.81 N kg−1. Th at is, each 1 kg of mass experiences a 
gravitational force of 9.81 N.

Th e gravitational fi eld strength g at any point in a 
gravitational fi eld is defi ned as follows:

The gravitational field strength at a point is the 
gravitational force exerted per unit mass on a small 
object placed at that point.

Th is can be written as an equation:

g = F
m

where F is the gravitational force on the object and m is the 
mass of the object. Gravitational fi eld strength has units of 
N kg−1. Th is is equivalent to m s−2.

We can use the defi nition above to determine the 
gravitational fi eld strength for a point (or spherical) mass. 
Th e force between two point masses is given by:

F = GMm
r 2

Th e gravitational fi eld strength g due to the mass M at a 
distance of r from its centre is thus:

g = F
m 

= GM m
r 2 m

or

g = GM
r 2

r

M

r

r

F

F

We measure distances from the centre of mass of one 
body to the centre of mass of the other (Figure 18.7). We 
treat each body as if its mass were concentrated at one 
point. Th e two bodies attract each other with equal and 
opposite forces, as required by Newton’s third law of 
motion. Th e Earth pulls on you with a force (your weight) 
directed towards the centre of the Earth; you attract the 
Earth with an equal force, directed away from its centre 
and towards you. Your pull on an object as massive as the 
Earth has little eff ect on it. Th e Sun’s pull on the Earth, 
however, has a very signifi cant eff ect.

Figure 18.6 Field lines are spread out over a greater surface 
area at greater distances, so the strength of the field is weaker. 

Figure 18.7 A person and the Earth exert equal and opposite 
attractive forces on each other. 

1 Calculate the gravitational force of attraction 
between:
a two objects separated by a distance of 1.0 cm 

and each having a mass of 100 g
b two asteroids separated by a distance of 

4.0 × 109 m and each having a mass of 
5.0 × 1010 kg

c a satellite of mass 1.4 × 104 kg orbiting the 
Earth at a distance of 6800 km from the Earth’s 
centre. (The mass of the Earth is 6.0 × 1024 kg.)

2 Estimate the gravitational force of attraction 
between two people sitting side by side on a park 
bench. How does this force compare with the 
gravitational force exerted on each of them by the 
Earth, i.e. their weight?

QUESTIONS
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�You will need the data in Table 18.1 to answer these 
questions.

Body Mass / kg Radius / km Distance from  
Earth / km

Earth 6.0 × 1024 6 400 –

Moon 7.4 × 1022 1 740 3.8 × 105

Sun 2.0 × 1030 700 000 1.5 × 108

Table 18.1  Data for Questions 3–9.

3	 Mount Everest is approximately 9.0 km high. 
Calculate how much less a mountaineer of 
mass 100 kg (including backpack) would weigh 
at its summit, compared to her weight at sea 
level. Would this difference be measurable with 
bathroom scales?

4	 a	 Calculate the gravitational field strength:
i	 close to the surface of the Moon
ii	 close to the surface of the Sun.

b	 Suggest how your answers above help 
to explain why the Moon has only a thin 
atmosphere, while the Sun has a dense 
atmosphere.

5	 a	� Calculate the Earth’s gravitational field 
strength at the position of the Moon.

b	 Calculate the force the Earth exerts on 
the Moon. Hence determine the Moon’s 
acceleration towards the Earth.

6	 Jupiter’s mass is 320 times that of the Earth and 
its radius is 11.2 times the Earth’s. The Earth’s 
surface gravitational field strength is 9.81 N kg−1. 
Calculate the gravitational field strength close to 
the surface of Jupiter.

7	 The Moon and the Sun both contribute to the tides 
on the Earth’s oceans. Which has a bigger pull on 
each kilogram of seawater, the Sun or the Moon?

8	 Astrologers believe that the planets exert an 
influence on us, particularly at the moment of 
birth. (They don’t necessarily believe that this is 
an effect of gravity!)
a	 Calculate the gravitational force on a 4.0 kg 

baby caused by Mars when the planet is 
at its closest to the Earth at a distance of 
100 000 000 km. Mars has mass 6.4 × 1023 kg.

b	 Calculate the gravitational force on the same 
baby due to its 50 kg mother at a distance of 
0.40 m.

1	 The Earth has radius 6400 km. The gravitational field 
strength on the Earth’s surface is 9.81 N kg−1. Use this 
information to determine the mass of the Earth and 
its mean density.

	 Step 1  Write down the quantities given:
r  =  6.4 × 106 m  g  =  9.81 N kg−1

	 Step 2  Use the equation g  =  
GM 
r 2  

 to determine the 
mass of the Earth.

g  =  
GM
r 2

9.8  =  
6.67 × 10−11 M

(6.4 × 106)2

mass of Earth  =  M  =  9.71 ×  
(6.4 × 106)2

6.67 × 10−11

	 =  6.0 × 1024 kg

	 Step 3  Use the equation density =  
mass

volume 
 

	 to determine the density of the Earth.

	 The Earth is a spherical mass. Its volume can be 
calculated using  43 π r 3:

density  =  ρ  =  
M
V

  =  
6.0 × 1024

4
3 × π × (6.4 × 106)3

	 	 = 5500 kg m3

Since force is a vector quantity, it follows that gravitational 
field strength is also a vector. We need to give its direction 
as well as its magnitude in order to specify it completely. The 
field strength g is not a constant; it decreases as the distance 
r increases. The field strength obeys an inverse square law 
with distance. The field strength will decrease by a factor of 
four when the distance from the centre is doubled. Close to 
the Earth’s surface, the magnitude of g is about 9.81 N kg−1. 
Even if you climbed Mount Everest, which is 8.85 km high, 
the field strength will only decrease by 0.3%.

So the gravitational field strength g at a point depends 
on the mass M of the body causing the field, and the 
distance r from its centre (see Worked example 1).

Gravitational field strength g also has units m s−2; it 
is an acceleration. Another name for g is ‘acceleration of 
free fall’. Any object that falls freely in a gravitational field 
has this acceleration, approximately 9.81 m s−2 near the 
Earth’s surface. In Chapter 2, you learned about different 
ways to determine an experimental value for g, the local 
gravitational field strength.

QUESTIONS

WORKED EXAMPLE



276

Cambridge International A Level Physics

9	 There is a point on the line joining the centres of 
the Earth and the Moon where their combined 
gravitational field strength is zero. Is this point 
closer to the Earth or to the Moon? Calculate how 
far it is from the centre of the Earth.

Gravitational potential
In practice, it is more useful to talk about the gravitational 
potential at a point. This tells us the g.p.e. per unit mass at 
the point (just as field strength g tells us the force per unit 
mass at a point in a field). The symbol used for potential is 
ϕ (Greek letter phi), and unit mass means one kilogram. 
Gravitational potential is defined as follows:

The gravitational potential at a point is the work done per 
unit mass in bringing a mass from infinity to the point.

For a point mass M, we can write an equation for ϕ at a 
distance r from M:

ϕ  = − GM
r

where G is the gravitational constant as before. Notice the 
minus sign; gravitational potential is always negative. This 
is because, as a mass is brought towards another mass, its 
g.p.e. decreases. Since g.p.e. is zero at infinity, it follows 
that, anywhere else, g.p.e. and potential are less than zero, 
i.e. they are negative.

Picture a spacecraft coming from a distant star to 
visit the solar system. The variation of the gravitational 
potential along its path is shown in Figure 18.8. We will 
concentrate on three parts of its journey:
1	 As the craft approaches the Earth, it is attracted 

towards it. The closer it gets to Earth, the lower its g.p.e. 
becomes and so the lower its potential.

2	 As it moves away from the Earth, it has to work against 
the pull of the Earth’s gravity. Its g.p.e. increases and 
so we can say that the potential increases. The Earth’s 
gravitational field creates a giant ‘potential well’ in 
space. We live at the bottom of that well.

3	 As it approaches the Sun, it is attracted into a much 
deeper well. The Sun’s mass is much greater than 
the Earth’s and so its pull is much stronger and the 
potential at its surface is more negative than on the 
Earth’s surface.

Energy in a gravitational field
As well as the force on a mass in a gravitational field, we 
can think about its energy. If you lift an object from the 
ground, you increase its gravitational potential energy 
(g.p.e.). The higher you lift it, the more work you do on it 
and so the greater its g.p.e. The object’s change in g.p.e. can 
be calculated as mgΔh, where Δh is the change in its height 
(as we saw in Chapter 5).

This approach is satisfactory when we are considering 
objects close to the Earth’s surface. However, we need a 
more general approach to calculating gravitational energy, 
for two reasons:

■■ If we use g.p.e. = mgΔh, we are assuming that an object’s 
g.p.e. is zero on the Earth’s surface. This is fine for 
many practical purposes but not, for example, if we are 
considering objects moving through space, far from Earth. 
For these, there is nothing special about the Earth’s surface.

■■ If we lift an object to a great height, g decreases and  
we would need to take this into account when calculating 
g.p.e.

For these reasons, we need to set up a different way of 
thinking about gravitational potential energy. We start by 
picturing a mass at infinity, that is, at an infinite distance 
from all other masses. We say that here the mass has zero 
potential energy. This is a more convenient way of defining 
the zero of g.p.e. than using the surface of the Earth.

Now we picture moving the mass to the point where 
we want to know its g.p.e. As with lifting an object from 
the ground, we determine the work done to move the mass 
to the point. The work done on it is equal to the energy 
transferred to it, i.e. its g.p.e., and that is how we can 
determine the g.p.e. of a particular mass.

potential

potential = 0 distance

Earth

Sun
Figure 18.8  The gravitational potential is zero at infinity  
(far from any mass), and decreases as a mass is approached. 

QUESTION
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2  A planet has a diameter of 6800 km and a mass of 
4.9 × 1023 kg. A rock of mass 200 kg, initially at rest and a 
long distance from the planet, accelerates towards the 
planet and hits the surface of the planet.

 Calculate the change in potential energy of the rock and 
its speed when it hits the surface.

 Step 1 Write down the quantities given.
r = 3.4 × 106 m  M = 4.9 × 1023 kg    

 Step 2 The equation φ = − 
GM

r  gives the potential at the 
 surface of the planet, that is, the gravitational potential 

energy per unit mass at that point. So the gravitational 
potential energy of the rock of mass m at that point is 
given by:

g.p.e. = − 
GMm

r

 The g.p.e. of the rock when it is far away is zero, so 
the value we calculate using this equation gives the 
decrease in the rock’s g.p.e. during its fall to hit the 
planet.

change in g.p.e. = 
6.67 × 10–11 × 4.9 × 1023 × 200

3.4 × 106

 = 1.92 × 109 J ≈ 1.9 × 109 J

 Step 3 In the absence of an atmosphere, all of the g.p.e. 
becomes kinetic energy of the rock, and so:
1
2mv2 = 1.92 × 109 J

v =     1.92 × 109 × 2
200  = 4400 m s–1

 Note that the rock’s final speed when it hits the planet 
does not depend on the mass of the rock. This is 
because, if you equate the two equations for k.e. and the 
change in g.p.e., the mass m of the rock cancels.

WORKED EXAMPLE

You will need the data for the mass and radius of the 
Earth and the Moon from Table 18.1 to answer this 
question.

Gravitational constant G  =  6.67 × 10−11 N m2 kg−2.

 10 a  Determine the gravitational potential at the 
surface of the Earth.

b Determine the gravitational potential at the 
surface of the Moon.

c Which has the shallower ‘potential well’, the 
Earth or the Moon? Draw a diagram similar to 
Figure 18.8 to compare the ‘potential wells’ of 
the Earth and the Moon.

d Use your diagram to explain why a large 
rocket is needed to lift  a spacecraft  from 
the surface of the Earth but a much smaller 
rocket can be used to launch from the Moon’s 
surface.

QUESTION

Fields – terminology
Th e words used to describe gravitational (and other) fi elds 
can be confusing. Remember:

■■ Field strength tells us about the force on unit mass at a 
point;

■■ Potential tells us about potential energy of unit mass at 
a point.

You have already learned about fi eld strength in 
connection with electric fi elds, where it is the force on 
unit charge. Similarly, when we talk about the potential 
diff erence between two points in electricity, we are talking 
about the diff erence in electrical potential energy per unit 
charge. You will learn more about this in Chapter 24.

Orbiting under gravity
For an object orbiting a planet, such as an artifi cial satellite 
orbiting the Earth, gravity provides the centripetal force 
which keeps it in orbit (Figure 18.9). Th is is a simple 
situation as there is only one force acting on the satellite 
– the gravitational attraction of the Earth. Th e satellite 
follows a circular path because the gravitational force is at 
right angles to its velocity.

FF

Figure 18.9 The gravitational attraction of the Earth provides 
the centripetal force on an orbiting satellite. 
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Figure 18.10  During this space walk, both the astronaut and 
the spacecraft travel through space at over 8 km s−1. 

From Chapter 17, you know that the centripetal force F 
on a body is given by:

F = mν 2

r
Consider a satellite of mass m orbiting the Earth at a 
distance r from the Earth’s centre at a constant speed v. 
Since it is the gravitational force between the Earth and 
the satellite which provides this centripetal force, we can 
write:

GMm
r 2

 = mν 2

r
where M is the mass of the Earth. (There is no need 
for a minus sign here as the gravitational force and the 
centripetal force are both directed towards the centre of 
the circle.)

Rearranging gives:

ν 2 = GM
r

This equation allows us to calculate, for example, the 
speed at which a satellite must travel to stay in a circular 
orbit. Notice that the mass of the satellite m has cancelled 
out. The implication of this is that all satellites, whatever 
their masses, will travel at the same speed in a particular 
orbit. You would find this very reassuring if you were an 
astronaut on a space walk outside your spacecraft (Figure 
18.10). You would travel at the same speed as your craft, 
despite the fact that your mass is a lot less than its mass. 
The equation above can be applied to the planets of our 
solar system – M becomes the mass of the Sun.

	11	 Calculate the orbital speed of an artificial 
satellite travelling 200 km above the Earth’s 
surface. (The radius of Earth is 6.4 × 106 m and its 
mass is 6.0 × 1024 kg.)

3	 The Moon orbits the Earth at an average distance of 
384 000 km from the centre of the Earth. Calculate its 
orbital speed. (The mass of the Earth is 6.0 × 1024 kg.)

	 Step 1  Write down the known quantities.
r  = 3.84  × 108 m  M =  6.0 × 1024 kg  v  = ?

	 Step 2  Use the equation v 2  =  
GM

r
  to determine the 

orbital speed v .

v 2  =  
GM

r

v 2  =  
6.67 × 10−11 × 6.0 × 1024

3.84 × 108

v 2  =  1.04  × 106

	 Hint: Don’t forget to take the square root of v 2 to get v.

v  = 1020 m s−1  ≈  1.0 × 103 m s−1

	 So the Moon travels around its orbit at a speed of 
roughly 1 km s−1.

QUESTION

WORKED EXAMPLE

The orbital period
It is often more useful to consider the time taken for a 
complete orbit, the orbital period T. Since the distance 
around an orbit is equal to the circumference 2πr, it 
follows that:

ν = 2π r
T

We can substitute this in the equation for v 2.  
This gives:

4π 2r 2

T 2  
 = GM

r
and rearranging this equation gives:

T 2 =    4π 2

GM   
r 3 

This equation shows that the orbital period T is related to 
the radius r of the orbit. The square of the period is directly 
proportional to the cube of the radius (T 2 ∝ r 3). This is 

Now look at Worked example 2.
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an important result. It was first discovered by Johannes 
Kepler, who analysed the available data for the planets of 
the solar system. It was an empirical law (one based solely 
on experiment) since he had no theory to explain why there 
should be this relationship between T and r. It was not until 
Isaac Newton formulated his law of gravitation that it was 
possible to explain this fact.

Orbiting the Earth
The Earth has one natural satellite – the Moon – and 
many thousands of artificial satellites – some spacecraft 
and a lot of debris. Each of these satellites uses the Earth’s 
gravitational field to provide the centripetal force that 
keeps it in orbit. In order for a satellite to maintain a 
particular orbit, it must travel at the correct speed. This is 
given by the equation on page 278:

ν 2 = GM
r

It follows from this equation that, the closer the satellite 
is to the Earth, the faster it must travel. If it travels too 
slowly, it will fall down towards the Earth’s surface. If it 
travels too quickly, it will move out into a higher orbit.

	12	 A satellite orbiting a few hundred kilometres 
above the Earth’s surface will experience a 
slight frictional drag from the Earth’s (very thin) 
atmosphere. Draw a diagram to show how you 
would expect the satellite’s orbit to change as a 
result. How can this problem be overcome if it is 
desired to keep a satellite at a particular height 
above the Earth?

Observing the Earth
Artificial satellites have a variety of uses. Many are 
used for making observations of the Earth’s surface 
for commercial, environmental, meteorological or 
military purposes. Others are used for astronomical 
observations, benefiting greatly from being above the 
Earth’s atmosphere. Still others are used for navigation, 
telecommunications and broadcasting.

Figure 18.11 shows two typical orbits. A satellite in 
a circular orbit close to the Earth’s surface, and passing 
over the poles, completes about 16 orbits in 24 hours. As 
the Earth turns below it, the satellite ‘sees’ a different strip 
of the Earth’s surface during each orbit. A satellite in an 
elliptical orbit has a more distant view of the Earth.

QUESTION

Earth

circular orbit

elliptical orbit

Figure 18.11  Satellites orbiting the Earth. 

Geostationary orbits
A special type of orbit is one in which a satellite is 
positioned so that, as it orbits, the Earth rotates below 
it at the same rate. The satellite remains above a fixed 
point on the Earth’s equator. This kind of orbit is called 
a geostationary orbit. There are over 300 satellites in 
such orbits. They are used for telecommunications 
(transmitting telephone messages around the world) 
and for satellite television transmission. A base station 
on Earth sends the TV signal up to the satellite, where it 
is amplified and broadcast back to the ground. Satellite 
receiver dishes are a familiar sight; you will have observed 
how, in a neighbourhood, they all point towards the same 
point in the sky. Because the satellite is in a geostationary 
orbit, the dish can be fixed. Satellites in any other orbits 
move across the sky so that a tracking system is necessary 
to communicate with them. Such a system is complex and 
expensive, and too demanding for the domestic market.

Geostationary satellites have a lifetime of perhaps ten 
years. They gradually drift out of the correct orbit, so they 
need a fuel supply for the rocket motors which return 
them to their geostationary position, and which keep them 
pointing correctly towards the Earth. Eventually they run 
out of fuel and need to be replaced.

We can determine the distance of a satellite in a 
geostationary orbit using the equation:

T2 =   4π2

GM   
r3
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Summary
■■ The force of gravity is an attractive force between any 

two objects due to their masses.

■■ The gravitational field strength g at a point is the 
gravitational force exerted per unit mass on a small 
object placed at that point – that is:

g  =  
F
m

■■ The external field of a uniform spherical mass is the 
same as that of an equal point mass at the centre of 
the sphere.

■■ Newton’s law of gravitation states that:

Any two point masses attract each other with a force 
that is directly proportional to the product of their 
masses and inversely proportional to the square of 
their separation.

■■ The equation for Newton’s law of gravitation is:

F  =  
GMm

r 2

For a satellite to stay above a fixed point on the equator, it 
must take exactly 24 hours to complete one orbit (Figure 
18.12). We know:

G = 6.67 × 10−11 N m2 kg−2

T = 24 hours = 86 400 s

M = 6.0 × 1024 kg

r 3 = GMT 2

4π2  = 6.67 × 10−11 × 6.0 × 1024 × (86 400)2

4π2

	 = 7.66 × 1022 m3

r = 3 7.66 × 1022 ≈ 4.23 × 107 m
So, for a satellite to occupy a geostationary orbit, it must 
be at a distance of 42 300 km from the centre of the Earth 
and at a point directly above the equator. Note that the 
radius of the Earth is 6400 km, so the orbital radius is 6.6 
Earth radii from the centre of the Earth (or 5.6 Earth radii 
from its surface). Figure 18.12 has been drawn to give an 
impression of the size of the orbit.

	13	 For any future mission to Mars, it would be 
desirable to set up a system of three or four 
geostationary (or ‘martostationary’) satellites 
around Mars to allow communication between 
the planet and Earth. Calculate the radius of a 
suitable orbit around Mars.

		  Mars has mass 6.4 × 1023 kg and a rotational 
period of 24.6 hours.

	14	 Although some international telephone signals 
are sent via satellites in geostationary orbits, 
most are sent along cables on the Earth’s surface. 
This reduces the time delay between sending and 
receiving the signal. Estimate this time delay for 
communication via a satellite, and explain why it 
is less significant when cables are used.

		  You will need the following:
•	 radius of geostationary orbit = 42 300 km
•	 radius of Earth = 6400 km
•	 speed of electromagnetic waves in free space 

c  = 3.0 × 108 m s−1

Figure 18.12  Geostationary satellites are parked in the 
‘Clarke belt’, high above the equator. This is a perspective 
view; the Clarke belt is circular. 

Clarke belt

QUESTIONS



Chapter 18: Gravitational fields

281

■■ The gravitational field strength at a point is the 
gravitational force exerted per unit mass on a small 
object placed at that point:

g  =  
GM
r  2

■■ On or near the surface of the Earth, the gravitational 
field is uniform, so the value of g is approximately 
constant. Its value is equal to the acceleration of 
free fall.

■■ The gravitational potential at a point is the work done 
in bringing unit mass from infinity to that point.

■■ The gravitational potential of a point mass is given by:

ϕ  = − 
GM

r

■■ The orbital period of a satellite is the time taken for 
one orbit.

■■ The orbital period can be found by equating the 

gravitational force  
GMm

r 2  
 to the centripetal force  

mv 2

r  
.

■■ The orbital speed of a planet or satellite can be 
determined using the equation:

v 2  =  
GM

r

■■ Geostationary satellites have an orbital period of 
24 hours and are used for telecommunications 
transmissions and for television broadcasting.

End-of-chapter questions
1 Two small spheres each of mass 20 g hang side by side with their centres 5.00 mm apart. Calculate the 

gravitational attraction between the two spheres. [3]

2 It is suggested that the mass of a mountain could be measured by the deflection from the vertical of a 
suspended mass. Figure 18.13 shows the principle.

Figure 18.13 For End-of-chapter Question 2. 

a Copy Figure 18.13 and draw arrows to represent the forces acting on the mass.
 Label the arrows. [2]
b The whole mass of the mountain, 3.8 × 1012 kg, may be considered to act at its centre of mass. 

Calculate the horizontal force on the mass due to the mountain. [2]
c Compare the force calculated in b with the Earth’s gravitational force on the mass. [2]

1200 m
 20 g mass

centre of mass
of the mountain

θ



3 Figure 18.14 shows the Earth’s gravitational field.

Figure 18.14 For End-of-chapter Question 3. 

a Copy the diagram and add arrows to show the direction of the field. [1]
b Explain why the formula for potential energy gained (mgΔh) can be used to find the increase in potential 

energy when an aircraft  climbs to a height of 10 000 m, but cannot be used to calculate the increase in 
potential energy when a spacecraft  travels from the Earth’s surface to a height of 10 000 km. [2]

4 Mercury, the smallest of the eight recognised planets, has a diameter of 4.88 × 106 m and a mean density 
of 5.4 × 103 kg m−3.
a Calculate the gravitational field at its surface. [4]
b A man has a weight of 900 N on the Earth’s surface. What would his weight be on the surface of Mercury? [2]

5 Calculate the potential energy of a spacecraft  of mass 250 kg when it is 20 000 km from the planet Mars. 
(Mass of Mars = 6.4 × 1023 kg, radius of Mars = 3.4 × 106 m.) [2]

6 Ganymede is the largest of Jupiter’s moons, with a mass of 1.48 × 1023 kg. It orbits Jupiter with an orbital 
radius of 1.07 × 106 km and it rotates on its own axis with a period of 7.15 days. It has been suggested that 
to monitor an unmanned landing craft  on the surface of Ganymede a geostationary satellite should be 
placed in orbit around Ganymede.
a Calculate the orbital radius of the proposed geostationary satellite. [2]
b Suggest a diff iculty that might be encountered in achieving a geostationary orbit for this moon. [1]

7 The Earth orbits the Sun with a period of 1 year at an orbital radius of 1.50 × 1011 m. Calculate:
a the orbital speed of the Earth [3]
b the centripetal acceleration of the Earth [2]
c the Sun’s gravitational field strength at the Earth. [1]

8 The planet Mars has a mass of 6.4 × 1023 kg and a diameter of 6790 km.
a i Calculate the acceleration due to gravity at the planet’s surface. [2]

ii Calculate the gravitational potential at the surface of the planet.  [2]
b A rocket is to return some samples of Martian material to Earth. Write down how much energy each 

kilogram of matter must be given to escape completely from Mars’s gravitational field. [1]
c Use you answer to b to show that the minimum speed that the rocket must reach to escape from the 

gravitational field is 5000 m s−1. [2]
d Suggest why it has been proposed that, for a successful mission to Mars, the craft  that takes the 

astronauts to Mars will be assembled at a space station in Earth orbit and launched from there,  
rather than from the Earth’s surface. [2]
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 9 a  Explain what is meant by the gravitational potential at a point. [2]
b Figure 18.15 shows the gravitational potential near a planet of mass M and radius R.

Figure 18.15 For End-of-chapter Question 9. 

 On a copy of the diagram, draw similar curves:
i for a planet of the same radius but of mass 2M – label this i. [2]
ii for a planet of the same mass but of radius 2R – label this ii. [2]

c Use the graphs to explain from which of these three planets it would require the least energy to escape. [2]
d Venus has a diameter of 12 100 km and a mass of 4.87 × 1024 kg.
 Calculate the energy needed to lift  one kilogram from the surface of Venus to a space station in orbit 

900 km from the surface. [4]

10 a  Explain what is meant by the gravitational field strength at a point. [2]
 Figure 18.16 shows the dwarf planet, Pluto, and its moon, Charon. These can be considered to be a 

double planetary system orbiting each other about their joint centre of mass.

Figure 18.16 For End-of-chapter Question 10. 

b Calculate the gravitational pull on Charon due to Pluto. [3]
c Use your result to b to calculate Charon’s orbital period. [3]
d Explain why Pluto’s orbital period must be the same as Charon’s. [1]
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r

R

ϕ

19 600 km

2070 km

joint centre
of mass

Charon: mass mC = 1.50     1021 kg Pluto: mass mP = 1.27     1022 kg



11 Figure 18.17 shows the variation of the Earth’s gravitational field strength with distance from its centre.

Figure 18.17 For End-of-chapter Question 11. 

a Determine the gravitational field strength at a height equal to 2R above the Earth’s surface, where 
R is the radius of the Earth. [1]

b A satellite is put into an orbit at this height. State the centripetal acceleration of the satellite. [1]
c Calculate the speed at which the satellite must travel to remain in this orbit. [2]
d i  Frictional forces mean that the satellite gradually slows down aft er it has achieved a circular orbit. 

Draw a diagram of the initial circular orbital path of the satellite, and show the resulting orbit as 
frictional forces slow the satellite down. [1]

ii Suggest and explain why there is not a continuous bombardment of old satellites colliding with 
the Earth. [2]

284

0
0 5.0 10.0 15.0 20.0 25.0

2.0

4.0

6.0

8.0

10.0

R
r / 106 m

g 
/ N

 k
g–1

Cambridge International A Level Physics



285Chapter 19:
 Oscillations

Learning outcomes
You should be able to:

■■ give examples of free and forced oscillations
■■ use appropriate terminology to describe oscillations
■■ use the equation a = −  2x to define simple harmonic 

motion (s.h.m.)
■■ recall and use equations for displacement and velocity 

in s.h.m.
■■ draw and use graphical representations of s.h.m.
■■ describe energy changes during s.h.m.
■■ describe the eff ects of damping on oscillations, with 

practical examples
■■ give examples of forced oscillations and resonance and 

describe the eff ects of damping on resonance
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Oscillations in an engine
Figure 19.1 shows a cut-away view of a modern car 
engine; there are four pistons which oscillate up to 
5000 times per minute when the engine is operating at 
full power. Engineers need to understand the physics 
of oscillations to be able to calculate the stresses 
produced on the pistons when the engine is operating.

Free and forced oscillations
Oscillations and vibrations are everywhere. A bird in 
flight flaps its wings up and down. An aircraft’s wings also 
vibrate up and down, but this is not how it flies. The wings 
are long and thin, and they vibrate slightly because they 
are not perfectly rigid. Many other structures vibrate – 
bridges when traffic flows across, buildings in high winds.

A more specific term than vibration is oscillation. An 
object oscillates when it moves back and forth repeatedly, on 
either side of some equilibrium position. If we stop the object 
from oscillating, it returns to the equilibrium position.

We make use of oscillations in many different ways – 
for pleasure (a child on a swing), for music (the vibrations 
of a guitar string), for timing (the movement of a 
pendulum or the vibrations of a quartz crystal). Whenever 
we make a sound, the molecules of the air oscillate, 
passing the sound energy along. The atoms of a solid 
vibrate more and more as the temperature rises.

These examples of oscillations and vibrations may seem 
very different from one another. In this chapter, we will 
look at the characteristics that are shared by all oscillations.

Free or forced?
The easiest oscillations to understand are free oscillations. 
If you pluck a guitar string, it continues to vibrate for some 
time after you have released it. It vibrates at a particular 
frequency (the number of vibrations per unit time). This is 
called its natural frequency of vibration, and it gives rise 
to the particular note that you hear. Change the length 
of the string, and you change the natural frequency. In 
a similar way, the prongs of a tuning fork have a natural 
frequency of vibration, which you can observe when you 

strike it on a cork. Every oscillator has a natural frequency 
of vibration, the frequency with which it vibrates freely 
after an initial disturbance.

On the other hand, many objects can be forced to 
vibrate. If you sit on a bus, you may notice that the 
vibrations from the engine are transmitted to your body, 
causing you to vibrate with the same frequency. These are 
not free vibrations of your body; they are forced vibrations. 
Their frequency is not the natural frequency of vibration of 
your body, but the forcing frequency of the bus.

In the same way, you can force a metre ruler to oscillate 
by waving it up and down; however, its natural frequency 
of vibration will be much greater than this, as you will 
discover if you hold one end down on the bench and twang 
the other end (Figure 19.2).

Figure 19.1  The pistons inside this car engine oscillate up and 
down as the engine powers the car. 

Figure 19.2  A ruler vibrating freely at its natural frequency. 
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1	 State which of the following are free oscillations, 
and which are forced:
a	 the wing beat of a mosquito
b	 the movement of the pendulum in a 

grandfather clock
c	 the vibrations of a cymbal after it has been 

struck
d	 the shaking of a building during an earthquake.

BOX 19.1: Observing slow oscillations 

A mass–spring system
A trolley, loaded with extra masses, is tethered by 
identical springs in between two clamps (Figure 19.3). 
Displace the trolley to one side and it will oscillate 
back and forth along the bench. Listen to the sound 
of the trolley moving. Where is it moving fastest? 
What happens to its speed as it reaches the ends of its 
oscillation? What is happening to the springs as the 
trolley oscillates?

A long pendulum
A string, at least 2 m long, hangs from the ceiling with a 
large mass fixed at the end (Figure 19.4). Pull the mass 
some distance to one side, and let go. The pendulum 
will swing back and forth at its natural frequency of 
oscillation. Try to note the characteristics of its motion. 
In what ways is it similar to the motion of the oscillating 
trolley? In what ways is it different?

A loudspeaker cone
A signal generator, set to a low frequency (say, 1 Hz), 
drives a loudspeaker so that it vibrates (Figure 19.5). 
You need to be able to see the cone of the loudspeaker. 

How does this motion compare with that of the 
pendulum and the mass–spring system? Try using 
a higher frequency (say, 100 Hz). Use an electronic 
stroboscope flashing at a similar frequency to show up 
the movement of the cone. (It may help to paint a white 
spot on the centre of the cone.) Do you observe the 
same pattern of movement?

stroboscope
signal generator

cone

Figure 19.3  A trolley tethered between springs will 
oscillate freely from side to side. 

Figure 19.4  A long pendulum oscillates back and forth. 

Figure 19.5  A loudspeaker cone forced to vibrate up and 
down.

QUESTION Observing oscillations
Many oscillations are too rapid or too small for us to 
observe. Our eyes cannot respond rapidly enough if the 
frequency of oscillation is more than about 5 Hz (five 
oscillations per second); anything faster than this appears 
as a blur. In order to see the general characteristics of 
oscillating systems, we need to find suitable systems that 
oscillate slowly. Box 19.1 describes three suitable situations 
to investigate.
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Phase
The term phase describes the point that an oscillating 
mass has reached within the complete cycle of an 
oscillation. It is often important to describe the phase 
difference between two oscillations. The graph of Figure 
19.9a shows two oscillations which are identical except 
for their phase difference. They are out of step with one 
another. In this example, they have a phase difference 
of one-quarter of an oscillation. Phase difference can be 
measured as a fraction of an oscillation, in degrees or in 
radians (see Worked example 1).

Describing oscillations
All of these examples show the same pattern of movement. 
The trolley accelerates as it moves towards the centre 
of the oscillation. It is moving fastest at the centre. It 
decelerates as it moves towards the end of the oscillation. 
At the extreme position, it stops momentarily, reverses its 
direction and accelerates back towards the centre again.

Amplitude, period and frequency
Many oscillating systems can be represented by a 
displacement–time graph like that shown in Figure 19.7. 
The displacement x varies in a smooth way on either side 
of the midpoint. The shape of this graph is a sine curve, 
and the motion is described as sinusoidal.

Notice that the displacement changes between positive 
and negative values, as the object moves through the 
equilibrium position. The maximum displacement from 
the equilibrium position is called the amplitude x0 of the 
oscillation.

The displacement–time graph can also be used to 
show the period and frequency of the oscillation. The 
period T is the time for one complete oscillation. Note 
that the oscillating object must go from one side to the 
other and back again (or the equivalent). The frequency f 
is the number of oscillations per unit time, and so f is the 
reciprocal of T:

frequency = 1
period

  or  f = 1
T

The equation above can also be written as:

period = 1
frequency

  or  T = 1
f

2	 If you could draw a velocity–time graph for any of 
the oscillators described in Box 19.1, what would 
it look like? Would it be a curve like the one shown 
in Figure 19.6a, or triangular (saw-toothed) like the 
one shown in Figure 19.6b?

3	 From the displacement–time graph shown in 
Figure 19.8, determine the amplitude, period and 
frequency of the oscillations represented.
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Figure 19.6  Two possible velocity–time graphs for 
vibrating objects. 

Time

Di
sp

la
ce

m
en

t

0

+

–

amplitude, x0

period, T

Di
sp

la
ce

m
en

t /
 c

m

–10
–5 20 40 60 80 100 120 140 160

Time / ms

0
5

10

Figure 19.7  A displacement–time graph to show the meaning 
of amplitude and period.

Figure 19.8  A displacement–time graph for an oscillator.
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4	 a	� Figure 19.9b shows two oscillations which are 
out of phase. By what fraction of an oscillation 
are they out of phase?

b	 Why would it not make sense to ask the same 
question about Figure 19.9c?

1	 Figure 19.10 shows displacement–time graphs for two 
identical oscillators. Calculate the phase difference 
between the two oscillations. Give your answer in 
degrees and in radians.

	 Step 1  Measure the time interval t between two 
corresponding points on the graphs.
t  = 17 ms

	 Step 2  Determine the period T for one complete 
oscillation.
T =  60 ms

	 Hint: Remember that a complete oscillation is when the 
object goes from one side to the other and back again.

	 Step 3  Now you can calculate the phase difference as a 
fraction of an oscillation.
phase difference = fraction of an oscillation

	 Therefore:
phase difference =  

t
T

  =  
17
60  =  0.283 oscillation

	 Step 4  Convert to degrees and radians. There are 360° 
and 2π rad in one oscillation.
phase difference = 0.283 × 360° = 102° ≈ 100°
phase difference = 0.283 × 2π rad
	 = 1.78 rad ≈ 1.8 rad

Figure 19.10  The displacement–time graphs of two 
oscillators with the same period.
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Figure 19.9  Illustrating the idea of phase difference. 

QUESTION

WORKED EXAMPLE

Simple harmonic motion
There are many situations where we can observe the 
special kind of oscillations called simple harmonic motion 
(s.h.m.). Some are more obvious than others. For example, 
the vibrating strings of a musical instrument show s.h.m. 
When plucked or bowed, the strings move back and forth 
about the equilibrium position of their oscillation. The 
motion of the tethered trolley in Figure 19.3 and that 
of the pendulum in Figure 19.4 are also s.h.m. (Simple 
harmonic motion is defined in terms of the acceleration 
and displacement of an oscillator – see pages 294–5.)

Here are some other, less obvious, situations where 
simple harmonic motion can be found:

■■ When a pure (single tone) sound wave travels through air, 
the molecules of the air vibrate with s.h.m.

■■ When an alternating current flows in a wire, the electrons in 
the wire vibrate with s.h.m.

■■ There is a small alternating electric current in a radio or 
television aerial when it is tuned to a signal, in the form of 
electrons moving with s.h.m.

■■ The atoms that make up a molecule vibrate with s.h.m. (see, 
for example, the hydrogen molecule in Figure 19.11a).
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Oscillations can be very complex, with many different 
frequencies of oscillation occurring at the same time. 
Examples include the vibrations of machinery, the motion 
of waves on the sea and the vibration of a solid crystal 
formed when atoms, ions or molecules bond together 
(Figure 19.11b). It is possible to break down a complex 
oscillation into a sum of simple oscillations, and so we 
will focus our attention in this chapter on s.h.m. with only 
one frequency. We will also concentrate on large-scale 
mechanical oscillations, but you should bear in mind that 
this analysis can be extended to the situations mentioned 
above, and many more besides.

a

b

H atom
elastic bond

Figure 19.11  We can think of the bonds between atoms as 
being springy; this leads to vibrations, a in a molecule of 
hydrogen and b in a solid crystal. 

v

equilibrium position

x

The changes of velocity in s.h.m.
As the pendulum swings back and forth, its velocity is 
constantly changing. As it swings from right to left (as 
shown in Figure 19.12) its velocity is negative. It accelerates 
towards the equilibrium position and then decelerates as it 
approaches the other end of the oscillation. It has positive 
velocity as it swings back from left to right. Again, it has 
maximum speed as it travels through the equilibrium 
position and decelerates as it swings up to its starting 
position.

This pattern of acceleration – deceleration – changing 
direction – acceleration again is characteristic of simple 
harmonic motion. There are no sudden changes of velocity. 
In the next section we will see how we can observe these 
changes and how we can represent them graphically.

Figure 19.12  This swinging pendulum has positive 
displacement x and negative velocity v.

5	 Identify the features of the motion of the trolley 
in Figure 19.3 (on page 287) that satisfy the three 
requirements for s.h.m.

6	 Explain why the motion of someone jumping 
up and down on a trampoline is not simple 
harmonic motion. (Their feet lose contact with the 
trampoline during each bounce.)

QUESTIONS

The requirements for s.h.m.
If a simple pendulum is undisturbed, it is in equilibrium. 
The string and the mass will hang vertically. To start it 
swinging (Figure 19.12), it must be pulled to one side 
of its equilibrium position. The forces on the mass are 
unbalanced and so it moves back towards its equilibrium 
position. The mass swings past this point and continues 
until it comes to rest momentarily at the other side; the 
process is then repeated in the opposite direction. Note that 
a complete oscillation in Figure 19.12 is from right to left 
and back again.

The three requirements for s.h.m. of a mechanical 
system are:

■■ a mass that oscillates
■■ a position where the mass is in equilibrium (conventionally, 

displacement x to the right of this position is taken as 
positive; to the left it is negative)

■■ a restoring force that acts to return the mass to its 
equilibrium position; the restoring force F is directly 
proportional to the displacement x of the mass from its 
equilibrium position and is directed towards that point.



291

Chapter 19: Oscillations

Representing s.h.m. graphically
If you set up a trolley tethered between springs (Figure 
19.13) you can hear the characteristic rhythm of s.h.m. as 
the trolley oscillates back and forth. By adjusting the mass 
carried by the trolley, you can achieve oscillations with a 
period of about two seconds.

stand card
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motion sensor

to
computer
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Figure 19.13  A motion sensor can be used to investigate 
s.h.m. of a spring–trolley system. 

The motion sensor allows you to record how the 
displacement of the trolley varies with time. Ultrasonic 
pulses from the sensor are reflected by the card on the trolley 
and the reflected pulses are detected. This ‘sonar’ technique 
allows the sensor to determine the displacement of the 
trolley. A typical screen display is shown in Figure 19.14.

The computer can then determine the velocity of the 
trolley by calculating the rate of change of displacement. 
Similarly, it can calculate the rate of change of velocity to 
determine the acceleration.

Idealised graphs of displacement, velocity and 
acceleration against time are shown in Figure 19.15. We 
will examine these graphs in sequence to see what they tell 
us about s.h.m. and how the three graphs are related to one 
another.

Figure 19.14  A typical displacement–time graph generated by 
a motion sensor. 

Figure 19.15  Graphs of displacement x, velocity v and 
acceleration a against time t for s.h.m. 

Displacement–time (x–t) graph
The displacement of the oscillating mass varies 
according to the smooth curve shown in Figure 19.15a. 
Mathematically, this is a sine curve; its variation is 
described as sinusoidal. Note that this graph allows us 
to determine the amplitude x0 and the period T of the 
oscillations. In this graph, the displacement x of the 
oscillation is shown as zero at the start, when t is zero. 
We have chosen to consider the motion to start when 
the mass is at the midpoint of its oscillation (equilibrium 
position) and is moving to the right. We could have chosen 
any other point in the cycle as the starting point, but it is 
conventional to start as shown here.

Velocity–time (v–t) graph
The velocity v of the oscillator at any time can be 
determined from the gradient of the displacement–time 
graph:

ν = Δx
Δt

Again, we have a smooth curve (Figure 19.15b), which 
shows how the velocity v depends on time t. The shape  
of the curve is the same as for the displacement–time 
graph, but it starts at a different point in the cycle.  
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When time t = 0, the mass is at the equilibrium position 
and this is where it is moving fastest. Hence the velocity 
has its maximum value at this point. Its value is positive 
because at time t = 0 it is moving towards the right.

Acceleration–time (a–t) graph
Finally, the acceleration a of the oscillator at any time 
can be determined from the gradient of the velocity–time 
graph:

a = Δν
Δt

This gives a third curve of the same general form (Figure 
19.15c), which shows how the acceleration a depends on 
time t. At the start of the oscillation, the mass is at its 
equilibrium position. There is no resultant force acting on 
it so its acceleration is zero. As it moves to the right, the 
restoring force acts towards the left, giving it a negative 
acceleration. The acceleration has its greatest value when 
the mass is displaced farthest from the equilibrium 
position. Notice that the acceleration graph is ‘upside-
down’ compared with the displacement graph. This  
shows that:

acceleration ∝ −displacement
or

a  ∝ −x
In other words, whenever the mass has a positive 
displacement (to the right), its acceleration is to the left, 
and vice versa.

Frequency and angular 
frequency
The frequency f of s.h.m. is equal to the number of 
oscillations per unit time. As we saw earlier, f is related to 
the period T by:

f = 1
T

We can think of a complete oscillation of an oscillator or 
a cycle of s.h.m. as being represented by 2π radians. (This 
is similar to a complete cycle of circular motion, where an 
object moves round through 2π radians.) The phase of the 
oscillation changes by 2π rad during one oscillation. Hence, 
if there are f oscillations in unit time, there must be 2πf 
radians in unit time. This quantity is the angular frequency 
of the s.h.m. and it is represented by the symbol ω (Greek 
letter omega).

The angular frequency ω is thus related to frequency f 
by the following equation:

ω = 2πf

Since f = 1
T  

, the angular frequency ω is related to the 

period T of the oscillator by the equation:

ω = 2π
T

  or  T = 2π
ω

	 7	 Use the graphs shown in Figure 19.15 to determine 
the values of the following quantities:
a	 amplitude
b	 period
c	 maximum velocity
d	 maximum acceleration.

	 8	 State at what point in an oscillation the oscillator has 
zero velocity but positive acceleration.

	 9	 Look at the x–t graph of Figure 19.15a. When  
t = 0.1 s, what is the gradient of the graph?  
State the velocity at this instant.

	10	 Figure 19.16 shows the displacement–time (x–t) 
graph for an oscillating mass. Use the graph to 
determine the following quantities:
a	 the velocity in cm s−1 when t = 0 s
b	 the maximum velocity in cm s−1

c	 the acceleration in cm s−2 when t = 1.0 s.
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Figure 19.16  A displacement–time graph for an 
oscillating mass – see Question 10.

QUESTIONS
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Equations of s.h.m.
The graph of Figure 19.15a, shown earlier, represents how 
the displacement of an oscillator varies during s.h.m. We 
have already mentioned that this is a sine curve. We can 
present the same information in the form of an equation. 
The relationship between the displacement x and the  
time t is as follows:

x = x0 sin ωt
where x0 is the amplitude of the motion and ω is its 
frequency. Sometimes the same motion is represented 
using a cosine function, rather than a sine function:

x = x0 cos ωt
The difference between these two equations is illustrated 
in Figure 19.19. The sine version starts at x = 0, i.e. the 
oscillating mass is at its equilibrium position when t = 0. 

x

0

+x0

–x0

Phase/rad

2
π

2
3π 2ππ

Figure 19.17  The phase of an oscillation varies from 0 to 2π 
during one cycle. 

	11	 An object moving with s.h.m. goes through two 
complete cycles in 1.0 s. Calculate:
a	 the period T
b	 the frequency f
c	 the angular frequency ω.

	12	 Figure 19.18 shows the displacement–time graph for 
an oscillating mass. Use the graph to determine the 
following:
a	 amplitude
b	 period
c	 frequency
d	 angular frequency

e	 displacement at A
f	 velocity at B
g	 velocity at C.

	13	 An atom in a crystal vibrates with s.h.m. with a 
frequency of 1014 Hz. The amplitude of its motion is 
2.0 × 10−12 m.
a	 Sketch a graph to show how the displacement of 

the atom varies during one cycle.
b	 Use your graph to estimate the maximum velocity 

of the atom.
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Figure 19.18  A displacement–time graph. For Question 12. 
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Figure 19.19  These two graphs 
represent the same simple harmonic 
motion. The difference in starting 
positions is related to the sine and 
cosine forms of the equation for x as a 
function of t. 

In Figure 19.17, a single cycle of s.h.m. is shown, but with 
the x-axis marked with the phase of the motion in radians.
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The cosine version starts at x = x0, so that the mass is at its 
maximum displacement when t = 0.

Note that, in calculations using these equations, the 
quantity ωt is in radians. Make sure that your calculator is 
in radian mode for any calculation (see Worked example 2). 
The presence of the π in the equation should remind you  
of this.

2	 A pendulum oscillates with frequency 1.5 Hz and 
amplitude 0.10 m. If it is passing through its equilibrium 
position when t = 0, write an equation to represent 
its displacement x in terms of amplitude x0, angular 
frequency ω and time t. Determine its displacement 
when t = 0.50 s.
Step 1  Select the correct equation. In this case, the 
displacement is zero when t = 0, so we use the sine form:
x  =  x0 sin ωt

	 Step 2  From the frequency f, calculate the angular 
frequency ω:
ω  =  2πf  = 2 × π × 1.5 = 3.0π

	 Step 3  Substitute values in the equation: x0 = 0.10 m, so:
x = 0.10 sin (3.0πt)

	 Hint: Remember to put your calculator into radian mode.

	 Step 4  To find x when t  = 0.50 s, substitute for t and 
calculate the answer:
x  =  0.10 sin (2π × 1.5 × 0.50)
	 =  0.10 sin (4.713)
	 =  −0.10 m

	 This means that the pendulum is at the extreme end 
of its oscillation; the minus sign means that it is at the 
negative or left-hand end, assuming you have chosen to 
consider displacements to the right as positive.

	 (If your calculation went like this:
x  =  0.10 sin (2π × 1.5 × 0.50) = 0.10 sin (4.713)
	 =  −8.2 × 10−3 m

	 then your calculator was incorrectly set to work in 
degrees, not radians.)

	14	 The vibration of a component in a machine is 
represented by the equation:

	 x = 3.0 × 10−4 sin (240πt)

	 where the displacement x is in metres. Determine 
the a amplitude, b frequency and c period of the 
vibration.

	15	 A trolley is at rest, tethered between two springs. 
It is pulled 0.15 m to one side and, when time  
t = 0, it is released so that it oscillates back and 
forth with s.h.m. The period of its motion is 2.0 s.
a	 Write an equation for its displacement x at any 

time t (assume that the motion is not damped 
by frictional forces).

b	 Sketch a displacement–time graph to show 
two cycles of the motion, giving values where 
appropriate.

QUESTIONS

WORKED EXAMPLE

Acceleration and displacement
In s.h.m., an object’s acceleration depends on how far 
it is displaced from its equilibrium position and on 
the magnitude of the restoring force. The greater the 
displacement x, the greater the acceleration a. In fact, a is 
proportional to x. We can write the following equation to 
represent this:

a = −ω2x
This equation shows that a is proportional to x; the 
constant of proportionality is ω2. The minus sign shows 
that, when the object is displaced to the right, the 
direction of its acceleration is to the left. The acceleration 
is always directed towards the equilibrium position, in the 
opposite direction to the displacement.

It should not be surprising that angular frequency 
ω appears in this equation. Imagine a mass hanging 
on a spring, so that it can vibrate up and down. If the 
spring is stiff, the force on the mass will be greater, it 
will be accelerated more for a given displacement and its 
frequency of oscillation will be higher.

The equation
a = −ω2x

helps us to define simple harmonic motion. The acceleration 
a is directly proportional to displacement x; and the minus 
sign shows that it is in the opposite direction.
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Simple harmonic motion is defined as follows:

A body executes simple harmonic motion if its 
acceleration is directly proportional to its displacement 
from its equilibrium position, and in the opposite 
direction to its displacement.

If a and x were in the same direction (no minus sign), the 
body’s acceleration would increase as it moved away from 
the fixed point and it would move away faster and faster, 
never to return.

Figure 19.20 shows the acceleration–displacement (a–x) 
graph for an oscillator executing s.h.m. Note the following:

■■ The graph is a straight line through the origin (a ∝ x).
■■ It has a negative slope (the minus sign in the equation  

a  =  −ω2x). This means that the acceleration is always 
directed towards the equilibrium position.

■■ The magnitude of the gradient of the graph is ω 2.
■■ The gradient is independent of the amplitude of the motion. 

This means that the frequency f or the period T of the 
oscillator is independent of the amplitude and so a simple 
harmonic oscillator keeps steady time.

A mathematical note: we say that the equation a = −ω2x 
defines simple harmonic motion – it tells us what is 
required if a body is to perform s.h.m. The equation  
x = x0 sin ωt is then described as a solution to the 
equation, since it tells us how the displacement of the body 
varies with time. If you have studied calculus you may be 
able to differentiate the equation for x twice with respect 
to time to obtain an equation for acceleration and thereby 
show that the defining equation a = −ω2x is satisfied.

Equations for velocity
The velocity v of an oscillator varies as it moves back and 
forth. It has its greatest speed when it passes through the 
equilibrium position in the middle of the oscillation. If 
we take time t = 0 when the oscillator passes through the 
middle of the oscillation with its greatest speed v0, then we 
can represent the changing velocity as an equation:

v = v0 cos ωt
We use the cosine function to represent the velocity since 
it has its maximum value when t = 0.

The equation v = v0 cos ωt tells us how v depends on t. 
We can write another equation to show how the velocity 
depends on the oscillator’s displacement x:

v = ± ω   x0
2 − x2

This equation can be used to deduce the speed of an 
oscillator at any point in an oscillation, including its 
maximum speed.

Maximum speed of an oscillator
If an oscillator is executing simple harmonic motion, 
it has maximum speed when it passes through its 
equilibrium position. This is when its displacement x is 
zero. The maximum speed v0 of the oscillator depends on 
the frequency f of the motion and on the amplitude x0. 
Substituting x = 0 in the equation:

v = ± ω   x0
2 − x2 

gives the maximum speed:
v0 = ω x0

According to this equation, for a given oscillation:
v0 ∝ x0

A simple harmonic oscillator has a period that is 
independent of the amplitude. A greater amplitude means 
that the oscillator has to travel a greater distance in the 
same time – hence it has a greater speed.

The equation also shows that:
v0 ∝ ω

so that the maximum speed is proportional to the 
frequency. Increasing the frequency means a shorter 
period. A given distance is covered in a shorter time – 
hence it has a greater speed.

Have another look at Figure 19.15. The period of the 
motion is 0.40 s and the amplitude of the motion is 0.02 m. 
The frequency f can be calculated as follows:

f  = 1
t
 = 1

0.40
 = 2.5 Hz

a

+x0–x0
x

gradient = − ω2

0

Figure 19.20  Graph of acceleration a against displacement x 
for an oscillator executing s.h.m. 
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We can now use the equation v0 = (2πf )x0 to determine 
the maximum speed v0:

v0 = (2πf )x0 = (2π × 2.5) × 2.0 × 10−2

v0 ≈ 0.31 m s−1

This is how the values on Figure 19.15b were calculated.

Energy changes in s.h.m.
During simple harmonic motion, there is a constant 
interchange of energy between two forms: potential and 
kinetic. We can see this by considering the mass–spring 
system shown in Figure 19.21.

When the mass is pulled to one side (to start the 
oscillations), one spring is compressed and the other is 
stretched. The springs store elastic potential energy. When 
the mass is released, it moves back towards the equilibrium 
position, accelerating as it goes. It has increasing kinetic 
energy. The potential energy stored in the springs decreases 
while the kinetic energy of the mass increases by the same 
amount (as long as there are no heat losses due to frictional 
forces). Once the mass has passed the equilibrium position, 
its kinetic energy decreases and the energy is transferred 
back to the springs. Provided the oscillations are undamped, 
the total energy in the system remains constant.

	16	 A mass secured at the end of a spring moves with 
s.h.m. The frequency of its motion is 1.4 Hz.
a	 Write an equation of the form a = −ω2x to show 

how the acceleration of the mass depends on 
its displacement.

b	 Calculate the acceleration of the mass when 
it is displaced 0.050 m from its equilibrium 
position.

	17	 A short pendulum oscillates with s.h.m. such 
that its acceleration a (in m s−2) is related to its 
displacement x (in m) by the equation a = −300x. 
Determine the frequency of the oscillations.

	18	 The pendulum of a grandfather clock swings 
from one side to the other in 1.00 s. The 
amplitude of the oscillation is 12 cm. 
a	 Calculate:

i	 the period of its motion
ii	 the frequency
iii	 the angular frequency.

b	 Write an equation of the form a = −ω2x to show 
how the acceleration of the pendulum weight 
depends on its displacement.

c	 Calculate the maximum speed of the 
pendulum bob.

d	 Calculate the speed of the bob when its 
displacement is 6 cm.

	19	 A trolley of mass m is fixed to the end of a spring. 
The spring can be compressed and extended. 
The spring has a force constant k. The other end 
of the spring is attached to a vertical wall. The 
trolley lies on a smooth horizontal table. The 
trolley oscillates when it is displaced from its 
equilibrium position.
a	 Show that the motion of the oscillating trolley 

is s.h.m.
b	 Show that the period T of the trolley is given 

by the equation:

	 T = 2π     
m
k

stretched spring
stores energy

m

compressed spring
stores energy

0
0

En
er

gy

Time

total
energy

kinetic energy

1 period of oscillation

potential energy

Energy graphs
We can represent these energy changes in two ways. Figure 
19.22 shows how the kinetic energy and elastic potential 
energy change with time. Potential energy is maximum 
when displacement is maximum (positive or negative). 
Kinetic energy is maximum when displacement is zero. 
The total energy remains constant throughout. Note that 
both kinetic energy and potential energy go through two 
complete cycles during one period of the oscillation. This 
is because kinetic energy is maximum when the mass is 

Figure 19.21  The elastic potential energy stored in the springs 
is converted to kinetic energy when the mass is released. 

Figure 19.22  The kinetic energy and potential energy of 
an oscillator vary periodically, but the total energy remains 
constant if the system is undamped. 

QUESTIONS
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passing through the equilibrium position moving to the 
left and again moving to the right. The potential energy is 
maximum at both ends of the oscillation.

A second way to show this is to draw a graph of 
how potential energy and kinetic energy vary with 
displacement (Figure 19.23).
The graph shows that:

■■ kinetic energy is maximum when displacement  x  =  0
■■ potential energy is maximum when x  =  ± x0

■■ at any point on this graph, the total energy (k.e. + p.e.)  
has the same value.

Damped oscillations
In principle, oscillations can go on for ever. In practice, 
however, the oscillations we observe around us do not. 
They die out, either rapidly or gradually. A child on a swing 
knows that the amplitude of her swinging will decline until 
eventually she will come to rest, unless she can put some 
more energy into the swinging to keep it going.

This happens because of friction. On a swing, there 
is friction where the swing is attached to the frame and 
there is friction with the air. The amplitude of the child’s 
oscillations decreases as the friction transfers energy away 
from her to the surroundings.

We describe these oscillations as damped. Their 
amplitude decreases according to a particular pattern. This 
is shown in Figure 19.25.

	20	 To start a pendulum swinging, you pull it slightly to 
one side.
a	 What kind of energy does this transfer to the 

mass?
b	 Describe the energy changes that occur when the 

mass is released.

	21	 Figure 19.23 shows how the different forms of energy 
change with displacement during s.h.m. Copy the 
graph, and show how the graph would differ if the 
oscillating mass were given only half the initial input 
of energy.

	22	 Figure 19.24 shows how the velocity v of a 2.0 kg 
mass was found to vary with time t during an 
investigation of the s.h.m. of a pendulum. Use the 
graph to estimate the following for the mass:

a	 its maximum velocity
b	 its maximum kinetic energy
c	 its maximum potential energy
d	 its maximum acceleration
e	 the maximum restoring force that acted on it.

Energy
total
energy

potential
energy
kinetic
energy

0–x0 x0 x

Figure 19.23  The kinetic energy is maximum at zero 
displacement; the potential energy is maximum at maximum 
displacement (x0 and −x0). 

Figure 19.24  A velocity–time graph for a pendulum – 
see Question 22. 
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Figure 19.25  Damped oscillations.
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The amplitude of damped oscillations does not 
decrease linearly. It decays exponentially with time. An 
exponential decay is a particular mathematical pattern 
that arises as follows. At first, the swing moves rapidly. 
There is a lot of air resistance to overcome, so the swing 
loses energy quickly and its amplitude decreases at a 
high rate. Later, it is moving more slowly. There is less 
air resistance and so energy is lost more slowly – the 

Energy and damping
Damping can be very useful if we want to get rid of 
vibrations. For example, a car has springs (Figure 19.28) 
which make the ride much more comfortable for us when 
the car goes over a bump. However, we wouldn’t want 
to spend every car journey vibrating up and down as a 
reminder of the last bump we went over. So the springs are 
damped by the shock absorbers, and we return rapidly to a 
smooth ride after every bump.

BOX 19.2: Investigating damping

You can investigate the exponential decrease in the 
amplitude of oscillations using a simple laboratory 
arrangement (Figure 19.26). A hacksaw blade or other 
springy metal strip is clamped (vertically or horizontally) 
to the bench. A mass is attached to the free end. This will 
oscillate freely if you displace it to one side.

A graph of amplitude against time will show the 
characteristic exponential decrease. You can find 
the ‘half-life’ of this exponential decay graph by 
determining the time it takes to decrease to half its 
initial amplitude (Figure 19.27).

By changing the size of the card, it is possible to 
change the degree of damping, and hence alter the  
half-life of the motion.

A card is attached to the mass so that there is 
significant air resistance as the mass oscillates. The 
amplitude of the oscillations decreases and can be 
measured every five oscillations by judging the position 
of the blade against a ruler fixed alongside.

ruler

card

mass

hacksaw blade

bench clamp

Figure 19.26  Damped oscillations with a hacksaw blade. 

Figure 19.27  A typical graph of amplitude against time for 
damped oscillations.
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Figure 19.28  The springs and shock absorbers in a car 
suspension system form a damped system. 

amplitude decreases at a lower rate. Hence we get the 
characteristic curved shape, which is the ‘envelope’ of the 
graph in Figure 19.25.

Notice that the frequency of the oscillations does not 
change as the amplitude decreases. This is a characteristic 
of simple harmonic motion. The child may, for example, 
swing back and forth once every two seconds, and this 
stays the same whether the amplitude is large or small.
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Damping is achieved by introducing the force of friction 
into a mechanical system. In an undamped oscillation, the 
total energy of the oscillation remains constant. There is a 
regular interchange between potential and kinetic energy. 
By introducing friction, damping has the effect of removing 
energy from the oscillating system, and the amplitude and 
maximum speed of the oscillation decrease.

this caused the amplitude of the bridge’s oscillations to 
increase – this is resonance. After three days the bridge 
was closed. It took engineers two years to analyse the 
problem and then add ‘dampers’ to the bridge to absorb 
the energy of its oscillations. The bridge was then reopened 
and there have been no problems since.

You will have observed a much more familiar example 
of resonance when pushing a small child on a swing. The 
swing plus child has a natural frequency of oscillation. 
A small push in each cycle results in the amplitude 
increasing until the child is swinging high in the air.	23	 a	� Sketch graphs to show how each of the 

following quantities changes during the 
course of a single complete oscillation of 
an undamped pendulum: kinetic energy, 
potential energy, total energy.

b	 State how your graphs would be different for a 
lightly damped pendulum.

Resonance
Resonance is an important physical phenomenon that can 
appear in a great many different situations. A dramatic 
example is the Millennium Footbridge in London, opened 
in June 2000 (Figure 19.29). With up to 2000 pedestrians 
walking on the bridge, it started to sway dangerously. 
The people also swayed in time with the bridge, and 

Figure 19.29  The ‘wobbly’ Millennium Footbridge in London 
was closed for nearly two years to correct problems caused by 
resonance. 

BOX 19.3: Observing resonance

Resonance can be observed with almost any oscillating 
system. The system is forced to oscillate at a particular 
frequency. If the forcing frequency happens to match 
the natural frequency of oscillation of the system, the 
amplitude of the resulting oscillations can build up to 
become very large.

Barton’s pendulums
Barton’s pendulums is a demonstration of this (Figure 
19.30). Several pendulums of different lengths hang 
from a horizontal string. Each has its own natural 
frequency of oscillation. The ‘driver’ pendulum at the 
end is different; it has a large mass at the end, and 
its length is equal to that of one of the others. When 
the driver is set swinging, the others gradually start 
to move. However, only the pendulum whose length 
matches that of the driver pendulum builds up a large 
amplitude so that it is resonating.

Figure 19.30  Barton’s pendulums.

QUESTION
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Defining resonance
For resonance to occur, we must have a system that is 
capable of oscillating freely. We must also have some way 
in which the system is forced to oscillate. When the forcing 
frequency matches the natural frequency of the system, the 
amplitude of the oscillations grows dramatically.

If the driving frequency does not quite match the 
natural frequency, the amplitude of the oscillations will 
increase, but not to the same extent as when resonance 
is achieved. Figure 19.32 shows how the amplitude of 
oscillations depends on the driving frequency in the 
region close to resonance.

In resonance, energy is transferred from the driver 
to the resonating system more efficiently than when 
resonance does not occur. For example, in the case of the 
Millennium Footbridge, energy was transferred from 
the pedestrians to the bridge, causing large-amplitude 
oscillations.

BOX 19.3: Observing resonance (continued)

What is going on here? All the pendulums are 
coupled together by the suspension. As the driver 
swings, it moves the suspension, which in turn moves 
the other pendulums. The frequency of the matching 
pendulum is the same as that of the driver, and so it 
gains energy and its amplitude gradually builds up. The 
other pendulums have different natural frequencies, so 
the driver has little effect.

In a similar way, if you were to push the child on the 
swing once every three-quarters of an oscillation, you 
would soon find that the swing was moving backwards 
as you tried to push it forwards, so that your push 
would slow it down.

A mass–spring system
You can observe resonance for yourself with a simple 
mass–spring system. You need a mass on the end of a 
spring (Figure 19.31), chosen so that the mass oscillates 
up and down with a natural frequency of about 1 Hz. 
Now hold the top end of the spring and move your hand 
up and down rapidly, with an amplitude of a centimetre 
or two. Very little happens. Now move your hand up and 
down more slowly, close to 1 Hz.

You should see the mass oscillating with gradually 
increasing amplitude. Adjust your movements to the 
exact frequency of the natural vibrations of the mass 
and you will see the greatest effect.

Figure 19.31  Resonance with a mass on a spring. 
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Figure 19.32  Maximum amplitude is achieved when 
the driving frequency matches the natural frequency of 
oscillation. 

The following statements apply to any system in 
resonance:

■■ Its natural frequency is equal to the frequency of the driver.
■■ Its amplitude is maximum.
■■ It absorbs the greatest possible energy from the driver.
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Resonance and damping
During earthquakes, buildings are forced to oscillate by 
the vibrations of the Earth. Resonance can occur, resulting 
in serious damage (Figure 19.33). In regions of the world 
where earthquakes happen regularly, buildings may be 
built on foundations that absorb the energy of the shock 
waves. In this way, the vibrations are ‘damped’ so that 
the amplitude of the oscillations cannot reach dangerous 
levels. This is an expensive business, and so far is restricted 
to the wealthier parts of the world.

An everyday example of damping can be seen on 
some doors. For example, a restaurant may have a door 
leading to the kitchen; this door can swing open in either 
direction. Such a door is designed to close by itself after 
someone has passed through it. Ideally, the door should 
swing back quickly without overshooting its closed 
position. To achieve this, the door hinges (or the closing 
mechanism) must be correctly damped. If the hinges are 
damped too lightly, the door will swing back and forth 
several times as it closes. If the damping is too heavy, it 
will take too long to close. With critical damping, the 
door will swing closed quickly without oscillating.

Critical damping is thus the minimum amount of 
damping required to return an oscillator to its equilibrium 
position without oscillating. Under-damping results in 
unwanted oscillations; over-damping results in a slower 
return to equilibrium (see Figure 19.35). A car’s suspension 
system uses springs to smooth out bumps in the road. 
It is usually critically damped so that passengers do not 
experience nasty vibrations every time the car goes over  
a bump.
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heavier damping

Driving frequencyresonance
frequency

0
0
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Damping is thus useful if we want to reduce the 
damaging effects of resonance. Figure 19.34 shows how 
damping alters the resonance response curve of Figure 
19.32. Notice that, as the degree of damping is increased, 
the amplitude of the resonant vibrations decreases. The 
resonance peak becomes broader. There is also an effect on 
the frequency at which resonance occurs, which becomes 
lower as the damping increases.

Figure 19.33  Resonance during the Mexico City earthquake 
of 19 September 1985 caused the collapse of many buildings. 
The earthquake, whose epicentre was in the Pacific Ocean, 
measured 8.1. Many lives were lost. 

Figure 19.34  Damping reduces the amplitude of resonant 
vibrations.

Figure 19.35  Critical damping is just enough to ensure that a 
damped system returns to equilibrium without oscillating.

Using resonance
As we have seen, resonance can be a problem in 
mechanical systems. However, it can also be useful. For 
example, many musical instruments rely on resonance.

Resonance is not confined to mechanical systems. It 
is made use of in, for example, microwave cooking. The 
microwaves used have a frequency that matches a natural 
frequency of vibration of water molecules (the microwave 
is the ‘driver’ and the molecule is the ‘resonating system’). 
The water molecules in the food are forced to vibrate and 
they absorb the energy of the microwave radiation. The 
water gets hotter and the absorbed energy spreads through 
the food and cooks or heats it.
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over-damped
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	24	 List three examples of situations where 
resonance is a problem, and three others where 
resonance is useful. In each case, state what 
the oscillating system is and what forces it to 
resonate.Figure 19.36  This magnetic resonance imaging (MRI) picture 

shows a man, a woman and a nine-year-old child. The image 
has been coloured to show up the bones (white), lungs (dark) 
and other organs. 

Magnetic resonance imaging (MRI) is increasingly 
used in medicine to produce images such as Figure 19.36, 
showing aspects of a patient’s internal organs. Radio waves 
having a range of frequencies are used, and particular 
frequencies are absorbed by particular atomic nuclei. The 
frequency absorbed depends on the type of nucleus and 
on its surroundings. By analysing the absorption of the 
radio waves, a computer-generated image can be produced. 
(There is much more about how MRI works in Chapter 32.)

A radio or television also depends on resonance for 
its tuning circuitry. The aerial picks up signals of many 
different frequencies from many transmitters. The 
tuner can be adjusted to resonate at the frequency of the 
transmitting station you are interested in, and the circuit 
produces a large-amplitude signal for this frequency only.

Big ideas in physics
This study of simple harmonic motion illustrates some 
important aspects of physics:

■■ Physicists often take a complex problem (such as how 
the atoms in a solid vibrate) and reduce it to a simpler, 
more manageable problem (such as how a mass–spring 
system vibrates). This is simpler because we know that the 
spring obeys Hooke’s law, so that force is proportional to 
displacement.

■■ Physicists generally feel happier if they can write 
mathematical equations which will give numerical answers 
to problems. The equation a = −ω2x which describes s.h.m. 
can be solved to give the sine and cosine equations we have 
considered above.

■■ Once physicists have solved one problem like this, they look 
around for other situations where they can use the same 
ideas all over again. So the mass–spring theory also works 
well for vibrating atoms and molecules, for objects bobbing 
up and down in water, and in many other situations.

■■ Physicists also seek to modify the theory to fit a greater 
range of situations. For example, what happens if the 
vibrating mass experiences a frictional force as it oscillates? 
(This is damping, as discussed above.) What happens if the 
spring doesn’t obey Hooke’s law? (This is a harder question 
to answer.)

Your A level physics course will help you to build up your 
appreciation of some of these big ideas – fields (magnetic, 
electric, gravitational), energy and so on.

QUESTION
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Summary
■■ 	Many systems, mechanical and otherwise, will oscillate 

freely when disturbed from their equilibrium position.

■■ Some oscillators have motion described as simple 
harmonic motion (s.h.m.). For these systems, graphs 
of displacement, velocity and acceleration against time 
are sinusoidal curves – see Figure 19.37.

Figure 19.37  Graphs for s.h.m. 

■■ During a single cycle of s.h.m., the phase changes by 
2π radians. The angular frequency ω of the motion is 
related to its period T and frequency f:

ω  =  
2π
T

  and  ω = 2πf

■■ In s.h.m., displacement x and velocity v can be 
represented as functions of time t by equations of  
the form:

x  =  x0 sin ωt  and  v  =  v0 cos ωt

■■ A body executes simple harmonic motion if its 
acceleration is directly proportional to its displacement 
from its equilibrium position, and is always directed 
towards the equilibrium position.

■■ Acceleration a in s.h.m. is related to displacement x by 
the equation a = −ω 2x.

■■ The maximum speed v0 in s.h.m. is given by the 
equation:  
v0 = ωx0.

■■ The frequency or period of a simple harmonic oscillator 
is independent of its amplitude.

■■ In s.h.m., there is a regular interchange between kinetic 
energy and potential energy.

■■ Resistive forces remove energy from an oscillating 
system. This is known as damping. Damping causes the 
amplitude to decay with time.

■■ Critical damping is the minimum amount of damping 
required to return an oscillator to its equilibrium 
position without oscillating. 

■■ When an oscillating system is forced to vibrate close 
to its natural frequency, the amplitude of vibration 
increases rapidly. The amplitude is maximum when the 
forcing frequency matches the natural frequency of the 
system; this is resonance.

■■ Resonance can be a problem, but it can also be very 
useful.
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End-of-chapter questions
1 State and justify whether the following oscillators show simple harmonic motion:

a a basketball being bounced repeatedly on the ground  [2]
b a guitar string vibrating [2]
c a conducting sphere vibrating between two parallel, oppositely charged metal plates  [1]
d the pendulum of a grandfather clock.  [2]

2 The pendulum of a clock is displaced by a distance of 4.0 cm and it oscillates in s.h.m. with a period of 1.0 s.
a Write down an equation to describe the displacement x of the pendulum bob with time t.  [2]
b Calculate:

i the maximum velocity of the pendulum bob  [2]
ii its velocity when its displacement is 2.0 cm.  [1]

3 A 50 g mass is attached to a securely clamped spring. The mass is pulled downwards by 16 mm and 
released, which causes it to oscillate with s.h.m. of time period of 0.84 s.
a Calculate the frequency of the oscillation.  [1]
b Calculate the maximum velocity of the mass.  [1]
c Calculate the maximum kinetic energy of the mass and state at which point in the oscillation it will 

have this velocity. [2]
d Write down the maximum gravitational potential energy of the mass (relative to its equilibrium position). 

You may assume that the damping is negligible.  [1]304
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4 In each of the examples in Figure 19.38, give the phase diff erence between the two curves: i as a fraction of an oscillation, 
ii in degrees and iii in radians.  [9]

Figure 19.38 For End-of-chapter Question 4. 
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5 a  Determine the frequency and the period of the oscillation described by the graph in Figure 19.39. [2]
b Use a copy of the graph and on the same axes sketch:

i the velocity of the particle  [1]
ii the acceleration of the particle.  [2]

Figure 19.39 For End-of-chapter Question 5. 

6 Figure 19.40 shows the displacement of a body as it vibrates between two points.
a State and explain whether the body is moving with simple harmonic motion. [1]
b Make a copy of Figure 19.40.

i On the second set of axes on your copy, show the velocity of the body as it vibrates. [1]
ii On the third set of axes on your copy, show the acceleration of the body. [2]

Figure 19.40 For End-of-chapter Question 6. 
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7 Figure 19.41 shows the piston of a small car engine which 
oscillates in the cylinder with a motion which approximates 
simple harmonic motion at 4200 revs per minute (1 rev = 1 cycle). 
The mass of the piston is 0.24 kg.
a Explain what is meant by simple harmonic motion. [2]
b Calculate the frequency of the oscillation. [1]
c The amplitude of the oscillation is 12.5 cm. Calculate:

i the maximum speed at which the piston moves [2]
ii the maximum acceleration of the piston [2]
iii the force required on the piston to produce the 

maximum acceleration. [1]

8 Figure 19.42 shows a turntable with a rod attached to it a distance 15 cm from the centre. The turntable is 
illuminated from the side so that a shadow is cast on a screen.

Figure 19.42 For End-of-chapter Question 8. 

 A simple pendulum is placed behind the turntable and is set oscillating so that it has an amplitude equal 
to the distance of the rod from the centre of the turntable.

 The speed of rotation of the turntable is adjusted. When it is rotating at 1.5 revolutions per second the shadow 
of the pendulum and the rod are found to move back and forth across the screen exactly in phase.
a Explain what is meant by the term in phase. [1]
b Write down an equation to describe the displacement x of the pendulum from its equilibrium position and 

the angular frequency of the oscillation of the pendulum. [1]
c The turntable rotates through 60° from the position of maximum displacement shown in the diagram.

i Calculate the displacement (from its equilibrium position) of the pendulum at this point. [3]
ii Calculate its speed at this point. [2]
iii Through what further angle must the turntable rotate before it has this speed again? [2]
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Figure 19.41 For End-of-chapter 7.



 9 When a cricket ball hits a cricket bat at high speed it can cause a standing wave to form on the bat. In 
one such example the handle of the bat moved with a frequency of 60 Hz with an amplitude of 2.8 mm.

 The vibrational movement of the bat handle can be modelled on simple harmonic motion.
a State the conditions for simple harmonic motion. [2]
b Calculate the maximum acceleration of the bat handle. [2]
c Given that the part of the bat handle held by the cricketer has a mass of 0.48 kg, calculate the maximum 

force produced on his hands. [1]
d The oscillations are damped and die away aft er about five complete cycles. Sketch a displacement–time 

graph to show the oscillations. [2]

10 Seismometers are used to detect and measure the shock waves which travel through the Earth due to 
earthquakes.

 Figure 19.43 shows the structure of a simple seismometer. The shock wave will cause the mass to vibrate, 
causing a trace to be drawn on the paper scroll.

Figure 19.43 A simple seismometer.

a The frequency of a typical shock wave is between 30 and 40 Hz. Explain why the natural frequency of 
the spring–mass system in the seismometer should be very much less than this range of frequencies. [3]

 The graph in Figure 19.44 shows the acceleration of the mass against its displacement when the 
seismometer is recording an earthquake. 

Figure 19.44 Graph of acceleration against displacement recorded during an earthquake. 

b What evidence does the graph give that the motion is simple harmonic? [2]
c Use information from the graph to calculate the frequency of the oscillation. [4]
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Chapter 20:
Communications 
systems

Learning outcomes
You should be able to:

■■ understand amplitude and frequency modulation and 
comment on the relative advantages of AM and FM 
transmission

■■ describe digital transmission systems in terms of 
analogue-to-digital (ADC) and digital-to-analogue (DAC) 
conversion and sampling rate

■■ describe and compare diff erent networks or  channels of 
communication

■■ calculate signal attenuation in dB and dB per unit length
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Communications today
The ability to communicate is an important feature 
of modern life. We can now speak directly to others 
right around the world and generate vast amounts of 
information every day. The invention of the mobile 
phone has increased our ability to talk to one another 
and to find out what is happening around us. This 
chapter looks briefly at how some communications 
systems work. Communications engineers have 
applied the principles of physics to change the present 
and shape the future.

Radio waves
The person listening to the radio in Figure 20.2 is at the 
end of a communications system. The system starts with 
sound or music passing into a microphone. The sound 
signal is converted into a radio signal and at the end of the 
communications system the radio signal is converted back 
again into a sound signal.

Figure 20.1  A communications satellite.

Figure 20.2  Part of a communications system.

Sound waves and radio waves are completely different 
types of wave:

■■ Sound waves travel as mechanical vibrations. Their speed 
is typically 330 m s−1 in air, and audible frequencies lie 
between 20 Hz and 20 kHz. 

■■ Radio waves are electromagnetic waves which travel at the 
speed of light (3.0 × 106 m s−1 in a vacuum). Their frequencies 
are much higher than those of sound waves.

(You should recall from Chapter 13 that wave speed v, 
frequency f and wavelength λ are related by v = f λ.)

To allow several radio stations to broadcast, each signal 
has a different carrier wave frequency. To hear just one 
station at a time, you tune the radio receiver so that it 
separates out radio waves of a single frequency.

The information, for example a sound signal, is carried 
by modulating or altering the carrier wave. Modulation is 
the variation of either the amplitude or the frequency of 
the carrier wave. The modulated wave is the actual wave 
transmitted. The signal is present in either the changing 
amplitude or the changing frequency of the modulated wave.
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Amplitude modulation
Figure 20.3 shows amplitude modulation (AM). The 
three diagrams show the carrier wave, the signal and 
the modulated wave. In each case, the horizontal axis 
represents time, shown on the axis at the bottom. The 
modulated wave is the carrier wave but its amplitude rises 
and falls to match the value of the signal at any instant. 
Look at the amplitude-modulated wave on its own, and 
notice how the amplitude variation at top and bottom has 
the same pattern as the signal.

Frequency modulation
In frequency modulation (FM) the frequency of the 
modulated wave varies with time. Without any signal, the 
frequency of the modulated wave is equal to the frequency 
of the carrier wave. The size of the input signal at any 
instant causes the frequency of the modulated wave to 
change. When the input signal is positive, the frequency 
of the modulated wave is increased so that it is larger than 
the frequency of the carrier wave. The larger the signal, the 
greater is the increase in the frequency. When the signal 
is negative, the frequency of the modulated wave is less 

the carrier wave
(no modulation)

the signal

the amplitude-
modulated wave

200 40 60 80 100 120 140 160 180 Time / µs

Figure 20.3  Amplitude modulation.

The amplitude of the signal must be less than half of 
the amplitude of the carrier wave; otherwise the variation 
in the amplitude at the top will be confused with the 
variation in amplitude at the bottom of the wave.

If a radio station carries music, the wave transmitted 
by the radio station will differ from the wave shown in 
Figure 20.3. There is only one signal frequency present in 
the signal in Figure 20.3. Music consists of many changing 
frequencies superposed so that it has a more complex wave 
pattern. The amplitude of the carrier wave will change as 
the music pattern changes. The carrier wave frequency 
does not change but the amplitude of the trace will change 
with time.

In amplitude modulation (AM), the frequency of 
the modulated wave is constant. The amplitude of the 
modulated wave is proportional to, and in phase with,  
the signal.

1	 Calculate the frequencies of the carrier wave and 
signal shown in Figure 20.3.

	 Step 1  For the carrier wave, there are 10 complete 
waves in 100 µs. Hence:

	 time for one complete carrier wave,
T = 10 µs = 1 × 10−5 s
carrier wave frequency fc  =  

1
T

  = 100 000 Hz

	 Step 2  For the signal, there is one complete wave in 
100 µs. Hence:
frequency of the signal fs =  

1
100 × 10−6

	 =  10 000 Hz

	 A radio wave of 100 000 Hz is in the long-wavelength, 
low-frequency region of the radio electromagnetic 
spectrum. A sound frequency of 10 000 Hz is a very 
high frequency note but is audible.

1	 Imagine that all the numbers on the time axis in 
Figure 20.3 are doubled, so that 100 becomes 200 
and 200 becomes 400. Calculate the frequency of 
the carrier wave and the frequency of the signal.

2	 Draw an amplitude-modulated wave with a carrier 
wave of frequency 1.0 MHz and a signal frequency 
of 100 kHz. The time axis on your graph should 
be from 0 to 10 µs. On your graph, mark the time 
for one complete wave of the signal and for one 
complete wave of the carrier.

3	 Explain how an amplitude-modulated wave 
changes when the input signal:
a	 increases in loudness
b	 increases in frequency.

WORKED EXAMPLE

QUESTIONS
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than the frequency of the carrier wave. Figure 20.4 shows 
frequency modulation.

In frequency modulation (FM), the modulated wave 
has a constant amplitude. It is the frequency of the 
modulated wave that changes as the signal changes.

The frequency deviation of the carrier wave may be 
given a value, for example, 25 kHz V−1. This means that 
for every 1.0 V change in the voltage of the signal, the 
frequency of the carrier wave changes by 25 kHz. In some 
countries, the maximum allowed change in frequency 
during FM is set as 75 kHz, in order that the frequency 
of one station does not overlap the frequency of the next 
station. If the frequency deviation is 25 kHz V−1 and the 
maximum change is 75 kHz, then the maximum signal 
producing the FM is 3.0 V.

the carrier wave
(no modulation)

the signal

the frequency-
modulated wave

frequency
lower

signal
−ve

signal
+ve

frequency
higher

Time
Figure 20.4  Frequency modulation.

4	 Explain how a frequency-modulated wave 
changes, when the input signal:
a	 increases in loudness
b	 increases in frequency.

5	 A signal of frequency 16 kHz and amplitude 3.0 V is 
used for frequency modulation of a carrier wave of 
frequency 500 kHz. The frequency deviation of the 
carrier wave is 8.0 kHz V−1.
a	 What is the maximum frequency shift produced?
b	 What is the maximum frequency of the 

modulated carrier wave?
c	 How many times per second does the 

modulated carrier wave increase and decrease 
in frequency?

2	 A carrier wave of frequency 300 kHz and amplitude 
5.0 V is frequency modulated by a sinusoidal signal of 
frequency 6 kHz and amplitude 2.0 V. The frequency 
deviation of the carrier wave is 30 kHz V −1. Describe the 
modulated carrier wave produced.

	 Step 1  Consider the amplitude of the modulated signal. 
The amplitude of the carrier wave is unchanged at 5.0 V 
during frequency modulation. The signal alters the 
frequency of the carrier wave, not its amplitude.

	 Step 2  Now consider how the signal will modify the 
carrier frequency. The frequency shift produced by the 
signal is ± 2 × 30 = ± 60 kHz, so the carrier wave varies in 
frequency between 240 and 360 kHz. This variation in 
frequency occurs 6000 times every second as the signal 
varies at this frequency.

Sidebands and bandwidth
A carrier wave contains only one frequency, the carrier 
wave frequency fc . When the carrier wave is modulated 
in amplitude by a single frequency fm , then the carrier 
wave is found to contain two more frequencies, known as 
sideband frequencies, one at a frequency ( fc − fm) and the 
other at ( fc + fm ). Figure 20.5 shows these frequencies.

When music or speech is transmitted, the carrier is 
modulated by a range of frequencies which change with 
time. Each frequency fm present in the signal gives rise to 
an extra pair of frequencies in the modulated wave. The 
result is a band of frequencies, called the upper and lower 
sidebands, stretching above and below the carrier frequency 
by the value of the highest modulating frequency.

Figure 20.6 shows the frequency spectrum for a carrier 
wave of frequency 1 MHz modulated with frequencies 
between 0 and fm = 15 kHz = 0.015 MHz. The highest 

QUESTIONS

WORKED EXAMPLE
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frequency present in the spectrum is (fc + fm) = 1.015 MHz 
and the lowest frequency is (fc − fm) = 0.985 MHz.

The actual shape of the sidebands in Figure 20.6 will 
vary at any instant as the signal changes. The maximum 
and minimum values are important, as these must not 
overlap the sidebands from any other radio station.

The value of fm needed depends on the quality required 
in the signal. High-quality music only needs frequencies 
up to 15 kHz, even though the ear can hear frequencies up 
to 20 kHz. Speech only needs frequencies up to 3.4 kHz for 
people to understand one another.

0

bandwidth 2fm
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(fc – fm) (fc + fm)fc

Figure 20.5  The frequency spectrum of a carrier wave 
modulated in amplitude by a signal of one frequency.
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Figure 20.6  The frequency spectrum for an amplitude-
modulated wave.

You can see that the modulated carrier wave occupies a 
region of the spectrum from 0.985 MHz to 1.015 MHz. The 
bandwidth of a signal is the range of frequencies that the 
signal occupies. In other words, it is the difference between 
the highest-frequency signal component and the lowest-
frequency signal component.

In Figure 20.6 the bandwidth is 
1.015 − 0.985 = 0.030 MHz 

In Figure 20.5 the bandwidth is (fc + fm) − (fc − fm) = 2fm.
The frequency spectrum of a frequency-modulated 

(FM) carrier wave is more complex. In particular, there are 
often more than two sideband frequencies for each signal 
frequency. This means that frequency modulation requires 
a greater bandwidth for each radio station.

3	 Radio stations, which broadcast in the long-wave 
(LW) region of the electromagnetic spectrum, use 
carrier frequencies between 140 kHz and 280 kHz. 
The sidebands are within 4.5 kHz on either side of 
the carrier frequency. State the bandwidth of each 
radio station in the LW region of the spectrum and 
calculate the maximum number of radio stations 
which can transmit in the LW region.

	 Step 1  The bandwidth of an individual station is 
twice the width of an individual sideband:
bandwidth = 2 × 4.5 = 9.0 kHz

	 Step 2  The LW region is divided into regions of width 
9.0 kHz. Hence:

number of stations =  
allowed frequency range

bandwidth

	 =  
(280 − 140)

9.0

	 =  15.5 = 15 stations

	 Suppose a country decides to increase the quality 
of music transmitted by each radio station. What 
happens to the bandwidth and the maximum 
number of stations in the LW region? Better sound 
quality requires an increase in the maximum 
frequency of the signal that modulates the carrier 
wave, and so the bandwidth needed increases. This 
decreases the number of available stations in the  
LW region of the spectrum.

Comparing AM and FM transmissions
You may have noticed crackle on a radio when you switch 
lights in your house on and off or when there is a lightning 
strike nearby. The lightning strike or switching a current 
on or off creates a burst of radio waves. These radio waves 
produce unwanted electrical interference and change the 
amplitude of the radio wave received by a radio. Since the 
amplitude of the wave carries the signal, when amplitude 
modulation is used the output of the radio is affected. 
Most electrical interference does not affect the frequency 
of the radio wave received by a radio and thus electrical 
interference affects FM less than AM. FM radio was 
actually invented to overcome the electrical interference 
and noise problems of AM radio and this remains an 
important advantage today.

FM came later than AM and had to use higher 
frequencies than AM. Although there was extra cost 
in developing the electronics to work at these higher 

WORKED EXAMPLE
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frequencies, it was still an advantage. The greater range 
of frequencies available means that each station can use a 
higher bandwidth (about 200 kHz, compared to 9 kHz for 
AM). FM signals typically contain frequencies of 15 kHz or 
higher and the quality of sound produced is much higher 
when using FM transmission.

However, AM transmission has a number of 
advantages.

■■ The bandwidth needed for each AM transmission is less 
than for FM transmission. This means that more stations 
can be included in any given frequency range of the 
electromagnetic spectrum.

■■ The actual receiver and transmitter used for AM are less 
complicated and cheaper than for FM transmission.

■■ AM transmissions use lower frequencies and have longer 
wavelengths than FM. This means that these radio waves 
can diffract some way around the Earth, whereas FM is 
line-of-sight only. Thus AM can cover a larger area than FM 
transmissions, for the same power output.

The relative advantages of FM and AM are summarised in 
Table 20.1.

Advantages of FM Advantages of AM
less electrical interference 
and noise

greater area covered by
one transmitter

greater bandwidth produces 
a better quality of sound

smaller bandwidth means 
more stations available in any 
frequency range

cheaper radio sets

Table 20.1  The relative advantages of FM and AM broadcasting.

Analogue and digital signals
An analogue quantity is one that can have any value, for 
example the height of a person. A digital quantity has 
only a few values, usually just two; for example a person is 
either male or female.

So far, the signals we have dealt with in this book 
have been analogue signals. For example, the voltage 
signal generated by a microphone is an analogue signal; 
the output voltage from the microphone can have any 
value, within limits, and is an exact representation of the 
pressure variation in a sound wave.

A digital signal, on the other hand, looks completely 
different and consists of a series of zeroes (0) and ones (1). 
A 1 in a digital signal is just the presence of a voltage pulse, 
usually a voltage value of a few volts. A 0 in a digital signal 
is the absence of a pulse and is a voltage close to 0 V. A 
typical digital electronic system will interpret any voltage 

below about 0.3 V as a 0 and any voltage above about 1.5 V 
as a 1. Small fluctuations in voltage will not be noticed.

Figure 20.8 shows an analogue and a digital signal. The 
digital signal is the number 0101001101, which is actually a 
pulse of 0 V followed by a pulse of 3 V and so on.

6	 Figure 20.7 shows the frequency spectrum of the 
signal from a radio transmitter. A carrier and two 
sideband frequencies are present.

a	 What is the name of the type of modulation 
that produces two sideband frequencies?

b	 What is the carrier frequency?
c	 What is the frequency of the signal used to 

modulate the carrier wave?
d	 What is the bandwidth of the transmitted 

signal?

7	 a	� Calculate the number of separate AM radio 
stations of bandwidth 9 kHz that are possible 
in the frequency spectrum available for AM 
between 530 and 1700 kHz.

b	 Suggest why FM stations of bandwidth 200 kHz 
are not used for this range of frequencies.

8	 Is the greater bandwidth available on FM an 
advantage or a disadvantage?

9	 FM is used largely in towns and AM in rural 
settings. Suggest why.

35 40 45 Frequency/kHz

Figure 20.7  For Question 6.
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Figure 20.8  Analogue and digital signals.

QUESTIONS
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Advantages of digital signals
Most devices such as microphones or thermistors produce 
analogue voltage signals. However, digital signals have 
advantages and it is often worthwhile to change an 
analogue signal into a digital signal.

The major advantage is that digital signals can deal 
with ‘noise’ produced over long distances. All signals, both 
analogue and digital, become weaker as they travel and 
they pick up electrical noise. The decrease in strength is 
known as attenuation, and can be corrected by amplifying 
the signal at regular intervals during long-distance 
transmission.

Noise is electrical interference, caused in a number of 
different ways: by the spark from a car ignition, by induced 
voltages from the magnetic fields caused by currents 
around the home, by the radio signals emitted by a mobile 
phone nearby, and even by the random thermal motion of 
electrons in a wire or by vibrating atoms. You may have 
noticed a background hiss on telephone conversations. 
This also is an example of noise.

Noise is the random, unwanted signal that adds to and 
distorts a transmitted signal. Amplification of a signal 
amplifies the noise at the same time as the signal.

Other advantages of using digital signals are:

■■ Digital signals are compatible with modern technology and 
can be stored and processed more easily, for example in a 
computer or on a compact disc (CD).

■■ Digital electronic systems are, in general, more reliable and 
easier to design and build.

■■ Digital signals build in safeguards so that if there is an error 
in reception it is noticed and parts of the signal can be sent 
again.

Analogue-to-digital conversion
The key to the digital revolution has been the ability to 
change speech and music from analogue into digital  
form in analogue-to-digital conversion (ADC) and  
then convert them back again into analogue form in  
digital-to-analogue conversion (DAC).

In order to understand this process, you need to be able 
to count using binary numbers as well as ordinary decimal 
numbers. The decimal system has base 10 and the number 
of digits increases by one when going from the number 
9 to the number 10. The number 9 has only one digit 
whereas the number 10 has two digits. The binary number 
system has base 2 and the number of digits increases when 
going up from the number 1; so the next number above 1 
is 10. The binary number 10 is not the same as the decimal 
number 10. Table 20.2 compares counting in the decimal 
system and in the binary system.

Decimal
number

Binary
number

Decimal
number

Binary
number

0     0   6   110

1     1   7   111

2   10   8 1000

3   11   9 1001

4 100 10 1010

5 101 11 1011

Table 20.2  Binary and decimal numbers.

For example:

■■ in the decimal system, the number 243 is a combination of  
2 × 100, 4 × 10 and 3 × 1

■■ in the binary system, the number 111 is a combination of  
1 × 4, 1 × 2 and 1 × 1.

Counting in the binary system is very similar to counting 
in the decimal system except that there are only the digits 
0 and 1.

Each digit in the binary number is known as a bit. 
The bit on the left-hand side of a binary number is the 
most significant bit (MSB) and has the highest value. 
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Figure 20.9  Weakened and noisy signals.

Figure 20.9 shows the signals from Figure 20.8 after 
they have travelled a long distance. You will see that they 
are lower in amplitude and have unwanted variations, or 
noise.

There is little improvement possible for an analogue 
signal; amplification will not remove the noise. However, 
regeneration will remove the noise from a digital signal. 
The signal is ‘cleaned’ of the noise and returned to its 
initial shape.

At the end of a long-distance transmission, an 
electronic circuit, the regeneration amplifier, receives the 
digital signal. This electronic circuit expects to receive a 
pulse of a few volts or no pulse at all; any small variations 
added to the pulse or the 0 V make no difference. The 
regeneration amplifier can only give a 0 or a 1 as an 
output. As long as the noise does not completely change 
the shape of the signal, then the regeneration amplifier 
returns the digital signal shown in Figure 20.9 to the 
perfect pulses shown in Figure 20.8.
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Large numbers require more bits. Table 20.2 shows 
numbers containing 4 bits, although 0011 is the correct 
way of writing a 4-bit number, rather than writing 11. A 
digital telephone system commonly transmits numbers 
containing 8 bits and there are 28 = 256 different 8-bit 
binary numbers.

Changing an analogue signal into a digital signal 
involves sampling. In analogue-to digital conversion 
(ADC), sampling is the measurement of the analogue 
signal at regular time intervals.

The value of the sampled signal is used to produce a 
binary number. Each time that the signal is sampled the 
ADC produces a binary number of a certain number of 
bits. Since the sample is taken many times per second, 
many binary numbers are created, one after the other, and 
this series of 0s and 1s becomes the digital signal that is 
transmitted.

The process is illustrated in Figure 20.10 where 4-bit 
binary numbers are produced.

Figure 20.11 shows the result of this conversion back 
into analogue form. The blue circles show the values of 
the voltage, which are each a decimal number formed 
from a 4-bit binary number. The black line drawn through 
the circles is the output signal. Some electronic systems 
contain extra filter circuits that are able to smooth the 
output, and they produce the blue line as the final output.

The black line, the output, is clearly not exactly the 
same as the original signal. There are two reasons for this.
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Figure 20.10  Analogue-to-digital conversion.

When the time t = 0, the numerical value of the voltage 
signal is 9 as a decimal number. When converted into 
binary, this number is 1001. When t = 100 µs, the voltage is 
10 as a decimal number and 1010 as a binary number.

You will notice that at some values of t the signal is not 
a whole number on the voltage axis. The nearest number is 
chosen.

When the output is sampled every 100 µs, a set of 
binary numbers is produced: (1001), then (1010), then 
(1001), then (1000), then (1000) and so on. These sets of 
4-bit numbers are transmitted one after the other. If they 
are transmitted a long distance, a regeneration amplifier 
is used along the way to keep the same pattern of pulses. 
A digital-to-analogue converter changes the digital signal 
back into analogue form at the end of the transmission.

Figure 20.11  Digital-to-analogue conversion.

Firstly, the sampled signal is not always a whole 
number. For example, in Figure 20.10 when t = 300 µs the 
actual voltage is 8.3 V but only the number 8 can be sent, 
not 8.3.

To improve the sampling, the voltage that corresponds 
to the difference between 0 and 1 must be decreased. In 
the above example, the difference between 0 and 1 in 
binary is 1 V and so the signal is ‘accurate’ to only 1 V. If 
the difference between 0 and 1 is made to be 0.1 V then 
‘accuracy’ is improved. Adding an extra bit is similar 
to having an extra significant figure when measuring a 
voltage as 8.3 V rather than 8 V. Integers up to 10 need a 
4-bit binary number. If the system handles numbers to 
within 0.1 then 10.0 requires an 8-bit number, which has 
128 different possible levels.

The other problem is that the sampling rate is not  
high enough. The sampling rate is the number of samples 
made per second. In the example in Figure 20.10, the 
sample is taken every 100 µs and so the sampling rate is 

to another value and back 1
0.0001

 = 10 000 times a second. 

If the signal changes to another value and back between 
one sample and the next then no record is made of that 
change. Obviously the higher the sampling rate, the  
closer the final signal will be to the original signal.  
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The maximum sampling rate required is only twice the 
highest frequency present in the signal (this is known as 
Nyquist’s theorem). The human ear can hear up to 20 kHz 
and so the maximum sampling rate needed is 40 kHz 
for music. For every second of music on a compact disc 
storing 8-bit numbers sampled 40 000 times a second, 
320 000 separate binary digits are stored. The sampling 
rate required for a telephone system will be lower, since 
only frequencies up to about 3400 Hz are required for 
basic speech recognition. Many digital telephone systems 
sample the input signal 8000 times a second and so only 
transmit frequencies below 4 kHz.

Channels of communication
The term channel of communication refers to the 
medium, the path or even the actual frequency range used 
to convey information from a transmitter to a receiver.

When you listen to a radio, the radio signal may have 
travelled through the air by a number of different routes. 
When you talk to someone on a telephone in a different 
country then the signal may have passed along a wire-pair, 
a coaxial cable, through the air by a microwave link or 
been converted into pulses of light and then transmitted 
down an optic fibre. These are all different channels of 
communication.

Before comparing the different channels you will need 
to understand another technical term, crosslinking, and be 
able to calculate signal attenuation.

Crosstalk
You may have experienced crosstalk or crosslinking when 
using a radio or a telephone. If you tune your radio set to 
one radio station, sometimes you can also hear another 
station. When talking on the telephone you can suddenly 
find yourself listening to a completely different telephone 
conversation; the telephone network has connected your 
telephone to someone you have not dialled. Crosslinking 
occurs when a signal, transmitted on one circuit or channel, 
creates an undesired effect in another circuit or channel.

Signal attenuation
Attenuation is the gradual decrease in the power of a 
signal the further it travels. The causes of energy loss 
depend on the type of signal:

■■ As an electrical signal passes along a wire, there is a voltage 
drop across the resistance of the wire itself. This reduces 
the voltage of the signal that arrives at the end of the wire. 
The energy loss in the wire causes electrical heating in the 
resistance of the wire (I 2Rt).

■■ A radio wave spreads out from a transmitter. On its own this 
spreading causes a decrease in intensity, but there is also a 
loss in signal strength because of the absorption of energy 
by the material through which the wave travels.

■■ Light travelling through an optic fibre may be scattered or 
absorbed by irregularities in the glass structure.

The decrease in signal power from the transmitted value 
P1 to that received P2 can be very high. The ratio P2 to P1 
is measured using a logarithmic scale rather than by the 
simple ratio of the two powers.

The logarithm to base 10 of the ratio gives us the 
number of bels (B). When multiplied by 10 we obtain 
the number of decibels (dB). Your calculator may show 
logarithms to base 10 as log10. 

	10	 Convert the following decimal numbers into 
binary numbers:
a	 14
b	 16

	11	 Convert the following binary numbers into 
decimal numbers:
a	 1111
b	 0001011

	12	 The diagrams in Figure 20.12 show a digital 
signal at the start of a long cable and at the end 
of the cable. Both diagrams are drawn to the 
same horizontal scale (time) and vertical scale 
(voltage).

Figure 20.12  For Question 12.

a	 Explain what feature of the top diagram shows 
that the signal is digital.

b	 State and explain two advantages of digital 
transmission over analogue transmission of 
data.

c	 State and explain two reasons why the signal 
at the end of the long cable differs from the 
signal at the start.

before
transmission

at the end of
a long cable

QUESTIONS
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They are written here as lg and must not be confused with 
logarithms to base e, which are usually written as ln.

number of B = lg   P2
P1 

number of dB = 10 lg   P2
P1 

For example, suppose P2 is 1000 times greater than P1:

number of dB = 10 lg  1000
1   

= 30

The number is positive because there is an increase in 
power – the signal is amplified. Attenuation produces a 
negative number of decibels; for example, an attenuation 
of −30 dB means that the received signal is 1000 times 
smaller than the signal transmitted.

You may be much more familiar with logarithms to 
base e than with logarithms to base 10. All logarithms 
obey the same rules; some, which you should know, are:

log of a product	 log (ab) = log (a) + log (b)

log of a ratio	 log  a
b

   = log (a) − log (b)

log of a power	 log (an) = n log (a)

Overcoming attenuation
In long-distance cables, the attenuation is given as 
attenuation per unit length, with units such as dB km−1. 
The attenuation is found from the equation:

attenuation per unit length (dB km−1)  
� = attenuation (dB)

length of cable (km)
When a signal travels along a cable, the level of the noise 
is important. The signal must be distinguishable above the 
level of the noise. The signal-to-noise ratio, measured in 
decibels, is given by the expression:

signal-to-noise ratio = 10 lg  signal power
noise power  

At regular intervals along a cable, repeaters amplify 
the signal. If the signal is analogue then repeaters also 
amplify the noise. Multiplying both signal and noise 
by the same amount keeps the signal-to-noise ratio the 
same. Regeneration of a digital signal at the same time as 
amplification removes most of the noise. This ensures that 
the signal-to-noise ratio remains high.

4	 A signal of power 18.0 mW passes along one cable, where 
the attenuation is 20 dB. It then passes along another 
cable, where the attenuation is 30 dB. What is the power 
at the end of the two cables?

	 Step 1  Apply the decibel equation to each cable in turn.

	 In the first cable, if the input is P1 and the output P2, 
then:

20 = 10 lg   
P1
P2 

	 Hint: Notice that both sides of the equation produce a 
positive number since P1 > P2.

	 In the second cable, the input is P2, the output of the 
first channel. If the output is P3, then:

30 = 10 lg   
P2
P3 

Step 2  Add the two equations; this gives:

50 = 10   lg   
P1
P2 

   +  lg   
P2
P3 

 
 

	 Applying the ‘log of a product rule’ gives:

50 = 10 lg    
P1
P2  

×  
P2
P3  

   =  10 lg    
P1
P3 

	 This shows that the total attenuation of the two cables 
is 50 dB, equal to the sum of the attenuations of the 
consecutive channels. Hence you can add attenuations 
to find the total attenuation (but be careful if a signal is 
being both amplified and attenuated).

	 Step 3  We have P1 = 18 mW and we need to find P3. 
Substituting gives:

50 = 10 lg   
18
P3 

	 so:

lg    
18
P3 

   =  
50
10  

= 5 

	 Taking inverse logs, or pressing the inverse lg button  
on your calculator, gives:

  
18
P3 

   =  105

P3 = 1.8 × 10−4 mW

	 You could apply the decibel equation to each cable in 
turn and use the output of the first cable as the input  
to the second cable. You should find that the result is  
the same.

WORKED EXAMPLE
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Comparison of different 
channels
Each type of signal channel has its good points and its 
disadvantages, which we will now consider.

Wire-pairs and coaxial cables
The earliest telephones used a pair of wires strung 
on either side of a pole (Figure 20.13). As the use of 
electricity became more common, the amount of electrical 
interference increased, causing crackle and hiss on the 
line. The potential difference between the two wires is 
the signal. Each wire acts as an aerial, picks up unwanted 
electromagnetic waves and distorts the signal.

5	 The input signal to a cable has power 1.2 × 10−3 W. 
The signal attenuation per unit length in the cable 
is 14 dB km−1 and the average noise level along the 
cable is constant at 1.0 × 10−10 W. An acceptable 
signal-to-noise ratio is at least 30 dB.

	 Calculate the minimum acceptable power for the 
signal and the maximum length of the cable that can 
be used without a repeater.

	 Step 1  The signal-to-noise ratio must be at least 
30 dB. Hence, using:
signal-to-noise ratio = 10 lg   

signal power
noise power   

	 we have:

30 = 10 lg   
P

1 × 10−10 

	 where P is the minimum acceptable power. Solving 
for P gives:
= 1.0 × 10−7 W

	 Step 2  A repeater is needed to regenerate the signal 
when the signal-to-noise ratio falls to 30 dB, i.e. its 
power is 103 times the noise level, and this is  
1.0 × 10−7 W. We can calculate the attenuation 
needed to reduce the signal to this level:

attenuation = 10 lg  
1.2 × 10−3

1.0 × 10−7   

	 = 41 dB

	 Hence the length of cable is 
41
14 = 2.9 km.

	 If the cable is 10 km in length, the total attenuation is:
14 dB km−1 × 10 km = 140 dB.

	 The signal of power 1.2 × 10−3 W is attenuated to a 
power P where:

140 = 10 lg   
0.0012

P     

P = 12 × 10−17 W

	 You can see that the power in the signal is much 
smaller than the minimum acceptable power – it is 
even smaller than the noise level. The signal-to-noise 
ratio is now 10 lg (12 × 10−17 / 1.0 × 10−8) = −79 dB, 
smaller than the acceptable +30 dB. A repeater is 
needed well before the end of the 10 km of cable.

	13	 A signal has an input power 5.0 mW and an 
output power of 0.000 2 mW. What is the 
attenuation in dB?

	14	 The attenuation of a 6.0 mW signal is 30 dB. What 
is the final power?

	15	 What is the signal-to-noise ratio when the signal 
and the noise have equal power?

	16	 A signal of 1.0 mW passes through an amplifier 
of gain 30 dB and then along a cable where the 
attenuation is 18 dB.
a	 What is the overall gain of the signal in dB?
b	 What is the output power at the end of the 

cable?

Figure 20.13  An early telegraph pole.

QUESTIONSWORKED EXAMPLE
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Figure 20.15  Coaxial cable. 

When two wires are close together, each wire picks 
up an equal amount of electrical interference. There is no 
additional potential difference between the two wires and 
so having the wires close together reduces the interference. 
Figure 20.14 shows a twisted wire-pair with the wires close 
together. The connection from your telephone to a socket 
nearby is likely to use two insulated copper wires placed 
close together or, more likely, a twisted pair of wires.

wire-pair, it can transmit data faster, over longer distances, 
and with less electrical interference. Coaxial cable often 
connects a radio transmitter to an aerial, as coaxial cable 
has a high bandwidth, which can exceed 100 MHz with a 
cable 30 m in length. It is also slightly more difficult to ‘tap’ 
into a coaxial cable than into a wire-pair.

Table 20.3 summarises the advantages and 
disadvantages of wire-pairs and coaxial cable.

Sky waves greater than 30MHz
are known as space waves. They
pass through the ionosphere.

Sky waves up to
30MHz are
reflected by the
ionosphere.

Surface waves di�ract
around the Earth.

ionosphere

A wire-pair is by far the cheapest transmission medium 
but it does have some disadvantages.

The changing currents in the wires themselves produce 
electromagnetic (EM) fields and this makes the wires act 
as aerials, radiating EM waves. The energy to emit these 
waves reduces the strength of the signal sent along the 
wire. As the frequency of the changing current increases, 
the emission of EM waves increases and so the bandwidth 
of wire-pairs is low. Energy is also lost in the wires due to 
electrical heating in the resistance of the wires.

Wire-pairs are often close together in a telephone 
system and EM waves pass from one wire-pair to another. 
This is the origin of some forms of crosstalk, where you 
can hear another telephone conversation.

Wire-pairs are easily ‘tapped’. A connection made to 
each wire allows an unwanted person to hear a telephone 
conversation. The security of a wire-pair is low.

Coaxial cable, as shown in Figure 20.15, reduces the 
amount of crosstalk in wire-pairs when transmission 
occurs at high speed. The copper core and the finely woven 
copper wire or braid are the two conductors that transmit 
the signal. The braid is usually connected to earth, 
so, ideally, the potential of this wire does not change. 
Electromagnetic (EM) waves do not pass easily through 
metal and so the braid provides a screen or barrier that 
reduces the interference that reaches the copper core. 
An ideal coaxial cable also prevents any emission of EM 
waves at radio frequencies and has less attenuation than a 
wire-pair. Although coaxial cable is more expensive than a 

Figure 20.14  Twisted wire-pairs in a computer network.

Wire-pairs Coaxial cable
are cheap and convenient is more expensive

strongly attenuate a signal is less attenuating

have low bandwidth has higher bandwidth

pick up some noise and 
interference

has less electrical interference 
and noise

suffer from crosstalk has little crosstalk

have low security is more secure

Table 20.3  Comparison of wire-pairs and coaxial cable.

Radio waves and microwave links
Radio waves can travel by a number of different paths 
from a transmitter to a receiver, as shown in Figure 20.16.

Figure 20.16  Radio wave transmissions.

insulation

insulation

copper

finely woven 
copper wire 
(braid)
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Surface (ground) waves travel close to the surface of the 
Earth. Lower frequencies, up to 3 MHz, diffract around the 
surface of the Earth because of their long wavelengths; this 
gives them a long range of up to 1000 km. AM broadcasts 
in the medium-wave (MW) and long-wave (LW) bands 
travel efficiently as surface waves.

Sky waves are waves above 3 MHz in frequency, which 
are diffracted only a little by the Earth and travel almost 
in straight lines. Some waves at these frequencies travel 
for a short distance as surface waves, but they can only 
travel about 100 km in this way. Sky waves that travel in 
the atmosphere may be reflected from a layer of charged 
particles known as the ionosphere. When these reflected 
waves reach the Earth’s surface they may be reflected 
back to the ionosphere. Through multiple reflections by 
the ionosphere and the ground, sky waves can travel for 
large distances around the Earth. Because the density of 
charged particles in the ionosphere is constantly changing, 
the reflection of sky waves is not reliable. Short-wave (SW) 
radio uses frequencies in the high-frequency (HF) band 
that reflect from the ionosphere. Your radio set can receive 
distant SW radio stations at night, when the frequencies 
reflected by the ionosphere are not absorbed by other 
regions in the atmosphere.

Space waves are sky waves with a frequency greater 
than 30 MHz, which pass through the ionosphere. The 
transmission is line-of-sight, so, if the receiver and 
transmitter are on the Earth’s surface, there must be 
a clear line between the receiver and the transmitter 
(not blocked by hills or mountains). Some police and 
emergency services, as well as television transmissions, 
use space waves with frequencies above 30 MHz in the 
very-high-frequency (VHF) and ultra-high-frequency 
(UHF) bands. The boundary between radio waves and 
microwaves is not clearly defined, although frequencies 
above 1 GHz are generally described as microwaves. 
Microwaves are able to pass through the ionosphere to 
reach satellites in space. Bluetooth R  technology and Wi-Fi R   
use microwaves for communication around the home. 
Using Wi-Fi R , microwaves link your laptop to the main 
computer in your home.

Table 20.4 is a summary of the frequencies used for the 
different radio transmissions and the distances travelled. 
The wavelength of any radio wave can be found using the 
formula c = f λ where c = 3.0 × 108 m s−1, which is the speed 
of the radio wave and the speed of light. So, for example, a 
wave of frequency 1 GHz has a wavelength of:

λ = 3.0 × 108

1 × 109  = 0.3 m

The radio wave given out by a transmitting aerial travels 
in all directions. The atmosphere absorbs the wave, the 
amount of absorption depending on the radio frequency. 
The distance travelled by a radio wave therefore varies 
with its frequency. In some cases, the aerial focuses the 
radio waves towards the receiver by using an aerial shaped 
as a dish, as shown in Figure 20.17. Without such a dish, 
the strength of the signal decreases strongly with distance.

The microwave tower shown in Figure 20.17 holds a 
number of parabolic reflectors or dishes. Each dish points 
towards a dish on another tower some miles away and they 
transmit microwaves back and forth between them. The 
transmission is line-of-sight and the height of the tower 
increases the distance of transmission.

Frequency 
range

Communication 
method
and waveband

Distance 
travelled

surface 
wave up to 3 MHz LW and MW radio 

in the LF band up to 1000 km

sky wave 3–30 MHz SW radio in the HF 
band

worldwide by 
reflection

space wave 30–300+ MHz

FM radio in the 
VHF band, TV and 
mobile phones in 
the UHF band

line-of-sight

microwave 1–300 GHz

microwave, 
satellite links and 
Wi-Fi in the super-
high-frequency 
(SHF) and extra-
high-frequency 
(EHF) bands.

line-of-sight 
except when 
retransmitted 
by satellite

Table 20.4  Data for radio and microwaves.

Figure 20.17   
A microwave tower.



322

Cambridge International A Level Physics

The bandwidth available increases as the frequency of 
the wave increases. As microwaves have a high bandwidth, 
they can carry many telephone conversations at once. 
They are also very secure and difficult to tap into, as the 
beam of microwaves that travels between the two dishes is 
narrow and does not spread out. Until fibre optic cable was 
available, microwave links carried the majority of long-
distance telephone conversations.

To summarise, high-frequency radio waves and 
microwaves:

■■ have high bandwidth and can carry a large amount of 
information

■■ can be transmitted as narrow beams which are more secure
■■ are line-of-sight and often use a satellite or microwave link.

Satellites and optic fibres
Transmissions in the LW and MW bands use a surface 
wave and do not travel further than about 1000 km. For 
long-distance communication, it is possible to transmit 
using a sky wave or using a space wave and a satellite.

Figures 20.1 and 20.18 both show a communications 
satellite in space. The satellite receives a space wave from a 
transmitter on Earth, the uplink, with a carrier frequency 
in the microwave region. Because the satellite can only 
reflect a tiny fraction of the signal sent from Earth, the 
reflected signal received back on Earth would be far 
too small. Instead, the satellite re-transmits the signal 
it receives as the downlink back to Earth, on another 
frequency and with more power than it received. If the 
downlink and uplink frequencies were the same, then the 
much larger signal sent from Earth would swamp the signal 
sent from the satellite, so different frequencies are used. The 
satellite transmits the signal back to an individual satellite 
dish back on Earth or to many dishes, over a wide area, 
particularly when broadcasting television programmes.

The first communications satellites used a frequency of 
6 GHz for the uplink and 4 GHz for the downlink, but now 
even higher frequencies are used.

Here are some advantages of communication by 
satellite rather than by sky wave:

■■ The concentration of ions in the ionosphere is constantly 
changing and reflection of the sky wave is not always 
possible; sometimes layers in the ionosphere even absorb 
radio frequencies.

■■ The satellite boosts the signal for its return to Earth and 
provides a stronger signal than is obtained by reflection 
from the ionosphere.

■■ Satellite communication uses higher frequencies, which 
have higher bandwidth and can carry more information 
per second.

■■ Only a few frequencies in the MW and SW bands are 
available. More frequencies are available for communicating 
if a satellite uses higher frequencies.

In order to obtain a constant link between the satellite and 
the satellite dish on Earth, it is essential that the satellite 
dish always points towards the satellite. If the satellite 
moves across the sky, the dish must move to track the 
movement of the satellite. To avoid this problem many 
communications satellites rotate around the Earth in 
a geostationary orbit. They orbit the Earth in the same 
direction as the Earth rotates, at a height of 36 000 km 
above the Earth’s surface. At this height, each satellite 
has a period of rotation of 24 hours. This means that each 
satellite naturally takes 1 day to orbit the Earth, exactly 
the time that it takes a point on the surface of the Earth to 
make one complete rotation. A geostationary satellite is in 
orbit above the equator and it never appears to move when 
viewed from any point on the Earth. The satellite does not 
rotate with the same speed as a point on the Earth because 
its orbit is far larger than the circumference of the Earth.

There are many other satellites around the Earth. Some 
of these are in polar orbit. These satellites commonly travel 
above the North and South Poles in a time much shorter 
than a day. They are usually closer to the Earth than 
geostationary satellites and are used for surface observation 
and as weather satellites. At a commonly used height of 
1000 km above the Earth’s surface, the period of rotation 
around the Earth is only 100 minutes. Being closer to the 
Earth, polar-orbit satellites can see smaller detail when used 
for observation and espionage. As they orbit from the North 
to the South Pole, the Earth rotates underneath them and so 
they pass over the whole Earth in a 24-hour period.

There is always a delay in sending a message to a 
satellite because the satellite is high above the Earth. This 
delay can be annoying when talking by telephone. For 
example, if the satellite is directly overhead and the signal 
travels a distance of 72 000 km up to the satellite and then 
down to the other person, the time delay is 0.24 s. The reply 

satellite dish

uplink

satellite dish

downlinksatellite

Figure 20.18  A satellite system.
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from the other person also takes 0.24 s and so there always 
seems to be a delay of at least 0.48 s in the conversation.

Geostationary satellites used for communication can 
transmit to each other around the world but they cannot 
always receive from regions close to the poles, as the 
curvature of the Earth blocks the signal. Th e delay when 
communicating with a polar satellite is much smaller 
but you may have to wait until the satellite is overhead to 
transmit or receive.

Th e features of a geostationary satellite are:

■■ the satellite rotates with the same period as the Earth
■■ the satellite is in orbit above the equator with a period of 

1 day
■■ the satellite appears to remain fixed in position above a 

point on the equator and so satellite dishes do not need to 
be moved.

Compared to a geostationary satellite, a satellite in polar 
orbit:

■■ travels from pole to pole, with an shorter period of orbit
■■ is at a smaller height above the Earth and can detect objects 

of smaller detail
■■ is not always in the same position relative to the Earth and 

so dishes must be moved
■■ has smaller delay times.

An alternative for long-distance communications is the 
optic fi bre, a very thin glass or plastic fi bre that carries 
light or infrared. Optic fi bres use glass and infrared for 
long distances, rather than plastic or light, as the glass can 
be very pure and does not absorb or scatter infrared. As 
optic fi bres have very low signal attenuation, the distance 
between repeater amplifi ers can be high.

Figure 20.19 shows a photograph of a number of optic 
fi bres and the internal structure of one fi bre. Th e three rays 
of light are totally internally refl ected from one end of the 
fi bre to the other.

When used for communication, an electrical signal 
causes a laser or a light-emitting diode (LED) to emit 
pulses of light or infrared, with a frequency of the order of 
2 × 1014 Hz (2 × 108 MHz). Because the frequency is so high, 
the potential bandwidth available is also very high. Th e 
pulses of light or infrared provide the digital signal that 
passes along the fi bre. With a cable containing more than 
a hundred fi bres and each fi bre carrying a large number of 
pulses per second, the whole cable can carry ten million 
telephone conversations at the same time.

Fibre optic cables have replaced the use of satellites for 
long-distance transmission. Just a few fi bre optic cables 
running across the oceans and from city to city link 
almost the whole world and make the internet possible 
– the ‘information superhighway’. Th e delay between 

transmission and reception is less than with a satellite 
as the distances travelled round the world by the signal 
are less than up to a satellite and back down again. Th e 
disadvantages of fi bre optic cables are that an electrical 
signal must fi rst be converted to pulses of light and the 
optic fi bres are diffi  cult to connect to one another as two 
fi bres cannot just be glued together.

Compared to a metal cable, a fi bre optic cable:

■■ has much greater bandwidth and can carry more 
information per second

■■ has less signal attenuation, so repeater and regeneration 
amplifiers can be further apart

■■ is more diff icult to tap, making the data it carries more secure
■■ does not suff er from electrical interference and crosstalk
■■ weighs less and so large lengths can be handled more easily
■■ is immune to lightning and the eff ects of nearby power lines
■■ can be used in flammable situations as no sparks are 

produced
■■ is cheaper than the same length of copper wire.

optic fibre cladding

Figure 20.19 An optic fibre 
passing through the eye of 
a needle, and its internal 
structure.

 17 A television signal can be transmitted using a 
coaxial cable to pass an analogue signal, using 
a space wave in the UHF band, using a sky wave 
linked to a satellite or using fibre optic cable and 
the internet.
a Explain what is meant by the terms in bold 

type.
b State approximate values for the frequencies 

and wavelengths used by the carrier wave in 
each case.

c Give one advantage and one disadvantage of 
each of these four methods.

QUESTION



End-of-chapter questions
1 a  Draw a sketch graph of an AM wave and use your graph to explain how the AM wave has been formed 

from the carrier wave and a signal. Refer to the frequencies involved.  [4]
b Draw a sketch graph of an FM wave and use your graph to explain how the FM wave has been formed 

from a carrier wave and a signal. Refer to the frequencies involved.  [4]

2 The output of a microphone is an analogue signal with a bandwidth of 3.4 kHz.
a Explain what is meant by 

i analogue [2]
ii bandwidth. [1]

b Compare the bandwidth of the microphone with the typical range of frequencies that can be heard by 
the human ear. Comment on the diff erence between the two values. [2]

3 An LED provides input power of 1.26 mW to an optic fibre of length 60 m. The output at the other end of the 
fibre is 1.12 mW.
a Calculate the attenuation in the optic fibre. [2]
b Calculate the attenuation per unit length in the optic fibre. [2]

4 The signal attenuation per unit length of an optic fibre is 0.30 dB km−1. An input signal to the optic fibre 
is 100 dB above the noise level. The level of the noise remains constant along the optic fibre at 6.0 pW.

 Calculate:
a the power of the input signal to the optic fibre [3]
b the maximum length of the optic fibre used, if the signal at the end of the fibre is to remain at least 

30 dB above the noise level. [2]
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Summary
■■ Modulation varies either the amplitude or frequency 

of a carrier wave to carry information in the signal.

■■ Bandwidth is the range of frequencies present in a 
broadcast signal.

■■ FM broadcasts have higher bandwidth and sound 
quality than AM.

■■ Analogue and digital signals transmit information.

■■ Analogue-to-digital conversion (ADC) turns analogue 
signals into digital signals and digital-to-analogue 
conversion (DAC) turns them back again.

■■ Regeneration removes noise and interference from 
digital signals.

■■ For good reproduction of a signal, the sampling rate 
and number of bits should be high.

■■ Wire-pairs, coaxial cables, radio waves, microwaves 
and optic fibres transmit signals.

■■ Attenuation of a signal is measured in dB, where 

■ number of dB = 10 lg   
P1
P2   

.

■■ Satellites for communication are oft en in geostationary 
or polar orbits.
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5 a Describe the orbit of a geostationary satellite. [2]
b State a typical wavelength for communication between the Earth’s surface and a geostationary satellite. [1]
c State one advantage and one disadvantage of the use for telephone communication of a geostationary 

satellite compared with a satellite in polar orbit. [4]

6 Figure 20.15 shows a coaxial cable.
a State and explain the purpose of the fine woven copper wire or braid. [2]
b Optic fibre has a larger bandwidth than a coaxial cable. Explain why increased bandwidth has reduced 

the cost of telephone calls to distant countries. [1]
c i Explain what is meant by electrical noise. [1]

ii State two causes of noise in a copper cable. [2]

7 Radio signals may be transmitted by surface (ground) waves, by space waves or by sky waves. State a typical 
value for the frequency and the maximum distance of transmission for each type of wave. [6]

8 Figure 20.20 shows an amplitude-modulated radio wave carrying a signal.

Figure 20.20 For End-of-chapter Question 8.

a Determine the radio frequency of the carrier wave. [2]
b Calculate the frequency of the signal. [2]
c Draw the frequency spectrum of the modulated radio wave [3]
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 9 Figure 20.21 shows the variation with time of a signal voltage, V, over a 5-hour period.

Figure 20.21 For End-of-chapter Question 9.

a State the name of the type of signal shown in the diagram. [1]
b The signal is turned into a digital signal with 4-bit binary numbers. The value of V is (0000) when 

V is 3 V and each subsequent binary unit represents an extra 0.2 V. Copy and complete the table to 
give the value of V as a decimal number and as a binary number for times of 0, 2 and 4 hours.  [3]

Time / hours V / V (decimal) V / V (binary)
0

2

4

c The digital signal that is produced cannot be used to produce a perfect reproduction of the original signal.
i Explain why this is the case. [2]
ii Explain how the sampling process can be improved. [2]

10 A cable of length 20 km signal transmits a signal from one end to the other. The attenuation per unit length 
of the cable is 10 dB km−1. Four repeater amplifiers along the cable each have a gain of 40 dB.
a Calculate:

i the total attenuation caused by the cable [1]
ii the total gain caused by the amplifiers. [1]

b The input signal has power 200 mW. Calculate the output power of the signal from the cable. [2]
c Calculate the output power of the signal from the cable if repeater amplifiers are not used. [1]

11 A communications satellite in geostationary orbit receives an uplink signal at a frequency of 14 GHz and 
transmits a downlink signal back to Earth at a frequency of 11 GHz.
a Describe the key features of a geostationary satellite. [2]
b Suggest a reason why diff erent frequencies are used for the uplink and the downlink. [1]
c The uplink signal has a power of 2 kW and the downlink signal 20 W. Suggest why the power in the 

two signals is so diff erent. [1]
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Chapter 21:
Thermal physics

Learning outcomes
You should be able to:

■■ use a simple kinetic model of matter to explain 
phenomena associated with changes of state

■■ explain what is meant by temperature and outline how 
it can be measured

■■ outline the advantage of the thermodynamic scale of 
temperature

■■ relate the internal energy of an object to the energy of 
its particles

■■ use the first law of thermodynamics
■■ define and use specific heat capacity and specific latent 

heat, and outline how these quantities can be measured
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From water to steam
When water boils, it changes state – it turns to steam. 
A liquid has become a gas. This is a familiar process, 
but Figure 21.1 shows a dramatic example of such 
a change of state. This is a geyser in New Zealand, 
formed when water is trapped underground where 
it is in contact with hot rocks. The temperature and 
pressure of the water build up until it suddenly erupts 
above the surface to form a tall plume of scalding 
water and steam.

Changes of state
The kinetic model of matter can be used to describe the 
structure of solids, liquids and gases. You should recall 
that the kinetic model describes the behaviour of matter  
in terms of moving particles (atoms, molecules, etc.). 
Figure 21.2 should remind you of how we picture the three 
states of matter at the atomic scale:

■■ In a solid, the particles are close together, tightly bonded to 
their neighbours, and vibrating about fixed positions.

■■ In a gas, the particles have broken free from their 
neighbours; they are widely separated and are free to move 
around within their container.

a

c

b

Figure 21.2  Typical arrangements of atoms in a a solid,  
b a liquid and c a gas. 

Figure 21.1  At regular intervals of time, the White Lady 
Geyser, near Rotorua in New Zealand, throws up a plume of 
water and steam.

1	 Describe a liquid in terms of the arrangement of 
its particles, the bonding between them and their 
motion.

QUESTION

In this chapter, we will extend these ideas to look at the 
energy changes involved when materials are heated and 
cooled.
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The temperature drops rapidly at first, then more 
slowly as it approaches room temperature. The important 
section of the graph is the region BC. The temperature 
remains steady for some time. The clear liquid is gradually 
returning to its white, waxy solid state. It is essential 
to note that energy is still being lost even though the 
temperature is not decreasing. When no liquid remains, 
the temperature starts to drop again.

From the graph, we can deduce the melting point of 
octadecanoic acid. This is a technique used to help identify 
substances by finding their melting points.

Heating ice
In some ways, it is easier to think of the experiment above 
in reverse. What happens when we heat a substance?

Imagine taking some ice from the deep freeze. Put the 
ice in a well-insulated container and heat it at a steady 
rate. Its temperature will rise; eventually we will have a 
container of water vapour. (Note that water vapour is an 
invisible gas; the ‘steam’ that you see when a kettle boils is 
not a gas but a cloud of tiny droplets of liquid water.)

Figure 21.4 shows the results we might expect if we 
could carry out this idealised experiment. Energy is 
supplied to the ice at a constant rate. We will consider the 

different sections of this graph in some detail, in order to 
describe where the energy is going at each stage.

We need to think about the kinetic and potential 
energies of the molecules. If they move around more freely 
and faster, their kinetic energy has increased. If they break 
free of their neighbours and become more disordered, 
their electrical potential energy has increased.

Energy changes
Energy must be supplied to raise the temperature of a 
solid, to melt it, to heat the liquid and to boil it. Where 
does this energy go? It is worth taking a close look at 
a single change of state and thinking about what is 
happening on the atomic scale. Figure 21.3a shows a 
suitable arrangement. A test tube containing octadecanoic 
acid (a white, waxy substance at room temperature) is 
warmed in a water bath. At 80 °C, the substance is a clear 
liquid. The tube is then placed in a rack and allowed 
to cool. Its temperature is monitored, either with a 
thermometer or with a temperature probe and datalogger. 
Figure 21.3b shows typical results.
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Figure 21.4  A graph of temperature against time for water, 
heated at a steady rate. 

Figure 21.5  The electrical potential energy of atoms is 
negative and increases as they get further apart. 

You know that the kinetic energy of a particle is the 
energy it has due to its motion. Figure 21.5 shows how the 
electrical potential energy of two isolated atoms depends 
on their separation. Work must be done (energy must be 
put in) to separate neighbouring atoms – think about the 
work you must do to snap a piece of plastic or to tear a 
sheet of paper. The graph shows that:

■■ the electrical potential energy of two atoms very close 
together is large and negative

■■ as the separation of the atoms increases, their potential 
energy also increases

■■ when the atoms are completely separated, their potential 
energy is maximum and has a value of zero.

Now look at the graph shown in Figure 21.4.
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Section AB
The ice starts below 0 °C; its temperature rises. The 
molecules gain energy and vibrate more and more. Their 
vibrational kinetic energy is increasing. There is very little 
change in the mean separation between the molecules and 
hence very little change in their electrical potential energy.

Section BC
The ice melts at 0 °C. The molecules become more 
disordered. There is a modest increase in their electrical 
potential energy.

Section CD
The ice has become water. Its temperature rises towards 
100 °C. The molecules move increasingly rapidly. Their 
kinetic energy is increasing. There is very little change in 
the mean separation between the molecules and therefore 
very little change in their electrical potential energy.

Section DE
The water is boiling. The molecules are becoming 
completely separate from one another. There is a large 
increase in the separation between the molecules and 
hence their electrical potential energy has increased 
greatly. Their movement becomes very disorderly.

Section EF
The steam is being heated above 100 °C. The molecules move 
even faster. Their kinetic energy is increasing. The molecules 
have maximum electrical potential energy of zero.

You should see that, when water is heated, each change of 
state (melting, boiling) involves the following:

■■ there must be an input of energy
■■ the temperature does not change
■■ the molecules are breaking free of one another
■■ their potential energy is increasing.

In between the changes of state:

■■ the input of energy raises the temperature of the substance
■■ the molecules move faster
■■ their kinetic energy is increasing.

The hardest point to appreciate is that you can put energy 
into the system without its temperature rising. This 
happens during any change of state; the energy goes to 
breaking the bonds between neighbouring molecules. 
The energy which must be supplied to cause a change of 
state is sometimes called ‘latent heat’. The word ‘latent’ 
means ‘hidden’ and refers to the fact that, when you melt 
something, its temperature does not rise and the energy 
that you have put in seems to have disappeared.

It may help to think of temperature as a measure of the 
average kinetic energy of the molecules. When you put a 
thermometer in some water to measure its temperature, 
the water molecules collide with the thermometer and 
share their kinetic energy with it. At a change of state, 
there is no change in kinetic energy, so there is no change 
in temperature.

Notice that melting the ice (section BC) takes much 
less energy than boiling the same amount of water (section 
DE). This is because, when a solid melts, the molecules 
are still bonded to most of their immediate neighbours. 
When a liquid boils, each molecule breaks free of all of 
its neighbours. Melting may involve the breaking of one 
or two bonds per molecule, whereas boiling involves 
breaking eight or nine.

Evaporation
A liquid does not have to boil to change into a gas. A 
puddle of rain-water dries up without having to be heated 
to 100 °C. When a liquid changes to a gas without boiling, 
we call this evaporation.

Any liquid has some vapour associated with it. If 
we think about the microscopic picture of this, we can 
see why (Figure 21.6). Within the liquid, molecules are 
moving about. Some move faster than others, and can 
break free from the bulk of the liquid. They form the 
vapour above the liquid. Some molecules from the vapour 
may come back into contact with the surface of the liquid, 
and return to the liquid. However, there is a net outflow of 
energetic molecules from the liquid, and eventually it will 
evaporate away completely.

You may have had your skin swabbed with alcohol 
or ether before an injection. You will have noticed how 
cold your skin becomes as the volatile liquid evaporates. 
Similarly, you can become very cold if you get wet and 

These 
fast-moving 
molecules
escape.

Figure 21.6  Fast-moving molecules leave the surface of a 
liquid – this is evaporation. 
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stand around in a windy place. This cooling of a liquid is a 
very important aspect of evaporation.

When a liquid evaporates, it is the most energetic 
molecules that are most likely to escape. This leaves 
molecules with a below-average kinetic energy. Since 
temperature is a measure of the average kinetic energy 
of the molecules, it follows that the temperature of the 
evaporating liquid must fall.

Molecular energy
Earlier in this chapter, where we studied the phases of 
matter, we saw how solids, liquids and gases could be 
characterised by differences in the arrangement, order 
and motion of their molecules. We could equally have 
said that, in the three phases, the molecules have different 
amounts of kinetic and potential energy.

Now, it is a simple problem to find the internal energy 
of an amount of matter. We add up the kinetic and 
potential energies associated with all the molecules in  
that matter. For example, consider the gas shown in  
Figure 21.8. There are ten molecules in the box, each 
having kinetic and potential energy. We can work out 
what all of these are and add them together, to get the total 
internal energy of the gas in the box.

2	 Use the kinetic model of matter to explain the 
following:
a	 If you leave a pan of water on the hob for a long 

time, it does not all boil away as soon as the 
temperature reaches 100 °C.

b	 It takes less energy to melt a 1.0 kg block of ice 
at 0 °C than to boil away 1.0 kg of water  
at 100 °C.

c	 When a dog is overheated, it pants.

Internal energy
All matter is made up of particles, which we will refer to 
here as ‘molecules’. Matter can have energy. For example, 
if we lift up a stone, it has gravitational potential energy. 
If we throw it, it has kinetic energy. Kinetic and potential 
energies are the two general forms of energy. We consider 
the stone’s potential and kinetic energies to be properties 
or attributes of the stone itself; we calculate their values 
(mgh and 12 mv 2) using the mass and speed of the stone.

Now think about another way in which we could 
increase the energy of the stone: we could heat it  
(Figure 21.7). Now where does the energy from the heater 
go? The stone’s gravitational potential and kinetic energies 
do not increase; it is not higher or faster than before. The 
energy seems to have disappeared into the stone.

Of course, you already know the answer to this. The stone 
gets hotter, and that means that the molecules which make 
up the stone have more energy, both kinetic and electrical 
potential. They vibrate more and faster, and they move a little 
further apart. This energy of the molecules is known as the 
internal energy of the stone. The internal energy of a system 
(e.g. the heated stone) is defined as follows:

The internal energy of a system is the sum of the random 
distribution of kinetic and potential energies of its atoms 
or molecules.

Figure 21.7  Increasing the internal energy of a stone. 

Figure 21.8  The molecules of a gas have both kinetic and 
potential energy.

QUESTION
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Changing internal energy
Th ere are two obvious ways in which we can increase the 
internal energy of some gas: we can heat it (Figure 21.9a), 
or we can do work on it by compressing it (Figure 21.9b).

Heating a gas
Th e walls of the container become hot and so its molecules 
vibrate more vigorously. Th e molecules of the cool gas 
strike the walls and bounce off  faster. Th ey have gained 
kinetic energy, and we say the temperature has risen.

Doing work on a gas
In this case, a wall of the container is being pushed 
inwards. Th e molecules of the cool gas strike a moving 
wall and bounce off  faster. Th ey have gained kinetic energy 
and again the temperature has risen. Th is explains why a 
gas gets hotter when it is compressed.

We can write this as an equation:

 increase in  =  energy supplied  + energy supplied 
 internal energy   by heating  by doing work

In symbols:

ΔU  =  q  +  w

Th is is known as the fi rst law of thermo dynamics and 
is a formal statement of the principle of conservation of 
energy. (It applies to all situations, not simply to a mass 
of gas.) Since you have learned previously that energy is 
conserved, it may seem to be a simple idea, but it took 
scientists a good many decades to understand the nature 
of energy and to appreciate that it is conserved.compressive

force
ba

Figure 21.9 Two ways to increase the internal energy of a gas: 
a by heating it, and b by compressing it. 

Th ere are other ways in which the internal energy of 
a system can be increased: by passing an electric current 
through it, for example. However, doing work and heating 
are all we need to consider here.

Th e internal energy of a gas can also decrease; for 
example, if it loses heat to its surroundings, or if it expands 
so that it does work on its surroundings.

First law of thermodynamics
You will be familiar with the idea that energy is conserved; 
that is, energy cannot simply disappear, or appear from 
nowhere. Th is means that, for example, all the energy put 
into a gas by heating it and by doing work on it must end 
up in the gas; it increases the internal energy of the gas. 

3 Use the first law of thermodynamics to answer 
the following.
a A gas is heated by supplying it with 250 kJ of 

energy; at the same time, it is compressed 
so that 500 kJ of work is done on the gas. 
Calculate the change in the internal energy of 
the gas.

b The same gas is heated as before with 250 kJ 
of energy. This time the gas is allowed to 
expand so that it does 200 kJ of work on its 
surroundings. Calculate the change in the 
internal energy of the gas.

The meaning of temperature
Picture a beaker of boiling water. You want to measure its 
temperature, so you pick up a thermometer which is lying 
on the bench. Th e thermometer reads 20 °C. You place 
the thermometer in the water and the reading goes up … 
30 °C, 40 °C, 50 °C. Th is tells you that the thermometer is 
getting hotter; energy is being transferred from the water 
to the thermometer.

Eventually, the thermometer reading reaches 100 °C 
and it stops rising. Because the reading is steady, you can 
deduce that energy is no longer being transferred to the 
thermometer and so its scale tells you the temperature of 
the water.

QUESTION
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Th is simple, everyday activity illustrates several points:

■■ We are used to the idea that a thermometer shows the 
temperature of something with which it is in contact. In fact, 
it tells you its own temperature. As the reading on the scale 
was rising, it wasn’t showing the temperature of the water. It 
was showing that the temperature of the thermometer was 
rising.

■■ Energy is transferred from a hotter object to a cooler 
one. The temperature of the water was greater than the 
temperature of the thermometer, so energy transferred 
from one to the other.

■■ When two objects are at the same temperature, there is no 
transfer of energy between them. That is what happened 
when the thermometer reached the same temperature 
as the water, so it was safe to say that the reading on the 
thermometer was the same as the temperature of the water.

From this, you can see that temperature tells us about 
the direction in which energy fl ows. If two objects are 
placed in contact (so that energy can fl ow between them), 
it will fl ow from the hotter to the cooler. Energy fl owing 
from a region of higher temperature to a region of lower 
temperature is called thermal energy. (Here, we are not 
concerned with the mechanism by which the energy 
is transferred. It may be by conduction, convection or 
radiation.)

When two objects, in contact with each other, are at the 
same temperature, there will be no net transfer of thermal 
energy between them. We say that they are in 
thermal equilibrium with each other – see Figure 21.10.

The thermodynamic (Kelvin) scale
Th e Celsius scale of temperature is a familiar, everyday 
scale of temperature. It is based on the properties of water. 
It takes two fi xed points, the melting point of pure ice 
and the boiling point of pure water, and divides the range 
between them into 100 equal intervals.

Th ere is nothing special about these two fi xed points. 
In fact, both change if the pressure changes or if the water 
is impure. Th e thermodynamic scale, also known as the 
Kelvin scale, is a better scale in that one of its fi xed points, 
absolute zero, has a greater signifi cance than either of the 
Celsius fi xed points.

It is not possible to have a temperature lower than 0 K. 
Sometimes it is suggested that, at this temperature, matter 
has no energy left  in it. Th is is not strictly true; it is more 
correct to say that, for any matter at absolute zero, it is 
impossible to remove any more energy from it. Hence 
absolute zero is the temperature at which all substances 
have the minimum internal energy. (Th e kinetic energy 
of the atoms or molecules is zero and their electrical 
potential energy is minimum.)

We use diff erent symbols to represent temperatures 
on these two scales: θ for the Celsius scale, and T for the 
thermodynamic (Kelvin) scale. To convert between the 
two scales, we use these relationships:

θ (°C) = T (K) − 273.15

T (K) = θ (°C) + 273.15
For most practical purposes, we round off  the conversion 
factor to 273 as shown in the conversion chart (Figure 21.11).

water at 60°C

energy

a b

thermometer
cooler than 
water

thermometer
in equilibrium
with water

T / K

400

300

200

100

0

273.15

/ °C

+127

+27
0.00

–73

–173

–273

θ

Figure 21.10 a Thermal energy is transferred from the hot 
water to the cooler thermometer because of the temperature 
diff erence between them. b When they are at the same 
temperature, there is no transfer of thermal energy and they 
are in thermal equilibrium.

Figure 21.11 A conversion chart relating temperatures on the 
thermodynamic (Kelvin) and Celsius scales.
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The thermodynamic scale of temperature is designed 
to overcome a problem with scales of temperature such as 
the Celsius scale, which depends on the melting point and 
boiling point of pure water. To measure a temperature on 
this scale, you might use a liquid-in-glass thermometer. 
However, the expansion of a liquid may be non-linear. 
This means that if you compare the readings from two 
different types of liquid-in-glass thermometer, for example 
a mercury thermometer and an alcohol thermometer, you 
can only be sure that they will agree at the two fixed points 
on the Celsius scale. At other temperatures, their readings 
may differ.

The thermodynamic scale is said to be an absolute scale 
as it is not defined in terms of a property of any particular 
substance. It is based on the idea that the average kinetic 
energy of the particles of a substance increases with 
temperature. The average kinetic energy is the same for all 
substances at a particular thermodynamic temperature; 
it does not depend on the material itself. In fact, as you 
will see in Chapter 22, the average kinetic energy of a 
gas molecule is proportional to the thermodynamic 
temperature. So, if we can measure the average kinetic 
energy of the particles of a substance, we can deduce the 
temperature of that substance.

The thermodynamic scale has two fixed points:

■■ absolute zero, which is defined as 0 K
■■ the triple point of water, the temperature at which ice, water 

and water vapour can co-exist, which is defined as 273.16 K 
(equal to 0.01 °C).

So the gap between absolute zero and the triple point of 
water is divided into 273.16 equal divisions. Each division 
is 1 K. The scale is defined in this slightly odd way so 
that the scale divisions on the thermodynamic scale are 
equal in size to the divisions on the Celsius scale, making 
conversions between the two scales relatively easy.

A change in temperature of 1 K is thus equal to a 
change in temperature of 1 °C.

Thermometers
A thermometer is any device which can be used to 
measure temperature. Each type of thermometer makes 
use of some physical property of a material which changes 
with temperature. The most familiar is the length of 
a column of liquid in a tube, which gets longer as the 
temperature increases because the liquid expands – this 
is how a liquid-in-glass thermometer works. Other 
properties which can be used as the basis of thermometers 
include:

■■ the resistance of an electrical resistor or thermistor
■■ the voltage produced by a thermocouple
■■ the colour of an electrically heated wire
■■ the volume of a fixed mass of gas at constant pressure.

In each case, the thermometer must be calibrated at two 
or more known temperatures (such as the melting and 
boiling points of water, which correspond to 0 °C and 
100 °C), and the scale between divided into equal divisions. 
There is no guarantee that two thermometers will agree 
with each other except at these fixed points. Now we will 
look in detail at two types of electrical thermometer.

4	 a	� Convert each of the following temperatures from 
the Celsius scale to the thermodynamic scale: 0 °C, 
20 °C, 120 °C, 500 °C, −23 °C, −200 °C.

b	 Convert each of the following temperatures from 
the thermodynamic scale to the Celsius scale: 0 K, 
20 K, 100 K, 300 K, 373 K, 500 K.

5	 The electrical resistance of a pure copper wire is 
mostly due to the vibrations of the copper atoms. 
Table 21.1 shows how the resistance of a length 
of copper wire is found to change as it is heated. 
Copy the table and add a column showing the 
temperatures in K. Draw a graph to show these 
data. (Start the temperature scale of your graph at 
0 K.) Explain why you might expect the resistance of 
copper to be zero at this temperature.

Temperature / °C Resistance / Ω
  10 3120

  50 3600

  75 3900

100 4200

150 4800

220 5640

260 6120

Table 21.1  The variation of resistance with temperature 
for a length of copper wire.

QUESTIONS
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In Chapter 11, we saw that electrical resistance changes 
with temperature. For metals, resistance increases 
with temperature at a fairly steady rate. However, for 
a thermistor, the resistance changes rapidly over a 
relatively narrow range of temperatures. A small change 
in temperature results in a large change in resistance, so a 
thermometer based on a thermistor will be sensitive over 
that range of temperatures.

A thermocouple is another electrical device which 
can be used as the sensor of a thermometer. Figure 21.12 
shows the principle. Wires of two different metals, X and 
Y, are required. A length of metal X has a length of metal 
Y soldered to it at each end. This produces two junctions, 
which are the important parts of the thermocouple. 
If the two junctions are at different temperatures, an 
e.m.f. will be produced between the two free ends of the 
thermocouple, and can be measured using a voltmeter. 
The greater the difference in temperatures, the greater 
the voltage produced; however, this e.m.f. may not vary 
linearly with temperature, i.e. a graph of e.m.f. against 
temperature is not usually a straight line.

Electrical thermometers can measure across a great 
range of temperatures, from 0 K to hundreds or even 
thousands of kelvin.

Table 21.2 compares resistance and thermocouple 
thermometers.

Feature Resistance 
thermometer

Thermocouple 
thermometer

robustness very robust robust

range thermistor: narrow 
range
resistance wire: wide 
range 

can be very wide

size larger than 
thermocouple, has 
greater thermal 
capacity therefore 
slower acting

smaller than resistance 
thermometers, has 
smaller thermal 
capacity, so quicker 
acting and can measure 
temperature at a point

sensitivity thermistor: high 
sensitivity over narrow 
range
resistance wire: less 
sensitive

can be sensitive if 
appropriate metals 
chosen

linearity thermistor: fairly linear 
over narrow range
resistance wire: good 
linearity

non-linear so requires 
calibration

remote 
operation

long conducting wires 
allow the operator to 
be at a distance from 
the thermometer

long conducting wires 
allow the operator to be 
at a distance from the 
thermometer

Table 21.2  Comparing resistance and thermocouple 
thermometers.

Figure 21.12  The construction of a thermocouple 
thermometer; the voltage produced depends on the 
temperature (as shown in the calibration graph) and on the 
metals chosen. 
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6	 Give one word for each of the following:
a	 adding a scale to a thermometer
b	 all the temperatures, from lowest to highest, 

which a thermometer can measure
c	 the extent to which equal rises in temperature 

give equal changes in the thermometer’s output
d	 how big a change in output is produced by a 

given change in temperature.

QUESTION
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Calculating energy changes
So far, we have considered the effects of heating a substance 
in qualitative terms, and we have given an explanation in 
terms of a kinetic model of matter. Now we will look at the 
amount of energy needed to change the temperature of 
something, and to produce a change of state.

Specific heat capacity
If we heat some material so that its temperature rises, the 
amount of energy we must supply depends on three things:

■■ the mass m of the material we are heating
■■ the temperature change Δθ we wish to achieve
■■ the material itself.

Some materials are easier to heat than others. It takes  
more energy to raise the temperature of 1 kg of water  
by 1 °C than to raise the temperature of 1 kg of alcohol  
by the same amount.

We can represent this in an equation. The amount of 
energy E that must be supplied is given by:

E = mcΔθ
where c is the specific heat capacity of the material. 
Rearranging this equation gives:

c = E
mΔθ

The specific heat capacity of a material can be defined as a 
word equation as follows:

specific heat capacity =  energy supplied
mass × temperature change

Alternatively, specific heat capacity can be defined in 
words as follows:

The specific heat capacity of a substance is the energy 
required per unit mass of the substance to raise the 
temperature by 1 K (or 1 °C).

The word ‘specific’ here means ‘per unit mass’, i.e. per kg. 
From this form of the equation, you should be able to see that 
the units of c are J kg−1 K−1 (or J kg−1 °C−1). Table 21.3 shows 
some values of specific heat capacity measured at 0 °C.

Specific heat capacity is related to the gradient of the 
sloping sections of the graph shown earlier in Figure 21.4. 
The steeper the gradient, the faster the substance heats 
up, and hence the lower its specific heat capacity must be. 
Worked example 1 shows how to calculate the specific heat 
capacity of a substance.

You will need to use data from Table 21.3 to answer 
these questions.

7	 Calculate the energy which must be supplied to 
raise the temperature of 5.0 kg of water from 20 °C 
to 100 °C.

8	 Which requires more energy, heating a 2.0 kg block 
of lead by 30 K, or heating a 4.0 kg block of copper 
by 5.0 K?

9	 A well-insulated 1.2 kg block of iron is heated using 
a 50 W heater for 4.0 min. The temperature of the 
block rises from 22 °C to 45 °C. Find the experimental 
value for the specific heat capacity of iron.

QUESTIONS

1	 When 26 400 J of energy is supplied to a 2.0 kg block 
of aluminium, its temperature rises from 20 °C to 
35 °C. The block is well insulated so that there is 
no energy loss to the surroundings. Determine the 
specific heat capacity of aluminium.

	 Step 1  We are going to use the equation:

c  =  
E

mΔθ

	 We need to write down the quantities that we know:
E = 26 400 J    m = 2.0 kg
Δθ  = (35 − 20) °C = 15 °C    (or 15 K)

	 Step 2  Now substitute these values and solve the 
equation:

c  =  
E

mΔθ

c  =  
26 400

(2.0 × 15)  
=  880 J kg−1K−1

WORKED EXAMPLE

Substance c / J kg−1 K−1

aluminium 880

copper 380

lead 126

glass 500–680

ice 2100

water 4180

seawater 3950

ethanol 2500

mercury 140

Table 21.3  Values of specific heat capacity. 
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BOX 21.1: Determining specific heat capacity c

How can we determine the specific heat capacity of 
a material? The principle is simple: supply a known 
amount of energy to a known mass of the material and 
measure the rise in its temperature. Figure 21.13 shows 
one practical way of doing this for a metal.

The metal is in the form of a cylindrical block of 
mass 1.00 kg. An electrical heater is used to supply the 
energy. This type of heater is used because we can 
easily determine the amount of energy supplied – more 
easily than if we heated the metal with a Bunsen flame, 
for example. An ammeter and voltmeter are used to 
make the necessary measurements.

A thermometer or temperature sensor is used to 
monitor the block’s temperature as it is heated. The 

block must not be heated too quickly; we want to be 
sure that the energy has time to spread throughout  
the metal.

The block should be insulated by wrapping it in a 
suitable material – this is not shown in the illustration. It 
would be possible in principle to determine c by making 
just one measurement of temperature change, but it is 
better to record values of the temperature as it rises and 
plot a graph of temperature θ against time t. The method 
of calculating c is illustrated in Worked example 2.

Sources of error
This experiment can give reasonably good 
measurements of specific heat capacities. As noted 
earlier, it is desirable to have a relatively low rate of 
heating, so that energy spreads throughout the block. 
If the block is heated rapidly, different parts may be at 
different temperatures.

Thermal insulation of the material is also vital. 
Inevitably, some energy will escape to the surroundings. 
This means that more energy must be supplied to the 
block for each degree rise in temperature and so the 
experimental value for the specific heat capacity will be 
too high. One way around this is to cool the block below 
room temperature before beginning to heat it. Then, as 
its temperature rises past room temperature, heat losses 
will be zero in principle, because there is no temperature 
difference between the block and its surroundings.

Figure 21.13  A practical arrangement for determining 
the specific heat capacity of a metal. 
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2	 An experiment to determine the specific heat capacity 
c of a 1.00 kg aluminium block is carried out; the 
block is heated using an electrical heater. The current 
in the heater is 4.17 A and the p.d. across it is 12 V. 
Measurements of the rising temperature of the block 
are represented by the graph shown in Figure 21.14. 
Determine a value for the specific heat capacity c of 
aluminium.

	 Step 1  Write down the equation that relates energy 
change to specific heat capacity:
E  =  mcΔθ

0
0

100 200 300 400 500 600

 θ / °C

t / s

60

50

40
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20

700

 ∆t = 400 s  

∆θ = 16.4°C  

WORKED EXAMPLE

Figure 21.14  Graph of temperature against time for an 
aluminium block as it is heated.



338

Cambridge International A Level Physics

Specific latent heat
Energy must be supplied to melt or boil a substance. (In 
this case, there is no temperature rise to consider since the 
temperature stays constant during a change of state.) This 
energy is called latent heat.

The specific latent heat of a substance is the energy 
required per kilogram of the substance to change its state 
without any change in temperature.

When a substance melts, this quantity is called the specific 
latent heat of fusion; for boiling, it is the specific latent 
heat of vaporisation.

To calculate the amount of energy E required to melt or 
vaporise a mass m of a substance, we simply need to know 
its specific latent heat L:

E = mL

	 Step 2  Divide both sides by a time interval Δt:
E

Δt
  =  mc   

Δθ
Δt     

	 The quantity  
E
Δt

  is the rate at which energy is supplied, 

	 i.e. the power P of the heater. The quantity  
Δθ
Δt  

 is the rate 

	 of rise of temperature of the block, i.e. the gradient of 
the graph of θ against t. Hence:

P  =  m  ×  c  ×  gradient

	 Step 3  Calculate the power of the heater and the 
gradient of the graph.
power  =  p.d. × current
P = VI  =  12  ×  4.17  ≈  50 W

gradient =  
Δθ
Δt

  =  
16.4
400 

 =  0.041 °C s−1

	 Step 4 Substitute values, rearrange and solve.
50 = 1.00  ×  c  ×  0.041

c  =  
50

1.00 × 0.041  =  1220 J kg−1 K−1

WORKED EXAMPLE  (continued)

	10	 At higher temperature, the graph shown in  
Figure 21.14 deviates increasingly from a straight 
line. Suggest an explanation for this.

	11	 In measurements of the specific heat capacity of 
a metal, energy losses to the surroundings are 
a source of error. Is this a systematic error or a 
random error? Justify your answer.

	12	 In an experiment to measure the specific heat 
capacity of water, a student used an electrical 
heater to heat some water. His results are shown 
below. Calculate a value for the heat capacity of 
water. Comment on any likely sources of error.
	 mass of beaker	 =	 150 g
	 mass of beaker + water	 =	 672 g
	 current in the heater	 =	 3.9 A
	 p.d. across the heater	 =	 11.4 V
	 initial temperature	 =	 18.5 °C
	 final temperature	 =	 30.2 °C
	 time taken	 =	 13.0 min

QUESTIONS

QUESTION

	13	 A block of paraffin wax was heated gently, at a 
steady rate. Heating was continued after the wax 
had completely melted. The graph of Figure 21.15 
shows how the material’s temperature varied 
during the experiment.
a	 For each section of the graph (AB, BC and CD), 

describe the state of the material.
b	 For each section, explain whether the 

material’s internal energy was increasing, 
decreasing or remaining constant.

c	 Consider the two sloping sections of the 
graph. State whether the material’s specific 
heat capacity is greater when it is a solid or 
when it is a liquid. Justify your answer.
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Figure 21.15  Temperature variation of a sample of 
wax, heated at a constant rate. 
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BOX 21.2: Determining specific latent heat L 

The principle of determining the specific latent heat of 
a material is similar to determining the specific heat 
capacity (but remember that there is no change in 
temperature).

Figure 21.16 shows how to measure the specific 
latent heat of vaporisation of water. A beaker containing 
water is heated using an electrical heater. A wattmeter 
(or an ammeter and a voltmeter) determines the rate 
at which energy is supplied to the heater. The beaker 
is insulated to minimise energy loss, and it stands on a 
balance. A thermometer is included to ensure that the 
temperature of the water remains at 100 °C.

The water is heated at a steady rate and its mass 
recorded at equal intervals of time. Its mass decreases 
as it boils.

A graph of mass against time should be a straight 
line whose gradient is the rate of mass loss. The 
wattmeter shows the rate at which energy is supplied to 
the water via the heater. We thus have:

specific latent head = 
rate of supply of energy

rate of loss of mass

 g

wattmeter insulation
(shown partly

removed)

water

heater
balance
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Figure 21.16 Determining the specific latent heat of 
vaporisation of water. 

 14 The specific latent heat of fusion of water is 
330 kJ kg−1. Calculate the energy needed to 
change 2.0 g of ice into water at 0 °C. Suggest why 
the answer is much smaller than the amount of 
energy calculated in Worked example 3.

 15 A sample of alcohol is heated with a 40 W 
heater until it boils. As it boils, the mass of the 
liquid decreases at a rate of 2.25 g per minute. 
Assuming that 80% of the energy supplied by the 
heater is transferred to the alcohol, estimate the 
specific latent heat of vaporisation of the alcohol. 
Give your answer in kJ kg−1.

QUESTIONS

3 The specific latent heat of vaporisation of water is 
2.26 MJ kg−1. Calculate the energy needed to change 
2.0 g of water into steam at 100 °C.

 Step 1 We have been given the following quantities:
m  =  2.0 g = 0.002 kg and L =  2.26 MJ kg−1

 Step 2 Substituting these values in the equation 
E = mL, we have:
energy = 0.002 × 2.26 × 106 = 4520 J

WORKED EXAMPLE
L is measured in J kg−1. (Note that there is no ‘per °C’ 
since there is no change in temperature.) For water the 
values are:

■■ specific latent heat of fusion of water, 330 kJ kg−1

■■ specific latent heat of vaporisation of water, 2.26 MJ kg−1

You can see that L for boiling water to form steam is 
roughly seven times the value for melting ice to form 
water. As we saw on page 329, this is because, when ice 
melts, only one or two bonds are broken for each molecule; 
when water boils, several bonds are broken per molecule. 
Worked example 3 shows how to calculate these amounts 
of energy.
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Summary
■■ The kinetic model of matter allows us to explain 

behaviour (e.g. changes of state) and macroscopic 
properties (e.g. specific heat capacity and specific 
latent heat) in terms of the behaviour of molecules.

■■ The internal energy of a system is the sum of the 
random distribution of kinetic and potential energies 
associated with the atoms or molecules that make up 
the system.

■■ If the temperature of an object increases, there is an 
increase in its internal energy.

■■ Internal energy also increases during a change of 
state, but there is no change in temperature.

■■ The first law of thermodynamics expresses the 
conservation of energy:

increase in internal energy = energy supplied by 
heating + work done on the system

■■ Temperatures on the thermodynamic (Kelvin) and 
Celsius scales of temperature are related by:

T (K) =  θ (°C) + 273.15

θ (°C) = T (K) − 273.15

■■ At absolute zero, all substances have a minimum 
internal energy.

■■ A thermometer makes use of a physical property of a 
material that varies with temperature.

■■ The word equation for the specific heat capacity of a 
substance is:

specific heat capacity = 
energy supplied

mass × temperature change

The specific heat capacity of a substance is the energy 
required per unit mass of the substance to raise the 
temperature by 1 K (or 1 °C).

■■ The energy transferred in raising the temperature of a 
substance is given by E = mcΔθ.

■■ The specific latent heat of a substance is the energy 
required per kilogram of the substance to change its 
state without any change in temperature: E = mL.

BOX 21.2: Determining specific latent heat L (continued)

A similar approach can be used to determine the 
specific latent heat of fusion of ice. In this case, the ice 
is heated electrically in a funnel; water runs out of the 
funnel and is collected in a beaker on a balance.

As with any experiment, we should consider sources 
of error in measuring L and their effects on the final 
result. When water is heated to produce steam, some 

energy may escape to the surroundings so that the 
measured energy is greater than that supplied to the 
water. This systematic error gives a value of L which is 
greater than the true value. When ice is melted, energy 
from the surroundings will conduct into the ice, so that 
the measured value of L will be an underestimate.



End-of-chapter questions
1 Describe the changes to the kinetic energy, the potential energy and the total internal energy of the 

molecules of a block of ice as:
a it melts at 0 °C  [3]
b the temperature of the water rises from 0 °C to room temperature.  [3]

2 Explain, in terms of kinetic energy, why the temperature of a stone increases when it falls from a cliff  
and lands on the beach below.  [3]

3 Explain why the barrel of a bicycle pump gets very hot as it is used to pump up a bicycle tyre. 
(Hint: the work done against friction is not large enough to explain the rise in temperature.)  [3]

4 The so-called ‘zeroth law of thermodynamics’ states that if the temperature of body A is equal to the 
temperature of body B and the temperature of body B is the same as body C, then the temperature 
of body C equals the temperature of body A.

 Explain, in terms of energy flow, why the concept of temperature would be meaningless if this law was 
not obeyed.  [2]

5 Copy and complete the table, which shows the melting and boiling points (at standard atmospheric 
pressure) of diff erent materials in both degrees Celsius and kelvin.  [8]

Substance
Melting point Boiling point
°C K °C K

oxygen −223 90

hydrogen 14 −253

lead 327 2023

mercury 234 357

6 When a thermocouple has one junction in melting ice and the other junction in boiling water it produces 
an e.m.f. of 63 µV.
a What e.m.f. would be produced if the second junction was also placed in melting ice? [1]
b When the second junction is placed in a cup of coff ee, the e.m.f. produced is 49 µV. Calculate the 

temperature of the coff ee. [2]
c The second junction is now placed in a beaker of melting lead at 327 °C.

i Calculate the e.m.f. which would be produced. [2]
ii State the assumption you make. [1]

7 The following list gives four diff erent types of thermometer:
 thermistor
 thermocouple
 constant pressure gas thermometer
 liquid-in-glass thermometer.

 For each of the jobs below, state which type of thermometer you would use and justify your choice.
a A gardener measuring the temperature in a greenhouse  [2]
b An engineer mapping the temperature at diff erent points on the cylinder head of a car engine  [2]
c A technician monitoring the temperatures in the core of a nuclear reactor.  [2]
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8 a  A 500 W kettle contains 300 g of water at 20 °C. Calculate the minimum time it would take to raise the 
temperature of the water to boiling point.  [5]

b The kettle is allowed to boil for 2 minutes. Calculate the mass of water that remains in the kettle. 
State any assumptions that you make.  [4]

 (Specific heat capacity of water = 4.18 × 103 J kg−1 °C−1, 
specific latent heat of vaporisation of water = 2.26 × 106 J kg−1.)

9 a  Explain what is meant by the specific heat capacity of a substance. [2]
b Figure 21.17 shows an apparatus used to measure the specific heat capacity of a copper block 

of mass 850 g.

Figure 21.17 For End-of-chapter Question 9. 

 The block is initially at 12 °C. The heater is switched on and the time taken for the temperature to rise 
to 30 °C is recorded. The block is cooled to the original temperature, the potential diff erence across the 
heater is increased and the experiment is repeated.

 The results are shown in the table.

Power output of heater / W Time taken / s
40 190

60 114

i Explain why a thermocouple thermometer is suitable for this experiment. [2]
ii Explain why the experiment is repeated using a diff erent power input. [2]
iii Calculate the specific heat capacity of copper. [5]
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10 a  A cylinder of carbon dioxide is at room temperature and at a pressure of 20 atmospheres. A cloth 
is placed over the outlet and the tap opened. Solid carbon dioxide is formed on the cloth. Explain, 
using the first law of thermodynamics, why the carbon dioxide cools suff iciently for the solid to form. [3]

b Solid carbon dioxide sublimes to form carbon dioxide gas; that is, it changes directly from a solid to 
a gas. This change is called sublimation. Figure 21.18 shows the apparatus used to measure the 
specific latent heat of sublimation of carbon dioxide.

Figure 21.18 For End-of-chapter Question 10. 

 Explain what is meant by the latent heat of sublimation. [2]
c The change in mass of the solid carbon dioxide in a time interval of 5 minutes is measured with the 

heater switched off . The change of mass, in the same time interval, is found with the heater switched 
on. The energy to supplied to the heater is also measured.

 The results are shown in the table below.

Initial 
reading on 
balance / g

Final reading 
on balance / g

Energy 
supplied to 
the heater / J

heater off 484.3 479.7 0

heater on 479.7 454.2 12 000

i Explain why readings are taken with the heater switched off . [1]
ii Calculate the specific latent heat of sublimation of carbon dioxide. [3]

d The specific latent heat of sublimation is greater than either the specific latent heat of fusion or the 
specific latent heat of vaporisation.

 Suggest a reason for this. [2]
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11 a  Explain why energy is needed for boiling even though the temperature of the liquid remains constant. [2]
 Figure 21.19 shows an apparatus that can be used to measure the specific latent heat of vaporisation 

of nitrogen.

Figure 21.19 For End-of-chapter Question 11. 

b Suggest why the nitrogen is contained in a vacuum flask. [1]
c The change in mass of the nitrogen is measured over a specific time interval with the heater 

switched off . The heater is switched on, transferring energy at 40 W, and the change of mass is 
found once more.

 The results are shown in the table.

Initial reading 
on balance / g

Final reading 
on balance / g

Time / 
minutes 

heater off 834.7 825.5 4

heater on 825.5 797.1 2

 Calculate the specific latent heat of vaporisation of liquid nitrogen. [4]

12 a i Explain what is meant by internal energy. [2]
ii Explain what is meant by the absolute zero of temperature. [2]

b An electric hot water heater has a power rating of 9.0 kW. The water is heated as it passes through the 
heater. Water flows through the heater at a speed of 1.2 m s−1 through pipes which have a total 
cross-sectional area of 4.8 × 10−5 m 2. The temperature of the water entering the heater is 15 °C.
i Calculate the mass of water flowing through the heater each second. [2]
ii Calculate the temperature at which the water leaves the heater. [3]
iii State any assumptions you have made when doing your calculation. [1]
iv It is possible to adjust the temperature of the water from the heater. Suggest how the temperature 

of the water could be increased. [1]
 (Density of water = 1000 kg m−3, specific heat capacity of water = 4200 J kg −1 °C −1.)
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Chapter 22:
Ideal gases

Learning outcomes
You should be able to:

■■ solve problems using the equation of state for an 
ideal gas

■■ interpret Brownian motion in terms of the movement 
of molecules

■■ state the assumptions of the kinetic theory of gases
■■ deduce a relationship between pressure, volume and 

the microscopic properties of the molecules of a gas
■■ relate the kinetic energy of the molecules of a gas to 

its temperature
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The idea of a gas
Figure 22.1 shows a weather balloon being launched. 
Balloons like the one in Figure 22.1 carry instruments 
high into the atmosphere, to measure pressure, 
temperature, wind speed and other variables .

The balloon is filled with helium so that its overall 
density is less than that of the surrounding air. The 
result is an upthrust on the balloon, greater than its 
weight, so that it rises upwards. As it moves upwards, 
the pressure of the surrounding atmosphere decreases 
so that the balloon expands. The temperature drops, 
which tends to make the gas in the balloon shrink. In 
this chapter we will look at the behaviour of gases as 
their pressure, temperature and volume change.

Particles of a gas
We picture the particles of a gas as being fast-moving. 
They bounce off the walls of their container (and off each 
other) as they travel around at high speed (see Figure 22.2). 
How do we know that these particles are moving like this?

It is much harder to visualise the particles of a gas 
than those of a solid, because they move about in such 
a disordered way, and most of a gas is empty space. The 
movement of gas particles was investigated in the 1820s 
by a Scottish botanist, Robert Brown. He was using a 
microscope to look at pollen grains suspended in water, 
and saw very small particles moving around inside the 
water. He then saw the same motion in particles of dust 
in the air. It is easier in the laboratory to look at the 
movement of tiny particles of smoke in air.

Figure 22.1  A weather balloon being launched. 

Figure 22.2  Particles of a gas – collisions with the walls of the 
container cause the gas’s pressure on the container. (Particles 
do not have shadows like this. The shadows are added here to 
show depth.) 

Fast molecules
For air at standard temperature and pressure (STP,  
–0 °C and 100 kPa), the average speed of the molecules is 
about 400 m s−1. At any moment, some are moving faster 
than this and others more slowly. If we could follow the 
movement of a single air molecule, we would find that, 
some of the time, its speed was greater than this average; at 
other times it would be less. The velocity (magnitude and 
direction) of an individual molecule changes every time it 
collides with anything else.

This value for molecular speed is reasonable. It is 
comparable to (but greater than) the speed of sound in 
air (approximately 330 m s−1 at STP). Very fast-moving 
particles can easily escape from the Earth’s gravitational 
field. The required escape velocity is about 11 km  s−1. Since 
we still have an atmosphere, on average the air molecules 
must be moving much more slowly than this value.

Path of a particle
The erratic motion of particles in water that Brown 
observed comes about because the particles are constantly 
bombarded by the much smaller, faster water molecules. 
This motion came to be known as Brownian motion, and 
it can be observed in both liquids and gases. 

Figure 22.3 shows the sort of path followed by a particle 
showing Brownian motion. In fact, this is from a scientific 
paper by the French physicist Jean Perrin, published in 
1911. He was looking at the movement of a single pollen 
grain suspended in water.

He recorded its position every 30 s; the grid spacing 
is approximately 3 μm. From this he could deduce the 
average speed of the grain and hence work out details of 
the movement of water molecules.
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1	 Consider a smoke particle of mass M and speed V. 
It is constantly buffeted by air molecules. The mass 
of a single air molecule is m and it has speed v. It is 
reasonable to assume that, on average, the smoke 
particle will have kinetic energy approximately 
equal to the kinetic energy of a single air molecule. 
Show that, since M >> m (M is much greater  
than m), it follows that the air molecules must be 
moving much faster than the smoke grain (v >> V ).

2	 If equal numbers of air molecules hit a smoke 
particle from all directions, the smoke particle 
does not move. State three ways in which the 
random movement of molecules of air cause the 
smoke particles to move.

3	 Describe and explain what you would expect to 
see through a microscope observing Brownian 
motion when the temperature increases.

4	 An oxygen molecule is moving around inside 
a spherical container of diameter 0.10 m. The 
molecule’s speed is 400 m s−1. Estimate the 
number of times each second the molecule 
collides with the walls of the container. (You can 
assume that the molecule’s speed is constant.)

BOX 22.1: Observing Brownian motion

The oxygen and nitrogen molecules that make up 
most of the air are far too small to see; they are much 
smaller than the wavelength of light. To observe the 
effect of the air molecules we have to look at something 
bigger. In this experiment (Figure 22.4), the smoke cell 
contains air into which a small amount of smoke has 
been introduced. The cell is lit from the side, and the 
microscope is used to view the smoke particles.

The smoke particles show up as tiny specks of 
reflected light, although they are too small for any 
detail of their shape to be seen. What is noticeable 
is the way they move. If you can concentrate on a 
single particle, you will see that it follows a somewhat 
jerky and erratic path. This is a consequence of the 
repeated collisions between the smoke particles and 
air molecules. The erratic motion of the smoke particles 
provides direct evidence that the air molecules must:

■■ be moving
■■ also have haphazard motion.

Since the air molecules are much smaller than the 
smoke grain, we can deduce that they must be moving 
much faster than the smoke grain if they are to affect it 
in this way.

(You may observe that all of the smoke particles 
in your field of view have a tendency to travel in 
one particular direction. This is a consequence of 
convection currents in the air. Also, you may have to 
adjust the focus of the microscope to keep track of an 
individual particle, as it moves up or down in the cell.)

microscope

cover slip

smoke cell

smokelight

Figure 22.4  Experimental arrangement for observing 
Brownian motion.

Figure 22.3  Brownian motion of pollen grains, as drawn by 
the French scientist Jean Perrin.

QUESTIONS
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Figure 22.6  A gas has four measurable properties, which are 
all related to one another: pressure, temperature, volume and 
mass. 

5	 State and explain in terms of the kinetic model 
what happens to the pressure inside a tyre when 
more molecules at the same temperature are 
pumped into the tyre.

6	 Explain, using the kinetic model, why a can 
containing air may explode if the temperature rises.

Explaining pressure
A gas exerts pressure on any surface with which it comes 
into contact. Pressure is a macroscopic property, defined 
as the force exerted per unit area of the surface.

The pressure of the atmosphere at sea level is 
approximately 100 000 Pa. The surface area of a typical 
person is 2.0 m2. Hence the force exerted on a person by 
the atmosphere is about 200 000 N. This is equivalent to 
the weight of about 200 000 apples!

Fortunately, air inside the body presses outwards 
with an equal and opposite force, so we do not collapse 
under the influence of this large force. We can explain the 
macroscopic phenomenon of pressure by thinking about 
the behaviour of the microscopic particles that make up 
the atmosphere.

Figure 22.5 shows the movement of a single molecule 
of air in a box. It bounces around inside, colliding with 
the various surfaces of the box. At each collision, it exerts 
a small force on the box. The pressure on the inside of the 
box is a result of the forces exerted by the vast number 
of molecules in the box. Two factors affect the force, and 
hence the pressure, that the gas exerts on the box:

■■ the number of molecules that hit each side of the box in one 
second

■■ the force with which a molecule collides with the wall.

If a molecule of mass m hits the wall head-on with 
a speed v it will rebound with a speed v in the opposite 
direction. The change in momentum of the molecule is 
2mv. Since force is equal to rate of change of momentum, 
the higher the speed of the molecule the greater the force 
that it exerts as it collides with the wall. Hence the pressure 
on the wall will increase if the molecules move faster.

If the piston in a bicycle pump is pushed inwards but 
the temperature of the gas inside is kept constant, then 
more molecules will hit the piston in each second but 
each collision will produce the same force, because the 

Figure 22.5  The path of a single molecule in an otherwise 
empty box.

temperature and therefore the average speed of the molecules 
is the same. The increased rate of collisions alone means 
that the force on the piston increases and thus the pressure 
rises. If the temperature of the gas in a container rises then 
the molecules move faster and hit the sides faster and more 
often; both of these factors cause the pressure to rise.

Measuring gases
We are going to picture a container of gas, such as the box 
shown in Figure 22.6. There are four properties of this gas 
that we might measure: pressure, temperature, volume and 
mass. In this chapter, you will learn how these quantities 
are related to one another.

Pressure
This is the normal force exerted per unit area by the gas on 
the walls of the container. We saw in Chapter 6 that this 
pressure is the result of molecular collisions with the walls 
of the container. Pressure is measured in pascals, Pa  
(1 Pa = 1 N m−2).

Temperature
This might be measured in °C, but in practice it is more 
useful to use the thermodynamic (Kelvin) scale of 
temperature. You should recall how these two scales are 
related:

T (K) = θ (°C) + 273.15

QUESTIONS
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Volume
This is a measure of the space occupied by the gas. Volume 
is measured in m3.

Mass
This is measured in g or kg. In practice, it is more useful to 
consider the amount of gas, measured in moles.

The mole is defined as follows:

One mole of any substance is the amount of that 
substance which contains the same number of particles 
as there are in 0.012 kg of carbon-12.

(In this definition, ‘particles’ may be atoms, molecules, 
ions, etc.)

One mole of any substance has a mass in grams which is 
numerically equal to the relative atomic or molecular mass 
of the substance. For example, one mole of oxygen (O2) has 
a mass of about 32 g.

A mole of any substance (solid, liquid or gas) contains 
a standard number of particles (molecules or atoms). This 
number is known as the Avogadro constant, NA. The 
experimental value for NA is 6.02 × 1023 mol−1. We can 
easily determine the number of atoms in a sample if we 
know how many moles it contains. For example:

2.0 mol of helium contains
2.0 × 6.02 × 1023 = 1.20 × 1024 atoms

10 mol of carbon contains
10 × 6.02 × 1023 = 6.02 × 1024 atoms

We will see later that, if we consider equal numbers of 
moles of two different gases under the same conditions, 
their physical properties are the same.

Boyle’s law
This law relates the pressure p and volume V of a gas. 
It was discovered in 1662 by Robert Boyle. If a gas 
is compressed, its pressure increases and its volume 
decreases. Pressure and volume are inversely related.

We can write Boyle’s law as:

The pressure exerted by a fixed mass of gas is inversely 
proportional to its volume, provided the temperature of 
the gas remains constant.

Note that this law relates two variables, pressure and 
volume, and it requires that the other two, mass and 
temperature, remain constant.

Boyle’s law can be written as:

p ∝ 1
V

or simply:
pV = constant

We can also represent Boyle’s law as a graph, as shown 
in Figure 22.7. A graph of p against 1

V
 is a straight line 

passing through the origin, showing direct proportionality.
For solving problems, you may find it more useful to use 
the equation in this form:

p1V1 = p2V2

Here, p1 and V1 represent the pressure and volume of the 
gas before a change, and p2 and V2 represent the pressure 
and volume of the gas after the change. Worked example 1 
shows how to use this equation.

7	 The mass of one mole of carbon is 12 g. Determine:
a	 the number of atoms in one mole of carbon
b	 the number of moles and the number of atoms 

in 54 g of carbon
c	 the number of atoms in 1.0 kg of carbon.

8	 The molar mass of uranium is about 235 g mol−1.
a	 Calculate the mass of a single atom of uranium.
b	 A small pellet of uranium has a mass of 20 mg. 

For this pellet, calculate:
i	 the number of moles
ii	 the number of uranium atoms.

9	 ‘It can be useful to recall that 1.0 kg of matter 
contains of the order of 1026 atoms.’ Making 
suitable estimates, test this statement.

V / m3  / m–3

p / Pa p / Pa

a b

1
V

0
0

0
0

p ∝ 1
V

Figure 22.7  Graphical representations of the relationship 
between pressure and volume of a gas (Boyle’s law). 

QUESTIONS

QUESTION
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This graph does not show that the volume of a gas is 
proportional to its temperature on the Celsius scale. If 
a gas contracted to zero volume at 0 °C, the atmosphere 
would condense on a cold day and we would have a great 
deal of difficulty in breathing! However, the graph does 
show that there is a temperature at which the volume of a 
gas does, in principle, shrink to zero. Looking at the lower 
temperature scale on the graph, where temperatures are 
shown in kelvin (K), we can see that this temperature is 
0 K, or absolute zero. (Historically, this is how the idea of 
absolute zero first arose.)

We can represent the relationship between volume V 
and thermodynamic temperature T as:

V ∝ T
or simply:

V
T

 = constant

Note that this relationship only applies to a fixed mass of 
gas and to constant pressure.

The relationship above is an expression of Charles’s 
law, named after the French physicist Jacques Charles, who 
in 1787 experimented with different gases kept at constant 
pressure.

If we combine Boyle’s law and Charles’s law, we can 
arrive at a single equation for a fixed mass of gas:

pV
T

 = constant

Shortly, we will look at the constant quantity which 
appears in this equation, but first we will consider the 
extent to which this equation applies to real gases.

Real and ideal gases
The relationships between p, V and T that we have 
considered above are based on experimental observations 
of gases such as air, helium, nitrogen, etc., at temperatures 

Changing temperature
Boyle’s law requires that the temperature of a gas is fixed. 
What happens if the temperature of the gas is allowed to 
change? Figure 22.8 shows the results of an experiment in 
which a fixed mass of gas is cooled at constant pressure. 
The gas contracts; its volume decreases.

V / m3

  / °C

T / K

+1000
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Figure 22.8  The volume of a gas decreases as its temperature 
decreases. 

	10	 A balloon contains 0.04 m3 of air at a pressure 
of 120 kPa. Calculate the pressure required 
to reduce its volume to 0.025 m3 at constant 
temperature.

QUESTION

1	 A cylinder contains 0.80 dm3 of nitrogen gas at a 
pressure of 1.2 atmosphere (1 atm = 1.01 × 105 Pa). 
A piston slowly compresses the gas to a pressure 
of 6.0 atm. The temperature of the gas remains 
constant. Calculate the final volume of the gas.

	 Note from the question that the temperature of the 
gas is constant, and that its mass is fixed (because 
it is contained in a cylinder). This means that we can 
apply Boyle’s law.

	 Step 1  We are going to use Boyle’s law in the form  
p1V1 =  p2V2. Write down the quantities that you know, 
and that you want to find out.

	 p1 = 1.2 atm	 V1 = 0.80 dm3

	 p2 = 6.0 atm	 V2 = ?

	 Note that we don’t need to worry about the 
particular units of pressure and volume being used 
here, so long as they are the same on both sides 
of the equation. The final value of V2 will be in dm3 
because V1 is in dm3.

	 Step 2  Substitute the values in the equation, 
rearrange and find V2.
	 p1V1 =  p2V2

1.2 × 0.8 = 6.0 ×  V2

V2 =  
1.2 × 0.8

6.0   = 0.16 dm3

	 So the volume of the gas is reduced to 0.16 dm3.

	 The pressure increases by a factor of 5, so the 
volume decreases by a factor of 5.

WORKED EXAMPLE
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and pressures around room temperature and pressure. In 
practice, if we change to more extreme conditions, such as 
low temperatures or high pressures, gases start to deviate 
from these laws as the gas atoms exert significant electrical 
forces on each other. For example, Figure 22.9 shows what 
happens when nitrogen is cooled down towards absolute 
zero. At first, the graph of volume against temperature 
follows a good straight line. However, as it approaches the 
temperature at which it condenses, it deviates from ideal 
behaviour, and at 77 K it condenses to become  
liquid nitrogen.

Thus we have to attach a condition to the relationships 
discussed above. We say that they apply to an ideal gas. 
When we are dealing with real gases, we have to be aware 
that their behaviour may be significantly different from 
the ideal equation:

pV
T

 = constant

An ideal gas is thus defined as one for which we can apply 
the equation:

pV
T

 = constant

for a fixed mass of gas.

chapter. The constant of proportionality R is called the 
universal molar gas constant. Its experimental value is:

R = 8.31 J mol−1 K−1

Note that it doesn’t matter what gas we are considering 
– it could be a very ‘light’ gas like hydrogen, or a much 
‘heavier’ one like carbon dioxide. So long as it is behaving 
as an ideal gas, we can use the same equation of state with 
the same constant R.

Calculating the number n of moles
Sometimes we know the mass of gas we are concerned 
with, and then we must find how many moles this 
represents. To do this, we use the relationship:

number of moles = mass (g)
molar mass (g mol−1)

For example: How many moles are there in 1.6 kg of 
oxygen?

molar mass of oxygen = 32 g mol−1

number of moles = 1600 g
32 g mol−1 = 50 mol

(Note that this tells us that there are 50 moles of oxygen 
molecules in 1.6 kg of oxygen. An oxygen molecule 
consists of two oxygen atoms – its formula is O2 – so 1.6 kg 
of oxygen contains 100 moles of oxygen atoms.)

Now look at Worked examples 2 and 3.
V / m3

100 200 30077

ideal 
behaviour

0
0

T / K

Figure 22.9  A real gas (in this case, nitrogen) deviates from 
the behaviour predicted by Charles’s law at low temperatures. 

Ideal gas equation
So far, we have seen how p, V and T are related. It is 
possible to write a single equation relating these quantities 
which takes into account the amount of gas being 
considered.

If we consider n moles of an ideal gas, we can write the 
equation in the following form:

pV = nRT
This equation is called the ideal gas equation or the 
equation of state for an ideal gas. It relates all four of 
the variable quantities discussed at the beginning of this 

2	 Calculate the volume occupied by one mole of an 
ideal gas at room temperature (20 °C) and pressure 
(1.013 × 105 Pa).

	 Step 1  Write down the quantities given.
p = 1.013 × 105 Pa	 n = 1.0
T = 293 K

	 Hint: Note that the temperature is converted to kelvin.

	 Step 2  Substituting these values in the equation of 
state gives:

V  =  
nRT

P
  =  

1 × 8.31 × 293
1.103 × 105

V  = 0.0240 m3  = 2.40 × 10−2 m3

	 = 24.0 dm3

	 Hint: 1 dm = 0.1 m; hence 1 dm3 = 10−3 m3.

	 This value, the volume of one mole of gas at 
room temperature and pressure, is well worth 
remembering. It is certainly known by most 
chemists.

WORKED EXAMPLE
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3	 A car tyre contains 0.020 m3 of air at 27 °C and at a 
pressure of 3.0 × 105 Pa. Calculate the mass of the air 
in the tyre. (Molar mass of air = 28.8 g mol−1.)

	 Step 1  Here, we need first to calculate the number 
of moles of air using the equation of state. We have:
p = 3.0 × 105 Pa    V  = 0.02 m3

T = 27 °C = 300 K

	 Hint: Don’t forget to convert the temperature to kelvin.

	 So, from the equation of state:

n =  
pV
RT

  =  
30 × 105 × 0.02

8.31 × 300
n = 2.41 mol

	 Step 2  Now we can calculate the mass of air:
mass = number of moles × molar mass
mass = 2.41 × 28.8 = 69.4 g ≈ 69 g

For the questions which follow, you will need the 
following value:

R = 8.31 J mol−1 K−1

	11	 At what temperature (in K) will 1.0 mol of a gas 
occupy 1.0 m3 at a pressure of 1.0 × 104 Pa?

	12	 Nitrogen consists of molecules N2. The molar 
mass of nitrogen is 28 g mol−1. For 100 g of 
nitrogen, calculate:
a	 the number of moles
b	 the volume occupied at room temperature 

and pressure. (r.t.p. = 20 °C, 1.01 × 105 Pa.)

	13	 Calculate the volume of 5.0 mol of an ideal gas  
at a pressure of 1.0 × 105 Pa and a temperature  
of 200 °C.

	14	 A sample of gas contains 3.0 × 1024 atoms. 
Calculate the volume of the gas at a temperature 
of 300 K and a pressure of 120 kPa.

	15	 At what temperature would 1.0 kg of oxygen 
occupy 1.0 m3 at a pressure of 1.0 × 105 Pa?  
(Molar mass of O2 = 32 g mol−1.)

	16	 A cylinder of hydrogen has a volume of 0.10 m3. Its 
pressure is found to be 20 atmospheres at 20 °C.
a	 Calculate the mass of hydrogen in the 

cylinder.
b	 If it were instead filled with oxygen to the same 

pressure, how much oxygen would it contain?
	 (Molar mass of H2 = 2.0 g mol−1, molar mass of  

O2 = 32 g mol−1; 1 atmosphere = 1.01 × 105 Pa.)

Modelling gases – the kinetic 
model
In this chapter, we are concentrating on the macroscopic 
properties of gases (pressure, volume, temperature). These 
can all be readily measured in the laboratory. The equation:

pV
T

 = constant

is an empirical relationship. In other words, it has been 
deduced from the results of experiments. It gives a good 
description of gases in many different situations. However, 
an empirical equation does not explain why gases behave 
in this way. An explanation requires us to think about the 
underlying nature of a gas and how this gives rise to our 
observations.

A gas is made of particles (atoms or molecules). Its 
pressure arises from collisions of the particles with the 
walls of the container; more frequent or harder collisions 
give rise to greater pressure. Its temperature indicates the 
average kinetic energy of its particles; the faster they move, 
the greater their average kinetic energy and the higher the 
temperature.

The kinetic theory of gases is a theory which links these 
microscopic properties of particles (atoms or molecules) to 
the macroscopic properties of a gas. Table 22.1 shows the 
assumptions on which the theory is based.

On the basis of these assumptions, it is possible to use 
Newtonian mechanics to show that pressure is inversely 
proportional to volume (Boyle’s law), volume is directly 
proportional to thermodynamic (kelvin) temperature 
(Charles’s law), and so on. The theory also shows that the 
particles of a gas have a range of speeds – some move faster 
than others.

WORKED EXAMPLE

QUESTIONS

QUESTION
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molecule exerts on one end of the box and then deduce the 
total pressure produced by all the molecules.

Consider a collision in which the molecule strikes side 
ABCD of the cube. It rebounds elastically in the opposite 
direction, so that its velocity is −c. its momentum changes 
from mc to −mc. The change in momentum arising from 
this single collision is thus:

change in momentum = −mc − (+mc)
	 = −mc − mc = −2mc

Between consecutive collisions with side ABCD, the 
molecule travels a distance of 2l at speed c. Hence:

time between collisions with side ABCD = 2l
c

Now we can find the force that this one molecule exerts 
on side ABCD, using Newton’s second law of motion. This 
says that the force produced is equal to the rate of change 
of momentum:

force = change in momentum
time taken

 = 2mc
2l / c

 = mc2

l
(We use +2mc because now we are considering the force 
of the molecule on side ABCD, which is in the opposite 
direction to the change in momentum of the molecule.)

The area of side ABCD is l 2. From the definition of 
pressure, we have:

pressure = force
area

 = mc2 / l
l 2

 = mc2

l 3

This is for one molecule, but there is a large number N of 
molecules in the box. Each has a different velocity, and each 
contributes to the pressure. We write the average value of c2 
as <c2>, and multiply by N to find the total pressure:

pressure p = Nm<c 2>
l 3

But this assumes that all the molecules are travelling in 
the same direction and colliding with the same pair of 
opposite faces of the cube. In fact they will be moving in 
all three dimensions equally, so we need to divide by 3 to 
find the pressure exerted.

pressure p = 13 
Nm<c 2>

l 3

Al

D

C
B

c

Figure 22.10  A single molecule of a gas, moving in a box. 

Assumption Explanation/comment
A gas contains a very large 
number of particles (atoms or 
molecules).

A small ‘cube’ of air
can have as many as 1020 
molecules.

The forces between particles 
are negligible, except during 
collisions.

If the particles attracted each 
other strongly over long 
distances, they would all 
tend to clump together in the 
middle of the container. The 
particles travel in straight lines 
between collisions.

The volume of the particles 
is negligible compared to the 
volume occupied by the gas.

When a liquid boils to become 
a gas, its particles become 
much farther apart.

Most of the time, a particle 
moves in a straight line at a 
constant velocity. The time of 
collision with another particle 
or with the container walls is 
negligible compared with the 
time between collisions.

The particles collide with the 
walls of the container and with 
each other, but for most of 
the time they are moving with 
constant velocity.

The collisions of particles 
with each other and with the 
container are perfectly elastic, 
so that no kinetic energy is lost.

Kinetic energy cannot be lost. 
The internal energy of the gas 
is the total kinetic energy of 
the particles.

Table 22.1  The basic assumptions of the kinetic theory of gases. 

Things are different when a gas is close to condensing. 
At temperatures a little above the boiling point, the 
molecules of a gas are moving more slowly and they 
tend to stick together – a liquid is forming. So we cannot 
consider them to be moving about freely, and the kinetic 
theory of gases must be modified. This is often how physics 
progresses. A theory is developed which explains a simple 
situation. Then the theory is modified to explain more 
complex situations.

The kinetic theory has proved to be a very powerful 
model. It convinced many physicists of the existence of 
particles long before it was ever possible to visualise them.

Molecules in a box
We can use the kinetic model to deduce an equation which 
relates the macroscopic properties of a gas (pressure, 
volume) to the microscopic properties of its molecules 
(mass and speed). We start by picturing a single molecule 
in a cube-shaped box of side l (Figure 22.10). This molecule 
has mass m, and is moving with speed c parallel to one side 
of the box (c is not the speed of light in this case). It rattles 
back and forth, colliding at regular intervals with the 
ends of the box and thereby contributing to the pressure 
of the gas. We are going to work out the pressure this one 
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Here, l 3 is equal to the volume V of the cube, so we can 
write:

p = 13  
Nm
V

 <c 2>    or    pV = 13 Nm<c 2>

(Notice that, in the second form of the equation, we have 
the macroscopic properties of the gas – pressure and 
volume – on one side of the equation and the microscopic 
properties of the molecules on the other side.)

Finally, the quantity Nm is the mass of all the molecules 
of the gas, and this is simply equal to the mass M of the 
gas. So Nm

V
 is equal to the density ρ of the gas, and we can 

write:

p = 13 ρ <c 2>

So the pressure of a gas depends only on its density and the 
mean square speed of its molecules.

A plausible equation?
It is worth thinking a little about whether the equation 
p = 13 Nm

V
 <c 2> seems to make sense. It should be clear to 

you that the pressure is proportional to the number of 
molecules, N. More molecules mean greater pressure. Also, 
the greater the mass of each molecule, the greater the force 
it will exert during a collision.

The equation also suggests that pressure p is 
proportional to the average value of the speed squared. 
This is because, if a molecule is moving faster, not only 
does it strike the container harder, but it also strikes the 
container more often.

The equation suggests that the pressure p is inversely 
proportional to the volume occupied by the gas. Here, 
we have deduced Boyle’s law. If we think in terms of the 
kinetic model, we can see that if a mass of gas occupies a 
larger volume, the molecules will spend more time in the 
bulk of the gas, and less time colliding with the walls. So, 
the pressure will be lower.

These arguments should serve to convince you that the 
equation is plausible; this sort of argument cannot prove 
the equation.

Temperature and molecular 
kinetic energy
Now we can compare the equation pV = 13 Nm <c 2> with 
the ideal gas equation pV = nRT. The left-hand sides are the 
same, so the two right-hand sides must also be equal:

1
3 Nm <c 2> = nRT

We can use this equation to tell us how the absolute 
temperature of a gas (a macroscopic property) is related 
to the mass and speed of its molecules. If we focus on the 
quantities of interest, we can see the following relationship:

m <c 2> = 3nRT
N

The quantity N
n

 = NA is the Avogadro constant, the 

number of particles in 1 mole. So:

m <c 2> = 3RT
NA

It is easier to make sense of this if we divide both sides  
by 2, to get the familiar expression for kinetic energy:

1
2 m <c 2> = 3RT

2NA

The quantity R/NA is defined as the Boltzmann constant, 
k. Its value is 1.38 × 10−23 J K−1. Substituting k in place of  
R/NA gives

1
2 m <c 2> = 3kT

2
The quantity 12 m<c 2> is the average kinetic energy E of 
a molecule in the gas, and k is a constant. Hence the 
thermodynamic temperature T is proportional to the 
average kinetic energy of a molecule.

The mean translational kinetic energy of an atom 
(or molecule) of an ideal gas is proportional to the 
thermodynamic temperature.

	17	 Check that the units on the left-hand side of the 

		  equation p = 13 
Nm

V  
< c2> are the same as those on  

		  the right-hand side.

	18	 The quantity Nm is the total mass of the 
molecules of the gas, i.e. the mass of the gas. At 
room temperature, the density of air is about 
1.29 kg m−3 at a pressure of 105 Pa.
a	 Use these figures to deduce the value of <c2> 

for air molecules at room temperature.
b	 Find a typical value for the speed of a 

molecule in the air by calculating    <c2> . How 
does this compare with the speed of sound in 
air, approximately 330 m s−1?

QUESTIONS
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It is easier to recall this as:
mean translational kinetic energy of atom ∝ T

We need to consider two of the terms in this statement. 
Firstly, we talk about translational kinetic energy. This 
is the energy that the molecule has because it is moving 
along; a molecule made of two or more atoms may also 
spin or tumble around, and is then said to have rotational 
kinetic energy – see Figure 22.11.

Secondly, we talk about mean (or average) translational 
kinetic energy. There are two ways to find the average 
translational kinetic energy (k.e.) of a molecule of a gas. 
Add up all the kinetic energies of the individual molecules 
of the gas and then calculate the average k.e. per molecule. 
Alternatively, watch an individual molecule over a period 
of time as it moves about, colliding with other molecules 
and the walls of the container and calculate its average k.e. 
over this time. Both should give the same answer.

The Boltzmann constant is an important constant in 
physics because it tells us how a property of microscopic 
particles (the kinetic energy of gas molecules) is related 
to a macroscopic property of the gas (its absolute 
temperature). That is why its units are joules per kelvin 
(J K−1). Its value is very small (1.38 × 10−23 J K−1) because the 
increase in kinetic energy in J of a molecule is very small 
for each kelvin increase in temperature.

It is useful to remember the equation linking kinetic 
energy with temperature as ‘average k.e. is three-halves kT ’.

a b

	19	 a	� The Boltzmann constant k is equal to R/NA. 
From values of R and NA, show that k has the 
value 1.38 × 10−23 J K−1.

b	 Write down an equation linking the Boltzmann 
constant, the thermodynamic temperature 
and the average kinetic energy of a molecule.

Figure 22.11  a A monatomic molecule has only translational 
kinetic energy. b A diatomic molecule can have both 
translational and rotational kinetic energy. 

Mass, kinetic energy and temperature
Since mean k.e. ∝ T, it follows that if we double the 
thermodynamic temperature of an ideal gas (e.g. from 
300 K to 600 K), we double the mean k.e. of its molecules. 
It doesn’t follow that we have doubled their speed; because 
k.e. ∝ v2, their mean speed has increased by a factor of    2.

Air is a mixture of several gases: nitrogen, oxygen, 
carbon dioxide, etc. In a sample of air, the mean k.e. of 
the nitrogen molecules is the same as that of the oxygen 
molecules and that of the carbon dioxide molecules. This 
comes about because they are all repeatedly colliding 
with one another, sharing their energy. Carbon dioxide 
molecules have greater mass than oxygen molecules; since 
their mean translational k.e. is the same, it follows that 
the carbon dioxide molecules move more slowly than the 
oxygen molecules.

QUESTION

	20	 Calculate the mean translational k.e. of atoms in 
an ideal gas at 27 °C.

	21	 The atoms in a gas have a mean translational k.e. 
equal to 5.0 × 10−21 J. Calculate the temperature 
of the gas in K and in °C.

	22	 Show that, if the mean speed of the molecules 
in an ideal gas is doubled, the thermodynamic 
temperature of the gas increases by a factor of 4.

	23	 A fixed mass of gas expands to twice its original 
volume at a constant temperature. How do the 
following change?
a	 the pressure of the gas
b	 the mean translational kinetic energy of its 

molecules.

	24	 Air consists of molecules of:  
oxygen (molar mass = 32 g mol−1) and  
nitrogen (molar mass = 28 g mol−1).  
Calculate the mean translational k.e. of these 
molecules in air at 20 °C. Use your answer 
to estimate a typical speed for each type of 
molecule.

	25	 Show that the change in the internal energy 
of one mole of an ideal gas per unit change in 
temperature is always a constant. What is this 
constant?

QUESTIONS
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Summary
■■ Brownian motion provides evidence for the fast, 

random movement of molecules in a gas.

■■ For an ideal gas:
pV
T

 = constant

■■ One mole of any substance contains NA particles 
(atoms or molecules).

NA = Avogadro constant = 6.02 × 1023 mol−1

■■ The equation of state for an ideal gas is:

pV = nRT for n moles

■■ From the kinetic model of a gas, we can deduce the 
relationship:

p  =  13 
Nm< c 2>

V
  =  13 ρ < c 2>

where <c2> is the mean square molecular speed and 
ρ is the density of the gas.

■■ The mean translational kinetic energy E of a particle 
(atom or molecule) of an ideal gas is proportional to 
the thermodynamic temperature T.

E  =  12 m < c 2>  =  
3kT

2

End-of-chapter questions
1 a State how many atoms there are in:

i a mole of helium gas [1]
ii a mole of chlorine gas [1]
iii  a kilomole of neon gas. [1]

b A container holds four moles of carbon dioxide. Calculate:
i the number of carbon dioxide molecules there are in the container [1]
ii the number of carbon atoms there are in the container [1]
iii the number of oxygen atoms there are in the container. [1]

2 A bar of gold has a mass of 1.0 kg. Calculate:
a the number of moles of gold in the bar [2]
b the number of gold atoms in the bar [1]
c the mass of one gold atom. [1]

 (Relative atomic mass of gold = 197.)

3 A cylinder holds 140 dm3 of nitrogen at room temperature and pressure. Moving slowly so that there 
is no change in temperature, a piston is pushed to reduce the volume of the nitrogen to 42 dm3.
a Calculate the pressure of the nitrogen aft er compression. [2]
b Explain the eff ect on the temperature and pressure of the nitrogen if the piston were pushed in 

very quickly. [1]



 4 The atmospheric pressure is 100 kPa, equivalent to the pressure exerted by a column of water 10 m high. 
A bubble of oxygen of volume 0.42 cm3 is released by a water plant at a depth of 25 m. Calculate the 
volume of the bubble when it reaches the surface. State any assumptions you make. [4]

 5 A cylinder contains 40 dm3 of carbon dioxide at a pressure of 4.8 × 105 Pa at room temperature.
 Calculate:

a the number of moles of carbon dioxide [2]
b the mass of carbon dioxide. [2]

 (Relative molecular mass of carbon dioxide = 44.)

 6 Calculate the volume of 1 mole of ideal gas at a pressure of 1.01 × 105 Pa and at a temperature of 0 °C. [2]

 7 A vessel of volume 200 dm3 contains 3.0 × 1026 molecules of gas at a temperature of 127 °C. Calculate the 
pressure exerted by the gas on the vessel walls. [3]

 8 a  Calculate the average speed of helium molecules at room temperature and pressure. (Density of 
helium at room temperature and pressure = 0.179 kg m−3.) [3]

b Comment on how this speed compares with the average speed of air molecules at the same 
temperature and pressure. [2]

 9 A sample of neon is contained in a cylinder at 27 °C. Its temperature is raised to 243 °C.
a Calculate the kinetic energy of the neon atoms at:

i 27 °C [3]
ii 243 °C. [2]

b Compare the speeds of the molecules at the two temperatures. [2]

10 A truck is to cross the Sahara desert. The journey begins just before dawn when the temperature is 3 °C. 
The volume of air held in each tyre is 1.50 m3 and the pressure in the tyres is 3.42 × 105 Pa.
a Explain how the air molecules in the tyre exert a pressure on the tyre walls. [3]
b Calculate the number of moles of air in the tyre. [3]
c By midday the temperature has risen to 42 °C.

i Calculate the pressure in the tyre at this new temperature. You may assume that no air escapes 
and the volume of the tyre is unchanged. [2]

ii Calculate the increase in the average translational kinetic energy of an air molecule due to this 
temperature rise. [2]

11 a  Explain what is meant by Brownian motion and how it provides evidence for the existence of molecules. [3]
b The density of air at room temperature and pressure, r.t.p. (20 °C and 1.03 × 105 Pa), is 1.21 kg m−3. 

Calculate the average speed of air molecules at r.t.p. [4]
c State and explain the eff ect on the average speed of the air molecules of:

i raising the temperature of the air [2]
ii going to a higher altitude (but keeping the temperature constant). [1]
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12 a Explain what is meant by an ideal gas. [2]
b A cylinder contains 500 g of helium at a pressure of 5.0 × 105 Pa and at a temperature of 27 °C. 

You may assume helium acts as an ideal gas.
 Calculate:

i the number of moles of helium the cylinder holds [1]
ii the number of atoms of helium the cylinder holds. [1]

c Calculate the volume of the cylinder. [3]
d When the tap of the cylinder is opened for a short time a small amount of the helium escapes into 

the atmosphere. As it does so, the temperature of the helium drops significantly.
i Explain why the temperature drops. [2]
ii Describe what happens to the average speed of the atoms of the escaped helium. [1]

 (Relative atomic mass of helium = 4.)

13 A hot air balloon, its basket and passengers has a total mass of 450 kg. The inflated balloon holds 
3000 m3 of air.
a Calculate the minimum force needed to lift  the balloon off  the ground. [1]
b Atmospheric pressure is 1.03 × 105 Pa and the density of air at this pressure is 1.23 kg m−3.

i Calculate the mass of 3000 m3 of air. [1]
ii Calculate the number of moles of air in the balloon. You may consider air at this pressure to act 

as an ideal gas with a relative molecular mass of 29. [1]
c As the air is heated it expands and some of it is expelled through a vent at the top of the balloon.
 Calculate the maximum mass of air that can remain in the balloon to give suff icient upthrust for the 

balloon to just leave the ground. [2]
d Calculate the minimum temperature that the air inside the balloon must be heated to for the balloon to 

just lift  off  the ground. [4]
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Chapter 23:
Coulomb’s law

Learning outcomes
You should be able to:

■■ recall and use Coulomb’s law
■■ calculate the field strength and potential due to a 

point charge
■■ define electric potential and relate field strength to the 

potential gradient
■■ compare and contrast electric and gravitational fields
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Living in a field
The scientist in the photograph (Figure 23.1) is using 
a detector to measure the electric field produced by 
a mobile phone mast. People often worry that the 
electric field produced by a mobile phone transmitter 
may be harmful, but detailed studies have yet to show 
any evidence for this. If you hold a mobile phone close 
to your ear, the field strength will be far greater than 
that produced by a nearby mast.

Electric fields
In Chapter 8, we presented some fundamental ideas about 
electric fields:

■■ An electric field is a field of force and can be represented by 
field lines.

■■ The electric field strength at a point is the force per unit 
positive charge that acts on a stationary charge:

field strength =  
force

charge	 E  =  
F
Q

■■ There is a uniform field between charged parallel plates:

field strength =  
potential difference

separation 	 E  =  
V
d

In this chapter, we will extend these ideas to consider how 
electric fields arise from electric charges. We will also 
compare electric fields with gravitational fields (Chapter 18).

Coulomb’s law
Any electrically charged object produces an electric field 
in the space around it. It could be something as small as 
an electron or a proton, or as large as a planet or star. To 
say that it produces an electric field means that it will exert 
a force on any other charged object which is in the field. 
How can we determine the size of such a force?

The answer to this was first discovered by Charles 
Coulomb, a French physicist. He realised that it was 
important to think in terms of point charges; that is, 

electrical charges which are infinitesimally small so that 
we need not worry about their shapes. In 1785 Coulomb 
proposed a law that describes the force that one charged 
particle exerts on another. This law is remarkably similar 
in form to Newton’s law of gravitation (page 273).

A statement of Coulomb’s law is as follows:

Any two point charges exert an electrical force on each 
other that is proportional to the product of their charges 
and inversely proportional to the square of the distance 
between them.

We consider two point charges Q1 and Q2 separated by a 
distance r (Figure 23.2). The force each charge exerts on 
the other is F. According to Newton’s third law of motion, 
the point charges interact with each other and therefore 
exert equal but opposite forces on each other.

Figure 23.1  Mobile phone masts produce weak electric fields 
– this scientist is using a small antenna to detect and measure 
the field of a nearby mast to ensure that it is within safe limits. 

FF

r

Q1 Q2

Figure 23.2  The variables involved in Coulomb’s law. 
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According to Coulomb’s law, we have:
force ∝ product of the charges	 F ∝ Q1Q2

force ∝ 1
distance2	 F ∝ 1

r 2

Therefore:

F ∝ 
Q1Q2

r2

We can write this in a mathematical form:

F = 
kQ1Q2

r2

The constant of proportionality is:

k = 1
4πε0

where ε0 is known as the permittivity of free space (ε is 
the Greek letter epsilon). The value of ε0 is approximately 
8.85 × 10−12 F m−1. An equation for Coulomb’s law is thus:

F = 
Q1Q2
4πε0r2

By substituting for π and ε0, we can show that the force F 
can also be given by the equation:

F ≈ 9.0  × 109 
Q1Q2

r 2

i.e. the constant k has the approximate numerical value of 
9.0  × 109 N m2 C−2.

This approximation can be useful for making rough 
calculations, but more precise calculations require that the 
value of ε0 given above be used.

Following your earlier study of Newton’s law of  
gravitation, you should not be surprised by this 
relationship. The force depends on each of the properties 
producing it (in this case, the charges), and it is an inverse 
square law with distance – if the particles are twice as far 
apart, the electrical force is a quarter of its previous value 
(Figure 23.3).

Note also that, if we have a positive and a negative 
charge, then the force F is negative. We interpret this as an 
attraction. Positive forces, as between two like charges, are 
repulsive. In gravity, we only have attraction.

So far we have considered point charges. If we are 
considering uniformly charged spheres we measure the 
distance from the centre of one to the centre of the other 
– they behave as if their charge was all concentrated at the 
centre. Hence we can apply the equation for Coulomb’s 
law for both point charges (e.g. protons, electrons, etc.) and 
uniformly charged spheres, as long as we use the centre-
to-centre distance between the objects.

F F

r

2r

F4—
1 F4—

1

Q1 Q2

Q1 Q2

Figure 23.3  Doubling the separation results in one-quarter of 
the force, a direct consequence of Coulomb’s law. 

BOX 23.1: Investigating Coulomb’s law

It is quite tricky to investigate the force between 
charged objects, because charge tends to leak 
away into the air or to the Earth during the course 
of any experiment. The amount of charge we can 
investigate is difficult to measure, and usually small, 
giving rise to tiny forces.

Figure 23.4 shows one method for investigating 
the inverse square law for two charged metal balls 
(polystyrene balls coated with conducting silver 
paint). As one charged ball is lowered down towards 
the other, their separation decreases and so the 
force increases, giving an increased reading on the 
balance.

silvered 
polystyrene
balls

Perspex
handle

electronic
balance

Figure 23.4  Investigating Coulomb’s law. 
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Electric field strength for a 
radial field
In Chapter 8, we saw that the electric field strength at a 
point is defined as the force per unit charge exerted on a 

positive charge placed at that point, E = F
Q

.

So, to find the field strength near a point charge Q1 (or 
outside a uniformly charged sphere), we have to imagine 
a small positive test charge Q2 placed in the field, and 
determine the force per unit charge on it. We can then use 
the definition above to determine the electric field strength 
for a point (or spherical) charge.

The force between the two point charges is given by:

F = 
Q1Q2
4πε0r2

The electric field strength E due to the charge Q1 at a 
distance of r from its centre is thus:

E = 
force

test charge
 = 

Q1Q2
4πε0r2Q2

or:

E = 
Q

4πε0r2

The field strength E is not a constant; it decreases as the 
distance r increases. The field strength obeys an inverse 
square law with distance – just like the gravitational field 
strength for a point mass. The field strength will decrease 
by a factor of four when the distance from the centre is 
doubled.

Note also that, since force is a vector quantity, it follows 
that electric field strength is also a vector. We need to give 
its direction as well as its magnitude in order to specify 
it completely. Worked example 1 shows how to use the 
equation for field strength near a charged sphere.

1	 A metal sphere of diameter 12 cm is positively charged. 
The electric field strength at the surface of the sphere 
is 4.0 × 105 V m−1. Draw the electric field pattern for the 
sphere and determine the total surface charge.

	 Step 1  Draw the electric field pattern (Figure 23.5).  
The electric field lines must be normal to the surface 
and radial.

	 Step 2  Write down the quantities given:
electric field strength E =  4.0 × 105 V m−1

radius r  =  
0.12

2   =  0.06 m

	 Step 3  Use the equation for the electric field strength to 
determine the surface charge:

E =  
Q

4πε0r2  =  0.06 m

Q =  4πε0r2 ×  E
	 =  4π × 8.85 × 10−12 × (0.06)2 × 4.0 × 105

	 =  1.6 × 10−7 C (0.16 µC)Figure 23.5  The electric field around a charged sphere. 

You will need the data below to answer the following 
questions. (You may take the charge of each sphere to 
be situated at its centre.)

ε0 =  8.85 × 10−12 F m−1

1	 A metal sphere of radius 20 cm carries a positive 
charge of +2.0 µC.
a	 What is the electric field strength at a distance 

of 25 cm from the centre of the sphere?
b	 An identical metal sphere carrying a negative 

charge of −1.0 µC is placed next to the first 
sphere. There is a gap of 10 cm between them. 
Calculate the electric force that each sphere 
exerts on the other.

	 Remember to calculate the centre-to-centre 
distance between the two spheres.

c	 Determine the electric field strength midway 
along a line joining the centres of the spheres.

2	 A Van de Graaff generator produces sparks when 
the field strength at its surface is 4.0 × 104 V cm−1. 
If the diameter of the sphere is 40 cm, what is the 
charge on it?

WORKED EXAMPLE

QUESTIONS
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Electric potential
When we discussed gravitational potential (page 276), we 
started from the idea of potential energy. The potential 
at a point is then the potential energy of unit mass at the 
point. We will approach the idea of electrical potential in 
the same way. However, you may be relieved to find that 
you already know something about the idea of electrical 
potential, because you know about voltage and potential 
difference. This section shows how we formalise the 
idea of voltage, and why we use the expression ‘potential 
difference’ for some kinds of voltage.

Electric potential energy
When an electric charge moves through an electric field, 
its potential energy changes. Think about this concrete 
example: if you want to move one positive charge closer to 
another positive charge, you have to push it (Figure 23.6). 
This is simply because there is a force of repulsion between 
the charges. You have to do work in order to move one 
charge closer to the other.

increases steadily as we push it from the negative plate to 
the positive plate. The graph of potential energy against 
distance is a straight line, as shown in Figure 23.7b.

We can calculate the change in potential energy of 
a charge Q as it is moved from the negative plate to the 
positive plate very simply. Potential difference is defined as 
the energy change per coulomb between two points (recall 
from Chapter 9 that one volt is one joule per coulomb). 
Hence, for charge Q, the work done in moving it from the 
negative plate to the positive plate is:

W = QV
We can rearrange this equation as:

V = W
Q

This is really how voltage V is defined. It is the energy 
per unit positive charge at a point in an electric field. 
By analogy with gravitational potential, we call this the 
electric potential at a point. Now you should be able to see 
that what we regard as the familiar idea of voltage should 
more correctly be referred to as electric potential. The 
difference in potential between two points is the potential 
difference (p.d.) between them.

Just as with gravitational fields, we must define the zero 
of potential (this is the point where we consider a charge 
to have zero potential energy). Usually, in a laboratory 
situation, we define the Earth as being at a potential of 
zero volts. If we draw two parallel charged plates arranged 
horizontally, with the lower one earthed (Figure 23.8), 
you can see immediately how similar this is to our idea 
of gravitational fields. The diagram also shows how we 
can include equipotential lines in a representation of an 
electric field.

0 V

Po
te

nt
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b
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Figure 23.6  Work must be done to push one positive charge 
towards another.

In the process of doing work, energy is transferred 
from you to the charge that you are pushing. Its potential 
energy increases. If you let go of the charge, it will move 
away from the repelling charge. This is analogous to lifting 
up a mass; it gains gravitational potential energy as you lift 
it, and it falls if you let go.

Energy changes in a uniform field
We can also think about moving a positive charge in a 
uniform electric field between two charged parallel plates. 
If we move the charge towards the positive plate, we have 
to do work. The potential energy of the charge is therefore 
increasing. If we move it towards the negative plate, its 
potential energy is decreasing (Figure 23.7a).

Since the force is the same at all points in a uniform 
electric field, it follows that the energy of the charge 

Figure 23.7  Electrostatic 
potential energy changes 
in a uniform field. 
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We can extend the idea of electric potential to 
measurements in electric fields. In Figure 23.9, the power 
supply provides a potential difference of 10 V. The value of 
the potential at various points is shown. You can see that 
the middle resistor has a potential difference across it of 
(8 − 2) V = 6 V.

able to see how this relationship parallels the equivalent 
formula for gravitational potential in a radial field:

ϕ = − GM
r

Note that we do not need the minus sign in the electric 
equation as it is included in the charge. A negative charge 
gives an attractive (negative) field whereas a positive 
charge gives a repulsive (positive) field.

We can show these same ideas by drawing field lines 
and equipotential lines. The equipotentials get closer 
together as we get closer to the charge (Figure 23.11).

+10 V

+10 V

0 V
+2 V

0 V

+8 V

4 Ω

4 Ω

12 Ω

+ Q

Distance d

V

+ + + +

field lines

equipotential
lines

earth

Figure 23.8  Equipotential lines in a uniform electric field. 

Figure 23.9  Changes in potential (shown in red) around an 
electric circuit.

Energy in a radial field
Imagine again pushing a small positive test charge towards 
a large positive charge. At first, the repulsive force is weak, 
and you have only to do a small amount of work. As you 
get closer, however, the force increases (Coulomb’s law), 
and you have to work harder and harder.

The potential energy of the test charge increases as you 
push it. It increases more and more rapidly the closer you 
get to the repelling charge. This is shown by the graph in 
Figure 23.10. We can write an equation for the potential V 
at a distance r from a charge Q:

V = Q
4πε0r

(This comes from the calculus process of integration, 
applied to the Coulomb’s law equation.) You should be 

Figure 23.10  The potential changes according to an inverse 
law near a charged sphere.

+ Q

Figure 23.11  The electric field around a positive charge. The 
dashed equipotential lines are like the contour lines on a map; 
they are spaced at equal intervals of potential. 

To arrive at the result above, we must again define our 
zero of potential. Again, we say that a charge has zero 
potential energy when it is at infinity (some place where it 
is beyond the influence of any other charges). If we move 
towards a positive charge, the potential is positive. If we 
move towards a negative charge, the potential is negative.
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This allows us to give a definition of electric potential:

The electric potential at a point is equal to the work done 
in bringing unit positive charge from infinity to that point.

Electric potential is a scalar quantity. To calculate the 
potential at a point caused by more than one charge, find 
each potential separately and add them. Remember that 
positive charges cause positive potentials and negative 
charges cause negative potentials.

Field strength and potential gradient
We can picture electric potential in the same way that we 
thought about gravitational potential. A negative charge 
attracts a positive test charge, so we can regard it as a 
potential ‘well’. A positive charge is the opposite – a ‘hill’ 
(Figure 23.12). The strength of the field is shown by the 
slope of the hill or well:

field strength = −potential gradient
The minus sign is needed because, if we are going up a 
potential hill, the force on us is pushing us back down the 
slope, in the opposite direction.

This relationship applies to all electric fields. For the 
special case of a uniform field, the potential gradient E is 
constant. Its value is given by

E = ΔV
Δd

where V is the potential difference between two points 
separated by a distance d. (This is the same as the 

relationship E = V
d

 quoted in Chapter 8, page 120.)

Worked example 2 shows how to determine the field 
strength from a potential–distance graph.

Figure 23.12  A ‘potential well’ near a negative charge, and a 
‘potential hill’ near a positive charge. 

H

F G

+5 kV

0 V

earth

E

3	 a	� What would be the electrical potential energy of a 
charge of +1 C placed at each of the points A, B, C, D  
between the charged, parallel plates shown in 
Figure 23.13?

b	 What would be the potential energy of a +2 C 
charge at each of these points? (C is half-way 
between A and B; D is half-way between C and B.)

4	 A Van de Graaff generator has a spherical dome of 
radius 10 cm. It is charged up to a potential of 100 000 V 
(100 kV). How much charge does it store? What is the 
potential at a distance of 10 cm from the dome?

5	 a	� How much work would be done in moving a +1 C 
charge along the following paths shown in  
Figure 23.14: from E to H; from E to F; from F to G; 
from H to E?

b	 How would your answers differ for:
i	 a −1 C charge?
ii	 a +2 C charge?

0 V

A

earth

C D B

+2 kV

Figure 23.13  A uniform electric field –  
see Question 3. 

Figure 23.14  A uniform electric field –  
see Question 5. 

QUESTIONS
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Comparing gravitational and 
electric fields
There are obvious similarities between the ideas we have 
used in this chapter to describe electric fields and those 
we used in Chapter 18 for gravitational fields. This can 
be helpful, or it can be confusing! The summary given in 
Table 23.1 is intended to help you to sort them out.

An important difference is this: electric charges can 
be positive or negative, so they can attract or repel. There 
are no negative masses, so there is only attraction in a 
gravitational field.

2	 The graph (Figure 23.15) shows how the electric 
potential varies near a charged object. Calculate the 
electric field strength at a point 5 cm from the centre of 
the object.

	 Step 1  Draw the tangent to the graph at the point 
5.0 cm. This is shown in Figure 23.16.

	 Step 2  Calculate the gradient of the tangent:

gradient = 
Δv
Δr

	 = 
(10.0 − 2.0)
(0.6 − 8.2)

	 = −1.05 kV cm−1 = −1.05 × 105 V m−1

	 ≈ −1.1 × 105 V m−1

	 The electric field strength is therefore +1.1 × 105 V m−1 or 
+1.1 × 105 N C−1.

	 Remember E = −potential gradient.

0
0

2.0

4.0

6.0

8.0

10.0
V / kV

r / cm
2 4 6 8 10

0
0

2.0

4.0

6.0

8.0

10.0
V / kV

r / cm
2 4 6 8 10

Figure 23.16  Drawing the tangent to the V–r graph to find 
the electric field strength E.

Figure 23.15  Variation of the potential V near a 
positively charged object.

You will need the data below to answer the question.
�	 proton mass = 1.67 × 10−27 kg
�	proton charge = +1.60 × 10−19 C
�	 ε0 = 8.85 × 10−12 F m−1

�	 G = 6.67 × 10−11 N m2 kg−2

6	 Two protons in the nucleus of an atom are 
separated by a distance of 10−15 m. Calculate the 
electrostatic force of repulsion between them, and 
the force of gravitational attraction between them. 
(Assume the protons behave as point charges and 
point masses.) Is the attractive gravitational force 
enough to balance the repulsive electrical force? 
What does this suggest to you about the forces 
between protons within a nucleus?

WORKED EXAMPLE

QUESTION
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Gravitational fields Electric fields
Origin
arise from masses

Origin
arise from electric charges

Vector forces
only gravitational attraction, no repulsion

Vector forces
both electrical attraction and repulsion are possible (because of 
positive and negative charges)

All gravitational fields

  field strength g  =  
F
m

i.e. field strength is force per unit mass

All electric fields

  field strength E  =  
F
Q

i.e. field strength is force per unit positive charge

Units
F in N, g in N kg−1 or m s−2

Units
F in N, E in N C−1 or V m−1

Uniform gravitational fields
parallel gravitational field lines
  g = constant

Uniform electric fields
parallel electric field lines

  E  =  
V
d

  = constant 

Spherical gravitational fields
radial field lines
force given by Newton’s law:	 F  =  

GMm
r2

field strength is therefore: 	 g  =  
GM
r2

(Gravitational forces are always attractive, so we show g on a 
graph against r as negative.)
force and field strength obey an inverse square law with distance

Spherical electric fields
radial field lines
force given by Coulomb’s law: 	 F  =  

Q1Q2

4πε0r 2

field strength is therefore: 	 E  =  
Q

4πε0r 2
(A negative charge gives an attractive field, a positive charge gives 
a repulsive field.)
force and field strength obey an inverse square law with distance

Gravitational potential

given by:  ϕ  =  − 
GM

r
potential obeys an inverse relationship with distance and is zero 
at infinity 
potential is a scalar quantity and is always negative

Electric potential 

given by:  V  =  
Q

4πε0r
potential obeys an inverse relationship with distance and is zero 
at infinity 
potential is a scalar quantity

Table 23.1  Gravitational and electric fields compared.

g

r

E

positive charge

negative charge

r

ϕ

r

V

r

positive charge

negative charge



End-of-chapter questions
1 On a copy of Figure 23.17, draw the electric fields between the charged objects. [5]

368

Summary
■■ Coulomb’s law states that two point charges exert an 

electrical force on each other that is proportional to the 
product of their charges and inversely proportional to 
the square of the distance between them.

■■ The equation for Coulomb’s law is:

F = 
Q1Q2

4πε0r2

■■ A point charge Q gives rise to a radial field. The electric 
field strength is given by the equation:

E = 
Q

4πε0r2

■■ The electric potential at a point is defined as the work 
done per unit positive charge in bringing charge from 
infinity to the point.

■■ For a point charge, the electric potential is given by:

V = 
Q

4πε0r

a b

+2 kV

+

+

–

+ –

c

e

d

Figure 23.17 For End-of-chapter Question 1.
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2 Two parallel plates are 4 cm apart and have a potential diff erence of 2.5 kV between them.
a Calculate the electric field strength between the plates. [2]
b A small piece of dust carrying a charge of +2.4 nC moves into the space between the plates.

i Calculate the force on the dust particle. [2]
ii The mass of the dust particle is 4.2 µg. Calculate the acceleration of the particle towards the 

negative plate. [2]

3 A small sphere carries a charge of 2.4 × 10−9 C. Calculate the electric field strength at a distance of:
a 2 cm from the centre of the sphere [2]
b 4 cm from the centre of the sphere. [2]

4 A conducting sphere of diameter 6.0 cm is mounted on an insulating base. The sphere is connected to 
a power supply which has an output voltage of 20 kV.
a Calculate the charge on the sphere. [3]
b Calculate the electric field strength at the surface of the sphere. [2]

5 The nucleus of a hydrogen atom carries a charge of +1.60 × 10−19 C. Its electron is at a distance of 
1.05 × 10−10 m from the nucleus. Calculate the ionisation potential of hydrogen. [3]

 (Hint: This is equal to the work per unit charge needed to remove the electron to infinity.)

6 a Define electric field strength. [2]
b Two charged conducting spheres, each of radius 1.0 cm, are placed with their centres 10 cm apart, 

as shown in Figure 23.18.
 Sphere A carries a charge of +2 × 10−9 C.
 Figure 23.19 shows how the electric field strength between the two spheres varies with distance x.

Figure 23.19 Variation of electric field strength with 
distance x from the centre of sphere A. 

i Calculate the field produced by sphere A at the 5.0 cm mark. [2]
ii Use your result to b i to calculate the charge on sphere B. [3]

c i  Sphere B is now removed. Calculate the potential at the surface of sphere A. [2]
ii Suggest and explain how the potential at the surface of sphere A would compare before and aft er 

sphere B was removed. [2]
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Figure 23.18 For End-of-chapter Question 6. 



7 An α-particle emitted in the radioactive decay of radium has a kinetic energy of 8.0 × 10−13 J.
a i  Calculate the potential diff erence that an α-particle, initially at rest, would have to be accelerated 

through to gain this energy. [2]
ii Calculate the speed of the α-particle at this kinetic energy. [3]

b Figure 23.20 shows the path of an α-particle of this energy as it approaches a gold nucleus head-on.

Figure 23.20 For End-of-chapter Question 7. 

i State the speed of the α-particle at its point of closest approach to the gold nucleus. [1]
ii Write down the kinetic energy of the α-particle at this point. [1]
iii Write down the potential energy of the α-particle at this point. [1]

c Use your answer to b iii to show that the α-particle will reach a distance of 4.5 × 10−14 m from the 
centre of the gold nucleus. [2]

d Suggest and explain what this information tells us about the gold nucleus. [2]
 (Mass of an α-particle = 6.65 × 10−27 kg, charge on an α-particle = +2e, charge on a gold nucleus = +79e.)

8 a Define electric potential at a point. [2]
b Figure 23.21 shows the potential well near a hydrogen nucleus.
 The first electron orbital can be considered to be a circle of diameter 1.04 × 10−10 m.

Figure 23.21 For End-of-chapter Question 8. 

i Determine the potential at a point on this orbital. [2]
ii Calculate the energy required to ionise the atom. [2]

c Use the graph to estimate the electric field strength at a distance of 1.0 × 10−10 m from the centre 
of the nucleus. [2]
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9 Figure 23.22 shows a conducting sphere of radius 0.80 cm carrying a charge of +6.0 × 10−8 C resting on 
a balance.

Figure 23.22 For End-of-chapter Question 9. 

a Calculate the electric field at the surface of the sphere. [2]
b An identical sphere carrying a charge of −4.5 × 10−8 C is held so that its centre is 5.0 cm vertically above 

the centre of the first sphere.
i Calculate the electric force between the two spheres. [2]
ii Calculate the new reading on the balance. [1]

c The second sphere is moved vertically downwards through 1.5 cm. Calculate the work done against 
the electric field in moving the sphere. [3]
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Chapter 24:
Capacitance

Learning outcomes
You should be able to:

■■ define capacitance and its unit, the farad
■■ solve problems involving charge, voltage and 

capacitance
■■ deduce and use a formula for the energy stored by 

a capacitor
■■ derive and use formulae for capacitances in series 

and parallel
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Capacitors
Most electronic devices, such as radios, computers 
and MP3 players, make use of components called 
capacitors. These are usually quite small, but  
Figure 24.1 shows a giant capacitor, specially 
constructed to store electrical energy at the  
Fermilab particle accelerator in the United States.

Capacitors in use
Capacitors are used to store energy in electrical and 
electronic circuits. This means that they have many 
valuable applications. For example, capacitors are used 
in computers; they store energy in normal use, and then 
they gradually release this energy if there is a power 
failure, so that the computer will operate long enough to 
save valuable data. The photograph (Figure 24.2) shows a 
variety of shapes and sizes of capacitors.

The two ammeters will give identical readings. The current 
stops when the potential difference (p.d.) across the 
capacitor is equal to the electromotive force (e.m.f.) of the 
supply. We then say that the capacitor is ‘fully charged’.

metal plates

metal plates

lead
dielectric

leads

dielectric

A A

flow of
electrons

capacitor

+

–Q+Q

Figure 24.2  A variety of capacitors.

Every capacitor has two leads, each connected to a 
metal plate. To store energy, these two plates must be 
given equal and opposite electric charges. Between the 
plates is an insulating material called the dielectric. Figure 
24.3 shows a simplified version of the construction of a 
capacitor; in practice, many have a spiral ‘Swiss-roll’ form.

To move charge onto the plates of a capacitor, it must 
be connected to a voltage supply. The negative terminal 
of the supply pushes electrons onto one plate, making it 
negatively charged. Electrons are repelled from the other 
plate, making it positively charged. Figure 24.4 shows that 
there is a flow of electrons all the way round the circuit. 

Figure 24.3  The construction of two types of capacitor. 

Figure 24.1  One of the world’s largest capacitors, built to 
store energy at the Fermilab particle accelerator. 

Figure 24.4  The flow of charge when a capacitor is charged up.
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Note: The convention is that current is the flow of 
positive charge. Here, it is free electrons that flow. Electrons 
are negatively charged; conventional current flows in the 
opposite direction to the electrons (Figure 24.5).

The capacitance C of a capacitor is defined by:

capacitance = charge
potential difference

or	 C = Q
V

where Q is the magnitude of the charge on each of the 
capacitor's plates and V is the potential difference across it 
the capacitor.

The capacitance of a capacitor is the charge stored on 
one plate per unit of potential difference between the 
plates.

The charge on the capacitor may be calculated using the 
equation:

Q = VC
This equation shows that the charge depends on two 
things: the capacitance C and the voltage V (double 
the voltage means double the charge). Note that it isn’t 
only capacitors that have capacitance. Any object can 
become charged by connecting it to a voltage. The object’s 
capacitance is then the ratio of the charge to the voltage.

Units of capacitance
The unit of capacitance is the farad, F. From the equation 
that defines capacitance, you can see that this must be  
the same as the units of charge (coulombs, C) divided by  
voltage (V):

1 F = 1 C V−1

(It is unfortunate that the letter ‘C’ is used for both 
capacitance and coulomb. There is room for confusion 
here!)

In practice, a farad is a large unit. Few capacitors have 
a capacitance of 1F. Capacitors usually have their values 
marked in picofarads (pF), nanofarads (nF) or microfarads 
(µF):

1 pF = 10−12 F    1 nF = 10−9 F     1 µF = 10−6 F

Other markings on capacitors
Many capacitors are marked with their highest safe 
working voltage. If you exceed this value, charge may leak 
across between the plates, and the dielectric will cease to 
be an insulator. Some capacitors (electrolytic ones) must be 
connected correctly in a circuit. They have an indication 
to show which end must be connected to the positive of 
the supply. Failure to connect correctly will damage the 
capacitor, and can be extremely dangerous.

conventional current

electron flow

Figure 24.5  A flow of electrons to the right constitutes a 
conventional current to the left.

Charge on the plates
Think about a capacitor with uncharged plates. Each 
plate has equal amounts of positive and negative charge. 
Connecting the capacitor to a supply pulls charge +Q from 
one plate and transfers it to the other, leaving behind charge 
–Q. The supply does work in separating the charges. Since 
the two plates now store equal and opposite charges, the 
total charge on the capacitor is zero. When we talk about the 
‘charge stored’ by a capacitor, we mean the quantity Q, the 
magnitude of the charge stored on each plate.

To make the capacitor plates store more charge, we 
would have to use a supply of higher e.m.f. If we connect 
the leads of the charged capacitor together, electrons flow 
back around the circuit and the capacitor is discharged.

You can observe a capacitor discharging as follows. 
Connect the two leads of a capacitor to the terminals of 
a battery. Disconnect, and then reconnect the leads to a 
light-emitting diode (LED). It is best to have a protective 
resistor in series with the LED. The LED will glow briefly 
as the capacitor discharges.

In any circuit, the charge that flows past a point in a 
given time is equal to the area under a current–time graph 
(just as distance is equal to the area under a speed–time 
graph). So the magnitude of the charge on the plates in 
a capacitor is given by the area under the current–time 
graph recorded while the capacitor is being charged up.

The meaning of capacitance
If you look at some capacitors, you will see that they are 
marked with the value of their capacitance. The greater 
the capacitance, the greater is the charge on the capacitor 
plates for a given potential difference across it. 
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Energy stored in a capacitor
When you charge a capacitor, you use a power supply to 
push electrons onto one plate and off the other. The power 
supply does work on the electrons, so their potential 
energy increases. You recover this energy when you 
discharge the capacitor.

If you charge a large capacitor (1000 µF or more) to a 
potential difference of 6.0 V, disconnect it from the supply, 
and then connect it across a 6.0 V lamp, you can see the 
lamp glow as energy is released from the capacitor. The 
lamp will flash briefly. Clearly, such a capacitor does not 
store much energy when it is charged.

In order to charge a capacitor, work must be done to 
push electrons onto one plate and off the other (Figure 
24.6). At first, there is only a small amount of negative 
charge on the left-hand plate. Adding more electrons is 
relatively easy, because there is not much repulsion. As 
the charge on the plate increases, the repulsion between 
the electrons on the plate and the new electrons increases, 
and a greater amount of work must be done to increase the 
charge on the plate.

This can be seen qualitatively in Figure 24.7a. This 
graph shows how the p.d. V increases as the amount of 

charge Q increases. It is a straight line because Q and V are 
related by:

V = Q
C

We can use Figure 24.7a to calculate the work done in 
charging up the capacitor.

First, consider the work done W in moving charge Q 
through a constant p.d. V. This is given by:

W = QV
(You studied this equation in Chapter 9.) From the graph 
of Q against V (Figure 24.7b), we can see that the quantity 
Q  × V is given by the area under the graph.

The area under a graph of p.d. against charge is equal to 
work done.

1	 Calculate the charge on a 220 µF capacitor charged 
up to 15 V. Give your answer in microcoulombs (µC) 
and in coulombs (C).

2	 A charge of 1.0 × 10−3 C is measured on a capacitor 
with a potential difference across it of 500 V. 
Calculate the capacitance in farads (F), microfarads 
(µF) and picofarads (pF).

3	 Calculate the average current required to charge  
a 50 µF capacitor to a p.d. of 10 V in a time interval 
of 0.01 s.

4	 A student connects an uncharged capacitor of 
capacitance C in series with a resistor, a cell and a 
switch. The student closes the switch and records 
the current I at intervals of 10 s. The results are 
shown in Table 24.1. The potential difference 
across the capacitor after 60 s was 8.5 V. Plot a 
current–time graph, and use it to estimate the 
value of C.

t / s 0 10 20 30 40 50 60

I / µA 200 142 102 75 51 37 27

Table 24.1  Data for Question 4.
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force
pulling
electrons

other electrons 
on plate repel 
this electron

Q

Q

V

V

a

b

energy stored

0
0

0
0

energy required to
move charge Q
through p.d. V   

Figure 24.6  When a capacitor is charged, work must be done 
to push additional electrons against the repulsion of the 
electrons that are already present. 

Figure 24.7  The area under a graph of voltage against charge 
gives a quantity of energy. The area in a shows the energy 
stored in a capacitor; the area in b shows the energy required 
to drive a charge through a resistor. 

QUESTIONS
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If we apply the same idea to the capacitor graph (Figure 
24.7a), then the area under the graph is the shaded triangle, 
with an area of 12 base × height. Hence the work done in 
charging a capacitor to a particular p.d. is given by:

W = 12 QV
Substituting Q = CV into this equation gives two further 
equations:

W = 12 CV 2

and

W = 12  
Q2

C
These three equations show the work done in charging 
up the capacitor. This is equal to the energy stored by the 
capacitor, since this is the amount of energy released when 
the capacitor is discharged.

We can also see from the second formula (W = 12 CV 2) 
that the energy W that a capacitor stores depends on its 
capacitance C and the potential difference V to which it is 
charged.

Q / mC
1

0
0

1

2

3

4

2 3 4

V / V

5	 State the quantity represented by the gradient of the 
straight line shown in Figure 24.7a.

6	 The graph of Figure 24.8 shows how V depends on Q 
for a particular capacitor. 

	 The area under the graph has been divided into 
strips to make it easy to calculate the energy stored. 
The first strip (which is simply a triangle) shows the 
energy stored when the capacitor is charged up to 
1.0 V. The energy stored is:

	 1
2QV  =  12 × 1.0 mC × 1.0 V = 0.5 mJ
a	 Calculate the capacitance C of the capacitor.
b	 Copy Table 24.2 and complete it by calculating the 

areas of successive strips, to show how W depends  
on V.

c	 Plot a graph of W against V. Describe the shape of 
this graph.

Q / mC V / V Area of strip 
ΔW / mJ

Sum of 
areas W / mJ

1.0 1.0 0.5 0.5

2.0 2.0 1.5 2.0

3.0

4.0

Table 24.2  Data for Question 6.

Figure 24.8  The energy stored by a capacitor is equal to 
the area under the graph of voltage against charge. 

1	 A 2000 µF capacitor is charged to a p.d. of 10 V. 
Calculate the energy stored by the capacitor.

	 Step 1  Write down the quantities we know:
C = 2000 µF
V = 10 V

	 Step 2  Write down the equation for energy stored 
and substitute values:

W  =  1
2 CV 2

W  =  1
2 × 2000 × 10−6 × 102 = 0.10 J	

	 This is a small amount of energy – compare it with 
the energy stored by a rechargeable battery, typically 
of the order of 10 000 J. A charged capacitor will not 
keep an MP3 player running for any length of time.

The energy W stored is proportional to the square 
of the potential difference V (W ∝ V 2). It follows that 
doubling the charging voltage means that four times as 
much energy is stored. 

QUESTIONS

WORKED EXAMPLE
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Capacitors in parallel
Capacitors are used in electric circuits to store energy. 
Situations often arise where two or more capacitors are 
connected together in a circuit. In this section, we will 
look at capacitors connected in parallel. The next section 
deals with capacitors in series.

When two capacitors are connected in parallel  
(Figure 24.10), their combined or total capacitance Ctotal is 
simply the sum of their individual capacitances C1 and C2:

Ctotal = C1 + C2

This is because, when two capacitors are connected 
together, they are equivalent to a single capacitor with 
larger plates. The bigger the plates, the more charge that 
can be stored for a given voltage, and hence the greater the 
capacitance.

BOX 24.1: Investigating energy stored in a capacitor

If you have a sensitive joulemeter (capable of 
measuring millijoules, mJ), you can investigate 
the equation for energy stored. A suitable circuit is 
shown in Figure 24.9.

The capacitor is charged up when the switch 
connects it to the power supply. When the switch 
is altered, the capacitor discharges through the 
joulemeter. (It is important to wait for the capacitor to 
discharge completely.) The joulemeter will measure 
the amount of energy released by the capacitor.

By using capacitors with different values of C, 
and by changing the charging voltage V, you can 
investigate how the energy W stored depends on C 
and V.

variable
voltage
supply

V J
C

joulemeter

Figure 24.9  With the switch to the left, the capacitor 
C charges up; to the right, it discharges through the 
joulemeter. 

	 7	 Calculate the energy stored in the following 
capacitors:
a	 a 5000 µF capacitor charged to 5.0 V
b	 a 5000 pF capacitor charged to 5.0 V
c	 a 200 µF capacitor charged to 230 V.

	 8	 Which involves more charge, a 100 µF capacitor 
charged to 200 V or a 200 µF capacitor charged to 
100 V? Which stores more energy?

	 9	 A 10 000 µF capacitor is charged to 12 V, and then 
connected across a lamp rated at ‘12 V, 36 W’.
a	 Calculate the energy stored by the capacitor.
b	 Estimate the time the lamp stays fully lit. 

Assume that energy is dissipated in the lamp 
at a steady rate.

	10	 In a simple photographic flashgun, a 0.20 F 
capacitor is charged by a 9.0 V battery. It is then 
discharged in a flash of duration 0.01 s. Calculate:
a	 the charge on and energy stored by the 

capacitor
b	 the average power dissipated during the flash
c	 the average current in the flash bulb
d	 the approximate resistance of the bulb.

C2

C1

C2

C1

Figure 24.10  Two capacitors connected in parallel are 
equivalent to a single, larger capacitor. 

QUESTIONS



378

Cambridge International A Level Physics

The total charge Q on two capacitors connected in 
parallel and charged to a potential difference V is simply 
given by:

Q = Ctotal × V
For three or more capacitors connected in parallel, the 
equation for their total capacitance becomes:

Ctotal = C1 + C2 + C3 + …

Capacitors in parallel: deriving the 
formula
We can derive the equation for capacitors in parallel by 
thinking about the charge on the two capacitors. As shown 
in Figure 24.11, C1 stores charge Q1 and C2 stores charge 
Q2. Since the p.d. across each capacitor is V, we can write:

Q1 = C1V  and  Q2 = C2V Capacitors in series
In a similar way to the case of capacitors connected in 
parallel, we can consider two or more capacitors connected 
in series (Figure 24.12). The total capacitance Ctotal of two 
capacitors of capacitances C1 and C2 is given by:

1
Ctotal

 = 1
C1

 + 1
C2

Here, it is the reciprocals of the capacitances that must be 
added to give the reciprocal of the total capacitance. For 
three or more capacitors connected in series, the equation 
for their total capacitance is:

1
Ctotal

 = 1
C1

 + 1
C2

 + 1
C3

 + …

C1 Q1

C2 Q2

V

Figure 24.11  Two capacitors connected in parallel have the 
same p.d. across them, but different amounts of charge. 

The total charge is given by the sum of these:
Q = Q1 + Q2 = C1V + C2V

Since V is a common factor:
Q = (C1 + C2)V

Comparing this with Q = CtotalV gives the required  
Ctotal = C1 + C2. It follows that for three or more capacitors 
connected in parallel, we have:

Ctotal = C1 + C2 + C3 + …

Capacitors in parallel: summary
For capacitors in parallel, the following rules apply:

■■ The p.d. across each capacitor is the same.
■■ The total charge on the capacitors is equal to the sum of the 

charges:
Qtotal = Q1 +  Q2 +  Q3 + …

■■ The total capacitance Ctotal is given by:
Ctotal =  C1 +  C2 + C3 + …

	11	 a	� Calculate the total capacitance of two 100 µF 
capacitors connected in parallel.

b	 Calculate the total charge they store when 
charged to a p.d. of 20 V.

	12	 A capacitor of capacitance 50 µF is required, but 
the only values available to you are 10 µF, 20 µF 
and 100 µF (you may use more than one of each 
value). How would you achieve the required 
value by connecting capacitors in parallel? Give 
at least two answers.

C2C1

C1

+Q

V

V1 V2

C2

+Q–Q–Q

Figure 24.12  Two capacitors connected in series. 

Capacitors in series: deriving the formula
The same principles apply here as for the case of capacitors 
in parallel. Figure 24.13 shows the situation. C1 and C2 are 
connected in series, and there is a p.d. V across them. This 
p.d. is divided (it is shared between the two capacitors), so 
that the p.d. across C1 is V1 and the p.d. across C2 is V2. It 
follows that:

V = V1 + V2

Figure 24.13  Capacitors connected in series store the same 
charge, but they have different p.d.s across them. 

QUESTIONS
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Now we must think about the charge stored by the 
combination of capacitors. In Figure 24.13, you will see 
that both capacitors are shown as storing the same charge 
Q. How does this come about? When the voltage is first 
applied, charge −Q arrives on the left-hand plate of C1. 
This repels charge −Q off the right-hand plate, leaving it 
with charge +Q. Charge −Q now arrives on the left-hand 
plate of C2, and this in turn results in charge +Q on the 
right-hand plate.

Note that charge is not arbitrarily created or destroyed 
in this process – the total amount of charge in the system is 
constant. This is an example of the conservation of charge.

Notice also that there is a central isolated section of the 
circuit between the two capacitors. Since this is initially 
uncharged, it must remain so at the end. This requirement 
is satisfied, because there is charge −Q at one end and +Q 
at the other. Hence we conclude that capacitors connected 
in series store the same charge. This allows us to write 
equations for V1 and V2:

V2 = Q
C1

    and    V2 = Q
C2

The combination of capacitors stores charge Q when 
charged to p.d. V, and so we can write:

V = Q
Ctotal

Substituting these in V = V1 + V2 gives:
Q

Ctotal
 = Q

C1
 + Q

C2

Cancelling the common factor of Q gives the required 
equation:

1
Ctotal

 = 1
C1

 + 1
C2

Worked example 2 shows how to use this relationship.

Comparing capacitors and 
resistors
It is helpful to compare the formulae for capacitors in 
series and parallel with the corresponding formulae for 
resistors (Table 24.3).

Capacitors Resistors

In series store same charge have same current

1
Ctotal

  =  
1

C1
  +  

1
C2

  +  
1

C3
  + … Rtotal = R1 +  R2 +  R3 + …

In parallel
have same p.d. have same p.d.

Ctotal = C1 +  C2  +  C3 + …
1

Rtotal
  =  

1
R1

  +  
1

R2
  +  

1
R3

  + …

Table 24.3  Capacitors and resistors compared.

	13	 Calculate the total capacitance of three 
capacitors of capacitances 200 µF, 300 µF and 
600 µF, connected in series.

	14	 You have a number of identical capacitors, 
each of capacitance C. Determine the total 
capacitance when:
a	 two capacitors are connected in series
b	 n capacitors are connected in series
c	 two capacitors are connected in parallel
d	 n capacitors are connected in parallel.

2	 Calculate the total capacitance of a 300 µF capacitor 
and a 600 µF capacitor connected in series.

	 Step 1  The calculation should be done in two steps; 

	 this is relatively simple using a calculator with a  
1
x 

  
or x −1 key.

	 Substitute the values into the equation:
1

Ctotal
  =  

1
C1

  +  
1

C2

	 This gives:
1

Ctotal
  =  

1
300  +  

1
600

1
Ctotal

  =  0.005 µF−1

	 Step 2  Now take the reciprocal of this value to 
determine the capacitance in µF:

Ctotal =  
1

0.005  =  200 µF

	 Notice that the total capacitance of two capacitors 
in series is less than either of the individual 
capacitances.

	 Using the x −1 key on your calculator, you can also do 
this calculation in one step:
Ctotal = (300−1 + 600−1)−1 = 200 µF

C1 C2 C3 R1 R2 R3

C1

C2

C3

R1

R2

R3

QUESTIONS

WORKED EXAMPLE
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Notice that the reciprocal formula applies to capacitors 
in series but to resistors in parallel. This comes from the 
definitions of capacitance and resistance. Capacitance 
indicates how good a capacitor is at storing charge for a 
given voltage, and resistance indicates how bad a resistor is 
at letting current through for a given voltage.

■■ Figure 24.14d – Calculate Ctotal  for the two capacitors of 
capacitances C1 and C2, which are connected in series, and 
then take account of the third capacitor of capacitance C3, 
which is connected in parallel.

These are the same approaches as would be used for 
networks of resistors.

	15	 The conductance G of a resistor indicates how 
good a resistor is at letting current through for a 
given voltage. 

		  It is the reciprocal of the resistance: G = 
1
R

.

		  Write down equations for the combined 
conductance Gtotal of two resistors whose 
conductances are G1 and G2, connected:
a	 in series
b	 in parallel.

	16	 For each of the four circuits shown in Figure 
24.14, calculate the total capacitance in µF if each 
capacitor has capacitance 100 µF.

	17	 Given a number of 100 µF capacitors, how might 
you connect networks to give the following 
values of capacitance:
a	 400 µF b	 25 µF c	 250 µF?

		  (Note that, in each case, there is more than 
one correct answer; try to find the answer that 
requires the minimum number of capacitors.)

	18	 You have three capacitors of capacitances 100 pF, 
200 pF and 600 pF. Determine the maximum and 
minimum values of capacitance that you can 
make by connecting them together to form a 
network. State how they should be connected in 
each case.

	19	 Calculate the capacitance in µF of the network of 
capacitors shown in Figure 24.15.

Capacitor networks

C1 C2 C3

C1

C1

C2

C3

C2

C3

C1

C2

C3

a b

c d

Figure 24.14  Four ways to connect three capacitors. 

There are four ways in which three capacitors may be 
connected together. These are shown in Figure 24.14. The 
combined capacitance of the first two arrangements (three 
capacitors in series, three in parallel) can be calculated 
using the formulae above. The other combinations must be 
dealt with in a different way:

■■ Figure 24.14a – All in series. Calculate Ctotal as in Table 24.3.
■■ Figure 24.14b – All in parallel. Calculate Ctotal as in Table 24.3.
■■ Figure 24.14c – Calculate Ctotal  for the two capacitors of 

capacitances C1 and C2, which are connected in parallel, and 
then take account of the third capacitor of capacitance C3, 
which is connected in series.

10 µF 10 µF

10 µF

10 µF

Figure 24.15   
A capacitor network –  
see Question 19. 

Sharing charge, sharing energy
If a capacitor is charged and then connected to a second 
capacitor (Figure 24.16), what happens to the charge and 
the energy that it stores? Note that, when the capacitors are 
connected together, they are in parallel, because they have 
the same p.d. across them. Their combined capacitance 
Ctotal is equal to the sum of their individual capacitances. 

C2

C1 Q

Figure 24.16  Capacitor of capacitance C1 is charged and then 
connected across C2.

QUESTION QUESTIONS
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Now we can think about the charge stored, Q. This is 
shared between the two capacitors; the total amount 
of charge stored must remain the same, since charge is 
conserved. The charge is shared between the two capacitors 
in proportion to their capacitances. Now the p.d. can be 
calculated from V = Q

C
 and the energy from W =  12 CV 2.

If we look at a numerical example, we find an 
interesting result (Worked example 3).

Figure 24.17 shows an analogy to the situation 
described in Worked example 3. Capacitors are 
represented by containers of water. A wide (high 
capacitance) container is filled to a certain level (p.d.). 
It is then connected to a container with a smaller 
capacitance, and the levels equalise. (The p.d. is the same 
for each.) Notice that the potential energy of the water 
has decreased, because the height of its centre of gravity 
above the base level has decreased. Energy is dissipated as 
heat, as there is friction both within the moving water and 
between the water and the container.

	20	 Three capacitors, each of capacitance 120 µF, 
are connected together in series. This network is 
then connected to a 10 kV supply. Calculate:
a	 their combined capacitance in µF
b	 the charge stored
c	 the total energy stored.

	21	 A 20 µF capacitor is charged up to 200 V and 
then disconnected from the supply. It is then 
connected across a 5.0 µF capacitor. Calculate:
a	 the combined capacitance of the two 

capacitors in µF
b	 the charge they store
c	 the p.d. across the combination
d	 the energy dissipated when they are 

connected together.

	22	 Estimate the capacitance of the Earth given that 
it has a radius of 6.4 × 106 m.

3	 Consider two 100 mF capacitors. One is charged to 
10 V, disconnected from the power supply, and then 
connected across the other. Calculate the energy 
stored by the combination.

	 Step 1  Calculate the charge and energy stored for 
the single capacitor.
initial charge Q = VC = 10 × 0.10 = 1.0 C
initial stored energy  1

2 CV 2 =  1
2 × 0.10 × 102

	 = 5.0 J

	 Step 2  Calculate the final p.d. across the capacitors. 
The capacitors are in parallel and have a total stored 
charge of 1.0 C.
Ctotal = C1 + C2 = 100 + 100 = 200 mF

	 The p.d. V can be determined using Q = VC.

V  =  
Q
C

  =  
1.0
200 × 10−3 = 5.0 V

	 This is because the charge is shared equally, with the 
original capacitor losing half of its charge.

	 Step 3  Now calculate the total energy stored by the 
capacitors.
total energy  12 CV  2 =  1

2 × 200 × 10−3 × 5.02

	 =  2.5 J

	 The charge stored remains the same, but half of 
the stored energy is lost. This energy is lost in the 
connecting wires as heat as electrons migrate 
between the capacitors.

Figure 24.17  An analogy for the sharing of charge between 
capacitors. 

Capacitance of isolated bodies
It is not just capacitors that have capacitance – all bodies 
have capacitance. Yes, even you have capacitance! You may 
have noticed that, particularly in dry conditions, you may 
become charged up, perhaps by rubbing against a synthetic 
fabric. You are at a high voltage and store a significant 
amount of charge. Discharging yourself by touching an 
earthed metal object would produce a spark.

If we consider a conducting sphere of radius r insulated 
from its surroundings and carrying a charge Q it will have 
a potential at its surface of V, where

V = 1
4πε0 

Q
r

Since C = Q
V

 it follows that the capacitance of a sphere is  
C = 4πε0r.

WORKED EXAMPLE

QUESTION

QUESTIONS



End-of-chapter questions
1 A 470 µF capacitor is connected across the terminals of a battery of e.m.f. 9 V. Calculate the charge on the 

plates of the capacitor. [1]

2 Calculate the p.d. across the terminals of a 2200 µF capacitor when it has a charge of 0.033 C on its plates. [1]

3 Calculate the capacitance of a capacitor if it stores a charge of 2.0 C when there is a potential diff erence of 
5000 V across its plates. [1]

4 Calculate the energy stored when a 470 µF capacitor has a potential diff erence of 12 V across its plates. [1]

5 Calculate the energy stored on a capacitor if it stores 1.5 mC of charge when there is a potential diff erence 
of 50 V across it. [1]

6 A 5000 µF capacitor has a p.d. of 24 V across its plates.
a Calculate the energy stored on the capacitor. [1]
b The capacitor is briefly connected across a bulb and half the charge flows off  the capacitor. Calculate 

the energy dissipated in the lamp. [3]

7 A 4700 µF capacitor has a p.d. of 12 V across its terminals. It is connected to a resistor and the charge 
leaks away through the resistor in 2.5 s.
a Calculate the energy stored on the capacitor. [1]
b Calculate the charge stored on the capacitor. [1]
c Estimate the average current through the resistor. [1]
d Estimate the resistance of the resistor. [1]
e Suggest why the last two quantities can only be estimates. [1]

8 An electronic engineer is designing a circuit in which a capacitor of capacitance of 4700 µF is to be 
connected across a potential diff erence of 9.0 V. He has four 4700 µF, 6 V capacitors available. 
Draw a diagram to show how the four capacitors could be used for this purpose. [1]
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Summary
■■ Capacitors are constructed from two metal sheets 

(‘plates’), separated by an insulating material. A 
capacitor stores equal and opposite amounts of 
charge on its plates.

■■ For a capacitor, the charge stored is directly 
proportional to the p.d. between the plates: Q = VC.

■■ Capacitance is the charge stored per unit of p.d.

■■ A farad is a coulomb per volt: 1 F = 1 C V −1.

■■ Capacitors store energy. The energy W stored at 
p.d. V is:

W  =  12 QV  =  12 CV 2  =  12 
Q2

C

■■ The formula W = 12 QV is deduced from the area under 
a graph of potential diff erence against charge.

■■ For capacitors connected in parallel and in series, 
the combined capacitances are as follows:

parallel: Ctotal = C1 + C2 + C3 + …

series: 
1

Ctotal
 = 

1
C1

 + 
1

C2
 + 

1
C3

 + …

■■ These formulae are derived from conservation of 
charge and addition of p.d.s.
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 9 Calculate the diff erent capacitances that can be made from three 100 µF capacitors. For each value, 
draw the network that is used. [4]

10 Figure 24.18 shows three capacitors connected in series with a cell of e.m.f. 1.5 V.

Figure 24.18 For End-of-chapter Question 10. 

a Calculate the charges Q 1 to Q 6 on each of the plates. [5]
b Calculate the p.d. across each capacitor. [3]

11 a State one use of a capacitor in a simple electric circuit. [1]
b Figure 24.19 shows a circuit used to investigate the discharge of a capacitor, and Figure 24.20 is 

a graph showing the change in current with time when the capacitor is discharged.

Figure 24.19 Circuit for End-of-chapter  
Question 11.  Figure 24.20 Graph for End-of-chapter Question 11. 

i Deduce the resistance R of the resistor. [2]
ii Explain why the current decreases as the capacitor discharges. [2]
iii The charge on the capacitor is equal to the area under the graph. Estimate the charge on the 

capacitor when the potential diff erence across it is 9.0 V. [2]
iv Calculate the capacitance of the capacitor. [2]
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12 The spherical dome on a Van de Graaff  generator is placed near an earthed metal plate. The dome 
has a diameter of 40 cm and the potential at its surface is 54 kV.
a i Calculate the charge on the dome. [2]

ii Calculate the capacitance of the dome. [2]

 The metal plate is moved slowly towards the sphere but does not touch it. The sphere discharges 
through the air to the plate. The graph in Figure 24.21 shows how the potential at the surface of 
the sphere changes during the discharge.

Figure 24.21 For End-of-chapter Question 12. 

b Calculate the energy that is dissipated during the discharge. [4]
c Suggest why the discharge ceases while there is still some charge on the dome. [2]

13 a  Show that the capacitance C of an isolated conducting sphere of radius r is given by the formula:
  C = 4πε0r [2]

 Figure 24.22 shows two identical conducting brass spheres of radius 10 cm mounted on insulating stands. 
Sphere A has a charge of +5.0 × 10−8 C and sphere B is uncharged.

Figure 24.22 For End-of-chapter Question 13. 

b i  Calculate the potential at the surface of sphere A. [2]
ii Calculate the energy stored on sphere A. [2]

 Sphere B is brought up to sphere A and is touched to it so that the charge is shared between the 
two spheres, before being taken back to its original position.

c i Calculate the energy stored on each sphere. [3]
ii Suggest why there is a change in the total energy of the system. [1]
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14 a Define the term capacitance of a capacitor. [2]
b Figure 24.23 shows a circuit which can be used to measure the capacitance of a capacitor.

Figure 24.23 For End-of-chapter Question 14. 

 The reed switch vibrates back and forth at a frequency of 50 Hz. Each time it makes contact with A 
the capacitor is charged by the battery so that there is a p.d. of 12 V across it. Each time it makes 
contact with B it is fully discharged through the resistor.

i Calculate the charge that is stored on the capacitor when there is a p.d. of 12 V across it. [2]
ii Calculate the average current in the resistor. [2]
iii Calculate the average power dissipated in the resistor. [3]

c A second capacitor of the same value is connected in series with the first capacitor.
 Discuss the eff ect on both the current recorded and the power dissipated in the resistor. [4]
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Chapter 25:
Electronics

Learning outcomes
You should be able to:

■■ understand how electronic sensing devices are used to 
produce an output voltage

■■ describe the function of the following sensors: 
light-dependent resistor (LDR), negative temperature 
coeff icient thermistor, piezo-electric transducer, 
metal-wire strain gauge

■■ recall the main properties of an ideal operational 
amplifier (op-amp)

■■ understand the use of an op-amp as a comparator, and 
as an inverting and non-inverting amplifier

■■ recall the circuit diagrams and calculate the voltage gain 
of inverting and non-inverting amplifiers for a single 
signal input

■■ understand output devices used in electronic circuits, 
such as the light-emitting diode (LED), the relay and 
calibrated analogue and digital meters

386
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Electronic devices
Electronic devices are widespread in the modern 
world. From birth to death, electronic sensors watch 
over and control many of our environments. The 
chances of survival of the newborn baby in Figure 
25.1 are improved as a sensor inside the incubator 
measures the temperature of the air. The output of the 
sensor operates heating and cooling devices which 
keep the temperature as constant as possible. Other 
sensors sound alarms if the baby’s breathing or heart 
rate falls to dangerous levels.

In this chapter, we will explore how some common 
electronic sensors work. You will use what you have 
learned about electricity and electric circuits in 
Chapters 8–12.

Components of an electronic 
sensing system
In its basic form, an electronic sensor may be represented 
as a sensing device, a processor that provides an output 
voltage, and an output device (Figure 25.2).

in knowing the output for various inputs and how the 
sensor can be used in a range of useful applications. 
Sensors make use of many basic ideas about electric 
circuits: resistance and current, for example. A processor 
may contain many transistors, but it is not necessary 
to understand how a transistor works to appreciate the 
function of a processor. Some detail will be given, but if 
you wish to delve further into how these devices work, 
there are many useful websites that will help you to 
understand how physicists have used their knowledge and 
inspiration to good effect.

The sensing device is sometimes called a transducer. 
A transducer changes energy from one form into another. 
A microphone is an obvious example, as it changes sound 
into electrical energy. However, even the thermistor used 
as the sensing device in the incubator in Figure 25.1 can  
be thought of as a transducer; a change in the internal 
energy of the air alters the electrical energy in the 
thermistor circuit.

Piezo-electric transducers
Some crystals such as quartz produce an electric field 
when a force is applied and the shape of the crystal 
changes. This is known as the piezo-electric effect. A 
piezo-electric crystal consists of positive and negative ions 
in a regular arrangement. When the crystal is stressed, a 
small voltage is produced between the faces of the crystal. 
The crystal acts as a transducer since energy is changed 

Figure 25.1  A newborn baby in an incubator. Sensors inside 
the incubator monitor and control the temperature, oxygen 
and humidity levels.

sensing
device

processor output
device

Figure 25.2  Block diagram of an electronic sensor.

The sensing device is an electronic component with 
a property that changes when a physical quantity such 
as temperature or light intensity alters. We have already 
looked at one such component, the thermistor (Chapter 
11), with a resistance that changes when temperature 
changes. A similar component, called a light-dependent 
resistor (LDR), has a resistance that changes when the light 
level alters. This change in resistance causes the processor 
to produce an output voltage that drives the output device. 
In this way the change in a physical quantity such as 
resistance can be used to trigger the output device. When 
the air in the incubator in Figure 25.1 becomes cold, the 
change in resistance of the sensor causes the processor 
to switch on the output device, a heater, to keep the baby 
warm. When it becomes too hot, the same sensing device 
and processor will switch the heater off.

It is important to note that we are not concerned with 
all the details of how a particular sensing device works or 
what there is inside the processor. We are only interested 
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from one form to another. There is more about piezo-
electric transducers in Chapter 32, where their use in 
ultrasound scanning is described.

For use in a microphone, the piezo-electric crystal is 
made into a thin sheet with metal connections on opposite 
sides. When a sound wave hits one side of the sheet, 
the compressions and rarefactions cause the pressure 
to increase and decrease. The crystal changes shape in 
response to these pressure changes and a small voltage 
is created across the connections. Figure 25.3 shows the 
symbol for a microphone.

How is an LDR used as a sensing device? A voltage 
is needed to drive the output device, yet the LDR only 
produces a change in resistance. The sensor must use this 
change in resistance to generate the change in voltage. The 
solution is to place the LDR in series with a fixed resistor, 
as shown in Figure 25.5.

The voltage of the supply is shared between the two 
resistors in proportion to their resistance, so as the light 
level changes and the LDR’s resistance changes, so does the 
voltage across each of the resistors. The two resistors form 
a potential divider, one of the practical circuits discussed 
in Chapter 12.
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Figure 25.3  The symbol for a microphone.

Acoustic guitars and other instruments often use a 
piezo-electric transducer to produce an electrical output. 
The microphone is stuck to the body of the guitar and the 
electrical output can be amplified and played back through 
loudspeakers.

The light-dependent resistor (LDR)
A light-dependent resistor (LDR) is made of a high-
resistance semiconductor. If light falling on the LDR 
is of high enough frequency, photons are absorbed by 
the semiconductor. As some photons are absorbed, 
electrons are released from atoms in the semiconductor. 
The resulting free electrons conduct electricity and the 
resistance of the semiconductor is reduced.

The graph in Figure 25.4 shows the variation of the 
resistance of a typical LDR with light intensity. Only a 
narrow range of light intensity, measured in lux, is shown. 
A typical LDR will have a resistance of a few hundred 
ohms in sunlight, but in the dark its resistance will be 
millions of ohms.

Figure 25.4  Resistance plotted against light intensity for  
an LDR.

10 V

3.0 kΩ

Vout

Figure 25.5  An LDR used in a sensor.

1	 Using the graph in Figure 25.4, calculate Vout in  
Figure 25.5 when the light intensity is 60 lux.

	 Step 1  Find the resistance of the LDR at 60 lux.
RLDR = 20 kΩ

	 Step 2  Divide the total voltage of 10 V in the ratio 
3 : 20. The total number of parts is 23 so:

	 Vout =  
20
23  × 10 = 8.70 V

	 Hint: The answer on your calculator might be 8.69565. 
When you give your answer to 3 significant figures, do 
not write 8.69 – you must round correctly.

1	 What is the voltage across the 3.0 kΩ resistor in 
Figure 25.5 when the light intensity is 10 lux?

2	 The circuit shown in Figure 25.5 produces a 
decreasing output voltage when the light intensity 
increases. How can the circuit be altered to 
produce an increasing output voltage as the light 
intensity increases?

WORKED EXAMPLE

QUESTIONS
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The thermistor
The thermistors that we deal with are known as negative 
temperature coefficient thermistors. This means that when 
the temperature rises, the resistance of the thermistor 
falls. This happens because the thermistor is made from a 
semiconductor material. One property of a semiconductor 
is that when the temperature rises the number of free 
electrons increases, and thus the resistance falls.

Figure 25.6 shows a graph of the resistance of a 
thermistor and the resistance of a metal wire plotted 
against temperature. You can see that the resistance of a 
metal wire increases with increase in temperature. A metal 
wire is not a negative temperature device, but it could 
be used as a sensing device. A thermistor is more useful 
than a metal wire because there is a much larger change 
in resistance with change in temperature. However, the 
change in resistance of a thermistor is not linear with 
temperature; indeed, it is likely to be an exponential 
decrease. This means that any device used to measure 
temperature electronically must be calibrated to take into 
account the resistance–temperature graph. The scale on an 
ordinary laboratory thermometer between 0 °C and 100 °C 
is divided up into 100 equal parts, each of which represents 
1 °C. If the resistance of a thermistor were divided like 
this, the scale would be incorrect.

The thermistor can be used as a sensing device in the 
same way as an LDR. Instead of sensing a change in light 
level, it senses a change in temperature.

The metal-wire strain gauge
A strain gauge takes advantage of the change in resistance 
of a metal wire as its length and cross-sectional area 
change. When stretched, a metal wire becomes narrower 
and longer; both these changes increase the electrical 
resistance. When compressed, a metal wire becomes 
shorter and wider; as long as it does not buckle, these 
changes decrease its electrical resistance.

Figure 25.7 shows the structure of a strain gauge. A thin 
metal wire is placed between thin sheets of plastic. The 
metal wire zigzags up and down its plastic base so that the 
length of wire used is longer than the actual strain gauge.

3	 Explain how a thermistor can be used as a 
transducer.

4	 State two similarities between an LDR and a 
thermistor.

5	 Design a circuit using the thermistor in Figure 25.6 
that uses a cell of 10 V and produces an output 
voltage of 5 V at 50 °C. Explain whether the voltage 
output of your circuit increases or decreases as 
the temperature rises.
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Figure 25.6  Variation of resistance with temperature.

Strain gauges are used in many situations. For example, 
an engineer may find a crack in a wall and want to know 
whether the crack is growing bigger. By sticking a strain 
gauge over the crack the engineer can measure the 
resistance many days or even years later and see if there 
has been any movement.

A gauge used in a dynamic experiment may measure 
the stress changes in an aircraft wing. A processor is used 
to produce a voltage output and show changes in length as 

Figure 25.7  A metal-wire strain gauge.

QUESTIONS

plastic

metal wire

connecting leads
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they happen. This provides important information when 
an aircraft is tested.

In Chapter 11, we saw that a wire of length L, cross-
sectional area A and resistivity ρ has a resistance R given by:

R = ρL
A

What happens to the resistance when the wire is stretched 
depends on the construction of the strain gauge. The 
simplest approximation is to assume that the cross-
sectional area of the wire remains unchanged.

If the wire increases in length by a small amount δL 
and the cross-sectional area A is unchanged, then the 
resistance of the wire increases by δR, where:

R + δR = ρ(L + δL)
A

Subtracting the two equations gives:

δR = ρδL
A

If the expression is divided by R = ρL
A

, we get:
δR
R

 = δL
L

When a wire is stretched not only does its length increase; 
at the same time, its area decreases (because its volume 
remains roughly constant). This also increases the wire’s 
resistance. The increase in resistance can be shown to be 
the same as that caused by the increase in length so that, 
for small changes:

δR = 2ρδL
A

  or  δR
R

 = 2δL
L

In either case, the change in resistance is directly 
proportional to the increase in length, δR ∝ δL.

The change in resistance is likely to be very small but 
with a suitable series resistor and a cell used as a sensor, 
the change in length can produce a measurable change in 
output voltage.

2	 The wire in a strain gauge when unstretched has 
length 10.00 cm and resistance 120.0 Ω. When the 
wire is stretched by 0.10 cm, the resistance becomes 
122.4 Ω. The strain gauge is connected in the circuit 
shown in Figure 25.8. What is the change in length of 
the wire in the strain gauge when the output voltage 
is 5.06 V?

Figure 25.8  Circuit for Worked example 2.

	 Step 1  Determine the resistance of the strain 
gauge Rs by considering the two resistors as a 
potential divider. The 10 V supply is split in the ratio 
5.06 V : 4.94 V and so:

Rs =  
5.06
4.94  × 120 = 122.9 Ω

	 Alternatively, apply the potential divider formula 

Vout =    
R2

R1 × R2  
  ×  Vin

4.94 =    
120

120 + Rs   
  ×  10.0

	 It is easier to use 4.94 V, the voltage across the 120 Ω 
resistor. This gives a value for Rs of 122.9 Ω.

	 Step 2  The resistance of the wire has increased by 
2.9 Ω. Since δR ∝ δL, and an increase in length of 
0.10 cm increases the resistance by 2.4 Ω, the length 
has increased by: 
2.9
2.4  × 0.10 = 0.12 cm

	 If the strain gauge is glued to a metal support, the 
strain in the metal support is the same as the strain 

	 in the gauge, in this case 
0.12
10  = 1.2%. Thus the strain 

	 gauge can easily measure strain.

10.0 V

120.0 Ω

strain
gauge

output
voltage

d.c.

6	 Using the data given in Worked example 2:
a	 calculate the increase in length of the wire 

when the output voltage is 5.1 V
b	 calculate the strain in the wire when the output 

voltage is 5.1 V
c	 calculate the output voltage when the wire is 

stretched by 0.05 cm.

QUESTION

WORKED EXAMPLE
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BOX 25.1: Potential dividers in use

Potential divider circuits are often used in electronic 
circuits. They are useful when a sensor is connected to a 
processing circuit. Suitable sensors include thermistors 
and light-dependent resistors (Figure 25.9). These can be 
used as sensors because:

■■ the resistance of a negative temperature coefficient 
(NTC) thermistor decreases as its temperature increases

■■ the resistance of a light-dependent resistor (LDR) 
decreases as the incident intensity of light increases.

a
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Figure 25.9  Two components with variable resistances:  
a the thermistor’s resistance changes with temperature;  
b the light-dependent resistor’s resistance depends on the 
intensity of light.

This means that a thermistor can be used in a 
potential divider circuit to provide an output  
voltage Vout which depends on the temperature. A light-
dependent resistor can be used in a potential divider 
circuit to provide an output voltage Vout which depends 
on the intensity of light.

Figure 25.10 shows how a sensor can be used in a 
potential divider circuit. Here, a thermistor is being 
used to detect temperature, perhaps the temperature 
of a fish tank. If the temperature rises, the resistance 
of the thermistor decreases and the output voltage 
Vout increases. If the output voltage Vout is across the 
thermistor, as shown in Figure 25.10b, it will decrease 
as the temperature rises. By changing the setting of 
the variable resistor R2, you can control the range 
over which Vout varies. This would allow you to set the 
temperature at which a heater operates, for example.

When designing a practical circuit like this, it is 
necessary to know how the voltage output depends on 
the temperature. You can investigate the voltage against 

temperature characteristics of such a circuit using a 
datalogger (Figure 25.11). The temperature probe of 
the datalogger records the temperature of the water 
bath and the second input to the datalogger records the 
voltage output of the potential divider circuit.  

Figure 25.10  Using a thermistor in a potential divider 
circuit. The output voltage Vout may be a across the 
variable resistor, or b across the thermistor.

Figure 25.11  Using a datalogger to investigate the 
characteristics of a thermistor in a potential divider 
circuit. During the experiment, the screen shows how 
temperature and output voltage change with time. After 
the experiment, the same data can be displayed as a graph 
of p.d. against temperature.
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Vout
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R2
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Vout
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BOX 25.1: Potential dividers in use (continued)

The temperature can be raised rapidly by pouring 
amounts of water into the water bath. The datalogger 
then records both temperature and voltage and 
the computer gives a display of the voltage against 
temperature. Dataloggers are very good at processing 
the collected data.

Potential divider circuits are especially useful in 
circuits with very small currents but where voltages are 

important. Electronic devices such as transistors and 
integrated circuits draw only very small currents, so 
potential dividers are very useful where these devices 
are used. Where large currents are involved, because 
there will be some current through both R1 and R2, there 
will be wasted power in the resistors of the potential 
divider circuit.

7	 An NTC thermistor is used in the circuit shown in 
Figure 25.12. The supply has an e.m.f. of 10 V and 
negligible internal resistance. The resistance of the 
thermistor changes from 20 kΩ at 20 °C to 100 Ω at 
60 °C. Calculate the output voltage Vout at these two 
temperatures.

Figure 25.12  Thermistor used in a potential divider 
circuit. For Questions 7 and 8.

8	 The thermistor in Figure 25.12 is replaced with a light-
dependent resistor (LDR). Explain whether the output 
voltage Vout will increase or decrease when a bright 
light is shone on to the LDR.

	 9	 The light-dependent resistor (LDR) in Figure 25.13 
has a resistance of 300 Ω in full sunlight and 1 MΩ in 
darkness. What values will the output voltage Vout 
have in these two conditions?

Figure 25.13  For Question 9.

	10	 A potential divider circuit is required which will give 
an output voltage that increases as the temperature 
increases. A thermistor is to be used whose 
resistance decreases as the temperature increases. 
Draw a suitable circuit for the potential divider, 
showing the connections for the output voltage.

1 kΩ

Vout

10 V
12 V

300 Ω

Vout

QUESTIONS
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The operational amplifier  
(op-amp)
Operational amplifiers (op-amps) are among the most 
widely used electronic devices today, being used in a vast 
array of consumer, industrial and scientific devices. The 
amplifier is the basic building block of many electronic 
systems. The electrical output from the musicians in the 
concert shown in Figure 25.14 must be amplified before it 
can be passed to the loudspeakers and turned into sound.

An amplifier produces an output with more power and 
usually more voltage than the input. A perfect amplifier 
should produce an exact copy of the input. In particular, 
the different frequencies produced by the musicians and 
their instruments must be amplified by the same amount. 
If, for example, high-frequency notes are made louder than 
low-frequency notes then the whole performance will be 
altered. You may have noticed that people sound different 
when talking on the telephone. This is often because some 
frequencies are not amplified as much as others.

other is marked (+) and is known as the non-inverting 
input. The one function of this device is to use the 
potential difference between the two inputs to produce as 
large an output voltage Vout as possible. V − is the potential 
at the inverting input (−) and V + is the potential at the 
non-inverting input (+).

+9 V

–9 V

Vout

V –

V + +

–

Figure 25.14  A concert – the loud music has been greatly 
amplified.

The goal of producing an amplifier with a constant 
amplification or gain might seem simple, but it is hard 
to achieve. Unfortunately, electronic components, such 
as capacitors and transistors, amplify signals of different 
frequencies by different amounts.

One approach is to use an amplifier with a very high 
gain and then provide an external circuit which reduces 
the gain but ensures that the overall gain is the same for 
signals of a greater range of frequencies. Such a device is 
the operational amplifier (op-amp).

Figure 25.15 shows an operational amplifier. Inside 
the plastic casing there are many transistors, resistors and 
other components. The op-amp has two inputs; one is 
marked (−) and is known as the inverting input and the 

Figure 25.15  An operational amplifier and its symbol.

The open-loop voltage gain G0 is given by:

G0 = output voltage
input voltage

For the op-amp in Figure 25.15 the open-loop voltage gain 
is given by:

G0 = Vout
(V + − V −)

It is called the open-loop gain because there is no loop of 
resistors or other components linking the output back to 
the input – it is just the operational amplifier alone. (As we 
shall see on page 396, an external circuit or loop between 
the output and the input can be used to provide negative 
feedback, which reduces the gain.)

The op-amp is not like a transformer. A transformer’s 
output power comes directly from from the input power. 
By contrast, an op-amp’s output power is much greater 
than its input power. To achieve this, it needs two power 
supplies; these are shown in Figure 25.15 as the +9 V 
and −9 V connections to the op-amp. There is also a zero 
volt line, or earth. One power supply will be between the 
+9 V and the 0 V line and the other between the −9 V 
connection and the 0 V line.

The zero volt line, or earth, is very important as all 
voltages are measured relative to this potential. If the 
potential of the inverting input (−) is V −, then the potential 
difference or voltage between that input and the zero volt 
line is also V −.

The actual voltage used for the power supplies can vary in 
different circuits. The positive and negative supply voltages 
are of equal magnitude and may be written as +Vs and −Vs. 
The connections of the power supplies to the op-amp are 
often left out of a circuit diagram for clarity but they are 
always there. They provide the power for the op-amp.
The largest voltage that an op-amp can produce is a value 
close to the supply voltage. The op-amp in Figure 25.15 can 
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only produce outputs between +9 V and −9 V. When the 
output voltage reaches either supply voltage, the highest  
or lowest value that it can achieve, the amplifier is said to 
be saturated.

The properties of an ideal op-amp
The ideal op-amp has the following properties.

Infinite open-loop voltage gain
This means that when an op-amp is used on its own, with 
no feedback loop, then a small input signal will be amplified 
to an ‘infinite’ output signal. Clearly this is not physically 
possible (the output cannot exceed the supply voltage) and at 
its maximum output the amplifier is saturated with output 
value +Vs or −Vs. However, when a feedback loop is applied, 
the overall gain of the circuit is reduced to a realistic value. 
Infinite open-loop voltage gain means that signals of a wide 
range of frequencies have equal gain before the feedback is 
applied. An actual op-amp may have an open-loop gain of 
105 but this can be much higher.

Infinite input resistance (or impedance)
The input to an op-amp is a voltage. If, for example, a 
piezo-electric microphone is connected to the op-amp, 
then the microphone is acting as the voltage supply. It acts 
just like an electrical battery but the voltage it produces 
changes with time. Any voltage supply has an internal 
resistance. You may remember that one of the effects 
of this is to reduce the terminal p.d. when a current is 
supplied. The infinite input resistance of an ideal op-amp 
means that no current is drawn from the supply, there are 
no ‘lost volts’ and the input voltage to the op-amp is as 
large as possible. The resistance for an alternating voltage 
is known as impedance, so the ideal op-amp has infinite 
impedance and no current passes into the input terminals. 
The input impedance of an actual op-amp may be as high 
as 1012 Ω, but 106 Ω is typical.

Zero output resistance (or impedance)
The output from an op-amp is a voltage. The op-amp is 
itself acting as a voltage supply to the next part of a circuit. 
An ideal op-amp has zero output resistance and so it acts 
just like an electrical battery with zero internal resistance. 
This means that there will be no ‘lost volts’ when current 
is supplied by the op-amp. An actual op-amp typically has 
an output resistance of around 75 Ω.

Infinite bandwidth
The bandwidth of an op-amp is the range of frequencies 
that are amplified by the same amount. An ideal op-amp 
will amplify signals of all frequencies and should therefore 

have an infinite bandwidth. However, in actual op-amps 
the bandwidth can be as low as a few kilohertz.

Infinite slew rate
An ideal op-amp should change the output 
instantaneously as the input is changed. The slew rate of 
the op-amp is the factor that affects this time delay. An 
infinite slew rate means there is no time delay.

Zero noise contribution
Any signal includes a small amount of noise. The ideal  
op-amp does not produce any noise itself, although it will 
amplify any noise that is present in its input.

The op-amp as a comparator
The op-amp shown in Figure 25.16 is connected to two 
power supplies. One battery of 9 V is connected between 
the zero volt line and the +9 V positive supply terminal of 
the op-amp and the other between the zero volt line and 
the negative power supply terminal. These batteries are not 
shown.

The output voltage is given by Vout = G0 × (V + − V −), 
where G0 is the open-loop voltage gain. Notice that all of 
these voltages are measured with reference to the zero volt 
line, which is often connected to earth.

–9 V

0 V line (earth)

Vout

+9 V

V – V +

+

–

Figure 25.16  An op-amp used as a comparator.

Suppose that G0 = 105 and that V + = 0.15 V and  
V − = 0.10 V. The equation then gives:

Vout = 105 × (0.15 − 0.10) = 5000 V
Clearly this is impossible. The op-amp is therefore 
saturated and Vout will be close to one of the power supply 
voltages, in this case +9 V because V + is bigger than V −.  
In fact:

■■ If V + is slightly greater in magnitude than V  −, then Vout 
will have a magnitude equal to the positive power supply 
voltage.

■■ If V + is slightly smaller in magnitude than V  −, then Vout will 
have a magnitude equal to the negative power supply voltage.

The op-amp is serving as a comparator, comparing V + and 
V −. If these two voltages are slightly different, then the 
output voltage tells us which one is larger. It is unlikely that 
the voltages will be exactly the same.



395

Chapter 25: Electronics

A comparator circuit can be used to compare two 
temperatures or two light levels. The circuit shown 
in Figure 25.17 is used to give a warning when the 
temperature sensed by thermistor T becomes smaller than 
a certain value.

To understand the action of this circuit, you should 
notice that the positive power supply to the op-amp is also 
used to supply voltage and current to the thermistor T and a 
10 kΩ resistor connected as a potential divider. There is also 
another potential divider circuit connected to the inverting 
input (−) of the op-amp. (Note that there is no connection 
where the two connecting wires are shown crossing.)

Worked example 3 explains how this circuit operates.

15 kΩ

10 kΩ 15 kΩ

+9 V

0 V

–9 V
Vout

T

B

A +

–

Figure 25.17  An op-amp used as a comparator to monitor 
temperature.

3	 For the circuit shown in Figure 25.17, the resistance 
of the thermistor T is 8 kΩ at a temperature of 15 °C. 
What are V  − and V  +, the potentials at the inverting 
and non-inverting inputs? And what happens when 
the temperature falls so that the resistance of T rises 
above 10 kΩ?

	 Step 1  V  − and V  + can be found by using the potential 
divider formula to find the potentials at points A 
and B. The potential at A is the p.d. across the 10 kΩ 
resistor. So:

potential at A = 9  ×  
10
18 = 5.0 V

	 The potential at B is easier to find, as the two 15 kΩ 
resistors share the 9 V equally.

potential at B =  
9
2 

 = 4.5 V

	 The op-amp acts as a comparator and, since V  + is 
larger than V  −, the output will be the highest voltage 
that the op-amp can produce, in this case +9 V.

	 Step 2  The thermistor T is a negative temperature 
coefficient thermistor and so its resistance rises 
sharply and eventually becomes larger than 10 kΩ. 
Suppose it becomes 12 kΩ. Then:

potential at A = 9 ×  
10
22 = 4.1 V

	 Now V + is smaller than V  − and the op-amp output 
voltage is the lowest it can provide, near the negative 
supply voltage, in this case −9 V.

	 This switch from +9 V to −9 V is quite sudden because 
of the large open-loop voltage gain. The value of the 
temperature when the output voltage switches from 
+9 V to −9 V can be altered by adjusting the resistance 
of the resistor in series with the thermistor.

	11	 With an open-loop voltage gain G0 = 105 and 
power supply voltages of +9 V and −9 V, what is 
the smallest difference between V + and V  − for 
which the op-amp is not saturated?

	12	 What happens in the circuit shown in Figure 25.17 
if the supply voltages are changed to +15 V and 
−15 V? Is the temperature at which it switches 
over the same? Are the output voltages the 
same?

	13	 How can the circuit of Figure 25.17 be altered 
so that the output switches from −9 V when the 
temperature is hot to +9 V when the temperature 
is cold?

	14	 Calculate values of V  +, V  − and Vout in Figure 25.17 
when the resistance of T is 3 kΩ.

QUESTIONS

WORKED EXAMPLE
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Negative feedback
What happens when the op-amp in Figure 25.17 is 
connected to a heater which warms the air around the 
thermistor? The op-amp senses when the room is cold 
and switches on the heater. The heater then warms the 
room and this information is fed back to the thermistor, 
which then senses that the room is now warm enough and 
switches off the heater. This process is known as feedback 
and keeps the room at a reasonably constant temperature.

The effect is shown in Figure 25.18.

infinite and that the op-amp is not saturated. In this case 
V – must be equal in value to V + , and this is an important 
principle.

Suppose the system starts with both Vin and Vout as 
0 V and then the input voltage Vin changes to +0.1 V. The 
op-amp multiplies the potential difference between V + 
and V − by the open-loop voltage gain to produce Vout . 
The gain is very high so Vout increases quickly. What does 
Vout become? As Vout is ‘fed back’ to V − , the value of V − 
increases and this reduces the difference between V − and 
V +. Very quickly this difference becomes zero again and 
Vout = Vin.

We know that Vout = G0 × (V + − V −), where G0 is the 
open-loop voltage gain. Since Vout = V − and Vin = V +  
we have:

Vout = G0(Vin − Vout)

Vout(1 + G0) = G0Vin

The closed-loop gain G is given by:

G = Vout
Vin

 = G0
(1 + G0)

Because G0 is very high, about 105, there is little difference 
between G0 and (G0 + 1), so the closed-loop gain is very 
nearly 1. Since the input voltage was +0.1 V the output 
voltage is also +0.1 V. This analysis is true as long as the 
output voltage is smaller than the supply voltage, in this 
case as long as Vout is between −6 V and +6 V.

This may seem strange. We have taken an op-amp 
with a gain of 105 and turned it into a device with a gain 
of 1, so the input voltage and output voltage are equal. 
This is hardly an amplifier, but it is useful. The op-amp 
draws very little current from the input, yet it can supply 
a reasonable current from its output. This circuit is often 
used as a buffer between electronic circuits. If something 
happens to one circuit it does not affect the other circuit.

A piezo-electric microphone has a high internal 
resistance and cannot supply much current. If it is 
connected to the input of the op-amp in Figure 25.19, the 
same voltage is output but the current can be larger.

Another advantage is that it does not matter whether 
the frequency of the input signal is high or low; the gain 
is the same. So the output signal is exactly the same as the 
input signal and there is no distortion. This is only true 
when the open-loop voltage gain is high. At very high 
frequencies the open-loop voltage gain falls and eventually 
the closed-loop gain falls. The bandwidth, the range of 
frequencies for which the gain is constant, is increased by 
using negative feedback.

sensing device
(thermistor)

comparator
(op-amp)

heater

+6 V

–6 V

0 V

VoutVin

–

+

Figure 25.18  Feedback keeping temperature constant.

There are many examples of feedback. Your body 
temperature is remarkably constant because of a number 
of feedback mechanisms. When your skin senses that 
you are cold, a signal is sent via the nerves to your brain 
which closes down some of the blood vessels in your skin 
to reduce energy loss. If you are very cold the brain makes 
muscles contract and expand uncontrollably as you shiver. 
This will make the core of your body warm again and 
the effect is fed back to the brain, which switches off the 
shivering.

Electrical feedback is also very important. Consider the 
circuit shown In Figure 25.19. In this circuit Vin, the input 
to the op-amp, is connected to the non-inverting input 
(+). The whole of the voltage output Vout is fed back to the 
inverting input (−) of the op-amp. How does the op-amp 
behave with this feedback loop?

The potential V − at the inverting input (−) is always the 
same as Vout because they are connected by the feedback 
loop. We will assume that the open-loop voltage gain is 

Figure 25.19  An op-amp with the output connected to the 
inverting input.
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To summarise, the benefits of using negative feedback 
to reduce the gain of an op-amp are:

■■ less distortion
■■ increased bandwidth
■■ the gain is more stable and not affected by changes in 

temperature, etc.
■■ the output resistance (impedance) can be low and the input 

resistance (impedance) high.

The inverting amplifier
The inverting amplifier shown in Figure 25.20 uses 
negative feedback, but not all of the output voltage is 
fed back to the inverting input (−). When an op-amp is 
connected as an inverting amplifier:

■■ the non-inverting input (+) is connected to the 0 V line
■■ part of the output voltage (or signal) is connected to the 

inverting input (−)
■■ the input voltage (or signal) is connected to the inverting 

input.

To understand how the inverting amplifier works, you 
need to understand the concept of the virtual earth 
approximation. In this approximation the potential at the 
inverting input (−) is very close to 0 V. Why is this true? 
There are two steps in the argument:

■■ The op-amp multiplies the difference in potential between 
the inverting and non-inverting inputs, V  − and V  +, to 
produce the output voltage Vout . Because the open-loop 
voltage gain is very high, the difference between V  − and V  + 
must be almost zero.

■■ The non-inverting input (+) is connected to the zero volt line 
so V  + = 0. Thus V  − must be close to zero and the inverting 
input (−) is almost at earth potential.

Point P is known as a virtual earth. It cannot actually be 
0 V but it is very close to 0 V. This approximation is true as 
long as the op-amp is not saturated, and for frequencies 
where the open-loop voltage gain is high.

The virtual earth approximation can be used to find 
an expression for the gain of an inverting amplifier, as 
follows. If the current in the input resistor Rin is Iin and the 
current in the feedback resistor Rf is If , then, because point 
P is at 0 V:

Iin = Vin
Rin

and

If = Vout
Rf

The input resistance of the op-amp is very high and so 
virtually no current enters or leaves the inverting input (−) 
of the op-amp. This means that Iin and If must be equal  
in size.

If Vin is a positive potential, then the current in the 
two resistors flows from left to right. Vout will be negative 
because the current flows from P, which is at 0 V, to the 
output connection, which must have a lower voltage than 
0 V. Thus:

If = −Iin

and
Vout
Rf

 = − Vin
Rin

The gain of the inverting amplifier is thus given by:

G = Vout
Vin

 = − Rf
Rin

The negative sign shows that when the input voltage is 
positive the output voltage is negative and when the input 
is positive the output is negative. If the input voltage is 
alternating then there will be a phase difference of 180° or 
π rad between the input and the output voltages.

P

Vout

+Vs

–Vs
Vin

Rin

Rf

+

–

Figure 25.20  An inverting amplifier.

	15	 Draw the circuit diagram of an inverting amplifier 
with a gain of −100 and an input resistor Rin of 
10 kΩ. Include the value of the feedback  
resistor Rf .

	16	 The supply voltage to an op-amp is ±15 V. The 
op-amp is connected as an inverting amplifier 
of gain −20. Calculate the output voltage for the 
following input voltages:
a	 +20 mV
b	 −400 mV
c	 +1.0 V

QUESTIONS



398

Cambridge International A Level Physics

The non-inverting amplifier
Figure 25.21 shows the circuit for a non-inverting 
amplifier. The input voltage is applied to the non-inverting 
input; part of the output voltage is fed back to the inverting 
input.

The two resistors R1 and R2 form a potential divider. 
The total voltage across R1 and R2 is Vout and the voltage 
across R2 alone is Vin.

The current in the two resistors can be written as:
Vout

(R1 + R2)
 = Vin

R2

The gain is calculated from:

G = Vout
Vin

 = (R1 + R2)
R2

 = 1 +   R1
R2 

Thus for a non-inverting amplifier the gain is given by:

G = 1 +   R1
R2 

For a non-inverting amplifier, the output is in phase with 
the input. When the input voltage is positive, so is the 
output voltage.

Vout

–Vs

+Vs

Vin

R1

R2

+

–

	17	 The circuit shown in Figure 25.19 is a non-
inverting amplifier. What are the values of R1 and 
R2? Show that the gain of the amplifier is 1.

	18	 Draw the circuit of a non-inverting amplifier with 
a gain of 10. Explain whether the input resistance 
is very high or very low.

	19	 Suppose that the non-inverting amplifier in 
Figure 25.21 has R1 = 50 kΩ, R2 = 5 kΩ and  
Vs = 10 V.
a	 Calculate the gain.
b	 Calculate the output voltage when the input 

voltage is:
i	 −0.10 V      ii  +1.0 V.

Figure 25.21  A non-inverting amplifier.

As long as the op-amp is not saturated, the potential 
difference between the inverting (−) and non-inverting 
inputs (+) is almost zero. So V − = V +.

Since the non-inverting input (+) is connected to the 
input voltage, V + = Vin. Thus V − = Vin.

Output devices
The output voltage of an op-amp may be used to operate 
a device according to the changing input voltage. We will 
now look at three types of output device.

The relay
Although the output resistance of an op-amp is low, a 
typical op-amp can only provide a maximum output 
current of 25 mA. The maximum voltage output from an 
op-amp is also limited to the supply voltage, typically 15 V. 
To switch on larger currents and larger voltages the op-
amp is connected to a relay.

4	 In the circuit shown in Figure 25.20, Rin = 4 kΩ and  
Rf = 20 kΩ. Calculate:
a	 the output voltage when the input voltage is 0.5 V
b	 the maximum input voltage if the supply voltage 

is ± 12 V
c	 the input resistance of the amplifier.

	 The solutions can be found using the formula for 
gain G.

	 Step 1  Calculate the gain G  =  −  
Rf
Rin

  =  −  
20
4   =  −5

	 Step 2  Calculate Vout  =  gain × Vin =  −5  ×  0.5  =  −2.5 V

	 Step 3  The op-amp becomes saturated when  
Vout = −12 V, so:

	 Vin =  
Vout

G
  =  

12
5   =  2.4 V

	 Step 4  Point P is at 0 V, so the input resistance is just 
caused by Rin = 4 kΩ.

QUESTIONS

WORKED EXAMPLE
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A1

A2

coil

movable arm

contacts

Figure 25.22  A relay and its circuit symbol.

The relay is just an electromagnetic switch operated 
by a small current in the coil. Notice that there are two 
circuits, one to the coil and one involving the switch 
contacts A1 and A2. When a small current passes through 
the coil of the relay in Figure 25.22, the iron core attracts 
a movable arm and the contacts connected to A1 and A2 
close, completing the second circuit.

The coil of the relay is the part connected to the output 
of an op-amp. The op-amp can easily provide the small 
current required for the coil. When the contacts A1 and A2 
close they can switch large voltages or currents in another 
circuit.

There is, however, a problem using a relay connected to 
an op-amp. The current from the op-amp causes the coil to 
act as an electromagnet and creates a magnetic field. When 
this current is turned off there is a very rapid fall in the 
magnetic flux within the coil and a large e.m.f. is induced 
across the terminals of the coil, large enough to damage the 
op-amp. Switching off a relay can damage an op-amp.

To avoid this damage, a reverse-biased diode is placed 
across the relay coil. This is shown in Figure 25.23, where 
D1 is the reverse-biased diode. When the op-amp switches 
off, the induced voltage in the coil causes the bottom of the 
coil to be more positive than the top of the coil. Diode D1 
is able to pass current round the coil without any damage 
to the op-amp.

The output of the op-amp can be negative as well 
as positive. Without diode D2, the relay contacts close 
whether there is a negative output or a positive output 
from the op-amp because it does not matter which 
direction the current flows in the coil in Figure 25.22.

Diode D2 ensures that current can only flow from the 
op-amp when the output of the op-amp is positive. Thus 
the relay contacts are closed only when the output of the 
op-amp is positive.

Since diode D1 is reverse-biased, no current from the 
op-amp flows through D1.

The light-emitting diode (LED)
The light-emitting diode is a very convenient device to 
attach to the output of an op-amp. LEDs come in several 
different colours and only require a current of about 
20 mA to produce a reasonable light output. When placed 
on the output of the op-amp they readily show the state of 
that output, whether it is positive, negative or zero.

In practice, an LED cannot be placed directly between 
the output of an op-amp and the zero-volt line. The 
current–voltage characteristic for an LED is shown in 
Chapter 11 (page 160). The LED starts to conduct when the 
voltage across it is greater than about 2 V, although this 
value depends on the type of LED used. Once the output 
of an op-amp is much bigger than 2 V, the current in the 
LED and the op-amp will be very high and will damage 
both of them. A series resistor is required to limit the 
current, as shown in Figure 25.24.

The value of the resistance of the series resistor R 
can be calculated. If the current is to be 20 mA and the 
maximum voltage output from the op-amp is 12 V, then 
there will be just over 2 V across the LED and 12 − 2 = 10 V 
across the series resistor R. The series resistor required is:

R = 10
0.02

 = 500 Ω

diode
D1

output from
op-amp

diode
D2

A1

A2

coil

green LEDred LED

output from
op-amp

RR

Figure 25.23  The output of an op-amp connected to a relay.

Figure 25.24  LEDs connected to the output of an op-amp.
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In Figure 25.24, when the output of the op-amp is 
sufficiently positive relative to earth the green LED will 
light. When the output is negative relative to earth, the  
red LED will light.
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Figure 25.25  A calibration curve relates the output voltage of 
an op-amp to the variable it is being used to measure.

Figure 25.26  Linear and non-linear scales.

The calibrated meter
An op-amp may be monitoring a physical quantity such 
as temperature or light intensity. It is helpful to display the 
value of that physical quantity directly on a meter and not 
to have to measure an output voltage and then calculate 
the physical quantity each time.

The output voltage of the op-amp is unlikely to be 
proportional to the physical quantity being measured, 
for example temperature. The numbers on a voltmeter 
connected to the output of an op-amp cannot simply be 
changed to read values of the physical quantity, but the 
voltmeter can still be calibrated in terms of the physical 
quantity.

Suppose that temperature is being measured and a 
digital voltmeter is connected to the output. Calibration 
can be achieved by placing the temperature sensor and a 
thermometer in a water bath and recording the voltmeter 
reading and the temperature of the water bath at a number 
of different temperatures. A calibration graph is then 
drawn, as shown in Figure 25.25.

	20	 Draw a diagram of a relay connected to the 
output of an op-amp. The relay should switch on 
a separate circuit containing mains voltage and  
a heater.

	21	 Why is a reverse-biased diode required for a relay 
but not for an LED?

The calibration curve is used to change any other 
voltmeter reading into a value for the physical quantity, in 
this case temperature.

An analogue meter can be calibrated in the same way, 
but if the same meter is used all the time as the output, then 
the scale on the meter can be marked directly with values 
of the physical quantity. This means that the ‘voltmeter’ 
will measure temperature directly. Since the voltmeter 
reading is not proportional to the change in the physical 
quantity, the scale will not be linear. Figure 25.26 shows a 
meter with three scales. The bottom two scales are linear 
and might be the voltage recorded by a voltmeter. The top 
scale is non-linear and might be the value of the physical 
quantity being measured. Care is needed when reading a 
non-linear scale when the pointer is between the markings.

QUESTIONS



End-of-chapter questions
1 How can the circuit of Figure 25.17 be altered so that the op-amp switches from +9 V to −9 V when the 

temperature rises, instead of when it falls? Draw the circuit diagram. [1]

2 Draw the circuit diagram of a comparator that switches the output voltage from positive to negative 
when the light intensity falling on an LDR decreases. [3]

3 Explain what is meant by:
a feedback [1]
b the virtual earth approximation. [2]

4 In the inverting amplifier shown in Figure 25.20, Rin = 10 kΩ, Rf = 200 kΩ and Vs = 12 V. Calculate:
a the gain of the amplifier [2]
b the input voltage when the output voltage is 8.0 V [2]
c the maximum input voltage. [1]

5 a  Explain how an inverting amplifier can have a gain of −0.5. [2]
b Explain why the gain of a non-inverting amplifier cannot be less than 1. [2]
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Summary
■■ A sensor contains a sensing device and a processor to 

produce an output voltage.

■■ The resistance of an LDR decreases as the level of the 
light intensity increases.

■■ The resistance of a negative temperature coeff icient 
thermistor falls as temperature rises.

■■ Thermistors and light-dependent resistors can be 
used in potential divider circuits to provide output 
voltages that are dependent on temperature and light 
intensity, respectively.

■■ A piezo-electric transducer produces a variation in 
output voltage when a crystal is stressed, for example 
by pressure changes in sound.

■■ The change in resistance of a metal-wire strain gauge 
is proportional to extension.

■■ An operational amplifier used as a comparator 
produces either a high positive or a high negative 
voltage output, depending on which of two input 
voltage levels is larger.

■■ An operational amplifier can be used as an inverting 
or a non-inverting amplifier to amplify voltage signals.

■■ The gain of an inverting amplifier is − 
Rf
Rin

■■ The gain of a non-inverting amplifier is 1 +    
R1
R2    

.

■■ Feedback reduces gain but increases bandwidth 
and stability and reduces distortion.

■■ Output devices which may be connected to an 
op-amp include relays, LDRs and calibrated meters.



6 The non-inverting amplifier in Figure 25.21 on page 398 has R1 = 15 kΩ, R2 = 5 kΩ and Vs = 10 V.
 An a.c. signal of amplitude 0.20 V is applied to the input. Draw a single sketch graph which shows both the input 

and the output voltage over two cycles of the input on the same axes. [3]

7 Is the circuit shown in Figure 25.27 an inverting or non-inverting amplifier? Calculate its gain. [3]

Figure 25.27 For End-of-chapter Question 7.

8 A light-dependent resistor is used with additional components to make a sensor. The voltage output 
increases as light intensity increases.
a Sketch the diagram of a suitable circuit. [2]
b Explain how your circuit works. [2]
c State which parts of your circuit are the sensor, the processor and the output device. [2]

9 A strain gauge is used to measure the extension of a metal bar. The gauge is stuck to the bar and the 
change in resistance of the wire in the gauge enables the extension to be determined. The strain gauge 
is connected in the circuit shown in Figure 25.28.

Figure 25.28 For End-of-chapter Question 9.

a Explain why the resistance of the wire increases when it is stretched and show that the change in resistance 
is proportional to the extension, provided that the cross-sectional area is constant. [2]

b The resistance of the strain gauge when unstretched is 150 Ω. Calculate the reading on the voltmeter. [2]
c State and explain the eff ect on the voltmeter reading when the strain gauge is stretched. [2]
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10 In a fibre optic system, sound into a microphone is used to produce diff erent intensities of light that 
are passed along the glass fibre.

 The microphone is connected to a non-inverting amplifier, the output of which is connected to 
an LED. An operational amplifier with dual 15 V power supplies is used as a non-inverting amplifier 
and the microphone produces a maximum output of +20 mV.

Figure 25.29 For End-of-chapter Question 10.

a i  Copy and complete the circuit in Figure 25.29 to show the resistors necessary for a non-inverting 
amplifier. Make the necessary connection between the microphone and the amplifier. [2]

ii Add to your diagram the necessary output components for the amplifier to work as described. [2]
b State two advantages of using negative feedback in the amplifier circuit. [2]
c i  Calculate the maximum possible gain for the amplifier. [2]

ii The amplifier is used with the maximum possible gain. Suggest suitable values for the resistance of 
all the resistors drawn in a i. [2]

d Explain what happens in the system when the voltage output from the microphone rises. [2]
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11 A student builds an electronic circuit to control a motor using two identical LDRs, P and Q (Figure 25.30). 
In a room with the same amount of light on each LDR, the resistance of each LDR is 500 Ω. When the light 
from a torch shines on either LDR its resistance becomes 200 Ω.

Figure 25.30 For End-of-chapter Question 11.

a State the value of the output voltage Vout of the op-amp when:
i the potential at point A is greater than the potential at point B [1]
ii the potential at point B is greater than the potential at point A. [1]

b Calculate the potential at point A when a torch shines on P. [2]
c i  Explain what happens in the circuit when a torch shines on P but not on Q.  [1]

ii Explain what happens in the circuit when a torch shines on Q but not on P. [1]
d Explain why it is diff icult to know what will happen if no torch shines on P or Q. [1]

12 a  Explain what is meant by a virtual earth and use your explanation to show that the gain of the inverting 
  amplifier in Figure 25.31 is − 

R1
R2

. [5]

Figure 25.31 For End-of-chapter Question 12.

b The value of R1 is 20 kΩ and the value of R2  is 4 kΩ. The value of Vin is 0.50 V.
i Calculate the value of Vout. [2]
ii A resistor of 4 kΩ is placed in parallel with R2. Calculate the new value of Vout. [2]
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13 In order to switch on a heater when the temperature falls below a set value, a potential divider is 
connected to a switching circuit. When the input voltage to the switching circuit falls below 0.5 V, 
it switches the heater on.

Figure 25.32 For End-of-chapter Question 13.

a Copy Figure 25.32 and add a suitable potential divider circuit to trigger the switching circuit. [2]
b Explain how the operator could lower the temperature at which the heater is switched on. [1]

14 Figure 25.33 shows a circuit used to monitor the variation of light intensity in a room.

Figure 25.33 For End-of-chapter Question 14.

a Identify the component X and describe how the circuit works. [3]
b Suggest the reason for including the variable resistor in the circuit. [1]

V

X

switching
circuit

to
potential
divider



Chapter 26:
Magnetic fields and 
electromagnetism

Learning outcomes
You should be able to:

■■ describe a magnetic field as a field of force and use field 
lines to represent a field

■■ determine the magnitude and direction of the force on a 
current-carrying conductor in a magnetic field

■■ define magnetic flux density and describe how it can be 
measured using a current balance

■■ explain the forces between current-carrying conductors

406
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Magnets and currents
The train shown in Figure 26.1 is supported at a precise 
distance above the track by computer-controlled 
electromagnets. In this chapter, we will look at 
magnetic forces and fields, how they arise and how 
they interact.

Producing and representing 
magnetic fields
A magnetic field exists wherever there is force on a 
magnetic pole. As we saw with electric and gravitational 
fields, a magnetic field is a field of force.

You can make a magnetic field in two ways: using 
a permanent magnet, or using an electric current. You 
should be familiar with the magnetic field patterns of bar 
magnets (Figure 26.2). These can be shown using iron 
filings or plotting compasses.

We represent magnetic field patterns by drawing 
magnetic field lines:

■■ The magnetic field lines come out of north poles and go into 
south poles.

■■ The direction of a field line at any point in the field shows 
the direction of the force that a ‘free’ magnetic north pole 
would experience at that point.

■■ The field is strongest where the field lines are closest 
together.

An electromagnet makes use of the magnetic field 
created by an electric current (Figure 26.3a). A coil is 
used because this concentrates the magnetic field. One 
end becomes a north pole (field lines emerging), while the 
other end is the south pole. Another name for a coil like 
this is a solenoid. The field pattern for the solenoid looks 
very similar to that of a bar magnet (see Figure 26.2a), 
with field lines emerging from a north pole at one end and 
returning to a south pole at the other. The strength of the 
magnetic field of a solenoid can be greatly increased by 
adding a core made of a ferrous (iron-rich) material. For 

Figure 26.1  This high-speed train is magnetically levitated so 
that it avoids friction with the track. 

S

a

N

magnetic 
field lines

uniform field

S

b

N S N

no field here

S

c

N SN

Figure 26.2  Magnetic field patterns: a for a bar magnet; b for 
two attracting bar magnets; c for two repelling bar magnets. 

example, an iron rod placed inside the solenoid can act as 
a core; when the current flows through the solenoid, the 
iron core itself becomes magnetised and this produces a 
much stronger field. A flat coil (Figure 26.3b) has a similar 
field to that of a solenoid.
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N

a

b

I

S

current

current
Figure 26.3  Magnetic field patterns for a a solenoid, and  
b a flat circular coil.

A

current-carrying
wire

View from B – clockwiseView from A – anticlockwise

current out of 
plane of paper

magnetic
field linesplane at 90˚

to wire

B

current into
plane of paper

Figure 26.4  The magnetic field pattern around a current-
carrying wire. The diagram also shows the convention used  
to indicate the direction of current.

If we unravel an electromagnet, we get a weaker 
field. This, too, can be investigated using iron filings or 
compasses. The magnetic field pattern for a long current-
carrying wire is very different from that of a solenoid. 
The magnetic field lines shown in Figure 26.4 are circular, 
centred on the long current-carrying wire. Further away 
from the wire, the field lines are drawn further apart, 
representing the weaker field at this distance. Reversing 
the current reverses the direction of the field.

All magnetic fields are created by moving charges. (In 
the case of a wire, the moving charges are free electrons.) 
This is even true for a permanent bar magnet. In a 
permanent magnet, the magnetic field is produced by the 
movement of electrons within the atoms of the magnet. 
Each electron represents a tiny current as it circulates 
around within its atom, and this current sets up a 
magnetic field. In a ferrous material such as iron, the weak 
fields due to all the electrons combine together to make a 
strong field, which spreads out into the space beyond the 
magnet. In non-magnetic materials, the fields produced by 
the electrons cancel each other out.

Field direction
The idea that magnetic field lines emerge from north poles 
and go into south poles is simply a convention. Figure 26.5 
shows some useful rules for remembering the direction of 
the magnetic field produced by a current.

Figure 26.5  Two rules for determining the direction of a 
magnetic field, a inside a solenoid and b around a current-
carrying wire. 

N pole S pole

end view

a

current

b

current
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The right-hand grip rule gives the direction of 
magnetic field lines in an electromagnet. Grip the coil 
so that your fingers go around it following the direction 
of the current. Your thumb now points in the direction 
of the field lines inside the coil, i.e. it points towards the 
electromagnet’s north pole.

Another way to identify the poles of an electromagnet 
is to look at it end on, and decide which way round the 
current is flowing. The top diagrams in Figure 26.5 show 
how you can remember that clockwise is a south pole, 
anticlockwise is a north pole.

The circular field around a wire carrying a current 
does not have magnetic poles. To find the direction of the 
magnetic field you need to use another rule, the right-
hand rule. Grip the wire with your right hand, pointing 
your thumb in the direction of the current. Your fingers 
curl around in the direction of the magnetic field.

Note that these two rules are slightly different. The 
right-hand grip rule applies to a solenoid; the fingers are 
curled in the direction of the current and the thumb then 
gives the direction of the field. The right-hand rule applies 
to a current in a straight wire; the thumb is pointed in 
the direction of the current and the fingers then give the 
direction of the field lines.

Magnetic force
A current-carrying wire is surrounded by a magnetic field. 
This magnetic field wil interact with an external magnetic 
field, giving rise to a force on the conductor, just like the 
fields of two interacting magnets. A simple situation is 
shown in Figure 26.8.

1	 Sketch the magnetic field pattern around a long 
straight wire carrying an electric current. Now, 
alongside this first sketch, draw a second sketch 
to show the field pattern if the current flowing is 
doubled and its direction reversed.

2	 Sketch the diagram in Figure 26.6, and label the 
north and south poles of the electromagnet. Show 
on your sketch the direction of the magnetic field 
(as shown by the needle of a plotting compass) at 
each of the positions A, B, C and D.

3	 State which of the pairs of electromagnets shown in 
Figure 26.7 attract one another, and which repel.

A

C
D

B

current

current

a b

Figure 26.7  Two pairs of solenoids. For Question 3. 

Figure 26.6  A current-carrying solenoid. For 
Question 2. 

Magnadur 
magnets
on yoke

current

copper rod

Figure 26.8  The copper rod is free to roll along the two 
horizontal aluminium ‘rails’. 

QUESTIONS

QUESTION

The magnets create a fairly uniform magnetic field. 
As soon as the current in the copper rod is switched on, 
the rod starts to roll, showing that a force is acting on it. 
We use Fleming’s left-hand (motor) rule to predict the 
direction of the force on the current-carrying conductor, 
as explained in Box 26.1.
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If you think of the magnetic field lines as elastic 
bands then you can see why the wire is pushed out in the 
direction shown.

The production of this force is known as the motor 
effect, because this force is used in electric motors. In 
a simple motor, a current in a coil produces a magnetic 
field; this field interacts with a second field produced by a 
permanent magnet.

force

current into the 
plane of the paper

N

S

N

S

magnetic field
of magnets

combined
magnetic fields

magnetic field
of current-carrying
conductor

+ =

 BOX 26.1: Using Fleming’s left-hand rule

Look at Figure 26.9. There are three things here, all 
of which are mutually at right angles to each other 
– the magnetic field, the current in the rod, and 
the force on the rod. These can be represented by 
holding the thumb and the first two fingers of your 
left hand so that they are mutually at right angles 
(Figure 26.9). Your thumb and fingers then represent:

■■ thuMb – direction of Motion
■■ First finger – direction of external magnetic Field
■■ seCond finger – direction of conventional Current.

If the thumb and first two fingers of the left hand 
are held at right angles to one another, with the 
First finger pointing in the direction of the Field and 
seCond finger in the direction of the Current, then the 
thuMb points in the direction of the Motion or force.

You should practise using your left hand to check 
that the rule correctly predicts these directions.

First finger – Field

seCond finger – Current
thuMb – Motion

Figure 26.9  Fleming’s left-hand (motor) rule. 

Figure 26.10  In the field of a permanent magnet, a current-
carrying conductor experiences a force in accordance with 
Fleming’s left-hand rule. The fields due to the permanent 
magnet and the current (left and centre) combine as shown  
on the right. 

4	 Figure 26.11 shows three examples of current-
carrying conductors in magnetic fields. For each 
example, decide whether there will be a magnetic 
force on the conductor. If there is a force, in what 
direction will it act?

magnetic field

a b c

current

Figure 26.11  Three conductors in a magnetic field. 

QUESTION

Explaining the magnetic force
We can explain this force by thinking about the magnetic 
fields of the magnets and the current-carrying conductor. 
These fields combine or interact to produce the force on 
the rod.

Figure 26.10 shows:

■■ the external magnetic field of the magnets
■■ the magnetic field of the current-carrying conductor
■■ the combined fields of the current-carrying conductor and 

the magnets.
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Magnetic flux density
In electric or gravitational field diagrams, the strength 
of the field is indicated by the separation between the 
field lines. The field is strongest where the field lines are 
closest together. The same is true for magnetic fields. The 
strength of a magnetic field is known as its magnetic flux 
density, with symbol B. (You can imagine this quantity 
to represent the number of magnetic field lines passing 
through a region per unit area.) The magnetic flux density 
is greater close to the pole of a bar magnet, and gets 
smaller as you move away from it.

We define gravitational field strength g at a point as the 
force per unit mass:

g = F
m

Electric field strength E is defined as the force per unit 
positive charge:

E = F
Q

In a similar way, magnetic flux density is defined in terms 
of the magnetic force experienced by a current-carrying 
conductor placed at right angles to a magnetic field. For a 
uniform magnetic field, the flux density B is defined by the 
equation:

B = F
IL

where F is the force experienced by a current-carrying 
conductor, I is the current in the conductor and L is the 
length of the conductor in the uniform magnetic field 
of flux density B. The direction of the force F is given by 
Fleming’s left-hand rule.

Magnetic flux density is defined as follows:

The magnetic flux density at a point in space is the force 
experienced per unit length by a long straight conductor 
carrying unit current and placed at right angles to the 
field at that point.

The unit for magnetic flux density is the tesla, T. It follows 
from the equation for B  that 1 T = 1 N A−1 m−1.

The tesla is defined as follows:

The magnetic flux density is 1 T when a wire carrying a 
current of 1 A placed at right angles to the magnetic field 
experiences a force of 1 N per metre of its length.

The force on the conductor is given by the equation:
F = BIL

Note that you can only use this equation when the field is 
at right angles to the current.

5	 A current of 0.20 A flows in a wire of length 2.50 m 
placed at right angles to a magnetic field of flux 
density 0.06 T. Calculate the force on the wire.

6	 A 20 cm length of wire is placed at right angles to a 
magnetic field. When a current of 1.5 A flows in the 
wire, a force of 0.015 N acts on it. Determine the 
flux density of the field.

7	 A wire of length 50 cm carrying a current lies at 
right angles to a magnetic field of flux density 5 mT.
a	 If 1018 electrons pass a point in the wire each 

second, what current is flowing?  
(Electron charge e  = 1.60 × 10−19 C.)

b	 What force acts on the wire?

Measuring magnetic flux 
density
Box 26.2 looks at two practical methods for measuring 
magnetic flux density.

BOX 26.2: Measuring magnetic flux density

Measuring B with a Hall probe
The simplest device for measuring magnetic flux 
density B is a Hall probe (Figure 26.12). When the 
probe is held so that the field lines are passing 
at right angles through the flat face of the probe, 
the meter gives a reading of the value of B. Some 
instruments are calibrated so that they give readings 

Figure 26.12  Using a Hall probe to measure the flux 
density between two magnets. 

QUESTIONS
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BOX 26.2: Measuring magnetic flux density (continued)

in microteslas (μT) or milliteslas (mT). Others are not 
calibrated, so you must either calibrate them or use 
them to obtain relative measurements of B.

A Hall probe must be held so that the field lines are 
passing directly through it, at right angles to the flat 
surface of the probe (Figure 26.13). If the probe is not 
held in the correct orientation, the reading on the meter 
will be reduced.

A Hall probe is sensitive enough to measure the 
Earth’s magnetic flux density. The probe is first held so 
that the Earth’s field lines are passing directly through 
it, as shown in Figure 26.13. In this orientation, the 
reading on the voltmeter will be a maximum. The probe 
is then rotated through 180° so that the magnetic field 
lines are passing through it in the opposite direction. 
The change in the reading of the meter is twice the 
Earth’s magnetic flux density.

There is more about how the Hall probe works in 
Chapter 27.

Measuring B with a current balance
Figure 26.14 shows a simple arrangement that can be 
used to determine the flux density between two magnets. 
The magnetic field between these magnets is (roughly) 
uniform. The length L of the current-carrying wire in the 
uniform magnetic field can be measured using a ruler.

When there is no current in the wire, the magnet 
arrangement is placed on the top pan and the balance is 
zeroed. Now, when a current I flows in the wire, its value is 
shown by the ammeter. The wire experiences an upward 
force and, according to Newton’s third law of motion, 
there is an equal and opposite force on the magnets. The 
magnets are pushed downwards and a reading appears 
on the scale of the balance. The force F is given by mg, 

where m is the mass indicated on the balance in kilograms 
and g is the acceleration of free fall (9.81 m s−2).

Knowing F, I and L, the magnetic flux density B between 
the magnets can be determined using the equation:

B = 
F
IL

You can also use the arrangement in Figure 26.14 to 
show that the force is directly proportional to the current.

A system like this in effect ‘weighs’ the force on the 
current-carrying conductor, and is an example of a 
current balance. Another version of a current balance 
is shown in Figure 26.15. This consists of a wire frame 
which is balanced on two pivots. When a current flows 
through the frame, the magnetic field pushes the frame 
downwards. By adding small weights to the other side of 
the frame, you can restore it to a balanced position.

Hall probe

Earth’s magnetic
field

to control
box

N

S

plan view

top-pan 
balance

wire

magnets

crocodile 
clip

clamp

A

g

Figure 26.13  Magnetic flux lines must pass through the 
probe at 90° to the surface. 

Figure 26.14  An arrangement to determine magnetic flux 
density in the laboratory. 

Figure 26.15  A simple laboratory current balance. 

current current

small weight

Magnadur magnets
on yoke

sti� copper
wire frame

pivot

gap
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Currents crossing fields
At right angles
We explained the force on a current-carrying conductor 
in a field in terms of the interaction of the two magnetic 
fields: the field due to the current and the external field. 
Here is another, more abstract, way of thinking of this.

Whenever an electric current cuts across magnetic field 
lines (Figure 26.18), a force is exerted on the current-carrying 
conductor. This helps us to remember that a conductor 
experiences no force when the current is parallel to the field.

8	 In the examples shown in the diagrams in  
Figure 26.16, which current balances will tilt? 
Will the side carrying the current tilt upwards or 
downwards?

Figure 26.16  Four current balances – will they tip? 
For Question 8. 

9	 In the current balance shown in Figure 26.17, a 
current of 0.50 A is flowing. A student finds that a 
counterweight of mass 0.02 g is needed to restore 
balance. The section of the conductor in the field 
is 5.0 cm long. What is the flux density of the field?

Figure 26.17  A current balance – see Question 9. 

	10	 A wire of length 50 cm carrying a current of 2.4 A 
lies at right angles to a magnetic field of flux 
density 5.0 mT. Calculate the force on the wire.

	11	 The coil of an electric motor is made up of 200 
turns of wire carrying a current of 1.0 A. The coil 
is square, with sides of length 20 cm, and it is 
placed in a magnetic field of flux density 0.05 T.
a	 Determine the maximum force exerted on the 

side of the coil.
b	 In what position must the coil be for this force 

to have its greatest turning effect?
c	 List four ways in which the motor could be 

made more ‘powerful’ – that is, have greater 
torque.

N

S

a

c

b

d

current
in

current
out 

current

S

N

0.02 g

20 cm

0.50  A

20 cm

flux density B

current I

force down
force up

no force

This is a useful idea, because it saves us thinking about 
the field due to the current. In Figure 26.18, we can see 
that there is only a force when the current cuts across the 
magnetic field lines.

This force is very important – it is the basis of electric 
motors. Worked example 1 shows why a current-carrying 
coil placed in a magnetic field rotates.

Figure 26.18  The force on a current-carrying conductor 
crossing a magnetic field. 

QUESTIONS

QUESTIONS
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1	 An electric motor has a rectangular loop of wire with 
the dimensions shown in Figure 26.19. The loop is in a 
magnetic field of flux density 0.10 T. The current in the 
loop is 2.0 A. Calculate the torque that acts on the loop 
in the position shown.

Figure 26.19  A simple electric motor – a current-
carrying loop in a magnetic field. 

	 Step 1  The quantities we know are:
B = 0.10 T,  I = 2.0 A  and L = 0.05 m

	 Step 2  Now we can calculate the force on one side of 
the loop using the equation F = BIL:
F = 0.10 × 2.0 × 0.05
	 = 0.01 N

	 Step 3  The two forces on opposite sides of the loop 
are equal and anti-parallel. In other words, they form a 
couple. From Chapter 4, you should recall that the torque 
(moment) of a couple is equal to the magnitude of one 
of the forces times the perpendicular distance between 
them. The two forces are separated by 0.08 m, so:
torque = force × separation
	 = 0.01 × 0.08 = 8.0 × 10−4 N m

2	 A conductor OC (see Figure 26.20) of length 0.20 m 
lies at an angle θ of 25° to a magnetic field of flux 
density 0.050 T. Calculate the force on the conductor 
when it carries a current of 400 mA.

	 Step 1  Write down what you know, and what you 
want to know:

B = 0.050 T	 L = 0.20 m
I = 400 mA = 0.40 A	 θ = 25°
F = ?

	 Step 2  Write down the equation, substitute values 
and solve:
F  =  BIL sin θ
F  =  0.050 × 0.40 × 0.20 × sin 25° ≈ 1.7 × 10−3 N

	 Step 3  Give the direction of the force. The force acts 
at 90° to the field and the current, i.e. perpendicular 
to the page. The left-hand rule shows that it acts 
downwards into the plane of the paper.

	 Note that the component of B parallel to the current 
is B cos θ, but this does not contribute to the force; 
there is no force when the field and current are 
parallel. The force F is at right angles to both the 
current and the field.

B = 0.10 T

I  = 2.0 A

F F

0.08 m

0.05 m

Figure 26.20  The force on a current-carrying conductor 
depends on the angle it makes with the magnetic field lines. 

At an angle other than 90°
Now we must consider the situation where the current-
carrying conductor cuts across a magnetic field at an angle 
other than a right angle. In Figure 26.20, the force gets 
weaker as the conductor is moved round from OA to OB, 
to OC and finally to OD. In the position OD, there is no 
force on the conductor. To calculate the force, we need to 
find the component of the magnetic flux density B at right 
angles to the current. This component is B sin θ, where θ is 
the angle between the magnetic field and the current or the 
conductor. Substituting this into the equation F = BIL gives:

F = (B sin θ)IL
or simply:

F = BIL sin θ
Now look at Worked example 2.

O

A B

C

D

magnetic
field 
lines

θ

WORKED EXAMPLE

WORKED EXAMPLE
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Forces between currents
Any electric current has a magnetic field around it. If we 
have two currents, each will have its own magnetic field, 
and we might expect these to interact. 

Explaining the forces
There are two ways to understand the origin of the forces 
between current-carrying conductors. In the first, we 
draw the magnetic fields around two current-carrying 

	12	 What force will be exerted on each of the currents 
shown in Figure 26.21, and in what direction will 
each force act?

Figure 26.21  Three currents in a magnetic field. 

B = 0.25 T
3.0 A

3.0 A

3.0 A

a b

c

45°

45°

45°

0.50 m

BOX 26.3: Observing the forces between currents

You can observe the attraction and repulsion between  
two parallel currents using the equipment shown in  
Figure 26.23.

Two long thin strips of aluminium foil are mounted 
so that they are parallel and a small distance apart. By 
connecting them in series with a power supply, you can 
make a current occur in both of them. By changing the 
connections, you can make the current first in the same 
direction through both strips (parallel currents) and 
then in opposite directions (anti-parallel currents).

If you try this out, you will observe the strips of foil 
either bending towards each other or away from each 
other. (Foil is used because it is much more flexible  
than wire.)

You should find that parallel currents attract one 
another, while anti-parallel currents repel. This may 
seem surprising, since we are used to opposite charges 
attracting, and opposite magnetic poles attracting. Now 
we have found that opposite currents repel one another.

current

Figure 26.23  Current in two aluminium strips – their 
magnetic fields interact.

conductors (Figure 26.22a). Figure 26.22a shows two 
unlike (anti-parallel) currents, one flowing into the page, 
the other flowing out of the page. Their magnetic fields 
circle round, and in the space between the wires there is 
an extra-strong field. We imagine the field lines squashed 
together, and the result is that they push the wires apart. 
The diagram shows the resultant field, and the repulsive 
forces on the two wires.

Figure 26.22b shows the same idea, but for two like 
(parallel) currents. In the space between the two wires, the 
magnetic fields cancel out. The wires are pushed together.

FI F I

a b

F I FI

FI F I

a b

F I FI

Figure 26.22  The forces between current-carrying wires. 

QUESTION
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The other way to explain the forces between the currents 
is to use the idea of the motor effect. Figure 26.24 again 
shows two like currents, I1 and I2, but this time we only 
consider the magnetic field of one of them, I1. The second 
current I2 is flowing across the magnetic field of I1; from the 
diagram, you can see that B is at right angles to I2. Hence 
there will be a force on I2 (the BIL force), and we can find its 
direction using Fleming’s left-hand rule. The arrow shows 
the direction of the force, which is towards I1. Similarly, 
there will be a BIL force on I1, directed towards I2.

These two forces are equal and opposite to one another. 
They are an example of an action and reaction pair, as 
described by Newton’s third law of motion.

Relating SI units
In this chapter, we have seen how one SI unit, the tesla, is 
defined in terms of three others, the amp, the metre and 
the newton. It is an essential feature of the SI system that 
all units are carefully defined; in particular, derived units 
such as the newton and tesla must be defined in terms of a 
set of more fundamental units called base units.

We met the idea of base units in Chapter 3. The SI 
system of units has seven base units, of which you have 
met six. These are:

m    kg    s    A    K    mol
(The seventh is the candela, cd, the unit of luminous 
intensity.) Each base unit is carefully defined; for example, 
the ampere can be defined in terms of the magnetic force 
between two parallel wires carrying a current. The exact 
definition is not required, but you should know that the 
ampere is itself a base unit. Other units are known as 
derived units, and can be deduced from the base units. For 
example, as shown in Chapter 3, the newton is given by:

1 N = 1 kg m s−2

Similarly, in this chapter, you have learned about the tesla, 
the unit of magnetic flux density, given by:

1 T = 1 N A−1 m−1  or  1 T = 1 kg A−1 s−2

If you learn formulae relating physical quantities, you can 
replace the quantities by their units to see how the units 
are defined. For example:

force = mass × acceleration  F = ma  N = kg m s−2

You should be able to picture how the different derived 
units form a logical sequence, as shown in Table 26.1.

Base units Derived units because

m, kg, s

newton N = kg m s−2 F = ma

joule J = kg m2 s−2 W = Fd

watt W = kg m2 s−3 P = 
W
t

m, kg, s, A

coulomb C = A s Q = It

volt V = kg m2 A−1 s−3 V = 
W
Q

tesla T = kg A−1 s−2 B = 
F
IL

Table 26.1  How derived units relate to base units in the SI 
system.

I1 I2F F

B

Figure 26.24  Explaining the force between two currents. 

	13	 Two flat circular coils of wire are set up side 
by side, as shown in Figure 26.25. They are 
connected in series so that the same current 
flows around each, and in the same direction. 
Will the coils attract or repel one another? 
Explain your answer, first by describing the coils 
as electromagnets, and secondly by considering 
the forces between parallel currents. What will 
happen if the current is reversed in both coils?

Figure 26.25  Two coils carrying the same current –  
see Question 13.

QUESTION



417

Chapter 26: Magnetic fields and electromagnetism

Summary
■■ Moving charges produce a magnetic field; this is 

electromagnetism.

■■ A current-carrying conductor has concentric magnetic 
field lines. The magnetic field pattern for a solenoid or 
flat coil resembles that of a bar magnet.

■■ The separation between magnetic field lines is an 
indication of the field’s strength.

■■ Magnetic flux density B is defined by the following 
equation:

B = 
F
IL

where F is the force experienced by a current-carrying 
conductor, I is the current in the conductor and L is 
the length of the conductor in the uniform magnetic 
field.

■■ The unit of magnetic flux density is the tesla (T).  
1 T = 1 N A−1 m−1.

■■ The magnetic flux density is 1 T when a wire carrying 
a current of 1 A placed at right angles to the magnetic 
field experiences a force of 1 N per metre of its length.

■■ The magnetic force on a current-carrying conductor is 
given by F = BIL sin θ.

■■ The force on a current-carrying conductor can be used 
to measure the flux density of a magnetic field using a  
current balance.

■■ A force acts between current-carrying conductors due 
to the interaction of their magnetic fields.

Comparing forces in magnetic, 
electric and gravitational fields 
We have now considered three types of field: electric 
(Chapters 8 and 23), gravitational (Chapter 18) and 
magnetic (this chapter). What are the similarities and 
differences between these three types of field?

Modern physics sees magnetic fields and electric fields 
as two parts of a combined whole, an electromagnetic 
field. Gravitational fields, however, are different in nature 
to electromagnetic fields.

Gravitational and electric fields are defined in terms of 
placing a test mass or a test charge at a point to measure 
the field strength. Similarly, a test wire carrying a current 
can be placed at a point to measure the magnetic field 
strength. Therefore all fields are defined in terms of the 
force on a unit mass, charge or current.

Other features that all fields share include:

■■ Action at a distance, between masses, between charges or 
between wires carrying currents.

■■ Decreasing strength with distance from the source of the 
field.

■■ Representation by field lines, the direction of which show 
the direction of the force at points along the line; the density 
of field lines indicates the relative strength of the field.

How do the forces arising from these fields compare? The 
answer depends on the exact situation. Using ideas that 
you have studied earlier, you should be able to confirm 
each of the following values:

■■ The force between two 1 kg masses 1 m apart = 6.7 × 10–11 N
■■ The force between two charges of 1 C placed 1 m apart =  

9.0 × 109 N
■■ The force per metre on two wires carrying a current of 1 A 

placed 1 m apart = 2.0 × 10–7 N

This might suggest that the electric force is strongest 
and gravity is the weakest. Certainly if you consider an 
electron in a hydrogen atom moving in a circular orbit 
around a proton, the electrical force is 1039 times the 
gravitational force. So for an electron, or any other small 
charged object, electric forces are the most significant. 
However, over larger distances and with objects of 
large mass, the gravitational field becomes the most 
significant. For example, the motions of planets in the 
Solar System are affected by the gravitational field but the 
electromagnetic field is comparatively insignificant.



End-of-chapter questions
1 A current-carrying wire is placed in a uniform magnetic field.

a When does the wire experience the maximum force due to the magnetic field? [1]
b When does the wire experience no force due to the magnetic field? [1]

2 A current-carrying conductor placed at right angles to a uniform magnetic field experiences a force 
of 4.70 × 10−3 N. Determine the force on the wire when, separately:
a the current in the wire is increased by a factor of 3.0 [2]
b the magnetic flux density is halved [2]
c the length of the wire in the magnetic field is reduced to 40% of its original length. [2]

3 A copper wire carrying a current of 1.2 A has 3.0 cm of its length placed in a uniform magnetic field, as shown 
in Figure 26.26. The force experienced by the wire is 3.8 × 10−3 N when the angle between the wire and the 
magnetic field is 50°.

Figure 26.26 For End-of-chapter Question 3. 

a Calculate the magnetic field strength. [3]
b What is the direction of the force experienced by the wire? [1]

4 Figure 26.27 shows a view from above of two long, parallel strips of aluminium foil A and B, carrying a 
current downwards into the paper.

Figure 26.27 For End-of-chapter Question 4. 

a On a copy of the diagram, draw the magnetic field around and between the two strips.  [2]
b State and explain the direction of the forces caused by the current in the strips. [4]
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5 Figure 26.28 shows a wire XY which carries a constant direct current. Plotting compass R, placed alongside the wire, 
points due north. Compass P is placed below the wire and compass Q is placed above the wire. 

Figure 26.28 For End-of-chapter Question 5. 

a State the direction of the current in the wire. [2]
b State in which direction compass P points. [2]
c State in which direction compass Q points if the current in the wire is reversed. [2]

6 Figure 26.29 shows a rectangular metal frame PQRS placed in a uniform magnetic field.

Figure 26.29 For End-of-chapter Question 6. 

 The magnetic flux density is 4.5 × 10−3 T and the current in the metal frame is 2.5 A.
a Calculate the force experienced by side PQ of the frame. [3]
b Suggest why side QR does not experience a force. [1]
c Describe the motion of the frame immediately aft er the current in the frame is switched on. [2]
d Calculate the maximum torque (moment) exerted about an axis parallel to side PQ. [2]
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7 Figure 26.30 shows a current-carrying wire frame placed between a pair of Magnadur magnets on a yoke. 
A pointer is attached to the wire.

Figure 26.30 For End-of-chapter Question 7. 

 A current of 8.5 A in the wire causes the pointer to move vertically upwards. A small paper tape is attached 
to the pointer. The weight of the paper tape causes the pointer to return to its initial position (with no 
current and no paper tape). The paper's mass is subsequently found to be 60 mg. The section of the wire 
between the poles of the magnetic has a length of 5.2 cm.
a State the direction of the magnetic field. [1]
b Calculate the force on the wire due to the magnetic field when it carries a current of 8.5 A. [2]
c Calculate the magnetic flux density of the magnetic field between the poles of the magnet. [3]
d Describe what happens to the frame if low-frequency alternating current passes through the wire. [1]

8 a  The size of the force acting on a wire carrying a current in a magnetic field is proportional to the size 
of the current in the wire. With the aid of a diagram, describe how this can be demonstrated in a 
school laboratory.  [5]

b At a certain point on the Earth’s surface the horizontal component of the Earth’s magnetic field 
is 1.6 × 10−5 T. A piece of wire 3.0 m long and of weight 0.020 N lies in an east–west direction on a 
laboratory bench. When a large current flows in the wire, the wire just lift s off  the surface of the bench.
i State the direction of the current in the wire. [1]
ii Calculate the minimum current needed to lift  the wire from the bench. [3]
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 9 Figure 26.31 shows a fixed horizontal wire passing centrally between the poles of a permanent magnet 
that is placed on a top-pan balance. With no current flowing, the balance records a mass of 102.45 g. 
When a current of 4.0 A flows in the wire, the balance records a mass of 101.06 g.

Figure 26.31 For End-of-chapter Question 9. 

a Explain why the reading on the top-pan balance decreases when the current is switched on. [2]
b State and explain the direction of the current flow in the wire. [2]
c The length of the wire in the magnetic field is 5.0 cm. Calculate the average magnetic flux density 

between the poles of the magnet. [2]
d Sketch a graph, with balance reading on the vertical axis and current on the horizontal axis, to show 

how the balance reading changes when the current is altered. [2]

10 a  Define magnetic flux density and explain the similarity with the definition of electric field strength. [3]
b Two thin horizontal wires are placed in a north–south direction. One wire is placed on a bench and the 

other wire is held 3.0 cm directly above the first wire.
i When equal currents flow in the two wires, the force exerted on the bench by the lower wire decreases. 

Explain why this is so. What can you say about the directions of the currents in the two wires? [4]
ii The magnetic flux density B at a distance x from a long straight wire carrying a current I is given by the 

 expression B = 2.0 × 10−7 
I
x 

, where x is in metres and I is in amps. When the current in each wire is 4.0 A, 

 calculate the force per unit length on one wire due to the current in the other. [3]
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Chapter 27:
Charged particles

Learning outcomes
You should be able to:

■■ determine the magnitude and direction of the force on 
a charge moving in a magnetic field

■■ analyse the deflection of beams of charged particles in 
electric and magnetic fields

■■ explain the principles of methods for measuring speed 
and charge-to-mass ratio for electrons

■■ derive and use an expression for the Hall voltage

422



Chapter 27: Charged particles

Moving particles
The world of atomic physics is populated by a great 
variety of particles – electrons, protons, neutrons, 
positrons and many more. Many of these particles are 
electrically charged, and so their motion is influenced 
by electric and magnetic fields. Indeed, we use this 
fact to help us to distinguish one particle from another. 
Figure 27.1 shows the tracks of particles in a detector 
called a bubble chamber. A photon (no track) has 
entered from the top and collided with a proton; the 
resulting spray of nine particles shows up as the gently 
curving tracks moving downwards. The tracks curve 
because the particles are charged and are moving in 
a magnetic field. The tightly wound spiral tracks are 
produced by electrons which, because their mass is 
small, are more dramatically affected by the field.

In this chapter, we will look at how charged 
particles behave in electric and magnetic fields and 
how this knowledge can be used to control beams of 
charged particles. At the end of the chapter, we will 
look at how this knowledge was used to discover the 
electron and to measure its charge and mass.

Observing the force
You can use your knowledge of how charged particles 
and electric currents are affected by fields to interpret 
diagrams of moving particles. You must bear in mind 
that, by convention, the direction of conventional electric 
current is the direction of flow of positive charge. When 
electrons are moving, the conventional current is regarded 
as flowing in the opposite direction.

An electron beam tube (Figure 27.2) can be used to 
demonstrate the magnetic force on a moving charge. A beam 
of electrons is produced by an ‘electron gun’, and magnets or 
electromagnets are used to apply a magnetic field.

You can use such an arrangement to observe the effect 
of changing the strength and direction of the magnetic 
field, and the effect of reversing the field.

If you are able to observe a beam of electrons like 
this, you should find that the force on the electrons 
moving through the magnetic field can be predicted 
using Fleming’s left-hand rule. In Figure 27.3, a beam of 
electrons is moving from right to left, into a region where 

force

magnetic field into 
page in this region

electron beam

Figure 27.3  A beam of electrons is deflected as it crosses a 
magnetic field. The magnetic field into the plane of the paper 
is represented by the cross in the circle. 

Figure 27.1  A bubble chamber image of the tracks of sub-
atomic particles. The tracks curve because the charged 
particles are affected by the presence of a magnetic field.

Figure 27.2  An electron beam tube.
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a magnetic field is directed into the plane of the paper. 
Since electrons are negatively charged, they represent a 
conventional current from left to right. Fleming’s left-
hand rule predicts that, as the electrons enter the field, 
the force on them will be upwards and so the beam will 
be deflected up the page. As the direction of the beam 
changes, so does the direction of the force. The force due 
to the magnetic field is always at 90° to the velocity of the 
electrons. It is this force that gives rise to the motor effect. 
The electrons in a wire experience a force when they flow 
across a magnetic field, and they transfer the force to the 
wire itself. In the past, most oscilloscopes, monitors and 
television sets made use of beams of electrons. The beams 
were moved about using magnetic and electric fields, and 
the result was a rapidly changing image on the screen.  

The magnetic force on a moving charge
We can make an intelligent guess about the factors that 
determine the size of the force on a moving charge in a 
uniform magnetic field (Figure 27.6). It will depend on:

■■ the magnetic flux density B (strength of the magnetic field)
■■ the charge Q on the particle
■■ the speed v of the particle.

The magnetic force F on a moving particle at right angles 
to a magnetic field is given by the equation:

F = BQv
The direction of the force can be determined from 
Fleming’s left-hand rule. The force F is always at 90° to the 
velocity of the particle. Consequently, the path described 
by the particle will be an arc of a circle.

++
+

+

+

+
+Q

B

BOX 27.1: Electron beam tubes

Figure 27.4 shows the construction of a typical tube. 
The electron gun has a heated cathode. The positively 
charged anode attracts electrons from the negative 
cathode, and they pass through the anode to form 
a narrow beam in the space beyond. The direction 
of the beam can be changed using an electric field 
between two plates (as in Figure 27.4), or a magnetic 
field created by electromagnetic coils.

heated
cathode

anode
electron
gun

glass spherevacuum

parallel plates 
provide uniform 
electric field

+–

electron
beam

Figure 27.4  The construction of an electron beam tube. 

1	 In the diagram in Figure 27.5, radiation from a 
radioactive material passes through a region of 
uniform magnetic field. State whether each type 
of radiation has positive or negative charge, or is 
uncharged.

magnetic field
into page in
this region

A + B + C

radioactive
material

A

C

B

Figure 27.5  Three types of radiation passing 
through a magnetic field.

Figure 27.6  The path of a charged particle is curved in a 
magnetic field. 

QUESTION
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If the charged particle is moving at an angle θ to the 
magnetic field, the component of its velocity at right angles 
to B is v sin θ. Hence the equation becomes:

F = BQv sin θ
We can show that the two equations F = BIL and F = BQv 
are consistent with one another, as follows.

Since current I is the rate of flow of charge, we can write:

I = Q
t

Substituting in F = BIL gives:

F = BQL
t

Now, L
t

 is the speed ν of the moving particle, so we can 
write:

F = BQv
For an electron, with a charge of −e, the magnitude of the 
force on it is:

F = Bev  (e = 1.60 × 10−19 C)
The force on a moving charge is sometimes called ‘the Bev 
force’; it is this force acting on all the electrons in a wire 
which gives rise to ‘the BIL force’.

Here is an important reminder: The force F is always 
at right angles to the particle’s velocity v, and its direction 
can be found using the left-hand rule (Figure 27.7).

Orbiting charges
Consider a charged particle moving at right angles to a 
uniform magnetic field. It will describe a circular path 
because the magnetic force F is always perpendicular to its 
velocity. We can describe F as a centripetal force, because 
it is always directed towards the centre of the circle.

F

B

v

+Qcurrent

field
force

Figure 27.7  Fleming’s left-hand rule, applied to a moving 
positive charge. 

2	 A beam of electrons, moving at 1.0 × 106 m s−1, is 
directed through a magnetic field of flux density 
0.50 T. Calculate the force on each electron when 
a the beam is at right angles to the magnetic field, 
and b the beam is at an angle of 45° to the field.

3	 Positrons are particles identical to electrons, 
except that their charge is positive (+e). Use a 
diagram to explain how a magnetic field could be 
used to separate a mixed beam of positrons and 
electrons.

Figure 27.8 shows a fine-beam tube. In this tube, a 
beam of fast-moving electrons is produced by an electron 
gun. This is similar to the cathode and anode shown in 
Figure 27.4, but in this case the beam is directed vertically 
downwards as it emerges from the gun. It enters the 
spherical tube, which has a uniform horizontal magnetic 
field. The beam is at right angles to the field and the Bev 
force pushes it round in a circle. The fact that the Bev force 
acts as a centripetal force gives us a clue as to how we can 
calculate the radius of the orbit of a charged particle in 
a uniform magnetic field. The centripetal force on the 
charged particle is given by:

centripetal force = mv 2
r

The centripetal force is provided by the magnetic force Bev. 
Therefore:

Beν = mv 2
r

Cancelling and rearranging to find r gives:

r = mv
Be

Figure 27.8  In this fine-beam tube, a beam of electrons is 
bent around into a circular orbit by an external magnetic field. 
The beam is shown up by the presence of a small amount 
of gas in the tube. (The electrons travel in an anticlockwise 
direction.) 

QUESTIONS
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You can also write this equation in terms of the 
momentum p of the particle, that is:

p = Ber

The equation r = mv
Be

 shows that:

■■ faster-moving particles move in bigger circles (r  ∝ v)
■■ particles with greater masses also move in bigger circles 

(they have more inertia: r  ∝ m)
■■ a stronger field makes the particles move in tighter circles 

(r  ∝ 
1
B 

).

This is made use of in a variety of scientific applications, 
such as particle accelerators and mass spectrometers.  
It can also be used to find the charge-to-mass ratio e

me
  

of an electron.

The charge-to-mass ratio of an electron
Experiments to find the mass of an electron first involve 
finding the charge-to-mass ratio e

me 
. This is known as 

the specific charge on the electron – the word ‘specific’ 
here means ‘per unit mass’.

Using the equation for an electron travelling in a circle 
in a magnetic field,  we have e

me
 = v

Br  
. Clearly,  

measurements of v, B and r are needed to measure e
me 

. 

There are difficulties in measuring B and r. For example, 
it is difficult to measure r with a rule outside the tube 
in Figure 27.8 because of parallax error. Also, v must 
be measured, and you need to know how this is done. 
One way is to use the cathode–anode voltage Vca. This 
p.d. causes each electron to accelerate as it moves from 
the cathode to the anode. If an individual electron has 
charge −e then an amount of work e × Vca is done on each 
electron. This is its kinetic energy as it leaves the anode:

eVca = 12 mev 2

where me is electron mass and v is the speed of the 
electron.

Eliminating v from the two equations eVca = 12 mev 2 and 
r =  mev

Be  
 gives:

e
me

 = 2Vca
r 2B 2

Hence, if we measure Vca, r and B, we can calculate e
me 

. 
As we shall see shortly, the electron charge e can be 
measured more directly, and this allows us to calculate the 
electron mass me from the value of e

me 
.

1	 An electron is travelling at right angles to a uniform 
magnetic field of flux density 1.2 mT. The speed of 
the electron is 8.0 × 106 m s−1. Calculate the radius of 
circle described by this electron. (For an electron, 
charge e  = 1.60 × 10−19 C and mass me =  9.11 × 
10−31 kg.)

	 Step 1  Calculate the magnetic force on the electron.
F =  Bev = 1.2 × 10−3 × 1.60 × 10−19  ×  8.0 × 106

F = 1.536 × 10−15 N

	 Step 2  Use your knowledge of motion in a circle to 
determine the radius r.

F  =  
mev 2

r

	 Therefore:

r  =  
mev  2

F
  =  

9.11 × 10−31 × (8.0 × 106 ) 2

1.536 × 10−15

r  ≈ 3.8 × 10−2 m  (3.8 cm)

	 Note: The same result could have been obtained 
simply by using the equation:

r  =  
mev
Be

4	 Look at the photograph of the electron beam 
in the fine-beam tube (Figure 27.8). In which 
direction is the magnetic field (into or out of the 
plane of the photograph)?

5	 The particles in the circular beam shown in  
Figure 27.8 all travel round in the same orbit.  
What can you deduce about their mass, charge 
and speed?

6	 An electron beam in a vacuum tube is directed at 
right angles to a magnetic field, so that it travels 
along a circular path. Predict the effect on the size 
and shape of the path that would be produced 
(separately) by each of the following changes:
a	 increasing the magnetic flux density
b	 reversing the direction of the magnetic field
c	 slowing down the electrons
d	 tilting the beam, so that the electrons  

have a component of velocity along the 
magnetic field.

QUESTIONS

WORKED EXAMPLE
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Electric and magnetic fields
Now we will consider what happens when an electron 
beam passes through an electric field and a magnetic field 
at the same time.

Velocity selection
Balancing the effects of electric and magnetic fields is also 
used in a device called a velocity selector. This is used in 
devices such as mass spectrometers where it is desired to 
produce a beam of charged particles all moving with the 
same velocity. The construction of a velocity selector is 
shown in Figure 27.11.

The apparatus is very similar to the deflection tube in 
Figure 27.9. Two parallel plates are situated in an evacuated 
chamber. They provide a uniform electric field of strength E.  

+ +

– –

EB v

–

+

S

undeflected
ions

– Q

magnetic field into
plane of paper

BOX 27.2: The deflection tube

A deflection tube (Figure 27.9) is designed to show a 
beam of electrons passing through a combination of 
electric and magnetic fields. By adjusting the strengths 
of the electric and magnetic fields, you can balance the 
two forces on the electrons, and the beam will remain 
horizontal. The magnetic field is provided by two coils, 
called Helmholtz coils (Figure 27.10), which give a very 
uniform field in the space between them.

If the electron beam remains straight, it follows 
that the electric and magnetic forces on each electron 
must have the same magnitude and act in opposite 
directions. Therefore:

electric force = magnetic force
	 (upward)	 (downward)
	 eE = Bev

where E is the electric field strength between the 
parallel plates with a p.d of V. The speed v of the 
electrons is simply related to the strengths of the two 
fields. That is:

v  =  
E
B

The electric field strength is given by:

E  =  
V
d

therefore:

v  =  
V

Bd

cathode anode

B into paper
in this region

Vca

+V

0 V

electron
beam

+–

Figure 27.9  The path of an electron beam in a 
deflection tube. Figure 27.10  A pair of Helmholtz coils is used to give a 

uniform magnetic field.

Figure 27.11  A velocity selector – only particles with the 
correct combination of charge, mass and velocity will emerge 
through the slit S.
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The region between the plates is also occupied by a uniform 
magnetic field of flux density B which is at right angles to 
the electric field. Charged particles (electrons or ions) enter 
from the left. They all have the same charge and mass but 
are travelling at different speeds. The electric force Ee will 
be the same on all particles as it does not depend on their 
speed; however, the magnetic force Bev will be greater 
on those particles which are travelling faster. Hence, for 
particles travelling at the desired speed v, the electric and 
magnetic forces balance and they emerge undeflected from 
the slit S. If a negative ion has a speed greater than  V

Bd
 

the downward magnetic force on it will be greater than the 
upward electric force. Thus it will be deflected downwards 
and it will hit below slit S.

Note that we do not have to concern ourselves with the 
gravitational force mg acting on the charged particles as this 
will be much smaller than the electric and magnetic forces.

A small current flows through the probe from one end 
to the other. When a magnetic field is applied, the electrons 
are pushed sideways by the magnetic force, so that they 
accumulate along one side of the probe (the right-hand 
side in Figure 27.12). This is the Hall effect. The charge 
is detected as a small voltage across the probe, known as 
the Hall voltage. The greater the flux density of the field, 
the greater the Hall voltage. The control box amplifies the 
voltage and it is displayed by the meter. If the direction of 
the magnetic field is reversed, the electrons are pushed in 
the opposite direction and so the Hall voltage is reversed.

An equation for the Hall voltage
Using what we know about electric current and the forces 
on electric charges produced by electric and magnetic 
fields, we can derive an expression for the Hall voltage VH. 
Figure 27.13 shows the situation. The Hall voltage is the 
voltage which appears between the two opposite sides of 
the slice.

As we have seen, this voltage arises because electrons 
accumulate on one side of the Hall probe. There is a 
corresponding lack of electrons on the opposite side, i.e. 
a positive charge. As a result, there is an electric field 
between the two sides. The electric field strength E is 
related to the Hall voltage VH by:

E = VH
d

where d is the width of the slice. Now, picture a single 
electron as it travels with drift velocity v through the 
slice. It will experience a force to the right, caused by 
the magnetic field; the magnitude of this force is Bev. It 
will also experience a second force to the left, due to the 
electric field; this force has magnitude Ee.

When the current first starts to flow, there is no Hall 
voltage and so an electron will be pushed to the right by the 
magnetic force. However, as the charge on the right-hand 
side builds up, so does the electric field and this pushes 

7	 This question is about the velocity selector shown 
in Figure 27.11.
a	 State the directions of the magnetic and 

electric forces on a positively charged ion 
travelling towards the slit S.

b	 The speed of the ion is given by the equation:

	 v  =  
E
B

	 Calculate the speed of an ion emerging from the 
slit S when the magnetic flux density is 0.30 T 
and the electric field strength is 1.5 × 103 V m−1.

c	 Explain why ions travelling at a speed greater 
than your answer to b will not emerge from  
the slit.

QUESTION

The Hall effect
In Chapter 26, you saw how to use a Hall probe to 
measure magnetic flux density. The Hall effect is another 
mechanism in which the magnetic and electric forces on a 
moving charged particle are balanced.

A Hall probe works as follows. The probe itself is 
made of semiconductor (Figure 27.12). This material 
is used because the electrons move much faster in a 
semiconductor than in a metal for a given current, and so 
the effect is much greater. (Recall from Chapter 9 that the 
mean drift velocity of free electrons in a semiconductor is 
perhaps a million times greater than in a metal because 
there are many fewer free electrons in a semiconductor.)

Figure 27.12  Electrons are deflected as they move through 
the Hall probe. 
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Figure 27.13  a The Hall voltage is measured across the slice of 
semiconductor. b The forces on an electron when the electric 
and magnetic forces on it are balanced. 

the electron in the opposite direction to the magnetic 
force. Soon an equilibrium is reached. The resultant force 
on this moving electron is zero so that no more charge 
accumulates. Now we can equate the two forces:

eE = Bev
Substituting for E we have:

eVH
d

 = Bev

Now recall from Chapter 9 that the current I is related 
to the mean drift velocity of electrons by I = nAve, where 
A is the cross-sectional area of the conductor and n is 
the number density of conducting particles (in this case, 
electrons). So we can substitute for v to get:

eVH
d

 = BeI
nAe

Making VH the subject of the equation (and cancelling e) 
gives:

VH = BId
nAe

But the area of the side face of the conductor A = d × t,  
where t is the thickness of the slice. Substituting and 
cancelling gives:

VH = BI
nte

This equation for the Hall voltage shows that VH is directly 
proportional to the magnetic flux density B. That is what 

Discovering the electron
Today, a great deal is known about electrons and we use 
the idea of electrons to explain all sorts of phenomena, 
including electric current and chemical bonding.  
However, at the end of the 19th century, physicists were 
only just beginning to identify the tiny particles which 
make up matter.

One of the leaders in this field was the English physicist 
J.J. Thomson (Figure 27.14). In the photograph he is shown 
with the deflection tube which he used in his discovery of 
the electron. His tube was similar in construction to the 
deflection tube shown in Figure 27.9. At one end was an 
electron gun that produced a beam of electrons (which 
he called ‘cathode rays’). Two metal plates allowed him to 

8	 A Hall probe is designed to operate with a 
steady current of 0.020 A flowing through a 
semiconductor slice of thickness 0.05 mm. The 
number density of electrons in the semiconductor 
is 1.5 × 1023 m−3.
a	 Determine the Hall voltage which will result 

when the probe is placed in a magnetic  
field of flux density 0.10 T.  
(Electron charge = 1.60 × 10−19 C.) 

b	 Explain why the current in the Hall probe must 
be maintained at a constant value.

9	 Suggest how the Hall effect could be used to 
determine the number density of conducting 
charges in a semiconducting material. 

QUESTIONS

makes the Hall effect so useful for measuring B fields. 
To get a large voltage, we want the denominator in this 
expression to be as small as possible. This is why the Hall 
probe uses a slice of semiconductor (n is small) and why 
the slice is thin (t is small).

In some materials, the charges moving are not 
electrons – for example, they may be positively-charged 
‘holes’. Consequently we can write a more general equation 
for the Hall voltage replacing e with q, where q is the 
charge of an individual charge carrier. This gives 

VH = BI
ntq

Positive charges will be deflected in the opposite direction 
to negative charges, and so we can determine whether the 
charge carriers are positive or negative by the sign of the 
Hall voltage.
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apply an electric field to deflect the beam, and he could 
place magnets outside the tube to apply a magnetic force to 
the beam. Here is a summary of his observations and what 
he concluded from them:

■■ The beam in his tube was deflected towards a positive plate 
and away from a negative plate, so the particles involved 
must have negative charge. This was confirmed by the 
deflection of the beam by a magnetic field.

■■ When the beam was deflected, it remained as a tight, single 
beam rather than spreading out into a broad beam. This 
showed that, if the beam consisted of particles, they must 
all have the same mass, charge and speed. (Lighter particles 
would have been deflected more than heavier ones; 
particles with greater charge would be deflected more; and 
faster particles would be deflected less.)

■■ By applying both electric and magnetic fields, Thomson was 
able to balance the electric and magnetic forces so that the 
beam in the tube remained straight. He could then 
calculate the charge-to-mass ratio 

e
me

 for the particles he 

had discovered. Although he did not know the value of 
either e or me individually, he was able to show that the 
particles concerned must be much lighter than atoms. They 
were the particles which we now know as electrons. In fact, 
for a while, Thomson thought that atoms were made up of 
thousands of electrons, although his ideas could not explain 
how so many negatively charged particles could combine to 
produce a neutral atom.

The charge e of an electron is very small (1.60 × 10−19 C) 
and difficult to measure. The American physicist Robert 
Millikan devised an ingenious way to do it. He observed 
electrically charged droplets of oil as they moved in 
electric and gravitational fields and found that they all had 
a charge which was a small integer multiple of a particular 
value, which he took to be the charge on a single electron, 
e. Having established a value for e, he could easily combine 
this with Thomson’s value for e/me to calculate the electron 
mass me.

	10	 If the electron charge is 1.60 × 10−19 C and the 

		  charge-to-mass ratio  
e

me
  is 1.76 × 1011 C kg−1, 

		  calculate the electron mass.

Summary
■■ The magnetic force on a moving charged particle is 

given by the equation F = BQv. For an electron the 
equation is F = Bev.

■■ A charged particle entering at right angles to a 
uniform magnetic field describes a circular path 
because the magnetic force is perpendicular to  
the velocity.

■■ The equation for an electron travelling in a uniform 
magnetic field is:
mev 2

r   =  Bev

■■ The velocity of an undeflected charged particle in a 
region where electric and magnetic fields are at right 
angles is given by the equation:

v  =  
E
B

■■ The Hall voltage is given by

VH  =  
BI

ntq

QUESTION

Figure 27.14  J.J. Thomson – in 1897 he discovered the 
electron using the vacuum tube shown here. 
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End-of-chapter questions
1 The magnetic force BQv causes an electron to travel in a circle in a uniform magnetic field. Explain why 

this force does not cause an increase in the speed of the electron. [3]

2 An electron beam is produced from an electron gun in which each electron is accelerated through a 
p.d. of 1.6 kV. When these electrons pass at right angles through a magnetic field of flux density 8.0 mT, 
the radius of curvature of the electron beam is 0.017 m. Determine the specific charge of the electron, 

e
me 

. [4]

3 Two particles, an α-particle and a β−-particle, are travelling through a uniform magnetic field. They have 
the same velocity and their velocities are at right angles to the field. Determine the ratio of:
a the masses of the two particles  [2]
b the charges on the two particles  [2]
c the forces created by the magnetic field on the two particles  [2]
d the radii of the circular orbits of the two particles in the magnetic field. [2]

4 A moving charged particle experiences a force in an electric field and also in a magnetic field. 
State two diff erences between the forces experienced in the two types of field.  [2]

5 Figure 27.15 shows the path of an electron as it travels in air. The electron rotates clockwise around 
a uniform magnetic field into the plane of the paper, but the radius of the orbit decreases in size.

Figure 27.15 For End-of-chapter Question 5. 

a i  Explain the origin of the force that causes the electron to spiral in this manner. [2]
ii Explain why the radius of the circle gradually decreases. [2]

b At one point in the path, the speed of the electron is 1.0 × 107 m s−1 and the magnetic flux density 
is 0.25 T. Calculate:
i the force on an electron at this point due to the magnetic field [2]
ii the radius of the path at this point. [2]
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6 Figure 27.16 shows an arrangement to deflect protons from a source to a detector using a magnetic 
field. A uniform magnetic field exists only within the area shown. Protons move from the source to 
the detector in the plane of the paper.

Figure 27.16 For End-of-chapter Question 6. 

a i  Copy the diagram and sketch the path of a proton from the source to the detector. Draw an 
arrow at two points on the path to show the direction of the force on the proton produced 
by the magnetic field. [3]

ii State the direction of the magnetic field within the area shown. [1]
b The speed of a proton as it enters the magnetic field is 4.0 × 106 m s−1. The magnetic flux density 

is 0.25 T. Calculate:
i the magnitude of the force on the proton caused by the magnetic field [1]
ii the radius of curvature of the path of the proton in the magnetic field. [2]

c Two changes to the magnetic field in the area shown are made. These changes allow an electron 
with the same speed as the proton to be deflected along the same path as the proton. State the 
two changes made. [2]

7 Figure 27.17 shows a thin strip of semiconductor material carrying a current in a magnetic field at 
right angles to the current.

Figure 27.17 For End-of-chapter Question 7. 

a The current in the strip is due to the movement of free electrons. 
i Add + and – signs to the diagram to show the charge separation caused by the Hall eff ect. 

Explain why the charges separate. [3]
ii Explain how an electron is able to move in a straight line along the strip. [1]

b The Hall voltage is measured using the same slice of semiconductor, the same current and the same 
magnetic field, but with the laboratory at two temperatures, one significantly higher than the other. 
Describe and explain the changes in the magnitude of the number density, the drift  velocity of the 
charge carriers and the Hall voltage in the two experiments. [6]

source

proton

proton
detector

region of
magnetic field

magnetic field

current
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8 Figure 27.18 shows an electron tube. Electrons emitted from the cathode accelerate towards the anode 
and then pass into a uniform electric field created by two oppositely charged parallel metal plates.

Figure 27.18 For End-of-chapter Question 8. 

a i Explain why the beam curves upwards. [2]
ii Explain how the pattern formed on the fluorescent screen shows that all the electrons have the 

same speed as they leave the anode. [2]
b Write down an equation relating the speed of the electrons v to the potential diff erence Vac between 

the anode and the cathode. [1]
c The deflection of the beam upwards can be cancelled by applying a suitable uniform magnetic field in 

the space between the parallel plates.
i State the direction of the magnetic field for this to happen. [1]
ii Write down an equation relating the speed of the electrons v, the electric field E that exists between 

the plates and the magnetic flux density B needed to make the electrons pass undeflected between 
the plates. [2]

iii Calculate the value of B required, using the apparatus shown in the diagram, given that the specific 
 charge on an electron 

e
me

 is 1.76 × 1011 C kg−1. [2]

9 Protons and helium nuclei from the Sun pass into the Earth’s atmosphere above the poles, where the 
magnetic flux density is 6.0 × 10−5 T. The particles are moving at a speed of 1.0 × 106 m s−1 at right angles to 
the magnetic field in this region. The magnetic field can be assumed to be uniform.
a Calculate the radius of the path of a proton as it passes above the Earth’s pole. [3]
b Draw a diagram to show the deflection caused by the magnetic field to the paths of a proton and of 

a helium nucleus which both have the same initial velocity as they enter the magnetic field. State on 
the diagram the radius of the path of each particle. [2]

 Mass of a helium nucleus = 6.8 × 10−27 kg
 Charge on a helium nucleus = 3.2 × 10−19 C

cathode

electron gun

anode

0 V

+1.0 kV +500 V

10 cm

5.0 cm

fluorescent
screen

beam
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10 Figure 27.19 shows a thin strip of metal of thickness t and width d. The metal strip is in a magnetic 
field of flux density B and carries a current I, as shown.

Figure 27.19 For End-of-chapter Question 10. 

a Copy Figure 27.19 and mark on your diagram:
i the side of the strip that becomes negative because of the Hall eff ect [1]
ii where a voltmeter needs to be placed to measure the Hall voltage. [1]

b Derive an expression for the Hall voltage in terms of I, B, t, the number density n of free electrons in 
the metal and the charge e on an electron. [3]

c Given that I  =  40 mA, d  =  9.0 mm, t  =  0.030 mm, B  =  0.60 T, e  = 1.6  × 10−19 C and n  =  8.5  × 1028 m–3, calculate:
i the mean drift  velocity v of the free electrons in the metal [2]
ii the Hall voltage across the metal strip. [2]

d i  Explain why, in terms of the movement of electrons, the Hall voltage increases when I increases. [2]
ii A Hall probe which measures the strength of a magnetic field uses a thin strip of a semiconductor 

rather than metal. Explain why a semiconductor is used. [2]
e Explain why, when the strip of metal is rotated about the horizontal axis XY, the Hall voltage varies 

between a maximum positive value and a maximum negative value. [2]

YX

B

I

t
d
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Learning outcomes
You should be able to:

■■ define magnetic flux and its units
■■ describe experiments which illustrate aspects of 

electromagnetic induction
■■ solve problems using Faraday’s and Lenz’s laws of 

electromagnetic induction
■■ explain simple applications of electromagnetic induction

Chapter 28:
Electromagnetic 
induction
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Generating electricity
Most of the electricity we use is generated by 
electromagnetic induction. This process goes on in the 
generators at work in power stations, in wind turbines 
(Figure 28.1) and, on a much smaller scale, in bicycle 
dynamos. It is the process whereby a conductor and 
a magnetic field are moved relative to each other to 
induce, or generate, a current or electromotive force 
(e.m.f.).

Observing induction
You can carry out some simple experiments in which 
you can observe some of the features of electromagnetic 
induction. These are described in Box 28.1. 

Figure 28.1  This giant wind turbine uses electromagnetic 
induction to produce electricity. Look for the two engineers  
at work. (You can identify them by their white helmets.)  
This gives you an idea of the size of the generator. 

BOX 28.1: Observing induction

For each experiment, try to predict what you will 
observe before you try the experiment.

Experiment 1
Connect a small electric motor to a moving-coil 
voltmeter (Figure 28.2). Spin the shaft of the motor 
and observe the deflection of the voltmeter. What 
happens when you spin the motor more slowly? What 
happens when you stop? Usually, we connect a motor 
to a power supply and it turns. In this experiment, you 
have turned the motor and it generates a voltage across 
its terminals. A generator is like a motor working in 
reverse.

Experiment 2
Connect a coil to a sensitive microammeter 
(Figure 28.3). Move a bar magnet in towards the 
coil. Hold it still, and then remove it. How does the 
deflection on the meter change? Try different speeds, 
and the opposite pole of the magnet. Try weak and 
strong magnets.

With the same equipment, move the coil towards the 
magnet and observe the deflection of the meter.

voltmeter

motor

Figure 28.2  A motor works in reverse as a generator. 

Figure 28.3  A magnet moving near a coil generates a small 
current. 

microammeter

coil
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Factors affecting induced current
In all the experiments described in Box 28.1, you have 
seen an electric current or an e.m.f. induced. In each case, 
there is a magnetic field and a conductor. When you move 
the magnet or the conductor, there is an induced current. 
When you stop, the current stops.

From the three experiments, you should see that the 
size of the induced current or e.m.f. depends on several 
factors.

For a straight wire, the induced current or e.m.f.  
depends on:

■■ the magnitude of the magnetic flux density
■■ the length of the wire in the field
■■ the speed of movement of the wire.

For a coil of wire, the induced current or e.m.f.  
depends on:

■■ the magnitude of the magnetic flux density
■■ the cross-sectional area of the coil
■■ the number of turns of wire
■■ the rate at which the coil turns in the field.

Explaining electromagnetic 
induction
You have seen that relative movement of a conductor and  
a magnetic field induces a current in the conductor when  
it is part of a complete circuit. (In the experiments in  
Box 28.1, the meter was used to complete the circuit.) Now 
we need to think about how to explain these observations, 
using what we know about magnetic fields.

Cutting magnetic field lines
Start by thinking about a simple bar magnet. It has a 
magnetic field in the space around it. We represent this 
field by magnetic field lines. Now think about what 
happens when a wire is moved into the magnetic field 
(Figure 28.5). As it moves, it cuts across the magnetic 
field. Remove the wire from the field, and again it must cut 
across the field lines, but in the opposite direction.

We think of this cutting of a magnetic field by a 
conductor as the effect that gives rise to an induced 
current in the conductor. It doesn’t matter whether the 
conductor is moved through the field or the magnet is 
moved past the conductor, the result is the same – there 
will be an induced current.

BOX 28.1: Observing induction (continued)

Experiment 3
Connect a long wire to a sensitive microammeter. Move 
the middle section of the wire up and down through 
the magnetic field between the magnets (Figure 28.4). 
Double up the wire so that twice as much of it passes 
through the magnetic field. What happens to the meter 
reading? How can you form the wire into a loop to give 
twice the deflection on the meter?

magnets

microammeter

Figure 28.4  Investigating the current induced when a wire 
moves through a magnetic field. 

S

N

moving wire cuts magnetic field lines

Figure 28.5  Inducing a current by moving a wire through a 
magnetic field.
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Th e eff ect is magnifi ed if we use a coil of wire. For a 
coil of N turns, the eff ect is N times greater than for a 
single turn of wire. With a coil, it is helpful to imagine the 
number of fi eld lines linking the coil. If there is a change 
in the number of fi eld lines which pass through the coil, 
an e.m.f. will be induced across the ends of the coil (or 
there will be an induced current if the coil forms part of a 
complete circuit).

Figure 28.6 shows a coil near a magnet. When the 
coil is outside the fi eld, there are no magnetic fi eld lines 
linking the coil. When it is inside the fi eld, fi eld lines link 
the coil. Moving the coil into or out of the fi eld changes 
this linkage, and this induces an e.m.f. across the ends of 
the coil.

Current direction
How can we predict the direction of the induced current? 
For the motor eff ect in Chapter 27, we used Fleming’s 
left -hand (motor) rule. Electromagnetic induction is like 
the mirror image of the motor eff ect. Instead of a current 
producing a force on a current-carrying conductor 
in a magnetic fi eld, we provide an external force on a 
conductor by moving it through a magnetic fi eld and this 
induces a current in the conductor. So you should not be 
too surprised to fi nd that we use the mirror image of the 
left -hand rule: Fleming’s right-hand (generator) rule.

N

Scoil outside
field – no
flux linkage

coil inside field –
flux links coil

seCond finger – Current

First finger – Field

thuMb – Motion

Figure 28.6 The flux passing through a coil changes as it is 
moved into and out of a magnetic field. 

1 Use the idea of a conductor cutting magnetic 
field lines to explain how a current is induced in a 
bicycle generator (Figure 28.7).

Figure 28.7 In a bicycle generator, a permanent magnet 
rotates inside a fixed coil of wire. For Question 1.

induced
current

fixed coil
rotating 
magnet

NN

Th e three fi ngers represent the same things again 
(Figure 28.8):

■■ thuMb – direction of Motion
■■ First finger – direction of external magnetic Field
■■ seCond finger – direction of (conventional) induced Current

In the example shown in Figure 28.9, the conductor is 
being moved downwards across the magnetic fi eld. Th ere 
is an induced current in the conductor as shown. Check 
this with your own right hand. You should also check 
that reversing the movement or the fi eld will result in the 
current fl owing in the opposite direction.

Figure 28.8 Fleming’s right-hand (generator) rule.

S

induced current

movement

field

current
motion

of wire

Figure 28.9 Deducing the direction of the induced current 
using Fleming’s right-hand rule.

QUESTION
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Induced e.m.f.
When a conductor is not part of a complete circuit, there 
cannot be an induced current. Instead, negative charge 
will accumulate at one end of the conductor, leaving the 
other end positively charged. We have induced an e.m.f. 
across the ends of the conductor.

Is e.m.f. the right term? Should it be voltage? In 
Chapter 9 you saw the distinction between voltage and 
e.m.f. Th e latter is the correct term here because, by 
pushing the wire through the magnetic fi eld, work is done 
and this is transformed into electrical energy. Th ink of 
this in another way. Since we could connect the ends of 
the conductor so that there is a current in some other 
component, such as a lamp, which would light up, it must 
be an e.m.f. – a source of electrical energy.

Figure 28.10 shows how the induced current gives rise 
to an induced e.m.f. Notice that, within the conductor, 
conventional current is from negative to positive, in 
the same way as inside a battery or any other source of 
e.m.f. In reality, the free electrons within the conductor 

positive charge
accumulates
at this end

S

this end is le� with  
negative charge

−

induced
current

movement
of wire

+

B

area A area A

a b

B

normal

θ

Figure 28.10 An e.m.f. is induced across the ends of the 
conductor. 

2 The coil in Figure 28.11 is rotating in a uniform 
magnetic field. Deduce the direction of the induced 
current in sections AB and CD. State which terminal, X 
or Y, will become positive.

3 When an aircraft  flies from east to west, its wings are 
an electrical conductor cutting across the Earth’s 
magnetic flux. In the northern hemisphere, which 
wingtip will become positively charged? Why will this 
wingtip be negative in the southern hemisphere? D

Y
X

A

B

magnetic
field lines

C

B

Figure 28.11 A coil rotating in a magnetic field. 

Figure 28.12 a The magnetic flux is equal to BA when the field 
is normal to the area. b The magnetic flux becomes BA cos θ 
when the field is at an angle θ to the normal of the area. 

travel from right to left , making the left -hand side of the 
conductor negative. What causes these electrons to move? 
Moving the conductor is equivalent to giving an electron 
within the conductor a velocity in the direction of this 
motion. Th is electron is in an external magnetic fi eld and 
hence experiences a magnetic force Bev from right to left . 
Check this out for yourself.

QUESTIONS

Magnetic flux and magnetic flux linkage
So far in this chapter we have looked at the ideas of 
electromagnetic induction in a descriptive way. Now we 
will see how to calculate the value of the induced e.m.f. 
and look at a general way of determining its direction.

In Chapter 26, we saw how magnetic fl ux density B is 
defi ned by the equation

B = F
IL

Now we can go on to defi ne magnetic fl ux as a quantity. 
We picture magnetic fl ux density B as the number of 
magnetic fi eld lines passing through a region per unit 
area. Similarly, we can picture magnetic fl ux as the total 
number of magnetic fi eld lines passing through an area 

A. For a magnetic fi eld normal to A, the magnetic fl ux Φ 
(Greek letter phi) must therefore be equal to the product of 
magnetic fl ux density and the area A (Figure 28.12a).
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1 Figure 28.13 shows a solenoid with a cross-sectional 
area 0.10 m2. It is linked by a magnetic field of flux 
density 2.0 × 10−3 T and has 250 turns. Calculate the 
magnetic flux and flux linkage for this solenoid.

 Step 1 We have B = 2.0  × 10−3 T, A =  0.10 m2, θ  = 0° 
and N = 250 turns. Hence we can calculate the flux Φ.
Φ  =  BA

Φ  = 2 .0  × 10−3  ×  0.10  =  2.0 × 10−4 Wb

 Step 2 Now calculate the flux linkage.
magnetic flux linkage = NΦ
magnetic flux linkage = 2.0  × 10−4  ×  250
 = 5.0  × 10−2 Wb

Figure 28.13 A solenoid in a magnetic field. 

A = 0.10 m2

N = 250 turns
B = 2.0 × 10–3 T 

WORKED EXAMPLEThe magnetic flux Φ through area A is defined as:
Φ = BA

where B is the component of the magnetic flux density 
perpendicular to the area.

How can we calculate the magnetic fl ux when B is not 
perpendicular to A? You can easily see that when the 
fi eld is parallel to the plane of the area, the magnetic fl ux 
through A is zero. To fi nd the magnetic fl ux in general, we 
need to fi nd the component of the magnetic fl ux density 
perpendicular to the area. Figure 28.12b shows a magnetic 
fi eld at an angle θ to the normal. In this case:

magnetic fl ux = (B cos θ) × A
or simply:

magnetic fl ux = BA cos θ
(Note that, when θ = 90°, fl ux = 0 and when θ = 0°, 
fl ux = BA.)

For a coil with N turns, the magnetic fl ux linkage 
is defi ned as the product of the magnetic fl ux and the 
number of turns; that is:

magnetic fl ux linkage = NΦ
or

magnetic fl ux linkage = BAN cos θ
Th e unit for magnetic fl ux or fl ux linkage is the weber 
(Wb).

One weber (1 Wb) is the flux that passes through an area 
of 1 m2 when the magnetic flux density is 1 T. 
1 Wb =  1 T m2.

An e.m.f. is induced in a circuit whenever there is a change 
in the magnetic fl ux linking the circuit. Since magnetic 
fl ux is equal to BA cos θ, there are three ways an e.m.f. can 
be induced:

■■ changing the magnetic flux density B
■■ changing the area A of the circuit
■■ changing the angle θ.

Now look at Worked example 1.

4 Use the idea of magnetic flux linkage to explain 
why, when a magnet is moved into a coil, the 
e.m.f. induced depends on the strength of the 
magnet and the speed at which it is moved.

5 In an experiment to investigate the factors that 
aff ect the magnitude of an induced e.m.f., a 
student moves a wire back and forth between two 
magnets, as shown in Figure 28.14. Explain why 
the e.m.f. generated in this way is much smaller 
than if the wire is moved up and down in the field.

S

movement
of wire

Figure 28.14 A wire is moved horizontally in a 
horizontal magnetic field. For Question 5. 

QUESTIONS
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Faraday’s law of 
electromagnetic induction
Earlier in this chapter, we saw that electromagnetic induction 
occurs whenever a conductor cuts across lines of magnetic 
flux – for example, when a coil is rotated in a magnetic 
field so that the magnetic flux linking the coil changes. We 
can use Faraday’s law of electromagnetic induction to 
determine the magnitude of the induced e.m.f. in a circuit:

The magnitude of the induced e.m.f. is proportional to 
the rate of change of magnetic flux linkage.

We can write this mathematically as:

E ∝ Δ(NΦ)
Δt

where Δ(NΦ) is the change in the flux linkage in a time Δt.  
Working in SI units, the constant of proportionality is 
equal to 1. Therefore:

E = Δ(NΦ)
Δt

The equation above is a mathematical statement of Faraday’s 
law. Note that it allows us to calculate the magnitude of the 
induced e.m.f.; its direction is given by Lenz's law, which is 
explained in the next section on page 442.

6	 In the type of generator found in a power station 
(Figure 28.15), a large electromagnet is made to rotate 
inside a fixed coil. An e.m.f. of 25 kV is generated; this 
is an alternating voltage of frequency 50 Hz. What 
factor determines the frequency? What factors do you 
think would affect the magnitude of the e.m.f.?

7	 A bar magnet produces a uniform flux density  
of 0.15 T at the surface of its north pole. The pole 
measures 1.0 cm ×  1.5 cm. Calculate the magnetic flux 
at this pole.

8	 A solenoid has diameter 5.0 cm and length 25 cm 
(Figure 28.16). There are 200 turns of wire. A current 
of 2.0 A creates a magnetic field of flux density 2.0  × 
10−5 T through the core of this solenoid. Calculate the 
magnetic flux linkage for this solenoid.

9	 A rectangular coil, 5.0 cm  × 7.5 cm, and having 120 turns, 
is at right angles to a magnetic field of flux density 1.2 T. 
Calculate the magnetic flux linkage for this coil.

5.0 cm

25 cm

200 turns

Figure 28.16  A solenoid. For Question 8. 

QUESTIONS

Figure 28.15  The generators of this power station produce 
electricity at an induced e.m.f. of 25 kV. For Question 6.

2	 A straight wire of length 0.20 m moves at a steady 
speed of 3.0 m s−1 at right angles to a magnetic field 
of flux density 0.10 T. Use Faraday’s law to determine 
the e.m.f. induced across the ends of the wire.

	 Step 1  With a single conductor, N = 1. To determine 
the e.m.f. E, we need to find the rate of change 
of magnetic flux; in other words, the change in 
magnetic flux per second.

WORKED EXAMPLES

Now look at Worked examples 2 and 3.

0.20 m

3.0 m s–1

3.0 m

B = 0.10 T

Figure 28.17  A moving wire cuts across the 
magnetic field. 

	 Figure 28.17 shows that, in 1.0 s, the wire travels 
3.0 m. Therefore:
change in magnetic flux = B × change in area
change in magnetic flux = 0.10 × (3.0 × 0.20)
	 = 6.0 × 10−2 Wb



442

Cambridge International A Level Physics

	10	 A conductor of length L moves at a steady speed v 
at right angles to a uniform magnetic field of flux 
density B. Show that the e.m.f. E across the ends of 
the conductor is given by the equation: 

		  E = BLv

�(You can use Worked example 2 to guide you through 
Question 11.)

	11	 A wire of length 10 cm is moved through a distance 
of 2.0 cm in a direction at right angles to its length 
in the space between the poles of a magnet, and 
perpendicular to the magnetic field. The flux density 
is 1.5 T. If this takes 0.50 s, calculate the average 
e.m.f. induced across the ends of the wire.

	12	 Figure 28.19 shows a search coil, having 2000 turns 
and of area 1.2 cm2, placed between the poles of a 
strong magnet. The ends of the coil are connected 
to a voltmeter. The coil is then pulled out of the 
magnetic field, and the voltmeter records an  
average e.m.f. of 0.40 V over a time interval of 0.20 s. 
Calculate the magnetic flux density between the 
poles of the magnet.

N
S

voltmeter

2000 turns

Figure 28.19  Using a search coil to measure flux. 

QUESTIONS

	 Step 2  Use Faraday’s law to determine the e.m.f.

E =  
Δ(NΦ)

Δt
      (N = 1)

ΔΦ = 6.0 × 10−2 Wb  and  Δt = 1.0 s

E =  
6.0 × 10−2

1.0   = 0.06 V

	 The induced e.m.f. across the ends of the wire is about 
60 mV.

3	 This example illustrates one way in which the flux 
density of a magnetic field can be measured, shown in 
Figure 28.18.

	 A search coil of wire having 2500 turns and of area 
1.2 cm2 is placed between the poles of a magnet so 

that the magnetic flux passes perpendicularly through 
the coil. The flux density of the field is 0.50 T. The coil is 
pulled rapidly out of the field in a time of 0.10 s. What 
average e.m.f. is induced across the ends of the coil?

	 Step 1  When the coil is pulled from the field, the flux 
linking it falls to zero. We have to calculate the magnetic 
flux linking the coil when it is in the field.

	 To convert cm2 into m2, multiply by a factor of 10−4. 
Hence A = 1.2 × 10−4 m2.
magnetic flux linkage = NΦ = BAN

	 = 0.50 × 1.2  × 10−4  × 2500
magnetic flux linkage = 0.15 Wb

	 Step 2  Now calculate the induced e.m.f. using Faraday’s 
law of electromagnetic induction.
Δ(NΦ) = 0.15 Wb  and  Δt = 0.10 s
magnitude of induced e.m.f. = rate of change of flux 
linkage

E =  
Δ(NΦ)

Δt
  =  

0.15
0.10  = 1.5 V

	 Note that, in this example, we have assumed that the 
flux linking the coil falls steadily to zero during the time 
interval of 0.10 s. Our answer is thus the average value of 
the e.m.f.

N
S

search coil

to datalogger

Figure 28.18  A search coil can be moved into and out 
of a magnetic field to detect magnetic flux.

WORKED EXAMPLES (continued)
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Lenz’s law
We use Faraday’s law to calculate the magnitude of an 
induced e.m.f. Now we can go on to think about the 
direction of the e.m.f. – in other words, which end of a 
wire or coil moving in a magnetic field becomes positive, 
and which becomes negative.

Fleming’s right-hand rule gives the direction of an 
induced current. This is a particular case of a more general 
law, Lenz’s law, which will be explained in this section. 
First, we will see how the motor effect and the generator 
effect are related to each other.

The origin of electromagnetic induction
So far, we have not given an explanation of 
electromagnetic induction. You have seen, from the 
experiments at the beginning of this chapter, that it does 
occur, and you know the factors that affect it. But what is 
the origin of the induced current?

Figure 28.20 gives an explanation. A straight wire XY 
is being pushed downwards through a horizontal magnetic 
field of flux density B. Now, think about the free electrons 
in the wire. They are moving downwards, so they are in 
effect an electric current. Of course, because electrons are 
negatively charged, the conventional current is flowing 
upwards.

We now have a current flowing across a magnetic 
field, and the motor effect will therefore come into play. 
Each electron experiences a force of magnitude Bev. 
Using Fleming’s left-hand rule, we can find the direction 
of the force on the electrons. The diagram shows that the 
electrons will be pushed in the direction from X to Y. So a 
current has been induced to flow in the wire; the direction 
of the conventional current is from Y to X.

Now we can check that Fleming’s right-hand rule gives 
the correct directions for motion, field and current, which 
indeed it does.

So, to summarise, there is an induced current 
because the electrons are pushed by the motor effect. 
Electromagnetic induction is simply a consequence of the 
motor effect.

In Figure 28.20, electrons are found to accumulate at Y. 
This end of the wire is thus the negative end of the e.m.f. 
and X is positive. If the wire was connected to an external 
circuit, electrons would flow out of Y, round the circuit, 
and back into X. Figure 28.21 shows how the moving wire 
is equivalent to a cell (or any other source of e.m.f.).

conductor
pushed downwards

magnetic
field lines

induced
current

movement
of electrons

XB

Y

Figure 28.20  Showing the direction of the induced current. 

movement
of wire

induced
current

magnetic field lines
current 
through
cell

++

Figure 28.21  A moving conductor in a magnetic field is a 
source of e.m.f., equivalent to a cell. 

Forces and movement
Electromagnetic induction is how we generate most of 
our electricity. We turn a coil in a magnetic field, and the 
mechanical energy we put in is transferred to electrical 
energy. By thinking about these energy transfers, we can 
deduce the direction of the induced current.

Figure 28.22 shows one of the experiments from earlier 
in this chapter. The north pole of a magnet is being pushed 
towards a coil of wire. There is an induced current in the 
coil, but what is its direction? The diagram shows the two 
possibilities.

The current in the coil turns it into an electromagnet. 
One end becomes the north pole, the other the south pole. 
In Figure 28.22a, if the induced current is in this direction, 
the coil end nearest the approaching north pole of the 

a

b

Incorrect

Correct
north

south

S

S
N

N

Figure 28.22  Moving a magnet towards a coil: the direction of 
the induced current is as shown in b, not a.
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 14 Draw a diagram to show the directions of the 
induced current and of the opposing force if you 
now try to move the wire shown in Figure 28.23 
upwards through the magnetic field.

QUESTION

magnet would be a south pole. Th ese poles will attract one 
another, and you could let go of the magnet and it would be 
dragged into the coil. Th e magnet would accelerate into the 
coil, the induced current would increase further, and the 
force of attraction between the two would also increase.

In this situation, we would be putting no energy into 
the system, but the magnet would be gaining kinetic 
energy, and the current would be gaining electrical energy. 
A nice trick if you could do it, but against the principle of 
conservation of energy!

It follows that Figure 28.22b must show the correct 
situation. As the north pole of the magnet is pushed 
towards the coil, the induced current makes the end of 
the coil nearest the magnet become a north pole. Th e two 
poles repel one another, and you have to do work to push 
the magnet into the coil. Th e energy transferred by your 
work is transferred to electrical energy of the current. Th e 
principle of energy conservation is not violated.

Figure 28.23 Moving a conductor through a magnetic field: 
the direction of the induced current is as shown in b, not a. 

A general law for induced e.m.f.
Lenz’s law summarises this general principle of energy 
conservation. Th e direction of an induced current is such 
that it always produces a force that opposes the motion 
that is being used to produce it. If the direction of the 
current were opposite to this, we would be getting energy 
for nothing. Here is a statement of Lenz’s law:

Any induced current or induced e.m.f. will be established 
in a direction so as to produce eff ects which oppose the 
change that is producing it.

Th is law can be shown to be correct in any experimental 
situation. For example, in Figure 28.3, a sensitive ammeter 
connected in the circuit shows the direction of the current 
as the magnet is moved in and out. If a battery is later 
connected to the coil to make a larger and constant current 

 13 Use these ideas to explain what happens if 
a you stop pushing the magnet towards the coil, 
and b you pull the magnet away from the coil.

force pushing
wire downwards

motor e�ect
force

induced
current

motor e�ect
force

force pushing
wire downwardsinduced

current

a Incorrect

b Correct

QUESTION

Figure 28.23 shows how we can apply the same 
reasoning to a straight wire being moved in a downward 
direction through a magnetic fi eld. Th ere will be an 
induced current in the wire, but in which direction? Since 
this is a case of a current across a magnetic fi eld, a force 
will act on it (the motor eff ect), and we can use Fleming’s 
left -hand rule to deduce its direction.

First we will consider what happens if the induced 
current is in the wrong direction. Th is is shown in Figure 
28.23a. Th e left -hand rule shows that the force that 
results would be downward – in the direction in which 
we are trying to move the wire. Th e wire would thus be 
accelerated, the current would increase, and again we 
would be getting both kinetic and electrical energy for no 
energy input.

Th e induced current must be as shown in Figure 
28.23b. Th e force that acts on it due to the motor eff ect 
pushes against you as you try to move the wire through 
the fi eld. You have to do work to move the wire, and hence 
to generate electrical energy. Once again, the principle of 
energy conservation is not violated.
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in the same direction, a compass will show what the poles 
are at the end of the solenoid. If a north pole is moved into 
the solenoid, then the solenoid itself will have a north pole 
at that end. If a north pole is moved out of the solenoid, 
then the solenoid will have a south pole at that end.

Using induction: eddy currents, 
generators and transformers
An induced e.m.f. can be generated in a variety of ways. 
What they all have in common is that a conductor is 
cutting across magnetic field lines (in some cases, the 
conductor moves; in others, the field lines move). The 
alternative way to look at any change is to say that the flux 
linking an area changes.

Eddy currents
Induced e.m.f.s are formed in some unexpected places. 
Consider the demonstration shown in Figure 28.25. A 
metal disc on the end of a rod swings freely between two 
opposite magnetic poles.

	15	 A bar magnet is dropped vertically downwards 
through a long solenoid, which is connected to 
an oscilloscope (Figure 28.24). The oscilloscope 
trace shows how the e.m.f. induced in the coil 
varies as the magnet accelerates downwards.

a	 Explain why an e.m.f. is induced in the coil as 
the magnet enters it (section AB of the trace).

b	 Explain why no e.m.f. is induced while the 
magnet is entirely inside the coil (section BC).

c	 Explain why section CD shows a negative 
trace, why the peak e.m.f. is greater over this 
section, and why CD represents a shorter time 
interval than AB.

	16	 You can turn a bicycle dynamo by hand and 
cause the lamps to light up. Use the idea of Lenz’s 
law to explain why it is easier to turn the dynamo 
when the lamps are switched off than when they 
are on.

E.m.f.

Time

solenoid

BA
C D

a

b

Figure 28.24  a A bar magnet falls through a long coil. 
b The oscilloscope trace shows how the induced e.m.f. 
varies with time. 

QUESTIONS

metal disc

S

N

Figure 28.25  Demonstrating eddy current damping.

Without the magnets, the disc oscillates from side to 
side for a long time. This is because air resistance is small 
and it takes a long time for the energy of the disc to be lost. 
When the magnets are present, the oscillation of the disc 
dies away quickly. As the disc enters the magnetic field, 
one side of the disc is cutting the magnetic field lines and 
so an induced e.m.f. is created in that side but not in the 
side that has not yet entered. Since the disc is a conductor, 
the induced e.m.f. creates currents in the disc itself. These 
currents are known as eddy currents. They flow in a 
circular fashion inside the disc. Lenz’s law predicts that 
the induced currents that flow in the disc will produce 
a force that opposes the motion, just as in Figure 28.23. 
Eddy currents, like other electrical currents, cause heating 
and the energy of the oscillation dies away quickly. The 
oscillation is damped by the eddy currents.

This principle can be used in some types of 
electromagnetic or eddy-current braking systems. For 
example, a large electromagnet suspended under a train 
can cause eddy currents in the rails and slow the train 
down. Better still, if the train has an electric motor, then 
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iron core (the rotor), wound 
in alternating directions to 
produce electromagnet 
poles as marked

N

S N

S
N

S

iron outer shell (the stator), 
with wire coil wound 
in alternating directions

output

Figure 28.28  In a generator, an electromagnet rotates inside 
a coil. 

the kinetic energy of the train can be used to turn the 
electric motor to generate an induced e.m.f. With the 
appropriate electronics the energy from the induced 
current can be passed back to the power supply that runs 
the train. This is an example of regenerative braking.

Generators
We can generate electricity by spinning a coil in a 
magnetic field. This is equivalent to using an electric 
motor backwards. Figure 28.26 shows such a coil in 
three different orientations as it spins. Notice that the 
rate of change of flux linkage is maximum when the coil 
is moving through the horizontal position – one side is 
cutting rapidly downwards through the field lines, the 
other is cutting rapidly upwards. In this position, we get a 
large induced e.m.f. As the coil moves through the vertical 
position, the rate of change of flux is zero – the sides of the 
coil are moving parallel to the field lines, not cutting them, 
so that there is hardly any change in the flux linkage.

X

YXY YX

rotation

field lines

Transformers
Another use of electromagnetic induction is in 
transformers. An alternating current is supplied to the 
primary coil and produces a varying magnetic field in the 
soft iron core (Figure 28.30). The secondary coil is also 
wound round this core, so the magnetic flux linking the 
secondary coil is constantly changing. Hence, according 
to Faraday’s law, a varying e.m.f. is induced across the 
secondary coil. The core is laminated – it is made up 
of thin sheets of soft iron. Using soft iron in the core 
increases the amount of the magnetic flux and, hopefully, 
all of the magnetic flux from the primary coil passes to 
the secondary coil. The thin sheets of iron in the core are 

0

Fl
ux

 li
nk

ag
e

Time

Time

e.m.f. = –gradient of flux linkage against
time graph

In
du

ce
d 

e.
m

.f.

0

e.m.f. = maximum

maximum rate of
flux change

rate of flux 
change = 0

e.m.f. = 0

Figure 28.27  The magnetic flux linking a rotating coil 
as it changes. This gives rise to an alternating e.m.f. The 
orientation of the coil is shown above the graphs. 

Figure 28.26  A coil rotating in a magnetic field.

Figure 28.27 shows how the flux linkage varies with 
time for a rotating coil. According to Faraday’s law, the 
induced e.m.f. is equal to minus the gradient of the flux 
linkage against time graph. 

■■ When the flux linking the coil is maximum, the rate of 
change of flux is zero and hence the induced e.m.f. is zero.

■■ When the flux linking the coil is zero, the rate of change 
of flux is maximum (the graph is steepest) and hence the 
induced e.m.f. is also maximum.

Hence, for a coil like this we get a varying e.m.f. – this 
is how alternating current is generated. In practice, 
it is simpler to keep the large coil fixed and spin an 
electromagnet inside it (Figure 28.28). A bicycle generator 
(see Figure 28.7) is similar, but in this case a permanent 
magnet is made to spin inside a fixed coil. This makes for a 
very robust device.
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	17	 Figure 28.29 represents a coil of wire ABCD being 
rotated in a uniform horizontal magnetic field. 
Copy and complete the diagram to show the 
direction of the induced current in the coil, and 
the directions of the forces on sides AB and CD 
that oppose the rotation of the coil.

	18	 Does a bicycle generator (Figure 28.7) generate 
alternating or direct current? Justify your answer.

	19	 The peak e.m.f. induced in a rotating coil in a 
magnetic field depends on four factors: magnetic 
flux density B, area of the coil A, number of turns 
N, and frequency f of rotation. Use Faraday’s law to 
explain why the e.m.f. must be proportional to each 
of these quantities.

	20	 Explain why, if a transformer is connected to a 
steady (d.c.) supply, no e.m.f. is induced across the 
secondary coil.

Figure 28.29  A coil rotating in a magnetic field.

D

B

A
C

B

secondary
(7 turns)

output 
voltage

so� iron core

primary
(3 turns)

input
voltage

Figure 28.30  The construction of a transformer.

QUESTIONS

separated by a non-conductor so eddy currents cannot flow 
from one sheet to the next. This reduces the eddy currents 
and the thermal energy that they create in the core.

There is much more about transformers in Chapter 29, 
where we will look at how they are used to change voltages 
in circuits which make use of alternating currents.

Summary
■■ In a magnetic field of magnetic flux density B, the 

magnetic flux passing through an area A is given  
by Φ = BA.

■■ The magnetic flux linking a coil of N turns is the 
magnetic flux linkage, NΦ.

■■ Flux and flux linkage are measured in webers (Wb). 
1 Wb = 1 T m2.

■■ When a conductor moves so that it cuts across a 
magnetic field, an e.m.f. is induced across its ends. 
When the magnetic flux linking a coil changes, an 
e.m.f. is induced in the coil.

■■ Faraday’s law states that the magnitude of the 
induced e.m.f. is equal to the rate of change of 
magnetic flux linkage:

E  =  
Δ(NΦ)

Δt

■■ Lenz’s law states that the induced current or e.m.f. is 
in a direction so as to produce effects which oppose 
the change that is producing it.

■■ In an a.c. generator, an e.m.f. is induced because the 
rotating coil changes the magnetic flux linking the coil.
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End-of-chapter questions
1 A student thinks that electrical current passes through the core in a transformer to the secondary coil. 

Describe how you might demonstrate that this is not true and explain how an electrical current is 
actually induced in the secondary coil. Use Faraday’s law in your explanation.  [3]

2 A square coil of 100 turns of wire has sides of length 5.0 cm. It is placed in a magnetic field of flux 
density 20 mT, so that the flux is perpendicular to the plane of the coil.
a Calculate the flux through the coil. [2]
b The coil is now pulled from the magnetic field in a time of 0.10 s. Calculate the average e.m.f. 

induced in it. [3]

3 An aircraft  of wingspan 40 m flies horizontally at a speed of 300 m s−1 in an area where the vertical 
component of the Earth’s magnetic field is 5.0 × 10−5 T. Calculate the e.m.f. generated between the 
aircraft ’s wingtips. [3]

4 What is an eddy current? State one example where eddy currents are useful and one where they 
are a disadvantage. [3]

5 Figure 28.27 shows the magnetic flux linkage and induced e.m.f. as a coil rotates. Explain why the 
induced e.m.f. is a maximum when there is no flux linkage and the induced e.m.f. is zero when 
the flux linkage is a maximum. [4]

6 a  Explain what is meant by a magnetic flux linkage of 1 Wb. [2]
b Figure 28.31 shows how the magnetic flux density through a 240 turn coil with a cross-sectional 

area 1.2 × 10−4 m2 varies with time.

Figure 28.31 For End-of-chapter Question 6. 

i Determine the maximum rate of change of flux in the coil. [2]
ii Determine the induced e.m.f. in the coil. [2]
iii Sketch a diagram to show the induced e.m.f. varies with time. Mark values on both the e.m.f. 

and time axes. [2]
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7 Figure 28.32 shows a square coil about to enter a region of uniform magnetic field of magnetic flux 
density 0.30 T. The magnetic field is at right angles to the plane of the coil. The coil has 150 turns and 
each side is 2.0 cm in length. The coil moves at a constant speed of 0.50 m s−1.

Figure 28.32 For End-of-chapter Question 7. 

a i  Calculate the time taken for the coil to completely enter the region of magnetic field. [1]
ii Determine the magnetic flux linkage through the coil when it is all within the region of magnetic field. [2]

b Explain why the induced e.m.f. is constant while the coil is entering the magnetic field. [1]
c Use your answer to a to determine the induced e.m.f. across the ends of the coil. [4]
d What is the induced e.m.f. across the ends of the coil when it is completely within the magnetic field? 

Explain your answer. [2]
e Sketch a graph to show the variation of the induced e.m.f. with time from the instant that the coil 

enters the magnetic field. Your time axis should go from 0 to 0.08 s. [2]

8 a State Faraday’s law of electromagnetic induction. [2]
b A circular coil of diameter 200 mm has 600 turns (Figure 28.33). It is placed with its plane perpendicular 

to a horizontal magnetic field of uniform flux density 50 mT. The coil is then rotated through 90° about 
a vertical axis in a time of 120 ms.

Figure 28.33 For End-of-chapter Question 8. 

 Calculate:
i the magnetic flux passing through the coil before the rotation [2]
ii the change of magnetic flux linkage produced by the rotation [2]
iii the average e.m.f. induced in the coil during the rotation. [2]

2.0 cm

2.0 cm

coil with
150 turns

uniform magnetic field
(into plane of paper)

0.50 m s–1

B

axis

coil
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 9 a  State Lenz’s law and explain how you would use a coil and a magnet to demonstrate the law. 
Make clear any other apparatus that you use. [4]

b A vehicle brake consists of an aluminium disc attached to a car axle (Figure 28.34). Electromagnets 
cause an e.m.f. to be induced in the disc.

Figure 28.34 For End-of-chapter Question 9. 

i Explain how the induction of an e.m.f. causes the vehicle to slow down. [3]
ii Explain why the braking eff ect increases when the speed of the car increases. [2]

10 A bicycle wheel is mounted vertically on a metal axle in a horizontal magnetic field (Figure 28.35). 
Sliding connections are made to the metal edge of the wheel and to the metal axle.

Figure 28.35 For End-of-chapter Question 10. 

a i  Ex plain why an e.m.f. is induced when the wheel rotates. [2]
 ii State and explain two ways in which this e.m.f. can be increased. [2]
b The wheel rotates five times per second and has a radius of 15 cm. The magnetic flux density may be 

assumed to be uniform and of value 5.0 × 10−3 T.
 Calculate:
 i the area swept out each second by one spoke [2]
 ii the induced e.m.f. between the contacts. [2]

car wheel

aluminium disc

car axle

electromagnets

magnetic field

connections

spoke



451

Chapter 29:
Alternating 
currents

Learning outcomes
You should be able to:

■■ measure frequency and voltage using a cathode-ray 
oscilloscope

■■ describe an alternating current or voltage in terms of 
period, frequency, peak value and r.m.s. value

■■ relate r.m.s. and peak values for sinusoidal currents
■■ solve problems involving transformers
■■ explain the benefits of transmission of electrical energy 

at high voltages
■■ explain how diodes and capacitors can be used to 

produce rectified, smoothed currents and voltages
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Describing alternating current
In developed countries, mains electricity is a supply 
of alternating current (a.c.). The first mains electricity 
supplies were developed towards the end of the 19th 
century; at that time, a great number of different 
voltages and frequencies were used in different places. 
In some places, the supply was direct current (d.c.). 
Nowadays this has been standardised across much of 
the world, with standard voltages of 110 V or 230 V (or 
similar), and frequencies of 50 Hz or 60 Hz.

In this chapter we will look at some of the reasons 
why a.c. has been chosen as standard. First, however, 
we must take a close look at the nature of alternating 
currents.

Sinusoidal current
An alternating current can be represented by a graph such 
as that shown in Figure 29.2. This shows that the current 
varies cyclically. During half of the cycle, the current is 
positive, and in the other half it is negative. This means 
that the current flows alternately one way and then the 
other in the wires in which it is travelling. Whenever 
you use a mains appliance, current flows backwards and 
forwards in the wires between you and the power station 
where it is being generated. At any instant in time, the 
current has a particular magnitude and direction given by 
the graph.

The graph has the same shape as the graphs used to 
represent simple harmonic motion (see Chapter 19), and 
it can be interpreted in the same way. The electrons in a 
wire carrying a.c. thus move back and forth with s.h.m. 
The current varies like a sine wave and so it is described 
as sinusoidal. (In principle, any current whose direction 
changes between positive and negative can be described 
as alternating, but we will only be concerned with those 
which have a regular, sinusoidal pattern.)

An equation for a.c.
As well as drawing a graph, we can write an equation to 
represent alternating current. This equation tells us the 
value of the current I at any time t:

I = I0 sin ωt
where ω is the angular frequency of the supply measured 
in rad s−1 (radians per second). This is related to the 
frequency f in the same way as for s.h.m.:

ω = 2πf
and the frequency and period are related by:

f = 1
T

The quantity I0 is known as the peak value of the 
alternating current, found from the highest point on the 
graph. (It is the amplitude of the varying current.)
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Figure 29.1  Public electricity supplies made possible new 
forms of street lighting and advertising. 

Figure 29.2  A graph to represent a sinusoidal alternating 
current. 

1	 The following questions relate to the graph of 
Figure 29.2.
a	 What is the value of the current I when time  

t = 5 ms? In which direction is it flowing?
b	 At what time does the current next have the 

same value, but negative?
c	 What is the time T for one complete cycle?
d	 What is the frequency of the alternating 

current?

QUESTION
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Alternating voltages
Alternating current is produced in power stations by large 
generators like those shown in Figure 29.3. 

Measuring frequency and voltage 
An oscilloscope can be used to measure the frequency and 
voltage of an alternating current. Box 29.1 explains how to 
do this. There are two types of oscilloscope. The traditional 
cathode-ray oscilloscope (c.r.o.) uses an electron beam. 
The alternative is a digital oscilloscope, which is likely 
to be much more compact and which can store data and 
display the traces later.

4	 An alternating voltage V (in V) is represented by 
the equation:

	 V = 300 sin (100πt)
a	 What are the values of V0, ω and f for this 

voltage?
b	 What is the value of V when t = 0.002 s? (Recall 

that 100πt is in radians when you calculate this.)
c	 Sketch a graph to show two complete cycles of 

this voltage.

2	 The following questions relate to the graph of 
Figure 29.2.
a	 What are the values of I0 and ω?
b	 Write an equation to represent this current.

3	 An alternating current (measured in amps, A) is 
represented by the equation:

	 I = 5.0 sin (120πt)
a	 For this current what are the values of I0, ω  

and f ? What is the period T of the oscillation?
b	 Sketch a graph to represent the current.

V

T t

V0

–V0

0
T
2

3T
2

Figure 29.3  Generators in the generating hall of a large power 
station. 

In principle, a generator consists of a coil rotating in a 
magnetic field. An e.m.f. is induced in the coil according 
to the laws of electromagnetic induction. This e.m.f. V 
varies sinusoidally, and so we can write an equation to 
represent it which has the same form as the equation for 
alternating current:

V = V0 sin ωt
where V0 is the peak value of the voltage. We can also 
represent this graphically, as shown in Figure 29.4.

Figure 29.4  An alternating voltage. 

A c.r.o. is an electron beam tube, as shown in Figure 
27.4 (page 424), but with an extra set of parallel 
plates to produce a horizontal electric field at right 
angles to the beam (Figure 29.5).

The principles of a c.r.o.
The signal into the c.r.o. is a repetitively varying 
voltage. This is applied to the y-input, which deflects 
the beam up and down using the parallel plates Y1 
and Y2 shown in Figure 29.5. The time-base produces 
a p.d. across the other set of parallel plates X1 and X2 
to move the beam from left to right across the screen.

QUESTION

QUESTIONS

BOX 29.1: Measurements using an oscilloscope
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BOX 29.1: Measurements using an oscilloscope (continued)

When the beam hits the screen of the c.r.o. it 
produces a small spot of light. If you look at the screen 
and slow the movement down you can see the spot 
move from left to right, while the applied signal moves 
the spot up and down. When the spot reaches the right 
side of the screen it flies back very quickly and waits 
for the next cycle of the signal to start before moving to 
the right once again. In this way the signal is displayed 
as a stationary trace on the screen. There may be many 
controls on a c.r.o., even more than those shown on the 
c.r.o. illustrated in Figure 29.6.

The controls
The X-shift and the Y-shift controls move the whole trace 
in the x-direction and the y-direction, respectively. The 

two controls that you must know about are the time-
base and the Y-gain, or Y-sensitivity.

You can see in Figure 29.6 that the time-base control 
has units marked alongside. Let us suppose that this 
reads 5 ms/cm, although it might be 5 ms/division. This 
shows that 1 cm (or 1 division) on the x-axis represents 
5 ms. Varying the time-base control alters the speed with 
which the spot moves across the screen. If the time-base 
is changed to 1 ms/cm, then the spot moves faster and 
each centimetre represents a smaller time.

The Y-gain control has a unit marked in volts/cm,  
or sometimes volts/division. If the actual marking is  
5 V/cm, then each centimetre on the y-axis represents 
5 V in the applied signal.

It is important to remember that the x-axis 
represents time and the y-axis represents voltage.

Determining amplitude and frequency
If you look at the c.r.o trace shown in Figure 29.7, you 
can see that the amplitude of the waveform is 2 cm  
and the distance along the x-axis for one complete wave 
is 4 cm.

If the Y-gain or Y-sensitivity setting is 2 V/cm, then 
the highest voltage is 2 × 2 = 4 V. If the time-base setting 
is 5 ms/cm, then the time for one wave (the period) is  
4 × 5 = 20 ms.

Since the x-axis measures time, the c.r.o. trace can 
be used to measure frequency. In the above example, 
since

period = 
1

frequency

frequency = 
1

0.02
 = 50 Hz

heated
cathode

vacuum
anode

electron beam

screen

X1

X2

Y1

Y2

electron gun

Figure 29.5  The construction of a cathode-ray 
oscilloscope. Cathode rays (beams of electrons) are 
produced in the electron gun and then deflected by 
electric fields before they strike the screen.

Figure 29.6  The controls of a typical c.r.o. 
Figure 29.7  A c.r.o. trace when a sinusoidal alternating 
current is applied to the Y-plates.

brightness focus

Y input
on
o�

time-base

X-shi
 Y-shi


Y-gain

1 cm



455

Chapter 29: Alternating currents

Power and a.c.
We use mains electricity to supply us with energy. If the 
current and voltage are varying all the time, does this 
mean that the power is varying all the time too? Th e 
answer to this is yes. You may have noticed that some 
fl uorescent lamps fl icker continuously, especially if you 
observe them out of the corner of your eye. A tungsten 
fi lament lamp would fl icker too, but the frequency of the 
mains has been chosen so that the fi lament does not have 
time to cool down noticeably between peaks in the supply.

BOX 29.2: Comparing a.c. and d.c

Because power supplied by an alternating current 
is varying all the time, we need to have some way of 
describing the average power which is being supplied. To 
do this, we compare an alternating current with a direct 
current, and try to find the direct current that supplies 
the same average power as the alternating current.

Figure 29.8 shows how this can be done in practice. 
Two lamps are placed side by side; one is connected 

to an a.c. supply (on the right) and the other to a d.c. 
supply (the batteries on the left ). The a.c. supply is 
adjusted so that the two lamps are equally bright, 
indicating that the two supplies are providing energy 
at the same average rate. The output voltages are then 
compared on the double-beam oscilloscope.

A typical trace is shown in Figure 29.9. This shows 
that the a.c. trace sometimes rises above the steady d.c. 
trace, and sometimes falls below it. This makes sense: 
sometimes the a.c. is delivering more power than the 
d.c., and sometimes less, but the average power is the 
same for both.

Figure 29.8 Comparing direct and alternating currents 
that supply the same power. The lamps are equally 
bright.

Figure 29.9 The oscilloscope trace from the 
experiment shown in Figure 29.8.

5 If the Y-sensitivity and time-base for the trace 
shown in Figure 29.7 are 5 V/cm and 10 ms/cm, 
what are the amplitude, period and frequency of 
the signal to the Y-input?

6 Draw the c.r.o. trace for a sinusoidal voltage of 
frequency 100 Hz and amplitude 10 V, when the 
time-base is 10 ms/cm and the Y-sensitivity is 
10 V/cm.

QUESTIONS Root-mean-square values
Th ere is a mathematical relationship between the peak 
value V0 of the alternating voltage and a d.c. voltage which 
delivers the same average electrical power. Th e d.c. voltage 
is about 70% of V0. (You might have expected it to be about 
half, but it is more than this, because of the shape of the 
sine graph.) Th is steady d.c. voltage is known as the root-
mean-square (r.m.s.) value of the alternating voltage. In 
the same way, we can think of the root-mean-square value 
of an alternating current, Irms:

The root-mean-square value of an alternating current 
is that steady current which delivers the same average 
power as the a.c. to a resistive load.

(Th e lamps in Box 29.2 are the ‘resistive loads’.) A full 
analysis, which we will come to shortly, shows that Irms is 
related to I0 by:

Irms = I0/   2 or Irms ≈ 0.707 × I0

Th is is where the factor of 70% comes from. Note that this 
factor only applies to sinusoidal alternating currents.
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7	 What is the r.m.s. value of an alternating current 
represented (in amps) by the equation  
I = 2.5 sin (100πt)?

8	 The mains supply to domestic consumers in many 
European countries has an r.m.s. voltage Vrms 
of 230 V. (Note that it is the r.m.s. value which is 
generally quoted, not the peak value.) What is the 
peak value of the supply?

	 9	 What is the average power dissipated when a 
sinusoidal alternating current with a peak value of 
3.0 A flows through a 100 Ω resistor?

	10	 A sinusoidal voltage of peak value 325 V is 
connected across a 1 kΩ resistor.
a	 What is the r.m.s. value of this voltage?
b	 Use V = IR to calculate the r.m.s. current which 

flows through the resistor.
c	 What is the average power dissipated in the 

resistor?
d	 What is the peak power dissipated in the resistor?Calculating power

The importance of r.m.s. values is that they allow us 
to apply equations from our study of direct current to 
situations where the current is alternating. So, to calculate 
the average power dissipated in a resistor, we can use the 
usual formulae for power:

P = I 2R = IV = V 2

R
Remember that it is essential to use the r.m.s. values of 
I and V, as in Worked example 1. If you use peak values, 
your answer will be too great by a factor of 2.

Where does this factor of 2 come from? Recall that 
r.m.s. and peak values are related by I0 = 2Irms. So, if you 
calculate I 2R using I0 instead of Irms, you will introduce 
a factor of    2 2, i.e. a factor of 2. (The same is true if you 
calculate power using V0 instead of Vrms.) It follows that, 
for a sinusoidal alternating current, peak power is twice 
average power.

1	 A sinusoidal p.d. of peak value 25 V is connected 
across a 20 Ω resistor. What is the average power 
dissipated in the resistor?

	 Step 1  Calculate the r.m.s. value of the p.d.:

Vrms =  
V0

2
  =  

25
2

  =  17.7 V

	 Step 2  Now calculate the average power dissipated:

P  =  
V 2

R
  =  

17.72

20   =  15.6 W

	 (Note that, if we had used V0 rather than Vrms, we  

	 would have found P = 
252

20  = 31.3 W, which is double 

	 the correct answer.)

I

t0

0

t

I 2

<I 2>
I 2

Figure 29.10  An alternating current I is alternately positive 
and negative, while I 2 is always positive.

Explaining root-mean-square
We will now briefly consider the origin of the term 
root-mean-square and show how the factor of    2 comes 
about. The equation P = I 2R tells us that the power P is 
proportional to the square of the current I. Figure 29.10 
shows how we can calculate I 2 for an alternating current. 
The current I varies sinusoidally, and during half of each 
cycle it is negative. However, I 2 is always positive (because 
the square of a negative number is positive). Notice that I 2 
varies up and down, and that it has twice the frequency of 
the current.

Now, if we consider <I 2 >, the average (mean) value of 
I 2, we find that its value is half the peak value (because the 
graph is symmetrical):

<I 2 > = 12 I 2

QUESTIONSQUESTIONS

WORKED EXAMPLE
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To find the r.m.s. value of I, we now take the square root of 
<I 2>. This introduces a factor of the square root  
of  12 , or 1

2  .
Summarising this process: to find the r.m.s. value of 

the current, we find the root of mean of the square of the 
current – hence r.m.s.

Why use a.c. for electricity 
supply?
There are several reasons for preferring alternating 
voltages for a national electricity supply system. The 
most important reason is that a.c. can be transformed 
to high voltages, so that the current flowing is reduced, 
and this leads to lower power losses in the transmission 
lines. Typically, the generators at a power station produce 
electrical power at a voltage of 25 kV. This is transformed 
up to a voltage of perhaps 400 kV (and as much as 1 MV 
in some countries). The power is then transmitted along 
many kilometres of high-voltage power lines (Figure 
29.11) before being transformed down to a lower voltage 
for supply to the millions of consumers. The transformers 
used for increasing and decreasing the voltage are 
discussed in detail in the next section.

This high voltage brings problems: the lines must be 
suspended high above the ground between pylons, and 
high-quality insulators are needed to prevent current 
passing from the cables to the pylons. As current flows 
through transmission lines (wires), it loses power because 
of the resistance of the lines. The wires become warm; this 
is resistive or ohmic heating, as discussed in Chapter 9. The 
smaller the current, the smaller the losses. This is illustrated 
in Worked example 2.

2	 A power station generates electrical power at a 
rate of 10 MW. This power is to be transmitted along 
cables whose total resistance is 10 Ω. Calculate the 
power losses in the cable if the power is transmitted 
at 50 kV and at 250 kV.

	 Step 1  Using I =  
P
V

, calculate the current flowing in 
each case:

for 50 kV:	 I  =  
10 × 106

5 × 104   = 200 A

for 250 kV:	 I  =  
10 × 106

25 × 104   = 40 A

	 Step 2  Using P = I 2R, calculate the power losses in 
each case:
for 50 kV:	 P = 2002 × 10 = 4 × 105 = 400 kW
for 250 kV:	 P = 402 × 10 = 1.6 × 104 = 16 kW

	 Hint: Take care! Note that we have two quantities 
for which we are using the symbol P: the total power 
being transmitted, and the power lost in the wires. 
Notice that using a higher voltage does not change the 
resistance of the cables.

	 We have shown that, by increasing the voltage by a 
factor of 5, we have reduced the power losses by a 
factor of 25.

Figure 29.11  Power lines carry electricity from power station 
to consumer.

Economic savings
The resistive heating of power lines is a waste of money, 
in two ways. Firstly, it costs money to generate power 
because of the fuel needed. Secondly, more power stations 
are required, and power stations are expensive. The use 
of transformers to transform power to high voltages saves 
a few per cent of a national bill for electrical power, and 
means that fewer expensive power stations are needed.

It is claimed that having a few, very large power 
stations gives economies of scale, but this is debated by 
many environmentalists who would prefer to see many 
small, local power stations. It is also the case that new 
developments in technology are making it easier to 
transform direct current to high voltages. This is more 
compatible with sustainable electricity generating systems 
such as photovoltaics (solar cells), so we may see the 
development of d.c. grid systems in the near future.

WORKED EXAMPLE
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Transformers
Figure 29.12 shows the construction of a simple transformer. 
The primary coil of Np turns of wire is wound around an 
iron core. The secondary coil of Ns turns is wound on the 
opposite side of the core. (Many different configurations 
are possible, with different shapes of core and with the coils 
wound separately, or one on top of the other.)

The p.d. Vp across the primary coil causes an 
alternating current Ip to flow. This produces an alternating 
magnetic field in the soft iron core. The secondary coil 
is thus in a changing magnetic field, and an alternating 
current Is is induced in it. There is thus an alternating 
e.m.f. Vs across the secondary coil.

The equation above is known as the turns-ratio equation 
for a transformer.

In words, the ratio of the voltages is equal to the 
ratio of the number of turns of the transformer. For the 
transformer in Figure 29.12, a voltage of 1.0 V applied to 
the primary coil will result in an output of 2.0 V across the 
secondary coil; 50 V will give 100 V, and so on.

primary coil,
Np turns

iron core

secondary coil,
Ns turns

Ip

Is
Vp

Vs

Vp Vs

a

b

Vp Vs

Figure 29.12  Defining quantities for a simple iron-cored 
transformer. 

Note that there is no electrical connection between the 
primary coil and the secondary coil. Energy is transferred 
from one to the other via the magnetic field in the core.

Step-up, step-down
The transformer represented in Figure 29.12 has 5 turns on 
its primary coil and 10 on its secondary coil. It is described 
as a step-up transformer because the output voltage 
is greater than the input voltage (the voltage has been 
‘stepped up’).

How does this happen? We have 5 turns producing 
magnetic flux. This flux links the 10 turns of the secondary 
coil. Because flux linkage NΦ is proportional to the number 
of turns, it follows that there is more magnetic flux – twice 
as much – linking the secondary coil than the primary. As 
the magnetic flux changes (because we are using alternating 
voltages), the e.m.f. induced in the secondary coil is greater 
than the voltage across the primary coil.

We can write an equation relating the voltages across 
the coils to the number of turns in each coil:

Vs
Vp

 = Ns
Np

Figure 29.13  Two transformers: a step-up, and b step-down. 

A transformer with fewer turns on the secondary coil 
than on the primary coil is described as a step-down 
transformer. It lowers the voltage at the primary coil. 
Figure 29.13 shows both types of transformer. Worked 
example 3 shows how to use the turns-ratio equation.

	11	 a	� What is the turns ratio of the transformer 
shown in Figure 29.13a?

b	 What is the turns ratio of the transformer 
shown in Figure 29.13b?

c	 If an alternating p.d. of value 10.0 V is 
connected across the primary coil of each, 
what will be the induced e.m.f. across each 
secondary?

	12	 A power station generates electricity at a voltage 
of 25 kV. This must be transformed for onward 
transmission at 400 kV. If the primary coil of the 
transformer used has 2000 turns, how many 
turns must the secondary coil have?

QUESTIONS
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Voltage, current, power
If there is no power lost in a transformer, it follows that the 
quantity I × V is the same for both primary and secondary 
coils:

IpVp = IsVs  or 
Vs

Vp
 = 

Ip

Is

In other words, the ratio of the voltages is the inverse ratio 
of the currents. If the voltage is stepped up, the current is 
stepped down, and vice versa. This explains the function of 
transformers in power transmission, as discussed earlier.

Note that this relationship assumes that no power is 
lost in the transformer. In practice, some power is lost 
because of the resistance of the transformer coil windings, 
so that the windings become warm. In addition, the 
changing magnetic flux can induce currents in the core. 
These eddy currents heat the core because of its resistance. 
Large transformers such as the one shown in Figure 29.14 
handle a large amount of power. A small percentage is 
wasted, and the resulting heat is carried away by cooling 
fluid pumped around the transformer and through the fins 
which are visible in the photograph.

The transformers used in the electricity supply industry 
must be designed with great care to minimise energy 

losses. The electricity supply may pass through as many as 
ten transformers between the generator and the consumer. 
If each transformer wasted just 1% of the power, that 
would give an overall loss of 10%. Since there are roughly 
100 big power stations in the UK, that would require ten 
power stations just to cope with the losses in transformers. 
Today’s well-designed transformers have losses of under 
0.1%. This contributes greatly to energy savings in the 
power transmission industry.

	13	 A step-up transformer has a turns ratio of 10 : 1. 
When an alternating p.d. of 20 V is connected 
across the primary coil, a current of 50 mA flows  
in it.

a	 Calculate the values of the p.d. across the 
secondary coil and the current flowing in it, 
assuming no power is lost in the transformer.

b	 In practice the secondary p.d. is found to be 
180 V and the secondary current is 4.5 mA. 
What percentage of the power is wasted in the 
transformer?

	14	 Table 29.1 shows information about three 
transformers. Copy and complete the table. 
(Assume no power is lost in the transformers.)

Transformer Np Ns Vp / V Vs / V Ip / A Is / A P / W

A 100 500 230 1.0

B 500 100 230 1.0

C 100 12 240 0.2

Table 29.1  Details of three transformers for Question 14.

3	 A radio requires a 6.0 V supply but has to be operated  
from a 230 V mains supply. It is fitted with a 
transformer to reduce the mains voltage. Calculate 
the turns ratio for this transformer. If the primary coil 
has 5000 turns, how many turns must the secondary 
have?

	 Step 1  The turns ratio  
Ns
Np 

 is given by:

Vs
Vp

  =  
Ns
Np

	 Hence:
Ns
Np

  =  
Vs
Vp

  =  
6.0
230  =  0.026

	 This ratio is less than one because we are reducing 
the voltage.

	 Step 2  We know that Np = 5000, so we can  
calculate Ns.
Ns =  Np ×  0.026  = 5000  × 0.026 = 130

	 So the secondary coil must have 130 turns. Check 
that this seems reasonable: the voltage has to be 
reduced by a factor of about 40, so the number of 
turns must be reduced by the same factor.

Figure 29.14  Installing a new transformer in a gold mine in 
Ghana.

WORKED EXAMPLE

QUESTIONS
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Rectification
Many electrical appliances work with alternating current. 
Some, like electrical heaters, will work equally well with 
d.c. or a.c. However, there are many appliances such as 
electronic equipment which require d.c. For these, the 
alternating mains must be converted to d.c. by the process 
of rectification.

A simple way to do this is to use a diode, which is a 
component that will only allow current to flow in one 
direction. Figure 29.15 shows a circuit for doing this, 
together with a graph to show the effect. You will see that 
the output voltage is always positive, but it goes up and 
down. This is still technically direct current, because the 
current only flows in one direction.

Note that in both halves of the cycle, current flows the 
same way (downwards) through R, so the top end of R 
must be positive.

You can construct a bridge rectifier using light-
emitting diodes (LEDs) which light up when current flows 
through them. By connecting this bridge to a slow a.c. 
supply (for instance 1 Hz from a signal generator), you 
can see the sequence in which the diodes conduct during 
rectification.

a.c. supply ~
load

resistor
R

diode

Vout

t

Vout

a.c. supply ~
A

t

B

2

43
R

1

Vout

Vout

Figure 29.15  Half-wave rectification of a.c. requires a single 
diode. 

This type of rectification is known as half-wave 
rectification. For one-half of the time the voltage is zero, 
and this means that the power available from a half-wave 
rectified supply is reduced.

The bridge rectifier
To overcome this problem of reduced power, a bridge 
rectifier circuit is used. This consists of four diodes 
connected across the alternating voltage, as shown in 
Figure 29.16. The resulting output voltage across the load 
resistor R is full-wave rectified.

The way in which this works is shown in Figure 29.17.

■■ During the first half of the a.c. cycle, terminal A is positive. 
Current flows through diode 2, downwards through R and 
through diode 3 to terminal B. In this half of the cycle, 
current cannot flow through diodes 1 or 4 because they are 
pointing the wrong way.

■■ In the second half of the cycle, terminal B is positive. Current 
flows through diode 4, downwards through R, and through 
diode 1 to terminal A. Diodes 2 and 3 do not conduct 
because they are pointing the wrong way.

Figure 29.16  Full-wave rectification of a.c. using a diode 
bridge.

A

a

b

R

I

I

3

2
+
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1

R
4
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B
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Figure 29.17  Current flow during full-wave rectification. 
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Smoothing
In order to produce steady d.c. from the ‘bumpy’ d.c. 
that results from rectification, a smoothing capacitor 
must be incorporated in the circuit, in parallel with the 
load resistor R. This is shown in Figure 29.18. The idea is 
that the capacitor charges up and maintains the voltage 
at a high level. It discharges gradually when the rectified 
voltage drops, but the voltage soon rises again and the 
capacitor charges up again. The result is an output voltage 
with ‘ripple’.

	15	 Explain why, when terminal B in Figure 29.17 is 
positive (during the second half of the cycle), the 
current flows through diodes 1 and 4, but not 
through diodes 2 and 3.

Vin ~ C VoutR

C charging C discharging
Vout

t

I

t

Figure 29.18  A smoothing capacitor is connected across (in 
parallel with) the load resistor. 

The amount of ripple can be controlled by careful 
choice of the values of C and R. A large capacitor 
discharges more slowly than a small capacitor, so will give 
less ripple. Similarly, if R has a large value, C will discharge 
more slowly. In practice, the greater the value of the 
quantity R × C, the smoother the rectified a.c. However, if 
R and C have large values, it will be difficult to change the 
value of the voltage quickly.

Note that in Figures 29.15 to 29.18 we have represented 
the load on the supply by the load resistor R. This 
represents any components that are connected to the 
supply. For example, R could be replaced by a mobile 
phone battery that is being charged, or by one of the 
electronic circuits discussed in Chapter 25.

	16	 Sketch the following voltage patterns:
a	 a sinusoidal alternating voltage
b	 the same voltage as a, but half-wave rectified
c	 the same voltage as b, but smoothed
d	 the same voltage as a, but full-wave rectified
e	 the same voltage as d, but smoothed.

	17	 A student wires a bridge rectifier incorrectly as 
shown in Figure 29.19. Explain what you would 
expect to observe when an oscilloscope is 
connected across the load resistor R.

	18	 A bridge rectifier circuit is used to rectify an 
alternating current through a resistor R.  
A smoothing capacitor C is connected across R. 
Figure 29.20 shows how the current varies. Use 
sketches to show the changes you would expect:
a	 if R is increased
b	 if C is decreased.

Figure 29.19  A bridge rectifier circuit that is wired 
incorrectly – see Question 17. 

Figure 29.20  A smoothed, rectified current – see 
Question 18. 

Vin ~
A

B

2

43
R

1

Vout

QUESTIONSQUESTION
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End-of-chapter questions
1 Write down a general expression for the sinusoidal variation with time t of:

a an alternating voltage V [1]
b an alternating current I (you may assume that I and V are in phase) [1]
c the power P dissipated due to this current and voltage. [1]

2 The value in amps of an alternating current is represented by the equation I = 2 sin (50πt).
a What is the peak value of the current? [1]
b What is the frequency of the supply? [2]
c Sketch a graph to show two cycles of the variation of current with time. Mark the axes with suitable values. [2]
d Calculate Irms, the r.m.s. value of current, and mark this on your graph. [1]
e Find two values of t at which I = Irms. [3]

3 The a.c. mains of 240 V r.m.s. is connected to the primary coil of a transformer, which contains 1200 turns. 
The r.m.s. output of the transformer is 6.0 V.
a Calculate the number of turns on the secondary coil. [1]
b A resistance of 6.0 Ω is connected across the secondary coil. Calculate:

i the average power dissipated in the resistor [1]
ii the peak current in the primary coil. [3]

Summary
■■ A sinusoidal alternating current can be represented by 

I  =  I0 sin ωt, where I0 is the peak value of the current.

■■ The root-mean-square value of an alternating current 
is that steady current which delivers the same 
average power as the a.c. to a resistive load; for a 
sinusoidal a.c., 

Irms =  
I0

2  
. 

■■ Electrical power is usually transmitted at high 
voltages; this allows the current to be reduced, and 
so resistive losses are lower.

■■ Transformers are used to change an alternating 
voltage. The voltage is stepped up or down in 
proportion to the turns ratio of the transformer.

■■ For a transformer, 
Vs
Vp

  =  
Ns
Np

. If it is 100% eff icient, then 
VpIp  =  VsIs.

■■ Diodes are used to convert a.c. to d.c. A single diode 
gives half-wave rectification. A bridge of four diodes 
gives full-wave rectification. A capacitor smoothes the 
rectified voltage.
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4 The graph in Figure 29.21 shows the sinusoidal variation of current in the primary coil of a transformer. 
The current in the secondary coil is zero.

Figure 29.21 For End-of-chapter Question 4. 

a Copy the graph. On your copy draw, on the same axes, the variation with time of:
i the magnetic flux in the core of the transformer – label this A [1]
ii the induced e.m.f. in the primary coil of the transformer – label this B. [1]

b State how the two graphs in a i and ii are related to each other. [1]

5 An oscilloscope is used to measure the voltage waveform across a 200 Ω resistor. The waveform is shown 
in Figure 29.22. The time-base of the oscilloscope is set at 5 ms div−1 and the Y-gain at 0.5 V div−1.

Figure 29.22 For End-of-chapter Question 5. 

 Determine:
a the period and hence the frequency of the waveform [2]
b the peak voltage and hence the r.m.s. voltage [2]
c the r.m.s. current in the resistor [1]
d the mean power dissipated in the resistor. [2]

6 a  State the relationship between the peak current I0 and the r.m.s. current Irms for a sinusoidally 
varying current. [1]

b The current in a resistor connected to a steady d.c. supply is 2.0 A. When the same resistor is 
connected to an a.c. supply, the current in it has a peak value of 2.0 A. The heating eff ects of 
the two currents in the resistor are diff erent.
i Explain why the heating eff ects are diff erent and state which heating eff ect is the greater. [2]
ii Calculate the ratio of the power dissipated in the resistor by the d.c. current to the power 

dissipated in the resistor by the a.c. current. [2]
c State one advantage of using alternating current in the home. [1]
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7 A sinusoidal voltage of 6.0 V r.m.s. and frequency 50 Hz is connected to a diode and a resistor R of 
resistance 400 Ω as shown in Figure 29.23.

Figure 29.23 For End-of-chapter Question 7. 

a Draw a sketch graph showing the variation with time of both the supply waveform (use a dotted line) 
and the voltage across R (use a solid line). Put numerical scales on both the voltage and time axes. [4]

b An uncharged capacitor C is connected across R. When the 6.0 V r.m.s. supply is switched on, the 
capacitor charges fully during the first quarter of a cycle. You may assume that the p.d. across the diode 
is zero when it conducts. For the next three-quarters of the first cycle, the diode stops conducting and 
the p.d. across R falls to one-half of the peak value. During this time the mean p.d. across R is 5.7 V.

 For the last three-quarters of the first cycle, calculate:
i the time taken [1]
ii the mean current in R [2]
iii the charge flowing through R [2]
iv the capacitance of C. [2]

c Explain why the diode stops conducting during part of each cycle in b. [2]
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 8 The rectified output from a transformer is connected to a resistor R of resistance 1000 Ω. Graph A in 
Figure 29.24 shows the variation with time t of the p.d. V across the resistor. Graph B shows the variation 
of V when a capacitor is placed across R to smooth the output.

Figure 29.24 For End-of-chapter Question 8. 

a Explain how the rectification is achieved. Draw a circuit diagram to show the components involved. [6]
b Explain the action of the capacitor in smoothing the output. [3]
c Using graph B between t = 0.005 and t = 0.015 s, determine:

i the time during which the capacitor is charging [1]
ii the mean value of the p.d. across R [1]
iii the average power dissipated in R. [2]

 9 A transformer is used to produce an output of peak value 12 V from the 230 V r.m.s. mains supply.
a The primary coil of the transformer contains 2000 turns. Calculate the number of turns in the 

secondary coil. [3]
b The output from the secondary coil is half-wave rectified, and connected to a resistor R and 

capacitor C in parallel.
 Sketch graphs on the same axes to show the variation with time of:

i the output p.d. of the secondary coil [1]
ii the p.d. across R. [2]

c State and explain what happens to the p.d. across R when another capacitor of equal value is placed 
in parallel with C. [3]

10 Electrical energy is supplied by a high-voltage power line which has a total resistance of 4.0 Ω. At the input 
to the line, the root-mean-square (r.m.s.) voltage has a value of 400 kV and the input power is 500 MW.
a i  Explain what is meant by root-mean-square voltage. [2]

ii Calculate the minimum voltage that the insulators which support the line must withstand without 
breakdown. [2]

b i  Calculate the value of the r.m.s. current in the power line. [2]
ii Calculate the power loss on the line. [2]
iii Explain why it is an advantage to transmit the power at a high voltage. [2]

c Power at 400 kV is converted to power at 124 kV by a step-down transformer. Describe the basic 
principle of a step-down transformer. [2]
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Chapter 30:
Quantum physics

Learning outcomes
You should be able to:

■■ appreciate the particulate nature of electromagnetic 
radiation

■■ interpret the photoelectric eff ect in terms of photons
■■ describe electron diff raction and the evidence it provides 

for the wave nature of matter
■■ explain line spectra in terms of discrete electron energy 

levels in atoms
■■ use simple band theory to explain the diff erent electrical 

conductivities of metals, insulators and semiconductors
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What is light?
When the first laser was made in 1960, it seemed like 
a clever idea, but it was a long time before it found 
any useful application. Today, lasers are everywhere 
– in CD and DVD machines, computer disc drives, 
supermarket barcode scanners – there are probably 
more lasers than people. Figure 30.1 shows a patient 
undergoing laser eye surgery.

The invention of the laser was only possible when 
scientists had cracked the mystery of the nature of 
light. Does light behave as particles or as waves? As we 
shall see in this chapter, the answer is – a bit of both.

Modelling with particles and 
waves
In this chapter, we will study two very powerful scientific 
models – particles and waves – to see how they can help us 
to understand more about both light and matter. First we 
will take a closer look at each of these models in turn.

Particle models
In order to explain the properties of matter, we often think 
about the particles of which it is made and the ways in 
which they behave. We imagine particles as being objects 
that are hard, have mass and move about according to the 
laws of Newtonian mechanics (Figure 30.2). When two 
particles collide, we can predict how they will move after the 
collision, based on knowledge of their masses and velocities 
before the collision. If you have played snooker or pool, you 
will have a pretty good idea of how particles behave.

Particles are a macroscopic model. Our ideas of 
particles come from what we observe on a macroscopic 
scale – when we are walking down the street, or observing 
the motion of stars and planets, or working with trolleys 
and balls in the laboratory. But what else can we explain 
using a particle model?

The importance of particle models is that we can 
apply them to the microscopic world, and explain more 
phenomena.

We can picture gas molecules as small, hard particles, 
rushing around and bouncing haphazardly off one another 
and the walls of their container. This is the kinetic model 
of a gas which we studied in depth in Chapter 22. We can  

explain the macroscopic (larger scale) phenomena of 
pressure and temperature in terms of the masses and 
speeds of the microscopic particles. This is a very powerful 
model, which has been refined to explain many other 
aspects of the behaviour of gases.

Figure 30.1  This patient is undergoing laser eye surgery, 
which improves the focusing of the eye by modifying the 
shape of the surface of the eyeball. 

Figure 30.2  Pool balls provide a good model for the 
behaviour of particles on a much smaller scale. 
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Table 30.1 shows how, in particular areas of science, we 
can use a particle model to interpret and make predictions 
about macroscopic phenomena.

Area Model Macroscopic 
phenomena

electricity flow of electrons current

gases kinetic theory pressure, temperature 
and volume of a gas

solids crystalline materials mechanical properties

radioactivity nuclear model of 
the atom

radioactive decay, fission 
and fusion reactions

chemistry atomic structure chemical reactions

Table 30.1  Particle models in science.

Wave models
Waves are something that we see on the sea. There are 
tidal waves, and little ripples. Some waves have foamy tops, 
others are breaking on the beach.

Physicists have an idealised picture of a wave – it 
is shaped like a sine graph. You will not see any waves 
quite this shape on the sea. However, it is a useful 
picture, because it can be used to represent some simple 
phenomena. More complicated waves can be made up 
of several simple waves, and physicists can cope with 
the mathematics of sine waves. (This is the principle of 
superposition, which we looked at in detail in Chapter 14.)

Waves are a way in which energy is transferred from 
one place to another. In any wave, something is changing 
in a regular way, while energy is travelling along. In 
water waves, the surface of the water moves up and down 
periodically, and energy is transferred horizontally.

Table 30.2 shows some phenomena that we explain in 
terms of waves.

Phenomenon Varying quantity
sound pressure (or density)

light (and other 
electromagnetic waves)

electric and magnetic field 
strengths

waves on strings displacement

Table 30.2  Wave models in science. 

The characteristic properties of waves are that they all 
show reflection, refraction, diffraction and interference. 
Waves themselves do not have mass or charge. Since 
particle models can also explain reflection and refraction, 
it is diffraction and interference that we regard as 
the defining characteristics of waves. If we can show 
diffraction and interference, we know that we are dealing 
with waves (Figure 30.3).

Figure 30.3  A diffraction grating splits up light into its 
component colours and can produce dramatic effects in 
photographs.

Waves or particles?
Wave models and particle models are both very useful. 
They can explain a great many different observations. But 
which should we use in a particular situation? And what if 
both models seem to work when we are trying to explain 
something?

This is just the problem that physicists struggled with 
for over a century, in connection with light. Does light 
travel as a wave or as particles?

For a long time, Newton’s view prevailed – light 
travels as particles. This was set out in 1704 in his famous 
book Opticks. He could use this model to explain both 
reflection and refraction. His model suggested that light 
travels faster in water than in air. In 1801 Thomas Young, 
an English physicist, demonstrated that light showed 
diffraction and interference effects. Physicists were still 
very reluctant to abandon Newton’s particle model of light. 
The ultimate blow to Newton’s model came from the work 
carried out by the French physicist Léon Foucault in 1853. 
His experiments on the speed of light showed that light 
travelled more slowly in water than in air. Newton’s model 
was in direct contradiction with experimental results. 
Most scientists became convinced that light travelled 
through space as a wave.

Particulate nature of light
We expect light to behave as waves, but can light also 
behave as particles? The answer is yes, and you are 
probably already familiar with some of the evidence.
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If you place a Geiger counter next to a source of gamma 
radiation you will hear an irregular series of clicks. The 
counter is detecting γ-rays (gamma-rays). But γ-rays are part 
of the electromagnetic spectrum. They belong to the same 
family of waves as visible light, radio waves, X-rays, etc.

So, here are waves giving individual or discrete 
clicks, which are indistinguishable from the clicks given 
by α-particles (alpha-particles) and β-particles (beta-
particles). We can conclude that γ-rays behave like 
particles when they interact with a Geiger counter.

This effect is most obvious with γ-rays, because they are 
at the most energetic end of the electromagnetic spectrum. 
It is harder to show the same effect for visible light.

Photons
The photoelectric effect, and Einstein’s explanation of it, 
convinced physicists that light could behave as a stream of 
particles. Before we go on to look at this in detail, we need 
to see how to calculate the energy of photons.

Newton used the word corpuscle for the particles which 
he thought made up light. Nowadays, we call them photons 
and we believe that all electromagnetic radiation consists 
of photons. A photon is a ‘packet of energy’ or a quantum 
of electromagnetic energy. Gamma-photons (γ-photons) 
are the most energetic. According to Albert Einstein, who 
based his ideas on the work of another German physicist, 
Max Planck, the energy E of a photon in joules (J) is related 

to the frequency f in hertz (Hz) of the electromagnetic 
radiation of which it is part, by the equation:

E = hf
The constant h has an experimental value equal to 
6.63 × 10−34 J s.

This constant h is called the Planck constant. It has 
units of joule seconds (J s), but you may prefer to think of 
this as ‘joules per hertz’. The energy of a photon is directly 
proportional to the frequency of the electromagnetic 
waves, that is:

E ∝ f
Hence, high-frequency radiation means high-energy 
photons.

Notice that the equation E = hf tells us the relationship 
between a particle property (the photon energy E) and a 
wave property (the frequency f  ). It is called the Einstein 
relation and applies to all electromagnetic waves.

The frequency f and wavelength λ of an electromagnetic 
wave are related to the wave speed c by the wave equation  
c = f λ, so we can also write this equation as:

E = hc
λ

It is worth noting that the energy of the photon is 
inversely proportional to the wavelength. Hence the short-
wavelength X-ray photon is far more energetic than the 
long-wavelength photon of light.

To answer questions 1–7 you will need these values:

speed of light in a vacuum c = 3.00 × 108 m s−1

Planck constant h = 6.63 × 10−34 J s

1	 Calculate the energy of a high-energy γ-photon, of 
frequency 1026 Hz.

2	 Visible light has wavelengths in the range 400 nm 
(violet) to 700 nm (red). Calculate the energy of a 
photon of red light and a photon of violet light.

3	 Determine the wavelength of the electromagnetic 
waves for each photon below and hence use Figure 
30.4 to identify the region of the electromagnetic 
spectrum to which each belongs.

	 The photon energy is:
a	 10−12 J	 b	 10−15 J	 c	 10−18 J
d	 10−20 J	 e	 10−25 J

4	 A 1.0 mW laser produces red light of wavelength  
6.48 × 10−7 m. Calculate how many photons the laser 
produces per second.

1061041021

X-rays visible microwaves

γ-rays infraredultraviolet radio waves

10–210–410–610–810–1010–1210–14

Wavelength / m

Figure 30.4  Wavelengths of the electromagnetic spectrum. The boundaries between some regions are fuzzy.

QUESTIONS
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Now we can work out the energy of a γ-photon. 
Gamma-rays typically have frequencies greater than 
1020 Hz. The energy of a γ-photon is therefore greater than 
(6.63 × 10−34 × 1020) ≈ 10−13 J. This is a very small amount of 
energy on the human scale, so we don’t notice the effects 
of individual γ-photons. However, some astronauts have 
reported seeing flashes of light as individual cosmic rays, 
high-energy γ-photons, passed through their eyeballs.

The electronvolt (eV)
The energy of a photon is extremely small and far less 
than a joule. Hence the joule is not a very convenient 
unit for measuring photon energies. You may remember 
from Chapter 16 that we use another energy unit, the 
electronvolt, when considering amounts of energy much 
smaller than a joule.

To recap from Chapter 16: when an electron travels 
through a potential difference, energy is transferred. If an 
electron, which has a charge of magnitude 1.60 × 10−19 C, 
travels through a potential difference of 1 V, its energy 
change W is given by:

W = QV = 1.60 × 10−19 × 1 = 1.60 × 10−19 J
We can use this the electronvolt:

One electronvolt (1 eV) is the energy transferred when an 
electron travels through a potential difference of one volt.

Therefore:
1 eV = 1.60 × 10−19 J

So when an electron moves through 1 V, 1 eV of energy is 
transferred. When one electron moves through 2 V, 2 eV of 
energy is transferred. When five electrons move through 
10 V, a total of 50 eV is transferred, and so on.

■■ To convert from eV to J, multiply by 1.60 × 10−19.
■■ To convert from J to eV, divide by 1.60 × 10−19.

When a charged particle is accelerated through a 
potential difference V, its kinetic energy increases. For an 
electron (charge e), accelerated from rest, we can write:

eV = 12 mv2

We need to be careful when using this equation. It does 
not apply when a charged particle is accelerated through 
a large voltage to speeds approaching the speed of light 
c. For this, we would have to take account of relativistic 
effects. (The mass of a particle increases as its speed gets 
closer to 3.00 × 108 m s−1.)

Rearranging the equation gives the electron’s speed:

ν =    2eV
m

This equation applies to any type of charged particle, 
including protons (charge +e) and ions.

5	 An electron travels through a cell of e.m.f. 1.2 V. 
How much energy is transferred to the electron? 
Give your answer in eV and in J.

6	 Calculate the energy in eV of an X-ray photon of 
frequency 3.0 × 1018 Hz.

7	 To which region of the electromagnetic spectrum 
(Figure 30.4) does a photon of energy 10 eV belong?

8	 A proton (charge = + 1.60 × 10−19 C,  
mass = 1.67 × 10−27 kg) is accelerated through a 
potential difference of 1500 V. Determine:
a	 its final kinetic energy in joules (J)
b	 its final speed.

BOX 30.1: Estimating the Planck constant

You can obtain an estimate of the value of the Planck 
constant h by means of a simple experiment. It makes 
use of light-emitting diodes (LEDs) of different colours 
(Figure 30.5). You may recall from Chapter 11 that 
an LED conducts in one direction only (the forward 
direction) and that it requires a minimum voltage, the 
threshold voltage, to be applied in this direction before 
it allows a current. This experiment makes use of the 
fact that LEDs of different colours require different 
threshold voltages before they conduct and emit light.

■■ A red LED emits photons that are of low energy. It 
requires a low threshold voltage to make it conduct.

■■ A blue LED emits higher-energy photons, and requires 
a higher threshold voltage to make it conduct.

What is happening to produce photons of light when 
an LED conducts? The simplest way to think of this is to 
say that the electrical energy lost by a single electron 
passing through the diode reappears as the energy of a 
single photon.

QUESTIONS

QUESTION
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The photoelectric effect
In the photoelectric effect, light shines on a metal surface 
and electrons are released from it. The Greek word for 
light is photo, hence the word ‘photoelectric’. The electrons 
removed from the metal plate in this manner are often 
known as photoelectrons.

The apparatus used to observe the photoelectric effect 
is shown in Box 30.2. Light from a lamp is shone onto a 
negatively charged metal plate and some of the electrons 
in the metal are emitted. A simple explanation is that 
light is a wave that carries energy and this energy releases 
electrons from the metal. However, detailed observations 
of the effect at first proved difficult to explain, in particular 
that there is a minimum threshold frequency of light 
below which no effect is observed.

9	 In an experiment to determine the Planck constant 
h, LEDs of different colours were used. The p.d. 
required to make each conduct was determined, 
and the wavelength of their light was taken from 
the manufacturer’s catalogue. The results are 
shown in Table 30.3. For each LED, calculate the 
experimental value for h and hence determine an 
average value for the Planck constant.

Colour of LED Wavelength / 10−9 m Threshold 
voltage / V

infrared 910 1.35

red 670 1.70

amber 610 2.00

green 560 2.30

Table 30.3  Results from an experiment to determine h. 
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BOX 30.1: Estimating the Planck constant (continued)

Hence we can write:

energy lost by electron = energy of photon

eV = 
hc
λ

where V is the threshold voltage for the LED. The values 
of e and c are known. Measurements of V and λ will allow 
you to calculate h. So the measurements required are:

■■ V – the voltage across the LED when it begins to 
conduct (its threshold voltage). It is found using a 
circuit like the one shown in Figure 30.6a

■■ λ – the wavelength of the light emitted by the LED.  
This is found by measurements using a diffraction 
grating or from the wavelength quoted by the 
manufacturer of the LED.

If several LEDs of different colours are available, V and λ 

can be determined for each and a graph of V against 
1
λ

 

drawn (see Figure 30.6b). The gradient of this graph 

will be 
hc
e

 and hence h can be estimated.

Figure 30.5  Light-emitting diodes (LEDs) come in different 
colours. Blue (on the right) proved the trickiest to develop.

Figure 30.6  a A circuit to determine the threshold voltage 
required to make an LED conduct. An ammeter helps to 
show when this occurs. b The graph used to determine  
h from this experiment. 

QUESTION
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Low frequency, high frequency
If you try the experiment described above with a bright 
filament lamp, you will find it has no effect. It does 
not produce ultraviolet radiation. There is a minimum 
frequency that the incident radiation must have in 
order to release electrons from the metal. This is called 
the threshold frequency. The threshold frequency 
is a property of the metal plate being exposed to 
electromagnetic radiation.

The threshold frequency is defined as the minimum 
frequency required to release electrons from the surface 
of a metal.

Physicists found it hard to explain why weak ultraviolet 
radiation could have an immediate effect on the electrons 
in the metal, but very bright light of lower frequency had 
no effect. They imagined light waves arriving at the metal, 
spread out over its surface, and they could not see how 
weak ultraviolet waves could be more effective than the 
intense visible waves. In 1905, Albert Einstein came up 
with an explanation based on the idea of photons.

Metals (such as zinc) have electrons that are not very 
tightly held within the metal. These are the conduction 
electrons, and they are free to move about within the 

ultraviolet
radiation

zinc plate

electrons
break
free

BOX 30.2: Observing the photoelectric effect

You can observe the photoelectric effect yourself 
by fixing a clean zinc plate to the top of a gold-leaf 
electroscope (Figure 30.7). Give the electroscope 
a negative charge and the leaf deflects. Now shine 
electromagnetic radiation from a mercury discharge 
lamp on the zinc and the leaf gradually falls. (A 
mercury lamp strongly emits ultraviolet radiation.) 
Charging the electroscope gives it an excess of 
electrons. Somehow, the electromagnetic radiation 
from the mercury lamp helps electrons to escape 
from the surface of the metal.  

Placing the mercury lamp closer causes the leaf to 
fall more rapidly. This is not very surprising. However, 
if you insert a sheet of glass between the lamp and 
the zinc, the radiation from the lamp is no longer 
effective. The gold leaf does not fall. Glass absorbs 
ultraviolet radiation and it is this component of the 
radiation from the lamp that is effective. Figure 30.7  A simple experiment to observe the 

photoelectric effect. 

zinc plate

gold-leaf
electroscope

mercury
lamp

Figure 30.8  The photoelectric effect. When a photon of 
ultraviolet radiation strikes the metal plate, its energy may be 
sufficient to release an electron.

metal. When photons of electromagnetic radiation strike 
the metal, some electrons break free from the surface of 
the metal (Figure 30.8). They only need a small amount of 
energy (about 10−19 J) to escape from the metal surface.

We can picture the electrons as being trapped in an 
energy ‘well’ (Figure 30.9). A single electron requires a 
minimum energy Φ (Greek letter phi) to escape the surface 
of the metal. The work function energy, or simply work 
function, of a metal is the minimum amount of energy 
required by an electron to escape its surface. (Energy is 
needed to release the surface electrons because they are 
attracted by the electrostatic forces due to the positive 
metal ions.)
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Einstein did not picture electromagnetic waves 
interacting with all of the electrons in the metal. Instead, 
he suggested that a single photon could provide the energy 
needed by an individual electron to escape. The photon 
energy would need to be at least as great as Φ. By this 
means, Einstein could explain the threshold frequency. A 
photon of visible light has energy less than Φ, so it cannot 
release an electron from the surface of zinc.

When a photon arrives at the metal plate, it may be 
captured by an electron. The electron gains all of the 
photon’s energy and the photon no longer exists. Some of 
the energy is needed for the electron to escape from the 
energy well; the rest is the electron’s kinetic energy.

Now we can see that the photon model works because it 
models electromagnetic waves as concentrated ‘packets’ of 
energy, each one able to release an electron from the metal.

Here are some rules for the photoelectric effect:

■■ Electrons from the surface of the metal are removed.
■■ A single photon can only interact, and hence exchange its 

energy, with a single electron (one-to-one interaction).
■■ A surface electron is removed instantaneously from the 

metal surface when the energy of the incident photon is 
greater than, or equal to, the work function Φ of the metal. 
(The frequency of the incident radiation is greater than, or 
equal to, the threshold frequency of the metal.)

■■ Energy must be conserved when a photon interacts with an 
electron.

■■ Increasing the intensity of the incident radiation does not 
release a single electron when its frequency is less than the 
threshold frequency. The intensity of the incident radiation 
is proportional to the rate at which photons arrive at the 
plate. Each photon still has energy which is less than the 
work function.

Photoelectric experiments showed that the electrons 
released had a range of kinetic energies up to some 
maximum value, k.e.max. These fastest-moving electrons 
are the ones which were least tightly held in the metal.

Imagine a single photon interacting with a single 
surface electron and freeing it. According to Einstein:

energy of photon  
�= work function + maximum kinetic energy of electron

hf = Φ + k.e.max

or
hf = Φ + 12 mvmax

2

This equation, known as Einstein’s photoelectric equation, 
can be understood as follows:

■■ We start with a photon of energy hf.
■■ It is absorbed by an electron.
■■ Some of the energy (Φ) is used in escaping from the metal. 

The rest remains as kinetic energy of the electron.
■■ If the photon is absorbed by an electron that is lower in the 

energy well, the electron will have less kinetic energy than 
k.e.max (Figure 30.10).

What happens when the incident radiation has a 
frequency equal to the threshold frequency f0 of the metal?

The kinetic energy of the electrons is zero. Hence, 
according to Einstein’s photoelectric equation:

hf0 = Φ
Hence, the threshold frequency f0 is given by the 
expression:

f0 = Φ
h

What happens when the incident radiation has frequency 
less than the threshold frequency? A single photon can 
still give up its energy to a single electron, but this electron 

photon
energy = hf electron escapes

energy trapped
electrons

Φ

Figure 30.9  A single photon may interact with a single 
electron to release it. 

Φ

photon
energy = hf electron just 

escapes

energy
trapped
electrons

Figure 30.10  A more tightly bound electron needs more 
energy to release it from the metal.
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Observation Wave model Photon model
Emission of electrons happens as soon 
as light shines on metal

Very intense light should be needed to 
have immediate effect

A single photon is enough to release one 
electron

Even weak (low-intensity) light is 
effective

Weak light waves should have no effect Low-intensity light means fewer photons, not 
lower-energy photons

Increasing intensity of light increases 
rate at which electrons leave metal

Greater intensity means more energy, so 
more electrons are released

Greater intensity means more photons per 
second, so more electrons released per second

Increasing intensity has no effect on 
energies of electrons

Greater intensity should mean electrons 
have more energy

Greater intensity does not mean more 
energetic photons, so electrons cannot have 
more energy

A minimum threshold frequency of 
light is needed

Low-frequency light should work; electrons 
would be released more slowly

A photon in a low-frequency light beam has 
energy that is too small to release an electron

Increasing frequency of light increases 
maximum kinetic energy of electrons

It should be increasing intensity, not 
frequency, that increases energy of 
electrons

Higher frequency means more energetic 
photons; so electrons gain more energy and 
can move faster

Table 30.4  The success of the photon model in explaining the photoelectric effect.

You will need these values to answer questions 10–13:
speed of light in a vacuum c = 3.00 × 108 m s−1

Planck constant h = 6.63 × 10−34 J s
mass of electron me = 9.11 × 10−31 kg
elementary charge e = 1.60 × 10−19 C

	10	 Photons of energies 1.0 eV, 2.0 eV and 3.0 eV strike a 
metal surface whose work function is 1.8 eV.
a	 State which of these photons could cause the 

release of an electron from the metal.
b	 Calculate the maximum kinetic energies of 

the electrons released in each case. Give your 
answers in eV and in J.

	11	 Table 30.5 shows the work functions of several 
different metals.
a	 Which metal requires the highest frequency of 

electromagnetic waves to release electrons?
b	 Which metal will release electrons when the 

lowest frequency of electromagnetic waves is 
incident on it?

c	 Calculate the threshold frequency for zinc.
d	 What is the longest wavelength of 

electromagnetic waves that will release electrons 
from potassium?

Metal Work function Φ / J Work function Φ / eV
caesium 3.0 × 10−19 1.9

calcium 4.3 × 10−19 2.7

gold 7.8 × 10−19 4.9

potassium 3.2 × 10−19 2.0

zinc 6.9 × 10−19 4.3

Table 30.5  Work functions of several different metals. 

cannot escape from the attractive forces of the positive 
metal ions. The energy absorbed from the photons appears 
as kinetic energy of the electrons. These electrons lose 
their kinetic energy to the metal ions when they collide 
with them. This warms up the metal. This is why a metal 
plate placed in the vicinity of a table lamp gets hot.

Different metals have different threshold frequencies, 
and hence different work functions. For example, 
alkali metals such as sodium, potassium and rubidium 

have threshold frequencies in the visible region of the 
electromagnetic spectrum. The conduction electrons in 
zinc are more tightly bound within the metal and so its 
threshold frequency is in the ultraviolet region of the 
spectrum.

Table 30.4 summarises the observations of the 
photoelectric effect, the problems a wave model of light 
has in explaining them, and how a photon model is more 
successful.

QUESTIONS
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Line spectra
We will now look at another phenomenon which we can 
explain in terms of light as photons. We rely a great deal 
on light to inform us about our surroundings. Using our 
eyes we can identify many different colours. Scientists take 
this further by analysing light, by breaking or splitting it 
up into a spectrum. (The technical term for the splitting of 
light into its components is dispersion.) You will be familiar 
with the ways in which this can be done, using a prism or 
a diffraction grating (Figure 30.11). The spectrum of white 
light shows that it consists of a range of wavelengths, from 
about 4 × 10−7 m (violet) to about 7 × 10−7 m (red), as in 
Figure 30.12a. This is a continuous spectrum.

It is more interesting to look at the spectrum from a 
hot gas. If you look at a lamp that contains a gas such as 
neon or sodium, you will see that only certain colours 
are present. Each colour has a unique wavelength. If the 

screen

di�raction
gratingwhite light

	12	 Electromagnetic waves of wavelength  
2.4 × 10−7 m are incident on the surface of a  
metal whose work function is 2.8 × 10−19 J.
a	 Calculate the energy of a single photon.
b	 Calculate the maximum kinetic energy of 

electrons released from the metal.
c	 Determine the maximum speed of the emitted 

photoelectrons.

	13	 When electromagnetic radiation of wavelength 
2000 nm is incident on a metal surface, the 
maximum kinetic energy of the electrons 
released is found to be 4.0 × 10−20 J. Determine 
the work function of the metal in joules (J).

Figure 30.11  White light is split up into a continuous 
spectrum when it passes through a diffraction grating.

Figure 30.12  Spectra of a white light, and of light from  
b mercury, c helium and d cadmium vapour. 

Figure 30.13  An absorption line spectrum formed when white 
light is passed through cool mercury vapour. 

a

b

c

d

source is narrow and it is viewed through a diffraction 
grating, a line spectrum is seen.

Figures 30.12b–d show the line spectra of hot gases of 
the elements mercury, helium and cadmium. Each element 
has a spectrum with a unique collection of wavelengths. 
Therefore line spectra can be used to identify elements. 
This is exactly what the British astronomer William 
Huggins did when he deduced which elements are the 
most common in the stars.

These line spectra, which show the composition of light 
emitted by hot gases, are called emission line spectra.

There is another kind of spectra, called absorption line 
spectra, which are observed when white light is passed 
through cool gases. After the light has passed through a 
diffraction grating, the continuous white light spectrum is 

QUESTIONS
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found to have black lines across it (Figure 30.13). Certain 
wavelengths have been absorbed as the white light passed 
through the cool gas.

Absorption line spectra are found when the light from 
stars is analysed. The interior of the star is very hot and 
emits white light of all wavelengths in the visible range. 
However, this light has to pass through the cooler outer 
layers of the star. As a result, certain wavelengths are 
absorbed. Figure 30.14 shows the spectrum for the Sun.

Explaining the origin of line 
spectra
From the description above, we can see that the atoms of a 
given element (e.g. helium) can only emit or absorb light of 
certain wavelengths.

Different elements emit and absorb different 
wavelengths. How can this be? To understand this, we 
need to establish two points:

■■ First, as with the photoelectric effect, we are dealing with 
light (an electromagnetic wave) interacting with matter. 
Hence we need to consider light as consisting of photons. 
For light of a single wavelength λ and frequency f, the 
energy E of each photon is given by the equation:

E = hf  or  E  =  
hc
λ

■■ Secondly, when light interacts with matter, it is the 
electrons that absorb the energy from the incoming 
photons. When the electrons lose energy, light is emitted by 
matter in the form of photons.

What does the appearance of the line spectra tell us about 
electrons in atoms? They can only absorb or emit photons 
of certain energies. From this we deduce that electrons 
in atoms can themselves only have certain fixed values of 
energy. This idea seemed very odd to scientists a hundred 
years ago. Figure 30.15 shows diagrammatically the 
permitted energy levels (or energy states) of the electron of 
a hydrogen atom. An electron in a hydrogen atom can have 
only one of these values of energy. It cannot have an energy 
that is between these energy levels. The energy levels of the 
electron are analogous to the rungs of a ladder. The energy 
levels have negative values because external energy has 

Energy / 10–18 J

0

Not to scale
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–0.24

–0.54
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Figure 30.15  Some of the energy levels of the hydrogen atom. 
Figure 30.14  The Sun’s spectrum shows dark lines. These dark 
lines arise when light of specific wavelengths coming from the 
Sun’s hot interior is absorbed by its cooler atmosphere. to be supplied to remove an electron from the atom. The 

negative energy shows that the electron is trapped within 
the atom by the attractive forces of the atomic nucleus. An 
electron with zero energy is free from the atom.

The energy of the electron in the atom is said to be 
quantised. This is one of the most important statements of 
quantum physics.

Now we can explain what happens when an atom emits 
light. One of its electrons falls from a high energy level to a 
lower one (Figure 30.16a). The electron makes a transition 
to a lower energy level. The loss of energy of the electron 
leads to the emission of a single photon of light. The energy 
of this photon is exactly equal to the energy difference 
between the two energy levels. If the electron makes a 
transition from a higher energy level, the energy loss of the 
electron is larger and this leads to the emission of a more 
energetic photon. The distinctive energy levels of an atom 
mean that the energy of the photons emitted, and hence 
the wavelengths emitted, will be unique to that atom. This 
explains why only certain wavelengths are present in the 
emission line spectrum of a hot gas.

Atoms of different elements have different line spectra 
because they have different spacings between their energy 
levels. It is not within the scope of this book to discuss why 
this is.

Similarly, we can explain the origin of absorption line 
spectra. White light consists of photons of many different 
energies. For a photon to be absorbed, it must have exactly 
the right energy to lift an electron from one energy level 
to another (Figure 30.16b). If its energy is too little or too 
great, it will not be absorbed. This effect can also described 
as a form of resonance (Chapter 19) – the frequency of 
the photon must be such that its energy matches the gap 
between the two energy levels.
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0

Energya

photon
emitted

b

photon
absorbed

not
absorbed

0

Energy

Figure 30.16  a When an electron drops to a lower energy 
level, it emits a single photon. b A photon must have just the 
right energy if it is to be absorbed by an electron.

	14	 Figure 30.17 shows part of the energy level 
diagram of an imaginary atom. The arrows 
represent three transitions between the energy 
levels. For each of these transitions:
a	 calculate the energy of the photon
b	 calculate the frequency and wavelength of 

the electromagnetic radiation (emitted or 
absorbed)

c	 state whether the transition contributes to an 
emission or an absorption spectrum.

a

b

c

Energy / 10–18 J
0

–0.4

–1.7
–2.2

–3.9

–7.8

Not to scale

Figure 30.17  An atomic energy level diagram, showing 
three electron transitions between levels – see 
Question 14. 

Photon energies
When an electron changes its energy from one level E1 to 
another E2, it either emits or absorbs a single photon. The 
energy of the photon hf is simply equal to the difference in 
energies between the two levels:

photon energy = ΔE

hf = E1 − E2

or
hc
λ

 = E1 − E2

Referring back to the energy level diagram for hydrogen 
(Figure 30.15), you can see that, if an electron falls from 
the second level to the lowest energy level (known as the 
ground state), it will emit a photon of energy:

photon energy = ΔE

hf = [(−0.54) − (−2.18)] × 10−18 J

hf = 1.64 × 10−18 J

We can calculate the frequency f and wavelength λ of the 
emitted electromagnetic radiation.

The frequency is:

f = E
h

 = 1.64 × 10−18

6.63 × 10−34

f = 2.47 × 1015 Hz
The wavelength is:

λ = c
f
 = 3.00 × 108

2.47 × 1015

λ = 1.21 × 10−7 m = 121 nm
This is a wavelength in the ultraviolet region of the 
electromagnetic spectrum.

QUESTION
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Electron energies in solids
So far, we have only discussed the spectra of light from hot 
gases. In a gas, the atoms are relatively far apart, so they do 
not interact with one another very much. Gas atoms that 
exert negligible electrical forces on each other are known 
as isolated atoms. As a consequence, they give relatively 
simple line spectra. Similar spectra can be obtained from 
some gemstones and coloured glass. In these, the basic 
material is clear and colourless, but it gains its colour 
from impurity atoms, which are well separated from one 
another within the material.

In a solid or liquid, however, the atoms are close 
together. The electrons from one atom interact with those 
of neighbouring atoms. This has the effect of altering 
the energy level diagram, which becomes much more 
complicated, with a large number of closely spaced energy 
levels. 

	15	 Figure 30.18 shows another energy level diagram. 
In this case, energies are given in electronvolts 
(eV). From the list below, state which photon 
energies could be absorbed by such an atom:

		  6.0 eV  9.0 eV  11 eV  20 eV  25 eV  34 eV  45 eV

	16	 The line spectrum for a particular type of atom is 
found to include the following wavelengths:

		  83 nm  50 nm  25 nm
a	 Calculate the corresponding photon energies 

in eV.
b	 Sketch the energy levels which could give rise 

to these photons. On the diagram indicate 
the corresponding electron transitions 
responsible for these three spectral lines.

Figure 30.18  An energy level diagram – see Question 15. 
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Figure 30.19a shows the result. Instead of individual 
energy levels we have bands of many levels, all close 
together. In between the bands are gaps with no allowed 
energy levels.

Figure 30.19b shows a more conventional 
representation of these energy bands in a solid. An 
electron can have an energy at any level in one of the 
bands. However, it cannot have an energy value which lies 
in the forbidden gap between bands (just as an electron in 
an isolated atom cannot have an energy which lies between 
two energy levels).

Band theory and electrical conduction
We can use this band theory of solids to explain why some 
materials are better conductors than others. In Figure 
30.20, the energy bands are shown with green shading 
where they are occupied and with grey shading where they 
are unoccupied.

■■ In a metal, one band, known as the conduction band, is 
only partially filled. The electrons in the conduction band 
are the conduction or free electrons which give the metal its 
conductivity, as discussed in Chapter 11.

■■ In an insulator, the conduction band is unoccupied. The 
band below this, known as the valence band, is fully 
occupied. An electron whose energy lies in the valence band 
is bound to an individual atom.

Figure 30.19  a In a solid, the electron energy levels are very 
close together. b The energy levels form bands with forbidden 
gaps between them. 

QUESTIONS
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How does this explain the difference between metals and 
insulators? When a piece of metal is connected to a cell, 
the electrons in the metal gain energy. For this to happen, 
there must be empty energy levels higher in the band into 
which these electrons can move. When they have moved 
upwards they are free to move through the metal, and so 
there is a current.

In an insulator, there is a large energy gap between the 
top of the valence band and the bottom of the conduction 
band. The voltage of a cell is insufficient to lift even the 
most energetic electrons across the gap and into the 
conduction band. This means that electrons are not free to 
move through the material – it is an insulator.

(In some metals, the top of the valence band overlaps 
with the bottom of the conduction band, so there are 
plenty of free electrons in the conduction band to carry a 
current.)

A semiconductor is a material which conducts electric 
current, but only very slightly. As shown in Figure 30.21, 

it is similar to an insulator. Its valence band is full and its 
conduction band is empty. However, the gap between the 
two is very small. At room temperature, a few electrons 
have enough energy to jump across the gap into the 
conduction band. These electrons are ‘free’ and can form  
a current.

As we saw in Chapter 9 when discussing the drift 
velocity of electrons, a metal typically has one free 
electron per atom. A semiconductor has perhaps one free 
electron per million atoms at room temperature, and so its 
electrical conductivity will be of the order of one-millionth 
of that of a metal.

If a piece of semiconductor is heated, more electrons 
will gain the energy needed to jump up into the 
conduction band and the material will conduct better – 
its resistance decreases because of the increased number 
density of electrons in the conduction band. This is the 
opposite of a metal, whose resistance increases when it is 
heated. There is no increase in the number density of free 
electrons when a metal is heated. Instead, its atoms vibrate 
more, and the electrons collide more frequently with the 
vibrating atoms.

Silicon and germanium are examples of semiconductor 
materials like this. They are described as intrinsic 
semiconductors because their conductivity is a property 
of the pure material itself. Diodes, transistors and 
computer chips use semiconductors which have small 
amounts of other elements added to them to increase their 
conductivity.

There is another way to give electrons in a 
semiconductor the energy needed to jump across the 
forbidden gap. In a light-dependent resistor (LDR), 
photons of light are absorbed by electrons in the valence 
band so that they jump the gap and enter the conduction 
band. This is why an LDR has high resistance in the dark 
but its resistance decreases as the light level increases.

conduction
band

electron
energy

metal insulator

forbidden
gap

valence
band

Figure 30.20  How the energy bands are filled in a metal and 
in an insulator. 

conduction band

electron
energy

semiconductor

narrow gap

valence band

Figure 30.21  Electron energy bands in a semiconductor. 

	17	 What materials are being described here?
a	 Valence band full, conduction band empty, 

wide forbidden gap
b	 Valence band full, conduction band partially 

filled
c	 Number density of conduction electrons 

increases rapidly with increasing temperature.

	18	 Use band theory to explain why the resistivity 
of an intrinsic semiconductor increases as the 
temperature decreases.

QUESTIONS
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The nature of light – waves or 
particles?
It is clear that, in order to explain the photoelectric effect, 
we must use the idea of light (and all electromagnetic 
radiation) as particles. Similarly, photons explain 
the appearance of line spectra. However, to explain 
diffraction, interference and polarisation of light, we must 
use the wave model. How can we sort out this dilemma?

We have to conclude that sometimes light shows 
wave-like behaviour; at other times it behaves as particles 
(photons). In particular, when light is absorbed by a metal 
surface, it behaves as particles. Individual photons are 
absorbed by individual electrons in the metal. In a similar 
way, when a Geiger counter detects γ-radiation, we hear 
individual γ-photons being absorbed in the tube.

So what is light? Is it a wave or a particle? Physicists 
have come to terms with the dual nature of light. This 
duality is referred to as the wave–particle duality of light. 
In simple terms:

■■ Light interacts with matter (e.g. electrons) as a particle 
– the photon. The evidence for this is provided by the 
photoelectric effect.

■■ Light travels through space as a wave. The evidence for this 
comes from the diffraction and interference of light using 
slits.

Electron waves
Light has a dual nature. Is it possible that particles such as 
electrons also have a dual nature? This interesting question 
was first contemplated by Louis de Broglie (pronounced 
‘de Broy’) in 1924 (Figure 30.22).

De Broglie imagined that electrons would travel 
through space as a wave. He proposed that the wave-like 
property of a particle like the electron can be represented 
by its wavelength λ, which is related to its momentum p by 
the equation:

λ = h
p

where h is the Planck constant. The wavelength λ is often 
referred to as the de Broglie wavelength. The waves 
associated with the electron are referred to as matter 
waves.

The momentum p of a particle is the product of its mass 
m and its velocity v. Therefore, the de Broglie equation may 
be written as:

λ = h
mv

The Planck constant h is the same constant that appears 
in the equation E = hf for the energy of a photon. It is 
fascinating how the Planck constant h is entwined with 
the behaviour of both matter as waves (e.g. electrons) and 
electromagnetic waves as ‘particles’ (photons).

The wave property of the electron was eventually 
confirmed in 1927 by researchers in America and in 
England. The Americans Clinton Davisson and Edmund 
Germer showed experimentally that electrons were 
diffracted by single crystals of nickel. The diffraction of 
electrons confirmed their wave-like property. In England, 
George Thomson fired electrons into thin sheets of 
metal in a vacuum tube. He, too, provided evidence that 
electrons were diffracted by the metal atoms.

Louis de Broglie received the 1929 Nobel Prize in 
Physics. Clinton Davisson and George Thomson shared 
the Nobel Prize in Physics in 1937.

Electron diffraction
We can reproduce the same diffraction results in the 
laboratory using an electron diffraction tube; see  
Figure 30.23.

In an electron diffraction tube, the electrons from the 
heated filament are accelerated to high speeds by the large 
potential difference between the negative heater (cathode) 
and the positive electrode (anode). A beam of electrons 
passes through a thin sample of polycrystalline graphite. 
It is made up of many tiny crystals, each of which consists 
of large numbers of carbon atoms arranged in uniform 
atomic layers. The electrons emerge from the graphite film 
and produce diffraction rings on the phosphor screen. 
The diffraction rings are similar to those produced by 
light (a wave) passing through a small circular hole. 
The rings cannot be explained if electrons behaved as 

Figure 30.22  Louis de Broglie provided an alternative view of 
how particles behave.
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particles. Diffraction is a property of waves. Hence the 
rings can only be explained if the electrons pass through 
the graphite film as a wave. The electrons are diffracted 
by the carbon atoms and the spacing between the layers 
of carbon atoms. The atomic layers of carbon behave like 
a diffraction grating with many slits. The electrons show 
diffraction effects because their de Broglie wavelength λ is 
similar to the spacing between the atomic layers.

This experiment shows that electrons appear to travel 
as waves. If we look a little more closely at the results of the 
experiment, we find something else even more surprising. 
The phosphor screen gives a flash of light for each electron 
that hits it. These flashes build up to give the diffraction 
pattern (Figure 30.24). But if we see flashes at particular 
points on the screen, are we not seeing individual electrons 
– in other words, are we not observing particles?

Figure 30.23  When a beam of electrons passes through a 
graphite film, as in this vacuum tube, a diffraction pattern is 
produced on the phosphor screen. 

Figure 30.24  The speckled diffraction pattern shows that it 
arises from many individual electrons striking the screen. 

pattern builds up 
as experiment 
proceeds

BOX 30.3: Investigating electron diffraction

If you have access to an electron diffraction tube 
(Figure 30.25), you can see for yourself how a beam 
of electrons is diffracted. The electron gun at one 
end of the tube produces a beam of electrons. 
By changing the voltage between the anode and 
the cathode, you can change the energy of the 
electrons, and hence their speed. The beam strikes a 
graphite target, and a diffraction pattern appears on 
the screen at the other end of the tube.

You can use an electron diffraction tube to 
investigate how the wavelength of the electrons 
depends on their speed. Qualitatively, you should 
find that increasing the anode–cathode voltage 
makes the pattern of diffraction rings shrink. The 
electrons have more kinetic energy (they are faster); 
the shrinking pattern shows that their wavelength 
has decreased. You can find the wavelength λ of the 
electrons by measuring the angle θ at which they are 
diffracted:

λ = 2d sin θ
where d is the spacing of the atomic layers of 
graphite.

You can find the speed of the electrons from the 
anode–cathode voltage V:

1
2 mv 2 = eV

graphite

θ

anode
cathode

phosphor screen

+ 6 V

0 V

+ 5 kV

Figure 30.25  Electrons are accelerated from the 
cathode to the anode; they form a beam which is 
diffracted as it passes through the graphite film.
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People waves
The de Broglie equation applies to all matter; anything that 
has mass. It can also be applied to objects like golf balls 
and people!

Imagine a 65 kg person running at a speed of 3.0 m s−1 
through an opening of width 0.80 m. According to the  
de Broglie equation, the wavelength of this person is:

λ = h
mv

λ = 6.63 × 10−34

65
  × 3.0

λ = 3.4 × 10−36 m
This wavelength is very small indeed compared with 
the size of the gap, hence no diffraction effects would be 
observed. People cannot be diffracted through everyday 
gaps. The de Broglie wavelength of this person is much 
smaller than any gap the person is likely to try to squeeze 
through! For this reason, we do not use the wave model 
to describe the behaviour of people; we get much better 
results by regarding people as large particles.

1	 Calculate the de Broglie wavelength of an electron 
travelling through space at a speed of 107 m s−1. State 
whether or not these electrons can be diffracted by 
solid materials (atomic spacing in solid materials  
~ 10−10 m).

	 Step 1  According to the de Broglie equation, we have:

λ = 
h

mv

	 Step 2  The mass of an electron is 9.11 × 10−31 kg. Hence:

λ =  
6.63 × 10−34

9.11 × 10−31 × 107 
 = 7.3 × 1011 m

	 Electrons travelling at 107 m s−1 have a de Broglie 
wavelength of order of magnitude 10−10 m. Hence they 
can be diffracted by matter.

	19	 X-rays are used to find out about the spacings of 
atomic planes in crystalline materials.
a	 Describe how beams of electrons could be 

used for the same purpose.
b	 How might electron diffraction be used to 

identify a sample of a metal?

	20	 A beam of electrons is accelerated from rest 
through a p.d. of 1.0 kV.
a	 What is the energy (in eV) of each electron in 

the beam?
b	 Calculate the speed, and hence the 

momentum (mv), of each electron.
c	 Calculate the de Broglie wavelength of each 

electron.
d	 Would you expect the beam to be significantly 

diffracted by a metal film in which the atoms 
are separated by a spacing of 0.25 × 10−9 m?

Probing matter
All moving particles have a de Broglie wavelength. 
The structure of matter can be investigated using the 
diffraction of particles. Diffraction of slow-moving 
neutrons (known as thermal neutrons) from nuclear 
reactors is used to study the arrangements of atoms in 
metals and other materials. The wavelength of these 
neutrons is about 10−10 m, which is roughly the separation 
between the atoms.

Diffraction of slow-moving electrons is used to explore 
the arrangements of atoms in metals (Figure 30.26) and 
the structures of complex molecules such as DNA (Figure 
30.27). It is possible to accelerate electrons to the right 
speed so that their wavelength is similar to the spacing 
between atoms, around 10−10 m.

Figure 30.26  Electron diffraction pattern for an alloy of 
titanium and nickel. From this pattern, we can deduce the 
arrangement of the atoms and their separations. 

QUESTION

QUESTION

WORKED EXAMPLE
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High-speed electrons from particle accelerators have 
been used to determine the diameter of atomic nuclei. This 
is possible because high-speed electrons have wavelengths 
of order of magnitude 10−15 m. This wavelength is similar 
to the size of atomic nuclei. Electrons travelling close to 
the speed of light are being used to investigate the internal 
structure of the nucleus. These electrons have to be 
accelerated by voltages up to 109 V.

The nature of the electron – wave or 
particle?
The electron has a dual nature, just like electromagnetic 
waves. This duality is referred to as the wave–particle 
duality of the electron. In simple terms:

■■ An electron interacts with matter as a particle. The evidence 
for this is provided by Newtonian mechanics.

■■ An electron travels through space as a wave. The evidence 
for this comes from the diffraction of electrons.

Figure 30.27  The structure of the giant molecule DNA, 
deduced from electron diffraction.
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Summary
■■ For electromagnetic waves of frequency f and 

wavelength λ, each photon has energy E given by:

E  =  hf  or  E  =  
hc
λ   where h is the Planck constant.

■■ One electronvolt is the energy transferred when an 
electron travels through a potential difference of 1 V.

1 eV  = 1.60 × 10−19 J

■■ A particle of charge e accelerated through a voltage V 
has kinetic energy given by:

eV  =  12 mv 2

■■ The photoelectric effect is an example of a 
phenomenon explained in terms of the particle-like 
(photon) behaviour of electromagnetic radiation.

■■ Einstein’s photoelectric equation is:

hf  =  Φ + k.e.max

where Φ = work function = minimum energy required 
to release an electron from the metal surface.

■■ The threshold frequency is the minimum frequency 
of the incident electromagnetic radiation that will 
release an electron from the metal surface.

■■ Electron diffraction is an example of a phenomenon 
explained in terms of the wave-like behaviour of 
matter.

■■ The de Broglie wavelength λ of a particle is related to 
its momentum (mv) by the de Broglie equation:

λ  =  
h

mv

■■ Both electromagnetic radiation (e.g. light) and 
matter (e.g. electrons) exhibit wave–particle duality; 
that is, they show both wave-like and particle-like 
behaviours, depending on the circumstances. In 
wave–particle duality:

■■ interaction is explained in terms of particles
■■ travel through space is explained in terms of 

waves.

■■ Line spectra arise for isolated atoms (the electrical 
forces between such atoms is negligible).

■■ The energy of an electron in an isolated atom is 
quantised. The electron is allowed to exist in specific 
energy states known as energy levels.

■■ An electron loses energy when it makes a transition 
from a higher energy level to a lower energy level. 
A photon of electromagnetic radiation is emitted 
because of this energy loss. The result is an emission 
line spectrum.

■■ Absorption line spectra arise when electromagnetic 
radiation is absorbed by isolated atoms. An electron 
absorbs a photon of the correct energy to allow it to 
make a transition to a higher energy level.

■■ The frequency f and the wavelength λ of the emitted 
or absorbed radiation are related to the energy levels 
E1 and E2 by the equations:

hf  =  ΔE  =   E1 −  E2  and 
hc
λ   =  ΔE  =  E1 −  E2

■■ In solids, electrons can exist in energy states within 
broad bands separated by forbidden gaps. This band 
theory can explain the different electrical behaviours 
of metals, insulators and semiconductors.
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End-of-chapter questions
1 Calculate the energy of a photon of frequency 4.0 × 1018 Hz. [2]

2 The microwave region of the electromagnetic spectrum is considered to have wavelengths ranging 
from 5 mm to 50 cm. Calculate the range of energy of microwave photons. [3]

3 In a microwave oven photons of energy 1.02 × 10−5 eV are used to heat food.
a Express 1.02 × 10−5 eV in joules. [1]
b Calculate the frequency of the photons. [1]
c Calculate the wavelength of the photons. [1]

4 a  Alpha-particles of energy 5 MeV are emitted in the radioactive decay of radium. Express this energy 
in joules. [1]

b Electrons in an cathode-ray tube are accelerated through a potential diff erence of 10 kV. State 
their energy: 
i in electronvolts [1]
ii in joules. [1]

c In a nuclear reactor, neutrons are slowed to energies of 6 × 10−21 J. Express this in eV. [1]

5 A helium nucleus (charge = +3.2 × 10−19 C, mass = 6.8 × 10−27 kg) is accelerated through a potential 
diff erence of 7500 V.

 Calculate:
a its kinetic energy in electronvolts [2]
b its kinetic energy in joules [1]
c its speed. [2]

6 Ultraviolet light with photons of energy 2.5 × 10−18 J is shone onto a zinc plate. The work function of 
zinc is 4.3 eV.

 Calculate the maximum energy with which an electron can be emitted from the zinc plate. 
Give your answer:
a in eV [3]
b in J. [1]

7 Calculate the minimum frequency of electromagnetic radiation that will cause the emission of 
photoelectrons from the surface of gold. [2]

 (Work function for gold = 4.9 eV.)



8 Figure 30.28 shows five of the energy levels in a helium ion. The lowest energy level is known as the ground state.

Figure 30.28 For End-of-chapter Question 8. 

a Calculate the energy, in joules, that is required to completely remove the remaining electron, 
originally in its ground state, from the helium ion. [2]

b Calculate the frequency of the radiation which is emitted when the electron drops from the level 
n  =  3 to n  =  2. State the region of the electromagnetic spectrum in which this radiation lies. [2]

c Without further calculation, describe qualitatively how the frequency of the radiation emitted when 
the electron drops from the level n  =  2 to n  =  1 compares with the energy of the radiation emitted 
when it drops from n  =  3 to n  =  2. [2]

9 The spectrum of sunlight has dark lines. These dark lines are due to the absorption of certain wavelengths 
by the cooler gases in the atmosphere of the Sun.
a One particular dark spectral line has a wavelength of 590 nm. Calculate the energy of a photon with 

this wavelength. [3]
b Figure 30.29 shows some of the energy levels of an isolated atom of helium.

Figure 30.29 For End-of-chapter Question 9. 

i Explain the significance of the energy levels having negative values. [1]
ii Explain, with reference to the energy level diagram above, how a dark line in the spectrum 

may be due to the presence of helium in the atmosphere of the Sun. [2]
iii All the light absorbed by the atoms in the Sun’s atmosphere is re-emitted. Suggest why a 

dark spectral line of wavelength of 590 nm is still observed from the Earth. [1]
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10 Figure 30.30 shows three of the energy levels in an isolated hydrogen atom. The lowest energy level 
is known as the ground state.

Figure 30.30 For End-of-chapter Question 10. 

a Explain what happens to an electron in the ground state when it absorbs the energy from a photon 
energy 21.8 × 10−19 J. [1]

b i  Explain why a photon is emitted when an electron makes a transition between energy levels 
n  =  3 and n  =  2. [2]

ii Calculate the wavelength of electromagnetic radiation emitted when an electron makes a jump 
between energy levels n  =  3 and n  =  2. [3]

iii In the diagram, each energy level is labeled with its ‘principal quantum number’ n. Use the 
energy level diagram to show that the energy E of an energy level is inversely proportional to n2. [2]

11 a i  Explain what is meant by the wave–particle duality of electromagnetic radiation. [2]
ii Explain how the photoelectric eff ect gives evidence for this phenomenon. [2]

 Figure 30.31 shows the maximum kinetic energy of the emitted photoelectrons as the frequency 
of the incident radiation on a sodium plate is varied.

Figure 30.31 For End-of-chapter Question 11. 

b Explain why there are no photoelectrons emitted when the frequency of the incident light is less 
than 5.6 × 1014 Hz. [2]

c Calculate the work function for sodium. [3]
d Use the graph to calculate the value of the Planck constant in J s. [2]
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12 a  Explain what is meant by the de Broglie wavelength of an electron. [2]
b Figure 30.32 shows the principles of an electron tube used to demonstrate electron diff raction.

Figure 30.32 For End-of-chapter Question 12. 

i Calculate the kinetic energy E (in joules) of the electrons incident on the graphite film. [1]
ii Show that the momentum of an electron is equal to    2 Eme where me is the mass of an electron, 

and hence calculate the momentum of an electron. (me = 9.11 × 10–31 kg). [3]
iii Calculate the de Broglie wavelength of the electrons. [2]

c Discuss how the wavelengths of neutrons and electrons moving with the same energy would compare. [3]

13 Blue light of wavelength 450 nm is incident on a light-dependent resistor (LDR) made from a 
semiconductor material. The energy gap between the valence and conduction bands of the material of 
the LDR is 2.4 eV.
a Explain what is meant by the valence band and the conduction band in a semiconductor. You may 

include a diagram if you wish. [3]
b Show that the energy of a photon of the blue light is about 3 eV. [2]
c Use band theory to explain why:

i the blue light causes the resistance of the LDR to decrease [3]
ii the resistance of the LDR further decreases as the intensity of the blue light increases.  [2]

d Calculate the maximum wavelength of radiation which this LDR could detect. [2]

14 Figure 30.33 shows the variation with temperature of the resistance of a semiconductor and of a metal. 

Figure 30.33 For End-of-chapter Question 14. 

 In terms of the band theory of solids and the behaviour of free electrons, explain the changes in resistance of:
a the metal [3]
b the semiconductor. [3]
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Nuclear physics

Learning outcomes
You should be able to:

■■ write simple nuclear decay equations and explain how 
they are balanced

■■ appreciate and use Einstein’s mass–energy relationship 
E = mc 2

■■ relate nuclear binding energy to nuclear stability, fission 
and fusion

■■ describe the spontaneous and random nature of 
radioactive decay

■■ solve problems involving activity and decay constants
■■ solve problems involving exponential decay and half-life
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Energy and the nucleus
Towards the end of the Second World War, nuclear 
weapons were dropped on the Japanese cities of 
Hiroshima and Nagasaki. Nuclear explosions release 
so much energy that their size is often given in 
‘megatonnes’ – that is, their equivalent in millions 
of tonnes of high explosive (Figure 31.1). A more 
peaceful use of nuclear materials is in nuclear power  
generation. Because materials such as uranium are 
such concentrated stores of energy, a nuclear power 
station requires only a small van-load of fuel each 
week, whereas a coal-fired power station may require 
a train-load every hour.

In this chapter, we will look at energy in the atomic 
nucleus and how this relates to nuclear stability; 
we will also look at how we can write equations to 
represent radioactive decay.

Balanced equations
When an unstable nucleus undergoes radioactive decay, 
the nucleus before the decay is often referred to as the 
parent nucleus and the new nucleus after the decay of the 
α-particle is known as the daughter nucleus. 

Radioactive decay processes can be represented by 
balanced equations. As with all equations representing 
nuclear processes, both nucleon number A and proton 
number Z are conserved.

■■ In α decay, the nucleon number decreases by 4 and 
the proton number decreases by 2.

■■ In β− decay, the nucleon number is unchanged and 
the proton number increases by 1.

■■ In β+ decay, the nucleon number is unchanged and 
the proton number decreases by 1.

■■ In γ emission there is no change in nucleon or proton 
number.

The emission of α- and β-particles can be shown on a 
graph of nucleon number plotted against proton number, 
as shown in Figure 31.2. The graph will appear different if 
neutron number is plotted against proton number. 

Figure 31.1  Our understanding of nuclear physics has proved 
to be a mixed blessing. Nuclear weapons dominated global 
politics for much of the 20th century. 

1	 Study the decay equations given in Worked 
examples 1 and 2, and write balanced equations 
for the following:
a	 A nucleus of radon-220 (220

86Rn) decays by α 
emission to form an isotope of polonium, Po.

b	 A nucleus of a sodium isotope (25
11Na) decays by 

β− emission to form an isotope of magnesium, 
Mg.

2	 Copy and complete this equation for the β− decay 
of a nucleus of argon:

	 41
18 Ar → K + ?

N
uc

le
on

 n
um

be
r A

A + 2

Proton number Z

α decay

β+decay

β−decay

A – 2

XA
Z

A – 4
Z – 2 Z + 2Z

A

Figure 31.2  Emission of α- and β-particles.

QUESTIONS
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Mass and energy
In Chapter 16, we saw that energy is released when the 
nucleus of an unstable atom decays. How can we calculate 
the amount of energy released by radioactive decay? To 
find the answer to this, we need to think first about the 
masses of the particles involved.

We will start by considering a stable nucleus, 12
6 C. This 

consists of six protons and six neutrons. Fortunately for 
us (because we have a lot of this form of carbon in our 
bodies), this is a very stable nuclide. This means that the 
nucleons are bound tightly together by the strong nuclear 
force. It takes a lot of energy to pull them apart.

Figure 31.3 shows the results of an imaginary 
experiment in which we have done just that. On the left-

6n + 6p

C
12

6

Figure 31.3  The mass of a nucleus is less than the total mass 
of its component protons and neutrons. 

1	 Radon is a radioactive gas that decays by α emission 
to become polonium. Here is the equation for the 
decay of one of its isotopes, radon-222:

	 222
86Rn  →  218

84Po +  42He

	 Show that A and Z are conserved.

	 Compare the nucleon and proton numbers on both 
sides of the equation for the decay:

	 	 nucleon number A	 222 = 218 + 4

	 	 proton number Z	 86 = 84 + 2

	 Remember that in α-decay, A decreases by 4 and Z 
decreases by 2. 
Don’t confuse nucleon number A with neutron  
number N.

	 In this case, radon-222 is the parent nucleus and 
polonium-218 is the daughter nucleus.

2	 A carbon-14 nucleus (parent) decays by β−-emission 
to become an isotope of nitrogen (daughter). Here is 
the equation that represents this decay:

	 14
6C  →  14

7N  +  0
−1e

	 Show that both nucleon number and proton number 
are conserved.

	 Compare the nucleon and proton numbers on both 
sides of the equation for the decay:

	 nucleon number A	 14 = 14 + 0

	 proton number Z	 6 = 7 − 1

	 Remember that in β−-decay, A remains the same and Z 
increases by 1.

WORKED EXAMPLES

hand side of the balance is a single 12
6 C nucleus. On the 

right-hand side are six protons and six neutrons, the result 
of dismantling the nucleus. The surprising thing is that the 
balance is tipped to the right. The separate nucleons have 
more mass than the nucleus itself. This means that the law 
of conservation of mass appears to have been broken. Have 
we violated what was thought to be a fundamental law of 
Nature, something that was held to be true for hundreds  
of years?

Notice that, in dismantling the 12
6 C nucleus, we have had 

to do work. The nucleons attract one another with nuclear 
forces and these are strong enough to make the nucleus 
very stable. So we have put energy into the nucleus to pull it 
apart, and this energy increases the potential energy of the 
individual nucleons. We can think of the nucleons within 
the nucleus as sitting in a deep potential well which results 
from the strong forces which hold the nucleus together. 
When we separate nucleons, we lift them out of this 
potential well, giving them more nuclear potential energy. 
This potential well is similar to that formed by the electric 
field around the nucleus; it is this well in which the atomic 
electrons sit, but it is much, much deeper. This explains why 
it is much easier to remove an electron from an atom than 
to remove a nucleon from the nucleus.

The problem of the appearing mass remains. To solve 
this problem, Einstein made the revolutionary hypothesis 
that energy has mass. This is not an easy idea. When 
bodies are in a higher energy state they have more mass 
than in a lower energy state. A bucket of water at the top 
of a hill will have more mass than when it is at the bottom 
because energy has been transferred to it in carrying it 
up the hill. A tennis ball travelling at 50 m s−1 will have 
more mass than the same tennis ball when stationary. In 
everyday life the amount of extra mass is so small that 
it cannot be measured, but the large changes in energy 
which occur in nuclear physics and high-energy physics 
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makes the changes in mass significant. Indeed, the 
increase in mass of particles, such as electrons, as they are 
accelerated to speeds near to the speed of light is a well-
established experimental fact.

Another way to express this is to treat mass and energy 
as aspects of the same thing. Rather than having separate 
laws of conservation of mass and conservation of energy, 
we can combine these two. The total amount of mass and 
energy together in a system is constant. There may be 
conversions from one to the other, but the total amount of 
‘mass–energy’ remains constant.

Einstein’s mass–energy equation
Albert Einstein produced his famous mass–energy 
equation, which links energy E and mass m:

E = mc2

where c is the speed of light in free space. The value of c 
is approximately 3.00 × 108 m s−1, but its precise value has 
been fixed as c = 299 792 458 m s−1.

Generally, we will be concerned with the changes 
in mass owing to changes in energy, when the equation 
becomes:

ΔE = Δmc2

According to Einstein’s equation:

■■ the mass of a system increases when energy is supplied to it
■■ when energy is released from a system, its mass decreases.

Now, if we know the total mass of particles before a 
nuclear reaction and their total mass after the reaction, we 
can work out how much energy is released. Table 31.1 gives 
the mass in kilograms of each of the particles shown in 
Figure 31.3. Notice that this is described as the rest mass of 
the particle, that is, its mass when it is at rest (stationary); 
its mass is greater when it is moving because of its increase 
in energy. Nuclear masses are measured to a high degree of 
precision using mass spectrometers, often to seven or eight 
significant figures.

Particle Rest mass / 10−27 kg
1
1 p 1.672 623
1
0 n 1.674 929
12

6 C nucleus 19.926 483

Table 31.1  Rest masses of some particles. It is worth noting 
that the mass of the neutron is slightly greater than that of the 
proton (roughly 0.1% greater). 

We can use the mass values to calculate the mass that 
is released as energy when nucleons combine to form a 
nucleus. So for our particles in Figure 31.3, we have:

mass before = (6 × 1.672 623 +  6 × 1.674 929) × 10−27 kg 
	 = 20.085 312 × 10−27 kg

mass after = 19.926 483 × 10−27 kg

mass difference Δm = (20.085 312 − 19.926 483) × 10−27 kg 
	 = 0.158 829 × 10−27 kg

When six protons and six neutrons combine to form the 
nucleus of carbon-12, there is a very small loss of mass Δm, 
known as the mass defect.

The mass defect of a nucleus is equal to the difference 
between the total mass of the individual, separate 
nucleons and the mass of the nucleus.

The loss in mass implies that energy is released in this 
process. The energy released E is given by Einstein’s  
mass–energy equation. Therefore:

E = mc2

	 = 0.158 829 × 10−27 × (3.00 × 108) 2

	 ≈ 1.43 × 10−11 J
This may seem like a very small amount of energy, but it is 
a lot on the scale of an atom. For comparison, the amount 
of energy released in a chemical reaction involving a single 
carbon atom would typically be of the order of 10−18 J, 
more than a million times smaller.

Now look at Worked example 3.

Mass–energy conservation
Einstein pointed out that his equation ∆E = ∆mc2 applied 
to all energy changes, not just nuclear processes. So, for 
example, it applies to chemical changes, too. If we burn 
some carbon, we start off with carbon and oxygen. At the 
end, we have carbon dioxide and energy. If we measure 
the mass of the carbon dioxide, we find that it is very 
slightly less than the mass of the carbon and oxygen at 
the start of the experiment. The total potential energy of 
the system will be less than at the start of the experiment, 
hence the mass is less. In a chemical reaction such as this, 
the change in mass is very small, less than a microgram 
if we start with 1 kg of carbon and oxygen. Compare this 
with the change in mass that occurs during the fission of 
1 kg of uranium, described later. The change in mass in a 
chemical reaction is a much, much smaller proportion of 
the original mass, which is why we don’t notice it.
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Another unit of mass
When calculating energy values using E = mc2, it is 
essential to use values of mass in kg, the SI unit of 
mass. However, the mass of a nucleus is very small, 
perhaps 10−25 kg, and these numbers are awkward. As an 
alternative, atomic and nuclear masses are often given in a 
different unit, the atomic mass unit (symbol u). 

1 u is defined as 1
12 of the mass of a neutral atom of 

carbon-12.

It follows that the mass of an atom of 12
6 C = 12.000 u 

exactly. (An alternative might have been to define the mass 
of a proton as 1.000 u exactly, but it is more practical to 
measure the mass of an atom of the carbon isotope 12

6 C.)
Table 31.3 shows the masses of some nuclides in u.

Nuclide Symbol Mass / u
proton 	 1

1 p 1.007 825

neutron 	 1
0 n 1.008 665

helium-4 	 4
2 He 4.002 602

carbon-12 	 12
6 C 12.000 000

potassium-40 	 40
19 K 39.963 998

uranium-235 	235
92 U 235.043 930

Table 31.3  Masses of some nuclides in atomic mass units. 
Some have been measured to several more decimal places 
than are shown here. 

The atomic mass unit is related to the kilogram by:
1 u = 1.660 538 921(73) × 10−27 kg

This conversion factor is found by measuring the mass in 
kg of atoms of carbon-12. (The bracketed figures represent 
the experimental uncertainty.)

To convert a mass in u to kg, multiply by the 
conversion factor shown above (usually 1.6605 × 10−27 is 
sufficiently accurate).

From Table 31.3, you can see that the mass in u is 
close to the nucleon number A. For example, the mass of 
uranium-235 is slightly more than 235. The extra bit is 
known as the mass excess.

mass excess = mass (in u) – nucleon number

So the mass excess for U-235 is 235.043 930 − 235  
= 0.043 930 u. 

3	 Use the data below to determine the minimum 
energy required to split a nucleus of oxygen-16 (16

8 O) 
into its separate nucleons. Give your answer in  
joules (J).

	 mass of proton = 1.672 623 × 10−27 kg
	 mass of neutron = 1.674 929 × 10−27 kg
	 mass of 16

8 O nucleus = 26.551 559 × 10−27 kg
	 speed of light c = 3.00 × 108 m s−1

	 Step 1  Find the difference Δm in kg between the 
mass of the oxygen nucleus and the mass of the 
individual nucleons. The 16

8 O nucleus has 8 protons 
and 8 neutrons.
Δm = final mass − initial mass
Δm = [(8 × 1.672 623 + 8 × 1.674 929) − 26.551 559]  
� × 10−27 kg
Δm ≈ 2.20 × 10−28 kg

	 There is an increase in the mass of this system 
because external energy is supplied.

	 Step 2  Use Einstein’s mass–energy equation to 
determine the energy supplied.

	 ΔE = Δmc 2

	 E = 2.20 × 10−28 × (3.00 × 108)2 ≈ 1.98 × 10−11 J

3	 The Sun releases vast amounts of energy. Its 
power output is 4.0 × 1026 W. Estimate by how 
much its mass decreases each second because of 
this energy loss.

4	 a	� Calculate the energy released if a  
4
2 He nucleus 

is formed from separate protons and neutrons. 
The masses of the particles are given in  
Table 31.2.

b	 Calculate also the energy released per nucleon.

Particle Mass / 10−27 kg
1
1 p 1.672 623
1
0 n 1.674 929
4
2 He 6.644 661

Table 31.2  Masses of some particles. 

5	 A golf ball has a mass of 150 g. Calculate its 
increase in mass when it is travelling at 50 m s−1. 
What is this as a percentage of its rest mass?

QUESTIONS

WORKED EXAMPLE
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Energy released in radioactive 
decay
Unstable nuclei may emit α- and β-particles with large 
amounts of kinetic energy. We can use Einstein’s  
mass–energy equation ΔE = Δmc2 to explain the origin 
of this energy. Take, for example, the decay of a nucleus 
of uranium-238. It decays by emitting an α-particle and 
changes into an isotope of thorium:

	 238
92 U → 234

90 Th + 42 He
The uranium nucleus is in a high-energy, relatively 
unstable state. It emits the α-particle and the remaining 
thorium nucleus is in a lower, more stable energy state. 
There is a decrease in the mass of the system. That is, the 
combined mass of the thorium nucleus and the α-particle 
is less than the mass of the uranium nucleus. According to 
Einstein’s mass–energy equation, this difference in mass 
Δm is equivalent to the energy released as kinetic energy of 
the products. Using the most accurate values available:

mass of 238
92 U nucleus = 3.952 83 × 10−25 kg

total mass of 234
90 Th nucleus and α-particle (4

2 He)  
	 = 3.952 76 × 10−25 kg

change in mass Δm = (3.952 76 − 3.952 83) × 10−25 kg

	 ≈ −7.0 × 10−30 kg
The minus sign shows a decrease in mass, hence, according 
to the equation ΔE = Δmc2, energy is released in the decay 
process:

energy released ≈ 7.0 × 10−30 × (3.0 × 108) 2

	 ≈ 6.3 × 10−13 J
This is an enormous amount of energy for a single decay. 
One mole of uranium-238, which has 6.02  × 1023 nuclei, 
has the potential to emit total energy equal to about 1011 J.

We can calculate the energy released in all decay 
reactions, including β-decay, using the same ideas as above.

6	 a	� The mass of an atom of 56
26 Fe is 55.934 937 u. 

Calculate its mass in kg.
b	 The mass of an atom of 16

8 O is  
2.656 015 × 10−26 kg. Calculate its mass in u. 

7	 Table 31.3 gives the masses (in u) of several 
nuclides.
a	 Determine the mass excess of helium-4.
b	 One nuclide in the table has a negative mass 

excess. Name the nuclide and determine its 
mass excess.

8	 A nucleus of beryllium 10
4 Be decays into an isotope 

of boron by β−-emission. The chemical symbol for 
boron is B.
a	 Write a nuclear decay equation for the nucleus 

of beryllium-10.
b	 Calculate the energy released in this decay and 

state its form.

	 	 mass of 10
4Be nucleus = 1.662 38 × 10−26 kg

	 	 mass of boron isotope = 1.662 19 × 10−26 kg

	 	 mass of electron = 9.109 56 × 10−31 kg

Binding energy and stability
We can now begin to see why some nuclei are more stable 
than others. If a nucleus is formed from separate nucleons, 
energy is released. In order to pull the nucleus apart, 
energy must be put in; in other words, work must be done 
against the strong nuclear force which holds the nucleons 
together. The more energy involved in this, the more stable 
is the nucleus.

The minimum energy needed to pull a nucleus apart into 
its separate nucleons is known as the binding energy of 
the nucleus.

Take care: this is not energy stored in the nucleus; on the 
contrary, it is the energy that must be put in to the nucleus 
in order to pull it apart. In the example of 12

6 C discussed 
above, we calculated the binding energy from the mass 
difference between the mass of the 12

6 C nucleus and the 
masses of the separate protons and neutrons.

In order to compare the stability of different nuclides, 
we need to consider the binding energy per nucleon. 
We can determine the binding energy per nucleon for a 
nuclide as follows:

■■ Determine the mass defect for the nucleus.
■■ Use Einstein’s mass–energy equation to determine the 

binding energy of the nucleus by multiplying the mass 
defect by c2.

■■ Divide the binding energy of the nucleus by the number of 
nucleons to calculate the binding energy per nucleon.

QUESTIONS

QUESTION
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Figure 31.4 shows the binding energy per nucleon for 
stable nuclei, including the value for 56

26 Fe (shown as a 
red dot) from Worked example 4. This is a graph plotted 
against the nucleon number A. The greater the value of the 
binding energy per nucleon, the more tightly bound are 
the nucleons that make up the nucleus.

If you examine this graph, you will see that the general 
trend is for light nuclei to have low binding energies per 
nucleon. Note, however, that helium has a much higher 
binding energy than its place in the Periodic Table might 
suggest. The high binding energy means that it is very 
stable. Other common stable nuclei include 12

6 C and  
16
8 O, which can be thought of respectively as three and  

four α-particles bound together (Figure 31.5).
For nuclides with A > 20 approximately, there is not 

much variation in binding energy per nucleon. The 
greatest value of binding energy per nucleon is found  

4	 Calculate the binding energy per nucleon for the 
nuclide 56

26 Fe.

	 mass of neutron = 1.675 × 10−27 kg
	 mass of proton = 1.673 × 10−27 kg
	 mass of 56

26 Fe nucleus = 9.288 × 10−26 kg

	 Step 1  Determine the mass defect.

	 number of neutrons = 56 − 26 = 30

	 mass defect 
	    = (30 × 1.675 × 10−27 + 26 × 1.673 × 10−27) − 9.288 × 10−26

   = 8.680 × 10−28 kg

	 Step 2  Determine the binding energy of the nucleus.
binding energy = Δmc 2

	 = 8.680 × 10−28 × (3.00 × 108)2

	 = 7.812 × 10−11 J

	 Step 3  Determine the binding energy per nucleon.

binding energy per nucleon =  
7.812 × 10−11

56

	 		  ≈  14 × 10−13 J
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Figure 31.4  This graph 
shows the binding energy 
per nucleon for a number 
of nuclei. The nucleus 
becomes more stable 
as binding energy per 
nucleon increases.

Figure 31.5  More stable nuclei are formed when ‘α-particles’ 
are bound together. In 12

6 C and 16
8 O, the ‘α-particles’ do not 

remain separate, as shown here; rather, the protons and 
neutrons are tightly packed together. 

WORKED EXAMPLE
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Binding energy, fission and fusion
We can use the binding energy graph to help us decide 
which nuclear processes – fission, fusion, radioactive decay 
– are likely to occur (Figure 31.6).

Fission
Fission is the process in which a massive nucleus splits to 
form two smaller fragments (rather than simply emitting 
α- or β-radiation). For uranium, we have A = 235, and the 
typical fragments have A = 140 and 95. If we look at the 
binding energy curve, we see that these two fragments 
have greater binding energy (less potential energy) per 
nucleon than the original uranium nucleus. Hence, if the 
uranium nucleus splits in this way, energy will be released.

Fusion
Fusion is the process by which two very light nuclei join 
together to form a heavier nucleus. (This is the process by 
which energy is released in the Sun, when hydrogen nuclei 
fuse to form helium nuclei.) If two light nuclei fuse, the final 
binding energy per nucleon will be greater than the original 
value. The high binding energy (low total energy) of the 4

2 He 
nuclide means that it is rare for these nuclei to fuse.

	 9	 Explain why hydrogen 11H does not appear on the 
graph shown in Figure 31.4.

	10	 The mass of a 84 Be nucleus is 1.33 × 10−26 kg.  
A proton and a neutron have a mass of about  
1.67 × 10−27 kg. For the nucleus of 84 Be, determine:
a	 the mass defect in kg
b	 the binding energy
c	 the binding energy per nucleon.
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Figure 31.7  The time constant of this ratemeter can be 
adjusted to smooth out rapid fluctuations in the count rate.

Randomness and decay
Listen to a counter connected to a Geiger–Müller (GM) 
tube that is detecting the radiation from a weak source, 
so that the count rate is about one count per second. Each 
count represents the detection of a single α-particle or 
a β-particle or a γ-ray photon. You will notice that the 
individual counts do not come regularly. The counter 
beeps or clicks in a random, irregular manner. If you try to 
predict when the next clicks will come, you are unlikely to 
be right.

You can see the same effect if you have a ratemeter, 
which can measure faster rates (Figure 31.7). The needle 
fluctuates up and down. Usually a ratemeter has a control 
for setting the ‘time constant’ – the time over which the 
meter averages out the fluctuations. Usually this can be set 
to 1 s or 5 s. The fluctuations are smoothed out more on the 
5 s setting.

	11	 Use the binding energy graph to suggest why 
fission is unlikely to occur with ‘light nuclei’  
(A < 20), and why fusion is unlikely to occur for 
heavier nuclei (A > 40).

Figure 31.6  Both fusion and fission are processes that tend 
to increase the binding energy per nucleon of the particles 
involved. 

for 56
26 Fe. This isotope of iron requires the most energy per 

nucleon to dismantle it into separate nucleons; hence  
iron-56 is the most stable isotope in nature.

QUESTIONS

QUESTION
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Figure 31.8 shows a graph of count rate against 
time, with a smoothing of a few seconds. The count rate 
decreases with time as the number of radioactive nuclei 
that are left decreases. The fluctuations either side are 
caused by the randomness of the decay.

existed for billions of years, and will still exist long after 
we are gone. The nucleus of an atom does not age.

If we look at a very large number of atoms of a 
radioactive substance, we will see that the number of 
undecayed nuclei gradually decreases. However, we 
cannot predict when an individual nucleus will decay. 
Each nucleus ‘makes up its own mind’ when to decay, 
independently from its neighbours. This is because 
neighbouring nuclei do not interact with one another 
(unlike neighbouring atoms). The nucleus is a tiny fraction 
of the size of the atom, and the nuclear forces do not 
extend very far outside the nucleus. So one nucleus cannot 
affect a neighbouring nucleus by means of the nuclear 
force. Being inside a nucleus is a bit like living in a house 
in the middle of nowhere; you can just see out into the 
garden, but everything is darkness beyond, and the next 
house is 1000 km away.

The fact that individual nuclei decay spontaneously, 
and independently of their neighbours and of 
environmental factors, accounts for the random pattern 
of clicks that we hear from a Geiger counter and the 
fluctuations of the needle on the ratemeter.

To summarise, nuclear decay is spontaneous because:

■■ the decay of a particular nucleus is not affected by the 
presence of other nuclei

■■ the decay of nuclei cannot be affected by chemical 
reactions or external factors such as temperature and 
pressure.

Nuclear decay is random because:

■■ it is impossible to predict when a particular nucleus in a 
sample is going to decay

■■ each nucleus in a sample has the same chance of decaying 
per unit time.

The mathematics of radioactive 
decay
We have seen that radioactive decay is a random, 
spontaneous process. Because we cannot say when an 
individual nucleus will decay, we have to start thinking 
about very large numbers of nuclei. Even a tiny speck of 
radioactive material will contain more than 1015 nuclei. 
Then we can talk about the average number of nuclei that 
we expect to decay in a particular time interval; in other 
words, we can find out the average decay rate. Although 
we cannot make predictions for individual nuclei, we can 
say that certain types of nuclei are more likely to decay 
than others. For example, a nucleus of carbon-12 is stable; 
carbon-14 decays gradually over thousands of years; 
carbon-15 nuclei last, on average, a few seconds.
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Figure 31.8  Count rate showing randomness of decay.

So it is apparent that radioactive decay is a random, 
irregular phenomenon. But is it completely unpredictable? 
Well, not really. We can measure the average rate of decay. 
We might measure the number of counts detected in 
1000 s, and then calculate the average number per second. 
We cannot be sure about this average rate either, because 
the number of counts in 1000 s will fluctuate, too. All of 
our measurements of radioactive decay are inherently 
uncertain and imprecise but, by taking averages over a 
sufficiently long time period, we can reduce or smooth out 
the random fluctuations to reveal the underlying pattern.

Spontaneous decay
Radioactive decay occurs within the unstable nucleus 
of an atom. A nucleus emits radiation and becomes 
the nucleus of an atom of a different element. This is a 
spontaneous process, which means that we cannot predict, 
for a particular nucleus, when it will happen. If we sit and 
stare at an individual nucleus, we cannot see any change 
that will tell us that it is getting ready to decay. And if it 
doesn’t decay in the first hour when we are watching it, we 
cannot say that it is any more likely to decay in the next 
hour. What is more, we cannot affect the probability of an 
individual nucleus decaying, for example by changing its 
temperature.

This is slightly odd, because it goes against our 
everyday experience of the way things around us change. 
We observe things changing. They gradually age, die, rot 
away. But this is not how things are on the scale of atoms 
and nuclei. Many of the atoms of which we are made have 
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So, because of the spontaneous nature of radioactive 
decay, we have to make measurements on very large 
numbers of nuclei and then calculate averages. One 
quantity we can determine is the probability that an 
individual nucleus will decay in a particular time interval. 
For example, suppose we observe one million nuclei 
of a particular radioisotope. After one hour, 200 000 
have decayed. Then the probability that an individual 
nucleus will decay in one hour is 0.2 or 20%, since 20% 
of the nuclei have decayed in this time. (Of course, this 
is only an approximate value, since we might repeat the 
experiment and find that only 199 000 decay because of the 
random nature of the decay. The more times we repeat the 
experiment, the more reliable our answer will be.)

We can now define the decay constant:

The probability that an individual nucleus will decay per 
unit time interval is called the decay constant, λ.

For the example above, we have:
decay constant λ = 0.20 h−1

Note that, because we are measuring the probability of 
decay per unit time interval, λ has units of h−1 (or s−1, 
day−1, year−1, etc.).

The activity of a source is defined as follows:

The activity A of a radioactive sample is the rate at which 
nuclei decay or disintegrate.

Activity is measured in decays per second (or h−1, day−1). 
An activity of one decay per second is one becquerel (1 Bq):

1 Bq = 1 s−1

Clearly, the activity of a sample depends on the decay 
constant λ of the isotope under consideration. The greater 
the decay constant (the probability that an individual 
nucleus decays per unit time interval), the greater is the 
activity of the sample. It also depends on the number of 
undecayed nuclei N present in the sample. For a sample of 
N undecayed nuclei, we have:

A = −λN
We can also think of the activity as the number of α- or 
β-particles emitted from the source per unit time. Hence, 
we can also write the activity A as:

A = ΔN
Δt

where ΔN is equal to the number of emissions (or decays) 
in a small time interval of Δt.

5	 A radioactive source emits β-particles. It has an 
activity of 2.8 × 107 Bq. Estimate the number of 
β-particles emitted in a time interval of 2.0 minutes. 
State one assumption made.

	 Step 1  Write down the given quantities in SI units.
A = 2.8 × 107 Bq    Δt = 120 s

	 Step 2  Determine the number of β-particles 
emitted.

A = 
∆N
∆t     ∆N = A ∆t

∆N = 2.8 × 107 × 120 = 3.36 × 109 ≈ 3.4 × 109

	 We have assumed that the activity remains constant 
over a period of 2.0 minutes.

6	 A sample consists of 1000 undecayed nuclei of a 
nuclide whose decay constant is 0.20 s−1. Determine 
the initial activity of the sample. Estimate the 
activity of the sample after 1.0 s.

	 Step 1  Since activity A = −λN, we have:
A = 0.20 × 1000 = 200 s−1 = 200 Bq

	 Step 2  After 1.0 s, we might expect 800 nuclei to 
remain undecayed.

	 The activity of the sample would then be:
A = 0.2 × 800 = 160 s−1 = 160 Bq

	 (In fact, it would be slightly higher than this. Since the 
rate of decay decreases with time all the time, less 
than 200 nuclei would decay during the first second.)

Count rate
Although we are often interested in finding the activity 
of a sample of radioactive material, we cannot usually 
measure this directly. This is because we cannot easily 
detect all of the radiation emitted. Some will escape past 
our detectors, and some may be absorbed within the 
sample itself. A GM tube placed in front of a radioactive 
source therefore only detects a fraction of the activity. The 
further it is from the source, the smaller the count rate. 
Therefore, our measurements give a received count rate R 
that is significantly lower than the activity A. If we know 
how efficient our detecting system is, we can deduce A 
from R. If the level of background radiation is significant, 
then it must be subtracted to give the corrected count rate.

WORKED EXAMPLES
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Decay graphs and equations
The activity of a radioactive substance gradually 
diminishes as time goes by. The atomic nuclei emit 
radiation and become different substances. The pattern 
of radioactive decay is an example of a very important 
pattern found in many different situations, a pattern called 
exponential decay. Figure 31.9 shows the decay graphs for 
three different isotopes, each with a different rate of decay.

In a time equal to one half-life, the activity of the sample 
will also halve. This is because activity is proportional 
to the number of undecayed nuclei (A ∝ N). It takes the 
same amount of time again for half of the remainder of 
the nuclei to decay, and a third half-life for half of the new 
remainder to decay (Figure 31.10).

	12	 A sample of carbon-15 initially contains 500 000 
undecayed nuclei. The decay constant for this 
isotope of carbon is 0.30 s−1. Determine the initial 
activity of the sample.

	13	 A small sample of radium gives a received count 
rate of 20 counts per minute in a detector. It is 
known that the counter detects only 10% of the 
decays from the sample. The sample contains 
1.5 × 109 undecayed nuclei. Determine the decay 
constant of this form of radium.

	14	 A radioactive sample is known to emit α-, β- and 
γ-radiations. Suggest four reasons why the count 
rate measured by a Geiger counter placed next to 
this sample would be lower than the activity of 
the sample.
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Figure 31.9  Some radioactive materials decay faster than 
others. 

Although the three graphs look different, they all have 
something in common − their shape. They are curved lines 
having a special property. If you know what is meant by 
the half-life of a radioisotope, then you will understand 
what is special about the shape of these curves.

The half-life t1/2 of a radioisotope is the mean time taken 
for half of the active nuclei in a sample to decay.
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In principle, the graph never reaches zero; it just gets 
closer and closer. In practice, when only a few undecayed 
nuclei remain the graph will cease to be a smooth curve 
(because of the random nature of the decay) and it will 
eventually reach zero. We use the idea of half-life because 
we cannot say when a sample will have completely 
decayed.

Mathematical decay
We can write an equation to represent the graph shown in 
Figure 31.10. If we start with N0 undecayed nuclei, then the 
number N that remain undecayed after time t is given by:

N = N0 e(−λt)

In this equation, λ is the decay constant, as before. (You 
may also see this written as N = N0 exp (−λt).) Note that 
you must take care with units. If λ is in s−1, then the time t 
must be in s.

The symbol e represents the number e = 2.71828…, 
a special number in the same way that π is a special 
number. You will need to be able to use the ex key on your 
calculator to solve problems involving e.

The activity A of a sample is proportional to the 
number of undecayed nuclei N. Hence the activity of the 
sample decreases exponentially:

A = A0 e(−λt)

Figure 31.10  All radioactive decay graphs have the same 
characteristic shape.

QUESTIONS
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Usually we measure the corrected count rate R in the 
laboratory rather than the activity or the number of 
undecayed nuclei. Since the count rate is a fraction of the 
activity, it too decreases exponentially with time:

R = R0 e(−λt)

Now look at Worked examples 7 and 8.

BOX 31.1: Determining half-life

If you are to determine the half-life of a radioactive 
substance in the laboratory, you need to choose 
something that will not decay too quickly or too 
slowly. In practice, the most suitable isotope is 
protactinium-234, which decays by emitting  
β−-radiation. This is available in a bottle containing 
a solution of a uranium compound (uranyl(VI) 
nitrate) (Figure 31.11). By shaking the bottle, you 
can separate the protactinium into the top layer 
of solvent in the bottle. The counter allows you to 
measure the decay of the protactinium.

Figure 31.11  Practical arrangement for observing the 
decay of protactinium-234. 

After recording the number of counts in 
consecutive 10-second intervals over a period of a 
few minutes, you can then draw a graph, and use it 
to find the half-life of protactinium-234.

counterGM
tube

protactinium in
floating layer

denser layer
of uranyl(VI)

nitrate solution

7	 Suppose we start an experiment with 1.0 × 1015 
undecayed nuclei of an isotope for which λ is equal 
to 0.02 s−1. Determine the number of undecayed 
nuclei after 20 s.

	 Step 1  In this case, we have N0 = 1.0 × 1015,  
λ = 0.02 s−1 and t = 20 s. Substituting in the equation 
gives:
N = 1.0 × 1015 e(−0.02 × 20)

	 Step 2  First calculate the expression in brackets; 
then use the e x key and multiply by 1.0 × 1015.
N = 1.0 × 1015 e(−0.40)

	 = 6.7 × 1014

8	 A sample initially contains 1000 undecayed nuclei 
of an isotope whose decay constant λ = 0.10 min−1. 
Draw a graph to show how the sample will decay 
over a period of 10 minutes.

	 Step 1  We have N0 = 1000 and λ = 0.10 min−1. Hence, 
we can write the equation for this decay:
N = 1000 e(−0.10 × t)

	 Step 2  Calculate values of the number N of 
undecayed nuclei at intervals of 1.0 min (60 s); this 
gives Table 31.4 and the graph shown in Figure 31.12.

Figure 31.12  Radioactive decay graph.

t / min 0 1.0 2.0 3.0 4.0 5.0

N 1000 905 819 741 670 607

t / min 6.0 7.0 8.0 9.0 10.0

N 549 497 449 407 368

Table 31.4  For Worked example 8.
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Decay constant and half-life
A radioactive isotope that decays rapidly has a short 
half-life t½. Its decay constant must be large, since the 
probability per unit time of an individual nucleus decaying 
must be high. What is the connection between the decay 
constant and the half-life?

In a time equal to one half-life t½, the number of 
undecayed nuclei is halved. Hence the equation:

N = N0 e(−λt)

becomes:
N
N0

 = e(−λt ½) = 12

Therefore:
e(λt½) = 2
λt½ = ln 2 ≈ 0.693

(remember if ex = y, then x = ln y).
The half-life of an isotope and the decay constant are 

inversely proportional to each other. That is:

λ = 0.693
t½

Thus if we know either t½ or λ, we can calculate the other. 
For a nuclide with a very long half-life, we might not wish 
to sit around waiting to measure the half-life; it is easier to 
determine λ by measuring the activity (and using A = λN), 
and use that to determine t½.

Note that the units of λ and t½ must be compatible; for 
example, λ in s−1 and t1/2 in s.

	15	 The isotope nitrogen-13 has a half-life of 10 min. 
A sample initially contains 8.0 × 1010 undecayed 
nuclei.
a	 Write down an equation to show how the 

number undecayed, N, depends on time, t.
b	 Determine how many nuclei will remain after 

10 min, and after 20 min.
c	 Determine how many nuclei will decay during 

the first 30 min.

	16	 A sample of an isotope for which λ = 0.10 s−1 
contains 5.0 × 109 undecayed nuclei at the start 
of an experiment. Determine:
a	 the number of undecayed nuclei after 50 s
b	 its activity after 50 s.

	17	 The value of λ for protactinium-234 is  
9.63 × 10−3 s−1. Table 31.5 shows the number of 
undecayed nuclei, N, in a sample.

		  Copy and complete Table 31.5. Draw a graph of 
N against t, and use it to find the half-life t1/2 of 
protactinium-234.

t / s 0 20 40 60 80 100 120 140

N 400 330

Table 31.5  Data for Question 17. 

	18	 Figure 31.13 shows the decay of a radioactive 
isotope of caesium, 134

55 Cs. Use the graph to 
determine the half-life of this nuclide in years, 
and hence find the decay constant in year−1.

	19	 The decay constant of a particular isotope is 
known to be 3.0 × 10−4 s−1. Determine how long 
it will take for the activity of a sample of this 
substance to decrease to one-eighth of its initial 
value.

	20	 The isotope 16
7 N decays with a half-life of 7.4 s.

a	 Calculate the decay constant for this nuclide.
b	 A sample of 16

7 N initially contains 5000 nuclei. 
Determine how many will remain after a  
time of:
i	 14.8 s ii	 20.0 s.

	21	 A sample contains an isotope of half-life t 1/2.
a	 Show that the fraction f of nuclei in the 

sample which remain undecayed after a time t 
is given by the equation:

	 f = (1
2)n  when  n =  

t
t1/2

b	 Calculate the fraction f after each of the 
following times:
i	 t1/2	 ii	 2t1/2

iii	 2.5t1/2	 iv	 8.3t1/2
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Figure 31.13  Decay graph for a radioactive isotope 
of caesium – see Question 18. 

QUESTIONS

QUESTIONS
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End-of-chapter questions
1 An antiproton is identical to a proton except that it has negative charge. If a proton and an antiproton 

collide they are annihilated and two photons are formed.
a Calculate the energy released in the reaction. [3]
b Calculate the energy released if 1 mole of protons and 1 mole of antiprotons were annihilated by 

this process. [3]
 (Mass of a proton =  mass of an antiproton = 1.67 × 10−27 kg.)

2 Calculate the mass that would be annihilated to release 1 J of energy. [2]

3 In a nuclear reactor the mass of uranium and the fission fragments falls at a rate of 70 µg s−1. 
Calculate the maximum power output from the reactor assuming that it is 100% eff icient. [3]

Summary
■■ Nuclear reactions can be represented by equations of 

the form 
14

6C  →  14
7N  +  0

−1e

■■ Einstein’s mass–energy equation ΔE = Δmc 2 relates 
mass changes to energy changes.

■■ The mass defect is equal to the diff erence between the 
mass of the separate nucleons and that of the nucleus.

■■ Atomic masses may be measured in atomic mass 
units:

1 u = 1.660 538 921(73) × 10−27 kg.

■■ The mass excess of a nuclide is the diff erence between 
its mass (in u) and the nucleon number.

■■ The binding energy of a nucleus is the minimum 
energy required to break up the nucleus into separate 
nucleons.

■■ The binding energy per nucleon indicates the relative 
stability of diff erent nuclides.

■■ The variation of binding energy per nucleon shows 
that energy is released when light nuclei undergo 
fusion and when heavier nuclei undergo fission, 
because these processes increase the binding energy 
per nucleon and hence result in more stable nuclides.

■■ Nuclear decay is a spontaneous and random process. 
This unpredictability means that count rates tend to 
fluctuate, and we have to measure average quantities.

■■ The half-life t 1/2 of a radioisotope is the mean time 
taken for half of the active nuclei in a sample to decay.

■■ The decay constant λ is the probability that an 
individual nucleus will decay per unit time interval.

■■ The activity A of a sample is related to the number of 
undecayed nuclei in the sample N by A = −λN.

■■ The decay constant and half-life are related by the 
equation:

λt 1/2 = ln 2 or λt 1/2 ≈ 0.693

■■ We can represent the exponential decrease of a 
quantity by an equation of the form:

x  = x0 e(−λt)

where x can be activity A, count rate R or number of 
undecayed nuclei N.
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4 The equation shows the radioactive decay of radon-222.

 222
86 Rn → 218

84 Po +  42 α + γ

 Calculate the total energy output from this decay and state what forms of energy are produced. [6]

 (Mass of 222
86 Rn = 221.970 u, mass of 218

84 Po = 217.963 u, mass of  4
2 α = 4.002 u; 

1 u is the unified atomic mass unit = 1.660 × 10−27 kg.)

 (Hint: find the mass defect in u, then convert to kg.)

5 A carbon-12 atom consists of 6 protons, 6 neutrons and 6 electrons. The unified atomic mass unit (u) 
is defined as 1

12 the mass of the carbon-12 atom.

 Calculate:
a the mass defect in kilograms [2]
b the binding energy [2]
c the binding energy per nucleon. [2]

 (Mass of a proton = 1.007 276 u, mass of a neutron = 1.008 665 u, mass of an electron = 0.000 548 u.)

6 The fusion reaction which holds most promise for the generation of electricity is the fusion of 
tritium 3

1H and deuterium 2
1 H. The equation below shows the process:

 3
1H + 2

1 H → 4
2 He + 1

1 H

 Calculate:
a the change in mass in the reaction [3]
b the energy released in the reaction [2]
c the energy released if one mole of deuterium were reacted with one mole of tritium. [2]

 (Mass of 3
1H = 3.015 500 u, mass of 2

1 H = 2.013 553 u, mass of 4
2 He = 4.001 506 u, mass of 1

1 H = 1.007 276 u.)

7 The initial activity a sample of 1 mole of radon-220 is 8.02 × 1021 s−1. Calculate:
a the decay constant for this isotope [3]
b the half-life of the isotope. [2]

8 Figure 31.14 Shows the count rate recorded when a sample of the isotope indium-116 decays.

Figure 31.14 For End-of-chapter Question 8. 

a Use the graph to find the half-life of the isotope. [2]
b Calculate the decay constant. [2]
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 9 The proportions of diff erent isotopes in rocks can be used to date the rocks. The half-life of 
uranium-238 is 4.9 × 109 years. A sample has 99.2% of the proportion of this isotope compared with 
newly formed rock.
a Calculate the decay constant for this isotope of uranium. [2]
b Calculate the age of the rock. [3]

10 The table shows the received count rate when a sample of the isotope vanadium-52 decays.

Time / min   0   1   2   3  4  5  6  7  8

Count rate / Bq 187 159 134 110 85 70 60 56 40

a i Draw a graph of the count rate against the time. [5]
ii Comment on the scatter of the points. [1]

b From the graph, deduce the half-life of the isotope. [1]
c Describe the changes to the graph that you would expect if you were given a larger sample of 

the isotope. [2]

11 The graph in Figure 31.8 shows how randomness aff ects count rate. State and explain what 
happens if the experiment is performed using the same amount of radioactive material but at a 
higher temperature. [2]

12 This question is about the nucleus of uranium-235 (235
92 U), which has a mass of 3.89  × 10−25 kg.

a State the number of protons and neutrons in this nucleus. [1]
b The radius r of a nucleus is given by the equation:
 r  = 1.41 × 10−15 A1/3

 where A is the nucleon number of the nucleus.
 Determine the density of the 235

92 U nucleus. [3]
c Explain why the total mass of the nucleons is diff erent from the mass of the 235

92 U nucleus. [2]
d Without calculations, explain how you can determine the binding energy per nucleon for the 

uranium-235 nucleus from its mass and the masses of a proton and a neutron. [4]

13 a  Explain what is meant by nuclear fusion and explain why it only occurs at very high temperatures. [3]
b The main reactions which fuel the Sun are the fusion of hydrogen nuclides to form helium nuclides. 

However, other reactions do occur. In one such reaction, known as the triple alpha process, 
three helium nuclei collide and fuse to form a carbon-12 nucleus.
i Explain why temperatures higher than those required for the fusion of hydrogen are needed for 

the triple alpha process. [1]
ii Calculate the energy released in the triple alpha process. [3]

 (Mass of a helium (4
2 He) nucleus = 4.001 506 u, 

mass of a carbon (12
6 C) nucleus = 12.000 000 u, 

1 u = 1.660 × 10−27 kg.)
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14 The radioactive isotope of polonium, 218
81 Po, decays by the emission of an α-particle with a 

half-life of 183 s.
a In an accident at a reprocessing plant some of this isotope, in the form of dust, is released into 

the atmosphere.
 Explain why a spillage in the form of a dust is very much more dangerous to health than a 

liquid spillage. [2]
b It is calculated that 2.4 g of the isotope is released into the atmosphere.
 Calculate the initial activity of the released polonium. [4]
c It is felt that it would safe to re-enter the laboratory when the activity falls to background, 

about 10 Bq.
 Calculate how many hours must pass before it is safe to re-enter the laboratory. [3]

15 A nuclear reactor is fuelled by fission of uranium. The output from the reactor is 200 MW. The equation 
below describes a typical fission reaction.

 239
52 U + 1

0 n → 239
62 U → 87

35 Br + 146
57 La + 31

0 n
a Suggest and explain into what form the majority of the energy released in the reaction is converted. [2]
b i  Calculate the energy released in the reaction. The kinetic energy of the captured neutron is negligible. [2]

ii Assume that the energy released in this fission is typical of all fissions of U-236. Calculate how 
many fissions occur each second. [1]

iii Calculate the mass of uranium-235 that is required to run the reactor for 1 year. [3]
 (Mass of 239

52 U = 3.90 × 10−25 kg, mass of 87
35 Br = 1.44 × 10−25 kg, mass of 146

57 La = 2.42 × 10−25 kg, 
mass of neutron = 1.67 × 10−27 kg, 1 year = 3.15 × 107 s.)

16 The radioactive decay of nuclei is random and spontaneous. Explain what is meant by:
a radioactive decay [2]
b random decay [2]
c spontaneous decay. [2]
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Learning outcomes
You should be able to:

■■ explain how X-ray beams are produced and controlled
■■ explain how ultrasound is produced and detected
■■ explain how ultrasound images are produced, revealing 

internal structures
■■ describe how conventional and CT scan X-ray images 

are produced
■■ explain the principles of magnetic resonance imaging
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Applying physics
In this book, you have learned many important ideas 
from physics. You may have noticed that the same big 
ideas keep reappearing – for example, the idea of a field 
of force (magnetic, electric, gravitational), or the idea 
of energy transmitted as waves, or the idea that matter 
is made of particles with forces acting between them. 
This is an important characteristic of physics; ideas 
that are used in one area prove to be useful in another. 
Hopefully, you will see many of these connections now 
that you are approaching the end of your course.

Physics is also useful. It is applied in many 
areas of life. In this chapter, we look at one of these 
areas: medical imaging. This topic covers a range 
of techniques which doctors use to see inside our 
bodies. The best known is X-rays, good for showing 
up bones (Figure 32.1), and the subject of the first 
part of this chapter. The sections that follow will look 
at the physics behind two other medical diagnostic 
techniques: ultrasound scanning and magnetic 

The nature and production of 
X-rays
X-rays are a form of electromagnetic radiation. They 
belong to the short-wavelength, high-frequency end of the 
electromagnetic spectrum, beyond ultraviolet radiation 
(Figure 32.2). They have wavelengths in the range 10−8 m 
to 10−13 m and are effectively the same as gamma-rays 
(γ-rays), the difference being in the way they are produced:

■■ X-rays are produced when fast-moving electrons are rapidly 
decelerated. As the electrons slow down, their kinetic 
energy is transformed to photons of electromagnetic 
radiation.

■■ γ-rays are produced by radioactive decay. Following alpha 
(α) or beta (β) emission, a gamma photon is often emitted by 
the decaying nucleus (see Chapter 16).

The X-rays used in medical applications are usually 
described as soft X-rays, because their energy is not very 
great, usually less than the energies of γ-rays produced by 
radioactive substances.

As with all electromagnetic radiation, we can think 
of X-rays either as waves or as photons (see Chapter 30). 
X-rays travel in straight lines through a uniform medium.

X-ray tube
Figure 32.3a shows a patient undergoing a pelvic X-ray to 
check for bone degeneration. The X-ray machine is above 
the patient; it contains the X-ray tube that produces the 
X-rays which pass downwards through the patient’s body. 
Below the patient is the detection system. In this case an 
electronic detector is being used, but often photographic 

resonance imaging. In this chapter, you will make 
use of several important aspects of physics that you 
have studied earlier in the course, including sound as 
a wave, electromagnetic radiation, the behaviour of 
charged particles, and magnetic fields.

γ-rays X-rays

ultraviolet visible

infrared microwaves radio waves

Wavelength / m103110–310–610–910–12

Figure 32.1  A radiographer and a doctor examine X-ray 
images of a patient’s leg at a hospital in Uganda. 

Figure 32.2  The electromagnetic spectrum; X-rays and γ-rays lie at the high-frequency, short-wavelength end 
of the spectrum. 
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film is used in the detection system. Figure 32.3b shows 
the resulting image.

Figure 32.4 shows the principles of the modern X-ray 
tube. The tube itself is evacuated, and contains two 
electrodes:

■■ Cathode – the heated filament acts as the cathode 
(negative) from which electrons are emitted.

■■ Anode – the rotating anode (positive) is made of a hard 
metal such as tungsten. (The anode metal is often referred 
to as the ‘target metal’.)

An external power supply produces a voltage of up to 
200 kV between the two electrodes. This accelerates a beam 
of electrons across the gap between the cathode and the 
anode. The kinetic energy of an electron arriving at the 
anode is 200 keV. When the electrons strike the anode at 
high speed, they lose some of their kinetic energy in the 

form of X-ray photons, which emerge in all directions. 
Part of the outer casing, the window, is thinner than the 
rest and allows X-rays to emerge into the space outside the 
tube. The width of the X-ray beam can be controlled using 
metal tubes beyond the window to absorb X-rays. This 
produces a parallel-sided beam called a collimated beam.

Only a small fraction, about 1%, of the kinetic energy 
of the electrons is converted to X-rays. Most of the incident 
energy is transferred to the anode, which becomes hot. This 
explains why the anode rotates; the region that is heated 
turns out of the beam so that it can cool down by radiating 
heat to its surroundings. Some X-ray tubes have water 
circulating through the anode to remove this excess heat.

X-ray spectrum
The X-rays that emerge from an X-ray tube have a range 
of energies, as represented in the X-ray spectra shown 
in Figure 32.5. Each spectrum has two components, the 

Figure 32.3  a A general-purpose X-ray system. b A typical 
X-ray image produced by such a machine, showing the region 
around the pelvis. 
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Figure 32.4  A simplified diagram of an X-ray tube. 

Figure 32.5  X-ray spectra for a tungsten target with 
accelerating voltages of 60 kV, 90 kV and 120 kV. The 
continuous curve shows the braking radiation while the sharp 
spikes are the characteristic X-rays.
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broad background ‘hump’ of braking radiation (also 
known as Bremsstrahlung radiation) and a few sharp 
‘lines’ of characteristic radiation. These arise from the 
different ways in which an individual electron loses its 
energy when it crashes into the anode.

When an electron strikes the anode, it will be attracted 
towards the nucleus of an atom in the anode. This will 
cause it to change both speed and direction – in other 
words, it decelerates. A decelerating electron (or any other 
charged particle) loses energy by emitting electromagnetic 
radiation. The result is a single X-ray photon or, more 
usually, several photons. The electron interacts with more 
nuclei until it has lost all its energy and it comes to a 
halt. The X-rays emitted in this way all contribute to the 
background braking radiation.

The energy E gained by the electron when it is 
accelerated through a potential difference of V between 
the cathode and the anode is given by E = eV. This is the 
maximum energy that an X-ray photon can have, and so 
the maximum X-ray frequency fmax that can be produced 
can be calculated using the formula E = hf. Hence:

fmax = eV
h

An electron may cause a rearrangement of the electrons 
in an anode atom, with an electron dropping from a high 
energy level to a lower energy level. As it does so, it emits 
a single photon whose energy is equal to the difference in 
energy levels. You should recall from Chapter 30 that this 
is how a line spectrum arises and the photon energies are 
characteristic of the atom involved. So the characteristic 
spectral lines of X-rays from a tungsten anode have 
different energies from those of a molybdenum or copper 
target. In practice, these characteristic X-rays are relatively 
unimportant in medical applications.

We can also see from Figure 32.5 that X-rays of a 
whole range of energies are produced. The lowest energy 
X-rays will not have sufficient energy to penetrate through 
the body, so will have no effect on the resulting image. 
However, they will contribute to the overall X-ray dose 
that the patient receives. These X-rays must be filtered out; 
this is done using aluminium absorbers across the window 
of the tube.

Controlling intensity and hardness
The intensity of an X-ray beam is a measure of the energy 
passing through unit area (see the next section). To increase 
the intensity of a beam, the current in the X-ray tube must 
be increased. Since each electron that collides with the 
anode produces X-rays, a greater current (more electrons 
per second) will produce a beam of greater intensity (more 
X-ray photons per second). A more intense beam means 
that the X-ray image will be formed in a shorter time.

Another consideration is the hardness of the X-rays. An 
X-ray may be thought of as ‘hard’ or ‘soft’. Soft X-rays have 
lower energies and hence longer wavelengths than hard 
X-rays. Soft X-rays are less penetrating (they are more easily 
absorbed) and so they contribute more to the patient’s 
exposure to hazardous radiation. It is often better to use 
hard X-rays, which pass through the body more easily.

The hardness of an X-ray beam can be increased by 
increasing the voltage across the X-ray tube, thereby 
producing X-rays of higher energies (see Figure 32.5). 
Another method is to use a filter which absorbs the lower 
energy soft X-rays so that the average energy of the X-rays 
is higher. 

X-ray attenuation
As you can see if you look back to Figure 32.1, bones look 
white in an X-ray photograph. This is because they are 
good absorbers of X-rays, so that little radiation arrives at 
the photographic film to cause blackening. Flesh and other 
soft tissues are less absorbing, so the film is blackened. 
Modern X-ray systems use digital detectors instead of 
photographic films. The digital images are easier to 
process, store and transmit using computers.

X-rays are a form of ionising radiation; that is, they 
ionise the atoms and molecules of the materials they pass 
through. In the process, the X-rays transfer some or all 
of their energy to the material, and so a beam of X-rays is 
gradually absorbed as it passes through a material.

The gradual decrease in the intensity of a beam of 
X-rays as it passes through matter is called attenuation. 
We will now look at the pattern of attenuation of X-rays as 
they travel through matter.

1	 a	� Summarise the energy changes that take place 
in an X-ray tube.

b	 An X-ray tube is operated with a potential 
difference of 80 kV between the cathode and 
the tungsten anode. Calculate the kinetic 
energy (in electronvolts and joules) of an 
electron arriving at the anode. Estimate the 
impact speed of such an electron (assume that 
the electron is non-relativistic).

2	 Determine the minimum wavelength of X-rays 
emitted from an X-ray tube operated at a voltage 
of 120 kV.

QUESTIONS
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Decreasing intensity
You should recall from Chapter 13 that the intensity of 
a beam of radiation indicates the rate at which energy is 
transferred across unit cross-sectional area. Intensity is 
defined thus:

Intensity is the power per unit cross-sectional area.

We can determine the intensity I using the equation:

I = P
A

where P is power and A is the cross-sectional area normal 
to the radiation. The unit of intensity is W m−2.

The intensity of a collimated beam of X-rays (i.e. a beam 
with parallel sides, so that it does not spread out) decreases 
as it passes through matter. Picture a beam entering a block 
of material. Suppose that, after it has passed through 1 cm 
of material, its intensity has decreased to half its original 
value. Then, after it has passed through 2 cm, the intensity 
will have decreased to one quarter of its original value (half 
of a half), and then after 3 cm it will be reduced to one 
eighth. You should recognise this pattern (1, 12 , 

1
4 , 

1
8 , …) as a 

form of exponential decay.
We can write an equation to represent the attenuation of 

X-rays as they pass through a uniform material as follows:
I = I0 e−µx

where I0 is the initial intensity (before absorption), x is 
the thickness of the material, I is the transmitted intensity 
and µ is the attenuation (or absorption) coefficient of the 
material. Figure 32.6 shows this pattern of absorption. It 
also shows that bone is a better absorber of X-rays than 
flesh; it has a higher attenuation coefficient. (The attenuation 
coefficient also depends on the energy of the X-ray photons.)

The unit of the attenuation coefficient µ is m−1 (or cm−1 
etc.).

Now look at Worked example 1.

3	 Use the equation I  =  I0 e−µx to show that the 
half-thickness x½ is related to the attenuation 
coefficient µ by:

	 x½ =  
ln 2
μ

4	 An X-ray beam transfers 400 J of energy through an 
area of 5.0 cm2 each second. Calculate its intensity 
in W m−2.

5	 An X-ray beam of initial intensity 50 W m−2 is incident 
on soft tissue of attenuation coefficient 1.2 cm−1. 
Calculate its intensity after it has passed through a 
5.0 cm thickness of tissue.
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Figure 32.6  The absorption of X-rays follows an exponential 
pattern. 

1	 The attenuation (absorption) coefficient of bone is 
600 m−1 for X-rays of energy 20 keV. A beam of such 
X-rays has an intensity of 20 W m−2. Calculate the 
intensity of the beam after passing through a 4.0 mm 
thickness of bone.

	 Step 1  Write down the quantities that you are given; 
make sure that the units are consistent.
I0 =  20 W m−2

x =  4.0 mm = 0.004 m
µ =  600 m−1

	 Step 2  Substitute in the equation for intensity and 
solve.

	 Hint: Calculate the exponent (the value of –µx) first. 
I =  I0 e−µx

	 =  20 × e−(600 × 0.04) = 20 × e−2.4

	 =  1.8 W m−2

	 So the intensity of the X-ray beam will have been 
reduced to about 10% of its initial value after passing 
through just 4.0 mm of bone.

Half thickness
If we compare the graphs (or equations) for the attenuation 
of X-rays as they pass through a material with the decay of 
a radioactive nuclide we see that they are both exponential 
decays. From Chapter 31, you should become familiar 
with the concept of the half-life of a radioactive isotope 
(the time taken for half the nuclei in any sample of the 
isotope to decay). In a similar manner we refer to the half-
thickness of an absorbing material. This is the thickness  
of material which will reduce the transmitted intensity  
of an X-ray beam of a particular frequency to half its 
original value.

QUESTIONS

WORKED EXAMPLE
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Improving X-ray images
The X-ray systems in use in hospitals and clinics today are 
highly developed pieces of technology. They do not simply 
show bones against a background of soft tissue. They can 
also show very fine detail in the soft tissue, including the 
arrangement of blood vessels.

Radiographers (the people in charge of X-ray systems) 
have three main aims:

■■ to reduce as much as possible the patient’s exposure to 
harmful X-rays

■■ to improve the sharpness of the images, so that finer details 
can be resolved

■■ to improve the contrast of the image, so that the different 
tissues under investigation show up clearly in the image.

Reducing dosage
X-rays, like all ionising radiation, can damage living 
tissue, causing mutations which can lead to the growth of 
cancerous tissue. It is therefore important that the dosage 
is kept to a minimum.

A radiographer may choose to record the X-ray image 
on film or digitally. X-rays are only weakly absorbed 
by photographic film, so, historically, patients had to 
be exposed to long and intense doses of X-rays. Today, 
intensifier screens are used. These are sheets of a 
material that contains a phosphor, a substance that emits 
visible light when it absorbs X-ray photons. The film is 
sandwiched between two intensifier screens. Each X-ray 
photon absorbed results in several thousand light photons, 
which then blacken the film. This reduces the patient’s 
exposure by a factor of 100–500.

In digital systems, image intensifiers are used 
(Figure 32.7). The incoming X-rays strike a phosphor 
screen, producing visible light photons. These then 
release electrons (by the photoelectric effect) from the 
photocathode. The electrons are accelerated and focused 
by the positively charged anode so that they strike a 
screen, which then gives out visible light. The image on 

this screen can be viewed via a television camera. At the 
same time, the image can be stored electronically. Digital 
systems have the advantage that images can be easily 
stored, shared and viewed.

Image intensifiers are particularly useful in a technique 
called fluoroscopy. A continuous X-ray beam is passed 
through the patient onto a fluorescent screen where a real-
time image is formed. Using an image intensifier ensures 
that the patient is not exposed to dangerous levels of 
X-rays over a long period.

Improving sharpness
Figure 32.8 shows a remarkably sharp X-ray image of 
blood vessels in the human abdomen. The sharpness of 
the image is determined by the width of the X-ray beam. 
You will remember that the shadow of an object is much 
sharper if it is illuminated by a small lamp, rather than 
a large lamp (Figure 32.9). So a good X-ray source must 
produce a narrow beam of parallel X-rays, as if they were 
coming from a distant point source.

focusing
vacuum

electrodes

anode

X-rays

photocathode

output
phosphor

electronsinput
phosphor

Figure 32.7  An X-ray image intensifier.

Figure 32.8  An X-ray image of blood vessels branching out 
from an artery carrying oxygenated blood to the intestines. 

Three factors determine the width of the X-ray beam:

■■ the width of the electron beam and the target it strikes – as 
shown in Figure 32.10, the wider the electron beam, the 
wider the X-ray beam

■■ the size of the aperture at the exit window – this can be 
reduced using adjustable lead plates (Figure 32.11)

■■ collimation of the beam – the beam is passed through lead 
slits (Figure 32.12), ensuring that it is an approximately 
parallel-sided beam and does not fan out.
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objectlarge lamp
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Figure 32.9  The small lamp casts a smaller penumbra and 
this improves the sharpness of the shadow. 
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Figure 32.10  A wide anode target results in a wide X-ray 
beam, giving fuzzy edges to the shadow image. 

Figure 32.11  The smaller the aperture, the narrower the X-ray 
beam. 

Figure 32.12  Collimating an X-ray beam. The first set of slits 
produces a partly collimated beam but, due to the finite size 
of the anode target, there is still some spreading of the beam. 
The second set of slits reduces this spread further, making the 
final beam almost parallel-sided. 

body

anti-scatter
screen

aluminiumdetector

lead

scattered X-rays

collimated beam of X-rays

Figure 32.13  An anti-scatter screen absorbs X-rays which 
arrive at an angle to the main beam. 

Inevitably some X-rays are scattered as they pass 
through the body. If these reach the detector they cause 
fogging and this reduces the sharpness of the image. 
Scattered X-rays approach the detector screen at an 
angle, and so an anti-scatter screen (Figure 32.13) can 
be used to absorb them. This consists of a series of plates 
made of a material (such as lead) which is opaque to 
X-rays, separated by plates made of a material (such as 

aluminium) which is transparent to X-rays. The plate is 
placed just above the screen, and the lead absorbs the 
scattered X-rays.

Improving contrast
Good contrast is said to be achieved if there is a clear 
difference in the blackening of the photographic film as 
the X-ray passes through different types of tissue. The 
contrast is largely determined by the hardness of the 
X-rays. Bone is a good absorber of the radiation. If the 
doctor is diagnosing a break in a bone, he or she will use 
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hard X-rays. In contrast, investigation of the tissue of the 
breast, where the tissue is a poor absorber, will require a 
longer exposure, using much softer (long-wavelength, low-
frequency) X-rays.

As we have seen, different tissues show up differently 
in X-ray images. In particular, bone can readily be 
distinguished from soft tissue such as muscle because it is 
a good absorber of X-rays. However, it is often desirable to 
show up different soft tissues that absorb X-rays equally. In 
order to do this, contrast media are used.

A contrast medium is a substance such as iodine or 
barium which is a good absorber of X-rays. The patient 
may swallow a barium-containing liquid (a ‘barium 
meal’), or have a similar liquid injected into the tissue of 
interest. This tissue is then a better absorber of X-rays and 
its edges show up more clearly on the final image.

Figure 32.14 shows an X-ray image of the intestine of a 
patient who has been given a barium meal. The large pale 
areas show where the barium has accumulated. Other parts 

Figure 32.14  X-ray image of a patient’s intestine after taking 
a barium meal. Barium shows up as pale in this image, which 
has also been artificially coloured to highlight features of 
interest. 

6	 Outline the advantages of using an anti-scatter 
grid when taking an X-ray image.

7	 The data in Table 32.2 shows how the attenuation 
coefficient μ depends on the energy of the X-rays 
in bone and muscle. When making a diagnostic 
X-ray image, it is desirable that bone should be 
clearly distinguished from muscle. Use the data in 
Table 32.2 to explain why it would be best to use 
lower energy (50 keV) X-rays for this purpose.

Maximum X-ray 
energy Bone: µ / cm−1 Muscle: µ / cm−1

	 4.0 MeV 0.087 0.049

	250 keV 0.32 0.16

	100 keV 0.60 0.21

	 50 keV 3.32 0.54

Table 32.2  Data for Questions 7 and 8. 

8	 When low-energy X-rays are used, the attenuation 
coefficient µ is (roughly) proportional to the cube 
of the proton number Z of the absorbing material. 
Use the data in Table 32.2 to show that bone 
absorbs X-rays eight times as strongly as muscle.

Substance Elements (Z values) Average Z
soft tissue H (1), C (6), O (8) 7

bone H (1), C (6), O (8), P (15), Ca (20) 14

contrast media I (53), Ba (56) 55

Table 32.1  Proton (atomic) numbers of the constituents of 
different tissues, and of contrast media. 

of the intestine have become smeared with barium, and 
this means that the outline of the tissue shows up clearly.

Contrast media are elements with high values of 
atomic number Z. This means that their atoms have many 
electrons with which the X-rays interact, so they are more 
absorbing. Soft tissues mostly consist of compounds of 
hydrogen, carbon and oxygen (low Z values), while bone 
has the heavier elements calcium and phosphorus, and 
contrast media have even higher Z values – see Table 32.1.

Computerised axial tomography
A conventional X-ray image has an important limitation. 
Because an X-ray is essentially a two-dimensional shadow 
image, it shows the bones, organs, etc. at different depths 
within the body superimposed on each other. For example, 

QUESTIONS
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in Figure 32.15, it is diffi  cult to distinguish the bones of 
the front and back of the ribcage. Th is can be overcome by 
taking several images at diff erent angles. An experienced 
radiographer can then study these images and deduce 
what is going on inside the patient.

CT scanners have undergone many developments since 
they were fi rst invented. In a fi ft h-generation scanner, the 
patient’s bed slides slowly through the ring of detectors 
as the X-ray tube rotates. Th e tube thus traces out a spiral 
path around the patient, allowing information to be 
gathered about the whole body.

Figure 32.17 shows a child undergoing a CT scan. On the 
monitor you can see a cross-section of the patient’s head.

Figure 32.15 Computer-generated X-ray image of a person in 
a yoga position. This shows the diff iculty of distinguishing one 
bone from another when they overlap.

X-ray
tube
(rotates)

fan-shaped 
X-ray beam 

cross-section
of patient

stationary
ring of 720
detectors 

X-ray
tube

slice through the body
showing voxels

Figure 32.16 Operation of a modern CT scanner. The X-ray 
tube rotates around the patient while the detectors are 
stationary.

An ingenious technique for extending this approach 
was invented by Geoff rey Hounsfi eld and his colleagues at 
EMI in the UK in 1971. Th ey developed the computerised 
axial tomography scanner (CAT scanner or CT scanner). 
Figure 32.16 illustrates the principle of a modern scanner.

■■ The patient lies in a vertical ring of X-ray detectors.
■■ The X-ray tube rotates around the ring, exposing the patient 

to a fan-shaped beam of X-rays from all directions.
■■ Detectors opposite the tube send electronic records to a 

computer.
■■ The computer soft ware builds up a three-dimensional 

image of the patient.
■■ The radiographer can view images of ‘slices’ through the 

patient on the computer screen.

Figure 32.17 A boy undergoes a CT scan in an investigation of 
an eye condition. 

Figure 32.18 In CT scanning, we picture the body divided into 
an array of tiny cubic volumes called voxels. 

Th is technique is called computerised axial 
tomography because it relies on a computer to control the 
scanning motion and to gather and manipulate the data to 
produce images; because the X-ray tube rotates around an 
axis; and because it produces images of slices through the 
patient – the Greek word tomos means slice.

Building up the image
As the X-ray tube is rotated around the body, hundreds of 
pieces of information are gathered and an image is built 
up. As shown in Figure 32.18, we imagine the body as 
being divided up into a large number of tiny cubes called 
voxels. (Th is is the same as dividing a two-dimensional 
picture into a 2-D array of pixels, but a three-dimensional 
body must be divided into a 3-D array of voxels.)
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To understand how the image is constructed from 
the data, we will simplify the procedure by considering 
a section made up of four voxels and imagine exposing 
this 2 × 2 grid to a beam of X-rays from four different 
directions. Different parts of the body have different 
‘densities’; that is, some are stronger absorbers of X-rays. 
We will represent this by labelling our four voxels with 
densities 5, 6, 2 and 8, as shown in Figure 32.19. This 
diagram shows how the detectors read different values  
when the array is exposed to X-rays from different angles, 
and how we can then work back to the original densities.

Step 1
The beam passes through the array from the side. The top 
part of the beam has passed through voxels with values 5 
and 6, which makes 11. The value for the bottom part is 
8 + 2 = 10. This is recorded in a 2 × 2 memory grid as 11, 11 
in the top row and 10, 10 below.

Step 2
The beam is rotated through 45° so that it passes through 
the array diagonally. The top of the beam passes though 
just one voxel, of value 5. The central part passes through 
two voxels giving 6 + 2 = 8. The lower part passes through 
one voxel of value 8. This gives a detected grid as shown, 
and this is added to the memory grid.
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background
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detector 2 × 2 voxel array

X-raysStep 1

Step 2

Step 3

Step 4

Step 5
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Figure 32.19  Data is built up from a CT scan of a 2 × 2 voxel array, and then processed to deduce the original array.



516

Cambridge International A Level Physics

Steps 3 and 4
The beam is rotated twice more through 45° and each time 
the detected values are added to the memory grid.

Step 5
Now each voxel in the array has been exposed to X-rays 
from four different directions. How can we extract the 
original values from the final memory grid? Note that, 
in each step, the total density detected had a value of 
21 (10 + 11 in Step 1, 5 + 8 + 8 in Step 2, and so on). We 
subtract this background value from each square in the 
memory grid, and then divide the remainder by three. 
The final values in the memory grid are the same as in the 
original 2 × 2 array.

Our 2 × 2 array is an example in two dimensions. In three 
dimensions, we would need to consider a 2 × 2 × 2 array 
of cubes rather than squares. This is known as an 8-voxel 
cube. A real object would be made up of a very large 
number of tiny voxels in three dimensions, requiring very 
powerful computers to analyse all the data collected.

For a well-defined image in a CT scan, we need the voxels 
to be small. Two things are needed to achieve this:

■■ The X-ray beam must be well collimated so that it consists of 
parallel rays – the rays must not spread outwards.

■■ The detector must consist of a regular array of tiny 
detecting elements – the smaller each individual detector is, 
the better will be the resolution in the final image.

In practice, the body is exposed to X-rays from many 
directions, giving a large number of values from which 
a complex computer program can deduce the variation 
of X-ray absorption throughout the body. From this, an 
image of any section through the body can be constructed 
on a monitor screen. Figure 32.20 shows a sequence of 
sections through a child’s head.

Advantages of a CT scan
Although single X-ray images still have many uses (and 
they can be made very quickly), CT scans have a number 
of advantages:

■■ They produce images that show three-dimensional 
relationships between different tissues.

■■ They can distinguish tissues with quite similar densities 
(attenuation coefficients).

So, for example, a CT scan can show up the precise 
position, shape and size of a tumour. This allows it to be 
precisely targeted in treatment with high-energy X-rays or 
γ-rays.

However, it is worth noting that a CT scan involves 
using X-rays and any exposure to ionising radiation 
carries a risk for the patient. These risks are fairly small; 
it is estimated, with modern scanning equipment, that 
the radiation dose received is about one-third the dose 
received from background radiation in a year, or is 
equivalent to the dose received on four long-haul flights. 
Nevertheless, it is important to be aware of the dangers, 
particularly if there are other underlying health problems 
or if a woman is pregnant.

Figure 32.20  Sections through the head of a 10-year-old boy. 
You can see the haematoma (bruising) arising from being struck 
on the side of the head; this causes pressure on his brain.

	 9	 Suggest why a patient may be asked to hold his 
or her breath during a CT scan.

	10	 A patient with an injury to the skull, perhaps as 
a result of a road accident, is likely to undergo a 
CT scan. Explain why a CT scan is preferable to a 
conventional X-ray in a case like this.

Using ultrasound in medicine
Ultrasound scanning is routinely used to check the 
condition of a baby in the womb (Figure 32.21). There do 
not seem to be any harmful side-effects associated with 
this procedure, and it can provide useful information on 
the baby’s development. Indeed, for many children, their 

QUESTIONS
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first appearance in the family photo album is in the form 
of an ante-natal (before birth) scan!

This technique has many other uses in medicine. It 
can be used to detect gallstones or kidney stones (two 
very painful complaints), so men as well as women may 
undergo this type of scan.

The technique of ultrasound scanning is rather similar 
to the way in which sailors use echo sounding and echo 
location to detect the seabed and shoals of fish. Ultrasound 
waves are directed into the patient’s body. These waves 
are partially reflected at the boundaries between different 
tissues and the reflected waves are detected and used to 
construct the image.

In this chapter, we will look at the principles of 
ultrasound scanning, and we will also look at another 
technique in which ultrasound is used to measure the rate 
of blood flow in the body.

Working with ultrasound
Ultrasound is any sound wave that has a frequency above 
the upper limit of human hearing. This is usually taken 
to mean frequencies above 20 kHz (20 000 Hz), although 
the limit of hearing decreases with age to well below this 
figure. In medical applications, the typical frequencies 
used are in the megahertz range.

Sound waves are longitudinal waves. They can only 
pass through a material medium; they cannot pass 
through a vacuum. The speed of sound (and hence 
of ultrasound) depends on the material. In air, it is 
approximately 330 m s−1; it is higher in solid materials. 
A typical value for body tissue is 1500 m s−1. Using the 
wave equation v = f  λ, we can calculate the wavelength of 
2.0 MHz ultrasound waves in tissue:

λ = v
f

 = 1500
2.0

 × 106

	 = 7.5 × 10−4 m ≈ 1 mm

This means that 2.0 MHz ultrasound waves will be able 
to distinguish detailed features whose dimensions are of 
the order of 1 mm. Higher-frequency waves have shorter 
wavelengths and these are used to detect smaller features 
inside the body. Unfortunately, higher frequency waves are 
absorbed more strongly and so a more intense beam must 
be used.

Producing ultrasound
Like audible sound, ultrasound is produced by a vibrating 
source. The frequency of the source is the same as the 
frequency of the waves it produces. In ultrasound scanning, 
ultrasonic waves are produced by a varying electrical voltage 
in a transducer. The same device also acts as a detector. 
(You should recall from Chapter 25 that a transducer is any 
device that changes energy from one form to another.)

At the heart of the transducer is a piezo-electric 
crystal, such as quartz. This type of crystal has a useful 
property: when a voltage is applied across it in one 
direction, it shrinks slightly – see Figure 32.22a. When the 
voltage is reversed, it expands slightly. So an alternating 
voltage with frequency f causes the crystal to contract and 
expand at the same frequency f. We say that the voltage 
induces a strain in the crystal. In the best piezo-electric 
substances, the maximum value of strain is about 0.1%; in 
other words, the crystal’s width changes by about one part 
in a thousand.

Figure 32.21  An expectant mother undergoes an ultrasound 
scan. The image of her baby is built up by computer and 
appears on the monitor. 

applied stress induced e.m.f.
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Figure 32.22  The piezo-electric effect. a An applied voltage 
causes a piezo-electric crystal to contract or expand. b An 
applied stress causes an induced e.m.f. across the crystal. 
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In a piezo-electric transducer, an alternating voltage is 
applied across the crystal, which then acts as the vibrating 
source of ultrasound waves. A brief pulse of ultrasound 
waves is sent into the patient’s body; the transducer then 
receives an extended pulse of reflected ultrasound waves.

Detecting ultrasound
The transducer also acts as the detector of reflected 
ultrasound waves. It can do this because the piezo-electric 
effect works in reverse: a varying stress applied to the 
crystal produces a varying e.m.f. across the crystal – see 
Figure 32.22b. To maximise the effect, the frequency of the 
waves must match the resonant frequency of the crystal. 
The optimum size of the crystal is half the wavelength  λ

2
 

of the ultrasound waves.
Figure 32.23 shows the construction of a piezo-electric 

ultrasound transducer. Note the following features:

■■ The crystal is now usually made of polyvinylidene 
difluoride. Previously, quartz and lead zirconate titanate 
were used.

■■ The outer case supports and protects the crystal.
■■ At the base is the acoustic window, made from a material 

that is a good transmitter of ultrasound.

■■ Behind the crystal is a large block of damping material 
(usually epoxy resin). This helps to stop the crystal vibrating 
when a pulse of ultrasound has been generated. This is 
necessary so that the crystal is not vibrating when the 
incoming, reflected ultrasound waves reach the transducer.

connector

outer case

acoustic window

crystal

damping
material

Z1incident
wave

angle of
incidence 

reflected
wave

angle of
refraction 

refracted wave
(transmitted)

Z2

Figure 32.23  A section through an ultrasound transducer.

	11	 Quartz is an example of a piezo-electric material. 
The speed of sound in quartz is 5700 m s−1.
a	 Calculate the wavelength of ultrasound waves 

of frequency 2.1 MHz in a quartz crystal.
b	 If the crystal is to be used in an ultrasound 

transducer, its thickness must be half a 
wavelength. Calculate the thickness of the 
transducer.

	12	 Piezo-electric crystals have many applications 
other than in ultrasound scanning. For example, 
they are used:
a	 in gas lighters (to produce a spark)
b	 in inkjet printers (to break up the stream of ink 

into droplets)
c	 in guitar pickups (to connect the guitar to an 

amplifier)
d	 in the auto-focus mechanism of some 

cameras (to move the lens back and forth).

		  For each of these examples, state whether the 
piezo-electric effect is being used to convert 
energy in the vibrations of the crystal to 
electrical energy or the other way round.

Figure 32.24  An ultrasound wave is both refracted and 
reflected when it strikes the boundary between two different 
materials. 

QUESTIONS

Echo sounding
The principle of an ultrasound scan is to direct ultrasound 
waves into the body. These pass through various tissues 
and are partially reflected at each boundary where the 
wave speed changes. The reflected waves are then detected 
and used to construct an internal image of the body.

Figure 32.24 shows what happens when a beam of 
ultrasound reaches a boundary between two different 
media. The beam is partially refracted (that is, the 
transmitted beam has changed direction) and partially 
reflected. This diagram should remind you of the way 
in which a ray of light is refracted and reflected when it 
strikes the boundary between two media. It is the change 
in speed which causes the refraction of a wave.
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For ultrasound, we are interested in the fraction of 
the incident intensity of ultrasound that is reflected at the 
boundary. This depends on the acoustic impedance Z of 
each material. This quantity depends on the density ρ and 
the speed of sound c in the material. Acoustic impedance 
is defined as follows:

acoustic impedance = density × speed of sound
Z = ρc

Since the unit of density is kg m−3 and the unit of speed is 
m s−1, the unit of acoustic impedance Z is kg m−2 s−1.

Table 32.3 shows values of ρ, c and Z for some materials 
that are important in medical ultrasonography.

Material Density /  
kg m−3

Speed of 
sound / m s−1

Acoustic 
impedance /  
106 kg m−2 s−1

air 1.3 330 0.0004

water 1000 1500 1.50

Biological
  blood 1060 1570 1.66

  fat 925 1450 1.34

 � soft tissue 
(average) 1060 1540 1.63

  muscle 1075 1590 1.71

 � bone (average; 
adult) 1600 4000 6.40

Transducers
  barium titanate 5600 5500 30.8

 � lead zirconate 
titanate 7650 3790 29.0

  quartz 2650 5700 15.1

 � polyvinylidene 
difluoride 1780 2360 4.20

Table 32.3  The density (ρ), speed of sound in air (c) and 
acoustic impedance (Z) of some materials important in 
medical scanning. 

Calculating reflected intensities
When an ultrasound beam reaches the boundary between 
two materials, the greater the difference in acoustic 
impedances, the greater the reflected fraction of the 
ultrasound waves. For normal incidence (i.e. angle of 
incidence = 0°) the ratio of the reflected intensity Ir to the 
incident intensity I0 is given by:

Ir
I0

 = 
(Z2 − Z1)2

(Z2 + Z1)2

or
Ir
I0

 =   
Z2 − Z1
Z2 + Z1 

  
2

where Z1 and Z2 are the acoustic impedances of the two 
materials (see Figure 32.24). The ratio Ir

I0
 indicates the 

fraction of the intensity of the beam that is reflected.

2	 A beam of ultrasound is normally incident on the 
boundary between muscle and bone. Use Table 32.3 
to determine the fraction of its intensity which is 
reflected.

	 Step 1  Write down the values of Z1 (for muscle) and 
Z2 (for bone).
Z1 = 1.71 × 106 kg m−2 s−1

Z2 = 6.40 × 106 kg m−2 s−1

	 Step 2  Substitute these values in the equation for 
Ir

I0
.

Ir

I0
  =  

(Z2 − Z1)2

(Z2 + Z1)2

	 Hint: We can use this equation because we know that 
the angle of incidence = 0°.
Ir

I0
  =  

(6.40 − 1.71)2

(6.40 + 1.71)2

	 =  0.33

	 Hint: We can ignore the factor of 106 in the Z values 
because this is a factor common to all the values, so 
they cancel out.

	 So 33% of the intensity of ultrasound will be 
reflected at the muscle–bone boundary.

WORKED EXAMPLE

Comparing acoustic impedances
A big change in acoustic impedance gives a large fraction 
of reflected intensity. Inspection of Table 32.3 shows that:

■■ a very large fraction ( 
Ir

I0
 ≈ 99.95%) of the incident ultrasound 

will be reflected at an air–tissue boundary
■■ a large fraction will be reflected at a tissue–bone boundary 

(as shown in Worked example 2)
■■ very little will be reflected at a boundary between soft 

tissues including fat and muscle.

This means that bone shows up well in an ultrasound scan, 
but it is difficult to see different soft tissues (Figure 32.25). 
Another problem is that the patient’s skin is in contact 
with air, and 99.95% of the ultrasound will be reflected 
before it has entered the body. To overcome this, the 
transducer must be ‘coupled’ to the skin using a gel whose 
impedance matches that of the skin. This process of 
impedance matching explains why the patient’s skin is 
smeared with gel before a scan.
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The acoustic impedance of the gel is typically 
1.65 × 106 kg m−2 s−1 and that of skin is 1.71 × 106 kg m−2 s−1. 
With gel between the skin and the transducer, the 
percentage of the intensity reflected is 0.03%.

The poor match of impedance between air and tissue 
means that ultrasound cannot penetrate the lungs. The 
operator must take care to avoid any bubbles of gas in the 
intestines. Bones are also difficult to see through. For an 
ultrasound scan of the heart, the probe must be directed 
through the gap between two ribs.

As ultrasound waves pass through the body, they are 
gradually absorbed. Their absorption follows the same 
exponential pattern as we saw earlier for X-rays. The 
intensity I decreases with distance x according to the 
equation

I = I0 e−αx

Here, α is the absorption coefficient, equivalent to 
the quantity µ in the absorption equation for X-rays; its 
value varies with the nature of the tissue through which 
the ultrasound is passing, and with the frequency of the 
ultrasound. In practice, absorption is not a serious problem 
in an ultrasound scan as scanning relies on the reflection of 
ultrasound at the boundaries between different tissues.

Ultrasound scanning
There are several different types of ultrasound scan which 
are used in practice. To illustrate the basic principles, we 
will concentrate on the A-scan and the B-scan.

A-scan
This is the simplest type of scan. A pulse of ultrasound is 
sent into the body and the reflected ‘echoes’ are detected 
and displayed on an oscilloscope or computer screen as a 
voltage–time graph.

A pulse generator controls the ultrasound transducer. 
It is also connected to the time base of the oscilloscope. 
Simultaneously, the pulse generator triggers a pulse of 
ultrasound which travels into the patient and starts a trace 
on the screen. Each partial reflection of the ultrasound is 
detected and appears as a spike on the screen (Figure 32.26).

Figure 32.25  Ultrasound scan of a fetus at 20 weeks; the 
baby’s skin is clearly visible, as are its bony skull and ribs. 

	13	 Calculate the acoustic impedance of muscle tissue. 
(Density = 1075 kg m−3, speed of sound = 1590 m s−1.)

	14	 Determine the fraction of the intensity of an 
ultrasound beam that is reflected when a beam is 
incident normally on a boundary between water and 
fat. (Use values from Table 32.3.)

	15	 The ultrasound image shown in Figure 32.25 clearly 
shows the baby’s skin and some bones. Explain why 
these show up clearly while softer organs inside its 
body do not.

	16	 Explain why ultrasound cannot readily be used to 
examine the brain. Suggest one or more alternative 
scanning techniques that can be used for this.
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Figure 32.26  An A-scan. Information about the depth of 
reflecting tissues can be obtained from the positions of the 
spikes along the time axis; their relative amplitudes can 
indicate the nature of the reflecting surfaces. 

QUESTIONS
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In Figure 32.26, pulses 1, 2 and 3 are reflected at 
the various boundaries. Pulse 1 is the reflection at the 
muscle–bone boundary at B. Pulse 2 is the reflection at 
the bone–muscle boundary at C. The time Δt is the time 
taken for the ultrasound to travel twice the thickness of 
the bone. Finally, pulse 3 is the reflection at the muscle–
air boundary at D. The thickness of the bone can be 
determined from this A-scan.

time interval between pulses 1 and 2 = Δt

thickness of bone = distance travelled by ultrasound
2

	 = cΔt
2

where c is the speed of the ultrasound in the bone (see 
Worked example 3).

Because ultrasound waves are gradually attenuated as 
they pass through the body (their energy is absorbed so 
that their amplitude and intensity decrease), the echoes 
from tissues deeper in the body are weaker and must be 
amplified.

A-scans are used for some straightforward procedures 
such as measuring the thickness of the eye lens.

Each reflected pulse is analysed to determine the depth 
of the reflecting surface (from the time of echo) and the 
nature of the surface (from the amplitude of the reflected 
wave). A two-dimensional image is then built up on a 
screen by positioning dots to represent the position of the 
reflecting surfaces and with brightness determined by the 
intensity of the reflection, brighter dots indicating more 
reflected ultrasound (see Figure 32.27).

Figure 32.28 shows the result of a typical B-scan. 
Because it takes several seconds for the scanner to move 
across the body, problems can arise if the organs of interest 
are moving – this gives a blurred image.

3	 In a particular A-scan, similar to Figure 32.26, the 
time interval between pulses 1 and 2 is 12 µs. The 
speed of ultrasound in bone is about 4000 m s−1. 
Determine the thickness of the bone.

	 Step 1  Determine the distance travelled by the 
ultrasound in the time interval of 12 µs.
distance = speed × time
distance = 4000 × 12 × 10−6 = 4.8 × 10−2 m

	 Step 2  Calculate the thickness of the bone.

	 Hint: The distance you have just calculated must be 
halved because the ultrasound has to travel through 
the bone twice. 

thickness of bone =  
4.8 × 10−2

2

	 =  2.4 × 10−2 m (2.4 cm)

movement of
ultrasound
transducer

B-scan
display

organ

skin

Figure 32.27  In a B-scan, dots are produced on the screen 
rather than pulses as in the A-scan. By moving the transducer, 
a series of dots on the screen traces out the shape of the 
organ being examined. 

Figure 32.28  An ultrasonic B-scan of an abnormal thyroid 
gland. 

B-scan
In a B-scan, a detailed image of a cross-section through 
the patient is built up from many A-scans. The ultrasound 
transducer is moved across the patient’s body in the area 
of interest. Its position and orientation are determined by 
small sensors attached to it.

WORKED EXAMPLE
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Magnetic resonance imaging
Magnetic resonance imaging, or MRI, is a diagnostic 
technique used in medicine. It can provide images 
(including moving images) of the insides of a patient. It does 
not rely on exposing patients to ionising radiation such as 
X-rays; rather, it relies on the fact that some atomic nuclei 
behave like tiny magnets in an external magnetic field.

(MRI was originally known as nuclear magnetic 
resonance imaging, but the word ‘nuclear’ was dropped 
because it was associated in patients’ minds with bombs 
and power stations. To emphasise: MRI does not involve 
radioactive decay, fission or fusion.)

As in CT scanning, MRI scanning involves 
electromagnetic radiation, in this case radio frequency 
(RF) electromagnetic waves. The patient lies on a bed in a 
strong magnetic field (Figure 32.29), RF waves are sent into 

their body, and the RF waves that emerge are detected. 
From this, a picture of the patient’s insides can be built up 
by computer. As we will see, MRI gives rather different 
information from that obtained by the other non-invasive 
techniques such as X-rays or ultrasound.

Principles of nuclear magnetic resonance
The nuclei of certain atoms have a property called spin, 
and this causes them to behave as tiny magnets in a 
magnetic field. In MRI, it is usually the nuclei of hydrogen 
atoms that are studied, since hydrogen atoms are present 
in all tissues. A hydrogen nucleus is a proton, so we will 
consider protons from now on.

A proton has positive charge. Because it spins, it behaves 
like a tiny magnet with N and S poles. Figure 32.30a shows 
a number of protons aligned randomly.

	17	 Two consecutive peaks in an ultrasound A-scan 
are separated by a time interval of 0.034 ms. 
Calculate the distance between the two 
reflecting surfaces. (Assume that the speed of 
sound in the tissue between the two surfaces is 
1540 m s−1.)

	18	 Explain why an ultrasound B-scan, rather than 
X-rays, is used to examine a fetus.
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Figure 32.29  A patient undergoing an MRI scan of the brain. 
This is a form of tomography; the display shows different 
‘slices’ through the patient’s brain.

When a very strong external magnetic field is applied, 
the protons respond by lining up in the field (just as 
plotting compasses line up to show the direction of a 
magnetic field). Most line up with their N poles facing the 
S pole of the external field, a low energy state; a few line up 
the other way round, which is an unstable, higher energy 
state (Figure 32.30b).

Figure 32.30  How protons behave in a strong magnetic  
field. a Protons are randomly directed when there is no 
external magnetic field. b Because protons are magnetic,  
a strong external magnetic field causes most of them to  
align themselves with the field. 

QUESTIONS
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A proton does not align itself directly along the 
external field. In practice, its magnetic axis rotates around 
the direction of the external field (Figure 32.31), just like 
the axis of a spinning top. This rotation or gyration action 
is known as precession.

resonance requires a system with a natural frequency of 
vibration; when it is stimulated with energy of the same 
frequency, it absorbs energy. In MRI, protons precessing 
about the strong external field are exposed to a burst or 
pulse of RF waves whose frequency equals the frequency 
of precession. Each proton absorbs a photon of RF energy 
and flips up into the higher energy state; this is nuclear 
magnetic resonance (Figure 32.32).

Now we come to the useful bit. The RF waves are 
switched off and the protons gradually relax into their 
lower energy state. As they do so, they release their excess 
energy in the form of RF waves. These can be detected, 
and the rate of relaxation tells us something about the 
environment of the protons.

In Figure 32.32, you can see that the relaxation of the 
protons follows an exponential decay pattern. Curves like 
this are characterised by two relaxation times:

■■ T1, the spin–lattice relaxation time, where the energy of the 
spinning nuclei is transferred to the surrounding ‘lattice’ of 
nearby atoms

■■ T2, the spin–spin relaxation time, where the energy is 
transferred to other spinning nuclei.

These relaxation times depend on the environment of 
the nuclei. For biological materials, it depends on their 
water content:

■■ Water and watery tissues (e.g. cerebrospinal fluid) have 
relaxation times of several seconds.

■■ Fatty tissues (e.g. white matter in the brain) have shorter 
relaxation times, several hundred milliseconds.

■■ Cancerous tissues have intermediate relaxation times.
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spin

spin
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spin
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precession

path of 
precession

magnetic field

axis of spin

The angular frequency of precession is called the Larmor 
frequency ω0, and depends on the individual nucleus and 
the magnetic flux density B0 of the magnetic field:

ω0 = γB0

So, the stronger the external field, the faster the protons 
precess about it. The quantity γ is called the gyromagnetic 
ratio for the nucleus in question and is a measure of its 
magnetism. (Note that the Larmor frequency is measured 
in radians per second. This means that, strictly speaking, it 
is an angular velocity, not a frequency.)

For protons, γ has the approximate value 
2.68 × 108 rad s−1 T −1. To determine the frequency f0 of the 
precessing nuclei, we can use the equation:

ω0 = 2πf0

Therefore:

f0 = λB0
2π

In an MRI scanner, the external magnetic field is very 
strong, of the order of 1.5 T (thousands of times the 
strength of the Earth’s field). The precession frequency f0 
is:

f0 = 2.68 × 108 × 1.5
2π

 = 6.4 × 107 Hz = 64 MHz

This frequency lies in the radio frequency (RF) region 
of the electromagnetic spectrum. You should recall that 

Figure 32.31  A spinning top (left) rotates about its axis; at the 
same time, its axis precesses about the vertical, which is the 
direction of the gravitational field. In a similar way, a proton 
(right) spins and its axis of rotation precesses about the 
direction of the external magnetic field. 
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Figure 32.32  In nuclear magnetic resonance, a spinning 
nucleus is flipped into a higher energy state when it absorbs 
a photon of RF energy; then it relaxes back to its lower energy 
state.
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This means that different tissues can be distinguished by 
the different rates at which they release energy after they 
have been forced to resonate. That is the basis of medical 
applications of nuclear magnetic resonance.

value for resonance and so the computer can precisely 
locate the source of the RF signal within the patient’s body 
and construct an image.

■■ A computer that controls the gradient coils and RF pulses, 
and which stores and analyses the received data, producing 
and displaying images.

Time

watery tissue

0
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external
magnet
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RF transmitting coil

computer

longitudinal
gradient coil	19	 Protons precess at a frequency of 42.6 MHz in an 

external field of magnetic flux density 1.0 T.
a	 Determine the frequency at which will they 

precess in a field of magnetic flux density 2.5 T.
b	 State the frequency of RF radiation that will 

cause the protons to resonate in this stronger 
magnetic field.

	20	 Figure 32.33 shows how the amplitude of RF 
waves coming from watery tissue varies after 
resonance. Copy the graph and add lines and 
labels to show the graphs you would expect to 
see for cancerous and fatty tissues.

Figure 32.33  See Question 20. 

MRI scanner
Figure 32.34 shows the main components of an MRI 
scanner. The main features are:

■■ A large superconducting magnet which produces the 
external magnetic field (up to 2.0 T) needed to align the 
protons. Superconducting magnets are cooled to 4.2 K 
(−269 °C) using liquid helium.

■■ An RF coil that transmits RF pulses into the body.
■■ An RF coil that detects the signal emitted by the relaxing 

protons.
■■ A set of gradient coils. (For clarity, only one pair of gradient 

coils is shown in Figure 32.34.) These produce an additional 
external magnetic field that varies across the patient’s 
body. These coils are arranged such that they alter the 
magnitude of the magnetic flux density across the length, 
depth and width of the patient. This ensures that the 
Larmor frequency of the nuclei within the patient will be 
slightly different for each part of the body. This means that 
only a small volume of the body is at exactly the right field 

Procedure
The patient lies on a bed which is moved into the centre of 
the electromagnet. The central imaging section is about 
0.9 m long and 0.6 m in diameter. The magnetic field is 
very uniform, with variations smaller than 50 parts per 
million in its strength. The gradient field is superimposed 
on this fixed field. An RF pulse is then transmitted into 
the body, causing protons to flip (resonate). Then the 
receiving coils pick up the relaxation signal and pass it to 
the computer.

Figure 32.34  The main components of an MRI scanner. 

Figure 32.35  MRI scan through a healthy human head. 
Different tissues, identified by their different relaxation times, 
are coloured differently.

QUESTIONS
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The result is an image like the one shown in Figure 
32.35. This image has been coloured to show up the 
different tissues, which are identified by their different 
relaxation times.

Advantages and disadvantages of MRI
MRI has several advantages compared to other scanning 
techniques:

■■ It does not use ionising radiation which causes a hazard to 
patients and staff.

■■ There are no moving mechanisms, just changing currents 
and magnetic fields.

■■ The patient feels nothing during a scan (although the 
gradient coils are noisy as they are switched), and there are 
no after-effects.

■■ MRI gives better soft-tissue contrast than a CT scan, 
although it does not show bone as clearly.

■■ Computer images can be generated showing any section 
through the volume scanned, or as a three-dimensional 
image.

One disadvantage of MRI is that any metallic objects in 
the patient, such as surgical pins, can become heated. 
Also, heart pacemakers can be affected, so patients with 
such items cannot undergo MRI scans. Loose steel objects 
must not be left in the room as these will be attracted to 
the magnet, and the room must be shielded from external 
radio fields.

Figure 32.36 shows how an MRI scan can be combined 
with a CT scan to show detail of both bone and soft tissue, 
allowing medical staff to see how the two are related. 
Compare this with Figure 32.35.

Figure 32.36  A combined CT scan and MRI scan, showing how 
the tissues revealed by MRI relate to the bone structure shown 
by X-rays. 

	21	 An MRI scan might be considered a safer 
procedure than a CT scan.
a	 Explain why it might be considered to be safer.
b	 Why might a CT scan be chosen in preference 

to an MRI scan?
c	 Explain why MRI is described as non-invasive.

QUESTION
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Summary
■■ X-rays are short-wavelength, high-frequency 

electromagnetic radiation, produced when electrons 
are decelerated.

■■ The intensity of an X-ray beam is the power 
transmitted per unit cross-sectional area.

■■ The intensity of a collimated X-ray beam decreases 
exponentially according to the equation I = I0 e−µx, 
where µ is the attenuation coeff icient of the medium. 
µ has units of m−1 (or cm−1 or mm−1).

■■ X-ray images can be improved using image intensifiers 
and contrast media (such as barium or iodine).

■■ Ultrasound is a longitudinal wave with a frequency 
greater than 20 kHz.

■■ Ultrasound transducers use the piezo-electric eff ect to 
generate and detect ultrasound waves.

■■ The acoustic impedance Z of a material depends on 
its density ρ and the speed c of sound:

Z = ρc

■■ The fraction of the intensity of an ultrasound wave 
reflected at a boundary is given by:
Ir
I0

  =  
(Z2 − Z1)2

(Z2 + Z1)2  or 
Ir
I0

  =    
Z2 − Z1
Z2 + Z1   

2

■■ To transfer a high proportion of the intensity of 
an ultrasound pulse into the patient’s body, an 
impedance-matching gel must be used with acoustic 
impedance almost the same as that of the skin.

■■ In MRI scanning, spinning, precessing protons are 
forced to resonate using radio frequency pulses. RF 
radiation from relaxing protons is used to obtain 
diagnostic information about internal organs, 
particularly soft  tissues.

■■ The main components of an MRI scanner are: 
superconducting magnet, RF transmitter coil, 
RF receiver coil, set of gradient coils and computer.

End-of-chapter questions
1 a  Explain what is meant by ionising radiation and explain why it can be harmful to humans. [2]

b Which of the following scans use ionising radiation? [2]
 X-ray shadow imaging
 ultrasound A-scan
 ultrasound B-scan
 magnetic resonance imaging
 CT scan

2 Calculate the minimum wavelength (in air) of X-rays produced when the accelerating potential across the 
source is 20 kV. [2]

3 Explain why a gel is used between the skin and the transducer when an ultrasound scan of a fetus is taken. [2]

4 For ultrasound of frequency 3.5 MHz, the acoustic impedance of muscle is 1.78 × 106 kg m−2 s−1,  and that of 
soft  tissue is 1.63 × 106 kg m−2 s−1.

 Calculate the percentage of the incident ultrasound reflected at a muscle–soft  tissue boundary. [3]
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 5 A transducer produces ultrasonic waves of frequency 800 kHz. The speed of sound in the crystal is 5200 m s−1. 

  Calculate the optimum thickness for the crystal. [2]

 6 Explain what is meant by the Larmor frequency and state its units. [2]

 7 State and explain two reasons why full-body CT scans are not off ered for regular checking of healthy patients. [2]

 8 a  Explain with the aid of a simple, labelled diagram how X-rays are produced. [5]
b Discuss the energy changes in the production of X-rays. [3]

 9 Figure 32.37 shows the spectrum of X-rays produced from an X-ray source.

Figure 32.37 For End-of-chapter Question 9. 

a Describe the process by which:
i the three sharp peaks of high-intensity X-rays are produced [2]
ii the broad band of X-rays is produced. [2]

b The X-rays in the shaded region, labelled A, are filtered out using an aluminium filter. Explain:
i why it is advantageous to filter these X-rays out [2]
ii why aluminium is a suitable material to filter them out. [2]

c Calculate the maximum frequency of X-rays produced by this tube. [3]

10 a  Describe the main principles of how a CT scan image is produced and compare this with the formation 
of an X-ray shadow image. [7]

b A CT image is sometimes superimposed on an image from an MRI scan. Explain the advantages of using 
this dual approach. [2]

11 a  An X-ray beam, containing X-rays with a variety of frequencies and which has an intensity of 4.0 × 105 W, 
is incident on an aluminium plate of thickness 5.0 cm. The average linear attenuation coeff icient is 250 m−1.
i Calculate the intensity of the transmitted beam. [3]
ii Explain the advantages of passing the X-rays through this aluminium plate prior to their being incident 

on a patient. [3]
b Outline the use of an anti-scatter grid and explain its role in improving an X-ray shadow image. [5]
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12 a  Explain what is meant by acoustic impedance and outline its role in the use of ultrasound scans. [3]
b Brain tissue has a density of 1.04 × 103 kg m−3 and ultrasound travels at 1.58 × 103 m s−1 through it.
 Calculate the acoustic impedance of brain tissue. [2]
c Figure 32.38 shows the trace formed on the screen of an oscilloscope when ultrasound is reflected 

from the front and rear surfaces of the head of a fetus. The time-base of the oscilloscope is set at 10 µs div−1.

Figure 32.38 For End-of-chapter Question 12. 

i Explain why the second peak is lower than the first. [1]
ii Calculate the diameter of the head of the fetus. [3]

13 a  With reference to nuclear magnetic resonance, explain what is meant by the gyromagnetic ratio. [1]
b A doctor is conducting an MRI scan on a patient. There is a steady magnetic field of 1.8 T and superimposed 

on this is a much weaker field which oscillates at an RF frequency of 48 MHz.
i Assuming the RF frequency causes resonance of the protons, calculate their gyromagnetic ratio. [3]
ii Explain what resonance means in this application. [2]
iii Describe what happens when the RF field is removed and how this leads to information about the 

internal organs of the patient. [3]
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Learning outcomes
You should be able to:

■■ develop a systematic approach to carrying out 
experiments, including planning, setting up apparatus, 
investigating and recording results, analysing data and 
writing conclusions.

■■ plan an investigation to test a relationship or investigate 
a problem, identifying the dependent, independent and 
control variables

■■ use logarithms and logarithmic graphs
■■ combine uncertainties
■■ plot error bars on graphs and find uncertainties in 

gradients and intercepts
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The practical work in the second year of your A level 
course builds on what you have covered in the first year. 
Tests and examinations you may take during your studies 
will ask you to demonstrate your abilities in two key areas: 

■■ planning experiments
■■ analysis and evaluation of your results, including any 

conclusions you can draw. 

In this chapter we will look at the different skills that you 
need to demonstrate your practical abilities.

Planning
As you progress through your A level physics studies, you 
should think about and continually develop your approach 
to planning experiments. The experiments you will be 
asked to plan by your teacher will usually provide you with 
a scenario and sometimes a relationship or an equation 
that you are to use and test. Often particular items of 
apparatus are mentioned and you should use these items, 
even if you think there is a better method. Sometimes the 
experiment will seem familiar to you and sometimes it 
will be completely new. Before you start, it is important 
to read the scenario carefully. It is also important to read, 
understand and re-read any questions you need to answer, 
before starting on your plan.

In producing your plan, you should draw a diagram 
showing the actual apparatus to be used, and pay 
particular attention to:

■■ the procedure to be followed
■■ the measurements to be taken
■■ the control of variables
■■ the analysis of the data
■■ the safety precautions to be taken.

Defining the problem – identifying the 
variables
It may seem obvious, but the first thing is to identify the 
problem. To do that you must identify:

■■ the independent variable in the experiment
■■ the dependent variable in the experiment
■■ the quantities that are to be controlled or kept constant.

It is usually a good idea to start with a clear statement 
about the variables as the first part of your plan.

Here is an example of the sort of problem you might 
face in planning an experiment.

The deflection of a balloon by a jet of air is shown in 
Figure P2.1. You need to plan an investigation to show that 
tan θ is inversely proportional to v2, where θ is the angle 
between the ground and the string of the balloon and v is 

the speed of the air hitting the balloon. You are unlikely 
to have seen this experiment before, but this should not 
concern you.

In this example, the speed v of the air is the variable 
that you will need to alter and so this is the independent 
variable; the angle θ is the variable that changes as a result, 
and so this is the dependent variable. 

air moving with speed v

string

θ

helium balloon
and mass
beneath

But what quantities are kept constant? These are the 
quantities that are controlled. You may be able to think 
of many, such as the total mass of the balloon and the 
mass placed underneath it. This total mass is certainly 
one quantity that should be kept constant, but it is not 
something that is likely to change during the course of 
the experiment. In terms of planning the experiment, 
you need to think about quantities that may easily change 
during the experiment if care is not taken. For example 
you might realise that:

■■ the balloon may be deflected downwards if the air blows 
more strongly; then the air will hit the top, rather than the 
middle, of the balloon

■■ the balloon may warm up and expand in size; then more air 
will hit the balloon. 

In either case the experiment will then not just be testing 
the effect of the air speed. Your plan should clearly state 
what you need to keep constant. In our example:

■■ make sure that the jet of air is always horizontal and hits the 
middle of the balloon

■■ keep the temperature of the air inside the balloon constant.

As you can see, you need to think carefully about the 
experiment. Avoid giving wrong suggestions, for example 
keeping the length of the string constant. If the string is 
longer the balloon may be out of the jet of air, and so it 
is not entirely a wrong suggestion, but it is not a primary 
quantity to be kept constant.

Figure P2.1  A balloon is deflected as the air moves at 
different speeds. 
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Methods of data collection
The next task is to think about how you are going to carry 
the experiment out. Once you have a method in mind, you 
should be able to:

■■ describe the method to be used to vary the independent 
variable

■■ describe how the independent variable is to be measured
■■ describe how the dependent variable is to be measured
■■ describe how other variables are to be controlled
■■ describe, with the aid of a clear, labelled diagram, the 

arrangement of apparatus for the experiment and the 
procedures to be followed.

It may be worthwhile jotting down your thoughts about 
the experiment on a rough piece of paper before you start, 
but do make sure that you write up all your points. It is 
particularly important to say what you actually measure 
and how the measurement is made. It may seem obvious to 
you that a particular quantity is measured, but unless you 
write it down it is not part of your plan.

Always check that in your account you have clearly said:

■■ what you will measure and how you will measure it
■■ what you will change and how you will change it
■■ what you will keep constant and how this is achieved.

Let’s use the example of the balloon deflected by a current 
of air to show how you could approach this part of the plan.

Describing the experiment
First, describe how to change the independent variable 
and state what instrument is used to measure it. The 
apparatus shown in Figure P2.1 does not help very much 
and you must use your general knowledge and suggest, for 
example, that a wind fan be used. To change v will mean 
either changing the distance from the fan to the balloon or 
adjusting the power supply voltage to the fan. 

You will also a need a wind speed indicator, sometimes 
called an anemometer, to measure the independent 
variable. Perhaps you have never seen or used a wind 
speed indicator, but clearly there must be an instrument to 
actually measure v. You may have to think very carefully 
to find a sensible instrument when the quantity is unusual.

The instrument to measure the dependent variable is 
much simpler – a protractor – although it may have to 
be a large protractor. Alternatively, you could use a ruler 
to measure the height h from the bench to the top of the 
string and the length l of the string, and then use sin θ = h

l
 

to find θ. 
At this stage, try to suggest how to keep at least one of 

your ‘controlled quantities’ constant. For example, for the 
suggestions made earlier:

■■ compensate for deflection of the balloon downwards by 
a faster wind by lowering the fan, so that air from the fan 
stays horizontal and is always aimed at the centre of the 
balloon. 

■■ keep the temperature of the air inside the balloon constant 
by leaving the balloon in a room with constant temperature 
for many hours before the experiment starts, and ensuring 
that the fan used blows air from the room.

As you can see, you have to think carefully about what 
happens during the experiment.

As you now have a clear idea of the experiment in 
your mind, draw a labelled diagram showing everything 
that you have mentioned. In this example you could draw 
the fan, possibly its supply, a protractor, and even an 
anemometer.

Now describe your planned experiment, making sure 
that you describe a logical sequence of steps to follow. 
If you find this difficult, a labelled diagram of each step 
can sometimes be useful. For example, you might draw 
a diagram where you remove the balloon and put your 
wind speed measurement device in place of the balloon to 
measure v. Did you realise that the reading for v must be 
made exactly where the balloon was placed? 

Additional details
It is also helpful to give additional details. In particular, 
make sure you suggest anything that needs to be done to 
ensure there is a large change in the dependent variable. 

In the experiment with the balloon, you need a large 
change in θ as v changes. The readings would not be useful 
if θ was always very close to one value, for example 90°. 
How can this be achieved? 

Obviously the largest air speed must be strong enough 
to cause a significant deflection. If the deflection is too 
small, then the mass under the balloon can be decreased; 
if it is too large, then the mass can be increased. It might 
be sensible to have the air speed as large as possible and 
adjust the mass under the balloon until θ is about 70°, 
and then check that θ varies from 70° to 90° as the fan is 
slowly moved further away. Of course, the mass under the 
balloon is then kept constant.

1	 An experiment is being planned to measure 
how the resistance of a wire depends on the 
cross-sectional area of the wire. What are the 
independent and dependent variables? Suggest 
three quantities that might be controlled.

QUESTION



532

Cambridge International A Level Physics

You might also think of any difficulties in carrying out 
the experiment. For example, draughts must be avoided 
and you must wait until the balloon has stopped swinging 
before taking a reading of θ .

Safety
It may seem strange, but you should always comment on 
safety when asked to carry out any experiment. In some 
situations the risks may be unimportant, and it may be 
sufficient to mention simple ideas such as wearing goggles 
to protect the eyes when heating liquids or handling 

1	 Plan an experiment to measure the resistivity ρ of glass, 
which is about 1010 Ω m. You have available a number of 
sheets of glass of the same size but different 

	 thicknesses. Resistivity ρ is defined as ρ =  
RA

l  
.

	 Step 1  Identify the variables.

■■ The independent variable is the thickness l of the 
glass.

■■ The dependent variable is the resistance R of the 
glass. Finding R involves measuring the p.d. across 
the glass and the current in the glass.

■■ The control variable is the area of the glass. Since 
this is mentioned in the question, suggest also that 
the temperature must be constant.

	 Step 2  Describe the method of data collection in logical 
steps.

	 To alter the independent variable, use glass sheets of 
different thickness but the same area. The thickness of 
each piece of glass is measured with a micrometer at 
several places and averaged. 

	 The area A is required. This can be found by measuring 
the length and breadth of each sheet with a rule and 
multiplying the values together.

	 Draw a circuit diagram of an ammeter in series with the 
glass sheet and a power supply, with a voltmeter across 
the glass. Connections are made to the large surfaces 
of the glass. This can be done using aluminium foil, or 
metal plates as in a capacitor, which closely touch each 
large face of the glass sheet. Use a diagram to show how 
this is done.

	 The logical steps are then to record ammeter and 
voltmeter readings with one thickness of glass. 
Then repeat the readings with different thicknesses, 
suggesting sensible thicknesses of glass, perhaps every 
mm from 1 mm to 10 mm. If you are going to perform the 
experiment these thicknesses may be available, but if 
you are merely planning the experiment then you must 
suggest sensible values.

	 Step 3  Add any additional details. How can you obtain 
reasonable values? Think about the size and thickness 
of the glass to be used and whether you can detect 
a reasonable change in the dependent variable, the 
resistance. You might, for example, suggest using a 
sheet of glass 1 m2 in area and 1 mm thick. Its resistance 
is then:

	 R =  
ρl
A

 = 1010 × 0.001 = 107 Ω

	 Can this be measured with ordinary laboratory 
apparatus? What voltages and what meters are suitable? 
A voltage of 10 V produces a current of 1 μA, which is 
measurable, but 100 V gives a current of 10 μA, which 
may be easier to measure but more dangerous. With 
glass of thickness between 1 and 10 mm the current will 
be 1–10 μA and so the ammeter should measure from 1 
to 10 μA or up to 10 μA. 

	 As you can see, this means that you need some idea 
of the size of quantities that can be measured. In this 
example you need to know what currents and voltages 
can be measured with ordinary laboratory equipment.

	 You may also give additional detail by describing how to 
attach the metal foil as contacts onto the large faces of 
the glass sheet with weights on top, or suggest that the 
glass be cleaned and dried.

WORKED EXAMPLE

stretched wires, using a safety screen, ensuring that the 
apparatus is stable and not easily knocked over, using 
a sand tray under heavy weights and making sure that 
weights do not fall on your foot, and switching off currents 
when not in use so that wires do not overheat. 

In our example with the balloon, keeping away from 
the rotating blades in the fan and wearing goggles to avoid 
air blowing into your eye should be sufficient. Do give 
some detail in your suggestions and do not just say ‘use 
goggles’.
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More complicated analysis of data
In Chapter P1, we saw how to interpret equations of the 
form y = mx + c and how to use a straight-line graph to 
find the constants m and c. However, you also need to be 
able to deal with quantities related by equations of the 
form y = axn and y = aekx. For these, you need to be able to 
use logarithms (logs).

There are two common types of logarithm (see Chapter 
20). The first type is sometimes called a natural logarithm, 
or a logarithm to base e, and is written as ln. The second 
type is a logarithm to base 10 and is written as lg. The ln 
type is more useful when dealing with an exponential 
formula such as ekx but, otherwise, either type may be used. 
Look closely at any question to see which type is used. Do 
not mix the different types together in the answer to one 
question. 

The unit of a quantity involving logarithms is specified 
in an unusual way. For example, the natural logarithm of 
a quantity s measured in metres is written as ln (s / m) and 
not as ln (s) / m or ln (s) / ln (m). You can see that the unit is 
written inside the bracket with the quantity.

You need to be able to take logarithms of equations 
of the form y = axn and y = aekx. (Recall that an equation 
remains balanced if the same operation is performed on 
each side.) 

	 Step 4  State any safety points. Glass can cut a 
person’s skin and so gloves should be worn. If 
voltages above about 50 V are to be used, then use 
rubber gloves to avoid an electric shock or cover all 
exposed metal parts with insulation.

	 Step 5  Give your method of analysis. Remember, 
every derived quantity must be explained, so do not 
forget to state that for each thickness the voltage 
and current readings are used to find the resistance 

	 with the formula R = 
V
I

 .

	 Since R =  
ρl
A

, choose to plot a graph with R on the 

	 y-axis and l on the x-axis. The graph should be a 
straight line through the origin – a diagram may 
help here.

	 The gradient of the graph is 
ρ
A

, so ρ = gradient × A.

WORKED EXAMPLE (continued)

2	 What other graph can be plotted in the example 
above on resistivity and how is the gradient used 
to find ρ?

3	 A nail is placed with its sharp end just touching a 
piece of wood. When a mass falls with a velocity v 
and hits the nail, it drives the nail into the wood. It 
is suggested that the depth d that the nail moves 
into the wood is related to v by the equation  
d = kv2, where k is a constant.
a	 Suggest:

i	 the independent, dependent and control 
variables

ii	 how the velocity of the falling mass can be 
measured as it hits the nail

iii	 sensible values for d and how they may be 
achieved and measured

iv	 the graph to be plotted and what it shows if 
the relationship is true.

b	 Write a logical step-by-step method to test the 
relationship.

QUESTIONS

Analysis of the data
Whether you are dealing with data you have collected in 
an experiment, or data provided to you, you will need to 
analyse it. You need to describe how the data is used in 
order to reach a conclusion, and give details of any derived 
quantities that are calculated. 

First look carefully at the quantities in the relationship 
you have suggested (or at the formula that may be 
suggested when you are given an experiment to carry 
out). In our example with the balloon, tan θ is inversely 
proportional to v2, which means that the formula is 
tan θ = k

v2 
, where k is a constant.

If possible you should suggest plotting a graph which 
you know is a straight line if the equation is correct. In our 
example, since the equation for a straight line is y = mx + c, 
the y-axis of the graph should be tan θ and the x-axis 
should be 1

v2 
.

You must clearly state:

■■ what is plotted on each axis of your graph
■■ that the relationship is valid if the graph gives a straight line 

through the origin.

You may prefer to draw a sketch graph to show what you 
mean, but always state clearly what type of graph you are 
going to use.
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Consider the equation:  y = ax n 
Taking logarithms of both sides gives:

	lg y = lg a + n lg x 

	ln y = ln a + n ln x
Now consider the equation:  y = aekx

Taking logarithms of both sides gives:
	ln y = ln a + kx

(To obtain these results we have used the rules for 
logarithms set out on page 318.)

however, we suspect that the relationship is of the form  
y = ax n, we can test this idea by plotting a graph of ln s 
against ln t (a ‘log–log plot’). Table P2.2 shows the values 
for ln s and ln t, and the resulting graph is shown in Figure 
P2.3. (Notice that here we are using natural logs, but we 
could equally well use logs to base 10.)

4	 Calculate:
a	 lg 10 
b	 ln 10
c	 lg 100
d	 lg 5
e	 the antilogarithm to base 10 of 1  

(i.e. find x where lg x = 1) 
f	 the antilogarithm to base e of 0.5  

(i.e. find x where ln x = 0.5)

5	 The number 48 = 3 × 24. Calculate lg 48 and  
lg 3 + 4 lg 2. Why are they the same?

Which graph to plot?
In handling data, our aim is usually to process the data to 
obtain a straight line graph. Then we can deduce quantities 
from the gradient and the intercepts. Table P2.1 shows 
graphs which can be plotted for different relationships, 
and the quantities which can be deduced from the graphs. 

A relationship of the form y = ax n
A ball falls under gravity in the absence of air resistance. It 
falls a distance s in time t. The results are given in the first 
two columns of Table P2.2. 

A graph of the distance fallen against time gives the 
curve shown in Figure P2.2. Because this is a curve, it tells 
us little about the relationship between the variables. If, 

Relationship Graph Gradient Intercept 
on y-axis because …

y = mx + c y against x m c

y = axn ln y against ln x
lg y against lg x n ln a

lg a
ln y = n ln x + ln a
lg y = n lg x + lg a

y = aekx ln y against x k ln a ln y = kx + ln a

Table P2.1  Choice of axes for straight-line graphs.
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Time t / s Distance 
fallen s / m ln (t / s) ln (s / m) 

0.20 0.20 −1.61 −1.61

0.40 0.78 −0.92 −0.25

0.60 1.76 −0.51 0.57

0.80 3.14 −0.22 1.14

1.00 4.90 0.00 1.59

1.20 7.05 0.18 1.95

Table P2.2  Results for a ball falling under gravity.

Figure P2.2  A distance–time graph plotted using the data in 
Table P2.2.

Figure P2.3  A log–log plot for the data shown in Table P2.2.

QUESTIONS
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From this graph the gradient is equal to the value of n, 
the power of t:

n = gradient = (2.55 − (−1.4))
(0.5 − (−1.5))

	 = 3.95
2.0

	 = 1.98 ≈ 2.0
So the equation is of the form s = at 2. The intercept on the 
y-axis is equal to ln a, so:

ln a = 1.6
By taking the antilogarithm we get:

a = 4.95 m s−2 ≈ 5.0 m s−2

If we think of the equation for free fall s = 12 gt2, the 
constant a = 12 g. But g = 9.8 m s−2, which is consistent with 
the value we get for our constant.

A relationship of the form y = aekx

A current flows from a charged capacitor when it is 
connected in a circuit with a resistor. The current 
decreases exponentially with time (the same pattern we see 
in radioactive decay).

Figure P2.4 shows the circuit and Table P2.3 shows 
typical values of current I and time t from such an 
experiment.

The graph obtained from these results (Figure P2.5) 
shows a typical decay curve, but we cannot be sure that it 
is exponential. To show that the curve is of the form  
I = I0ekt we plot ln I against t (a ‘log-linear plot’). Values of 
ln I are included in Table P2.3. (Here, we must use logs to 
base e rather than to base 10.)

The graph of ln I against t is a straight line  
(Figure P2.6), confirming that the decrease in current 
follows an exponential pattern. The negative gradient 
shows exponential decay, rather than growth.

C = 10μF

I0 = 10 mA mA

R = 20.0 kΩ
Figure P2.4  A circuit for investigating the discharge of a 
capacitor. 
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Figure P2.5

Figure P2.6

The gradient of the graph gives us the value of the 
constant k:

k = gradient = (0 − 2.30)
(1.16 − 0)

 = −1.98 s−1 ≈ −2.0 s−1

From the graph, we can also see that the intercept on 
the y-axis has the value 2.30 and hence (taking the 
antilogarithm) we have I0 = 9.97 ≈ 10 mA. Hence we can 
write an equation to represent the decreasing current as 
follows:

I = 10 e−2.0t

We could use this equation to calculate the current at any 
time t.

Current I / mA Time t / s ln (I / mA)
10.00 0.00 2.303

6.70 0.20 1.902

4.49 0.40 1.502

3.01 0.60 1.102

2.02 0.80 0.703

1.35 1.00 0.300

Table P2.3  Results from a capacitor discharge experiment. 
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When quantities are added or subtracted, their absolute 
uncertainties are added. A simple example is measuring 
the length of a stick using a millimetre scale. There is likely 
to be an uncertainty of 0.5 mm at both ends, giving a total 
uncertainty of 1.0 mm.

When quantities are multiplied or divided, combining 
uncertainties is a little more complex. To find the 
combined uncertainty in this case, we add the percentage 
uncertainties of the two quantities to find the total 
percentage uncertainty.

Remember – you always add uncertainties; never subtract. 
Where quantities are:

■■ added or subtracted, then add absolute uncertainties
■■ multiplied or divided, then add percentage 

uncertainties.

6	 In the expressions that follow, x and y are variables 
in an experiment. All the other quantities in the 
expressions are constants.

	 In each case, state the graph you would plot to 
produce a straight line. Give the gradient of each 
line in terms of the constants in the expression.
a	 y = kx3/2

b	 y = cx q

c	 m =  
8x

By2

d	 y = y0ekx

e	 R = 
(y − y0)

x 2

7	 The period of oscillation T of a small spherical 
mass supported by a length l of thread is given by 
the expression:

	 T = 2π     
l
g

	 where g is the acceleration due to gravity.

	 Design a laboratory experiment using this 
expression to determine the acceleration due to 
gravity. You should draw a diagram showing the 
arrangement of your equipment. In your account, 
you should pay particular attention to:
a	 the procedure to be followed
b	 the measurements to be taken
c	 analysis of the data to determine g
d	 any safety precautions that you would take.

Treatment of uncertainties
All results should include an estimate of the absolute 
uncertainty. For example, when measuring the time for 
a runner to complete the 100 m you may express this as 
12.1 ± 0.2 s. This can also be expressed as a percentage 
uncertainty (see Chapter P1); the percentage uncertainty 

is equal to 0.2
12.1

 × 100% = 1.65%, so we write the value as 

12.1 s ± 1.7%, or even 12.1 s ± 2%.

Combining uncertainties
When quantities are combined, what is the uncertainty in 
the result?

Suppose that quantity A = 1.0 ± 0.1 and that  
B = 2.0 ± 0.2, so that the value of A + B is 3.0. The 
maximum likely value of A + B, taking into account the 
uncertainties, is 3.3, and the minimum likely value is 2.7. 
You can see that the combined uncertainty is ± 0.3, so 
A + B = 3.0 ± 0.3. Similarly B − A = 1.0 ± 0.3.

2	 The potential difference across a resistor is 
measured as 6.0 ± 0.2 V, while the current is 
measured as 2.4 ± 0.1 A.

	 Calculate the resistance of the resistor and the 
absolute uncertainty in its measurement.

	 Step 1  Find the percentage uncertainty in each of 
the quantities:

	 percentage uncertainty in p.d. =  
0.2
6.0  × 100% = 3.3%

	 percentage uncertainty in current =  
0.1
2.4  × 100% 

	 	 = 4.2%

	 Step 2  Add the percentage uncertainties.

	 sum of uncertainties = (3.3 + 4.2)% = 7.5%

	 Step 3  Calculate the resistance value and find the 
absolute uncertainty

	 R =  
V
I  

 =  
6.0
2.4  = 2.5 Ω

	 7.5% of 2.5 = 0.1875 ≈ 0.2 Ω

	 The resistance of the resistor is 2.5 ± 0.2 Ω.

When you calculate the uncertainty in the square of a 
quantity, since this is an example of multiplication, you 
should double the percentage uncertainty. For example, 
if A = 2.0 ± 0.2 cm, then A has a percentage uncertainty 
of 10% so A2 = 4.0 m2 ± 20%; or giving the absolute 
uncertainty, A2 = 4.0 ± 0.8 cm2.

QUESTIONS

WORKED EXAMPLE
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Uncertainties and graphs
We can use error bars to show uncertainties on graphs. 
Table P2.4 shows results for an experiment on stretching  
a spring.

Load / N Length of spring / cm Extension / cm
0 12.4 ± 0.2 0.0

1.00 14.0 ± 0.2 1.6 ± 0.4

2.00 15.8 ± 0.2 3.4 ± 0.4

3.00 17.6 ± 0.2 5.2 ± 0.4

4.00 18.8 ± 0.2 6.4 ± 0.4

5.00 20.4 ± 0.2 8.0 ± 0.4

Table P2.4  Results from an experiment on stretching a spring.

When plotting the graph, the points are plotted as usual, 
and then they are extended to show the maximum and 
minimum likely values, as shown in Figure P2.7. Then the 
best fit line is drawn.

To estimate the error in the gradient we draw not only the 
best fit line but also a ‘worst acceptable’ line, passing through 
the extremes in the error bars as shown in Figure P2.8.

The gradients for both best fit and worst fit lines are 
calculated and the error is the difference in their gradients:

error = (gradient of best fit line)  
� − (gradient of worst acceptable line)
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Figure P2.7  A graph representing the data in Table P2.4,  
with error bars and a line of best fit drawn.

QUESTIONS
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Figure P2.8  The same graph as in Figure P2.7, with a ‘worst 
acceptable’ line drawn (dashed). 

In our experiment, the gradients are:

line of best fit: gradient =   8.2 − 0
5.0 − 0 

   cm N−1 

	 = 1.64 cm N−1 ≈ 1.6  cm N−1

line of worst fit: gradient =   7.6 − 0.6
5.0 − 0  

   cm N−1 

	 = 1.4 cm N−1

So the uncertainty in the gradient = 1.6 − 1.4 = ± 0.2 cm N−1

The gradient is therefore: 1.6 ± 0.2 cm N−1.

8	 You measure the following quantities:

	 A = 1.0 ± 0.4 m  B = 2.0 ± 0.2 m

	 C = 2.0 ± 0.5 m s−1  D = 0.20 ± 0.01 s

	 Calculate the result and its uncertainty for each of 
the following expressions. You may express your 
uncertainty either as an absolute value or as a 
percentage.
a	 A + B	 e	 A2

b	 B − A	 f	 2 × A
c	 C × D	 g	 the square root of (A × B)

d	
B
D	

9	 A rifle bullet is photographed in flight using two 
flashes of light separated by a time interval of 
1.00 ± 0.02 ms. The first image of the bullet on the 
photograph appears to be at a position of  
22.5 ± 0.5 cm on a scale underneath the flight 
path. The position of the second image is  
37.5 ± 0.7 cm on the same scale. Find the speed of 
the bullet and its absolute uncertainty.

	 (For part g, you should recall 
that the square root of x can 
be written as x 

1
2.)
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Conclusions and evaluation of 
results
In the previous experiment we can conclude that 
the extension/load for the spring in this example is 
1.6 ± 0.2 cm N−1. If a hypothesis is made that the extension 
is proportional to the load then there is enough evidence 
here for the conclusion to be supported, as a straight line 
can be drawn from the origin through all the error bars. If 
this is not possible then the hypothesis is not validated.

Now, suppose that the hypothesis is that the spring 
obeys Hooke’s law and stretches by 5.0 cm when a load of 
2.5 N is applied. The first part is validated for the reasons 
given above. However, an extension of 5.0 cm for a load 
of 2.5 N gives a value of 2.0 cm N−1 for the gradient. This 
is clearly outside the range allowed for by the uncertainty 
in our measurements, and therefore the hypothesis is not 
supported.

	10	 The values of load shown in Table P2.4 are given 
without any indication of their uncertainties. 
Suggest a reason for this.

	11	 A student measures the radius r and the 
resistance R of several equal lengths of wire. The 
results are shown in Table P2.5. It is suggested 
that R and r are related by the equation:

		  R = ar b  where a and b are constants.
a	 A graph is plotted with ln R on the y-axis and 

ln r on the x-axis. Express the gradient and 
y-intercept in terms of a and b.

b	 Values of r and R measured in an experiment 
are given in Table P2.5.

r / mm R / Ω ln r / mm ln R / Ω
2.0 ± 0.1 175.0

3.0 ± 0.1 77.8

4.0 ± 0.1 43.8

5.0 ± 0.1 28.0

6.0 ± 0.1 19.4

Table P2.5  Measurements for Question 11.

		  Copy and complete the table by calculating and 
recording values of ln (r / mm) and ln (R / Ω) and 
include the absolute uncertainties in ln (r / mm).
c	 Plot a graph of ln (r / mm) against ln (R / Ω). 

Include error bars for ln (r / mm).
d	 Draw the line of best fit and a worst 

acceptable straight line on your graph.
e	 Determine the gradient of the line of best fit. 

Include the uncertainty in your answer.
f	 Using your answer to e, determine the value  

of b.
g	 Determine the value of a and its uncertainty.

Uncertainties and logarithms
When a log graph is used and we need to include error 
bars, we must find the logarithm of the measured value 
and the logarithm of either the largest or the smallest 
likely value. The uncertainty in the logarithm will be the 
difference between the two.

QUESTIONS

3	 The resistance of a resistor is given as 47 ± 5 Ω. 
The value of ln (R / Ω) is to be plotted on a graph. 
Calculate the value and uncertainty in ln (R / Ω).

	 Step 1  Calculate the logarithm of the given value:
ln (R / Ω) = ln 47 = 3.85

	 Step 2  Calculate the logarithm of the maximum 
likely value:
maximum likely value = 47 + 5 = 52 Ω
ln 52 = 3.95

	 Step 3  The uncertainty is the difference between 
the two logarithms:
uncertainty in ln R = 3.95 − 3.85 = 0.10
Thus ln (R / Ω) = 3.85 ± 0.10

WORKED EXAMPLE
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End-of-chapter questions
1 The volume of air inside a bottle aff ects its resonant frequency.

a What are the dependent and independent variables? [1]
b  Suggest one quantity to be controlled. [1]
c How would you produce sounds of diff erent frequency to show that the bottle resonates? [1]
d How would you find the frequency of the sound which makes the bottle resonate? [1]
e How would you find the volume of air inside the bottle? [1]
f How would you change the volume of air inside the bottle while keeping all other 

factors constant? [1]
g Suggest a safety precaution involving sound. [1]

2 The terminal velocity of an air bubble that rises in water is aff ected by the size of the bubble.
a What are the dependent and independent variables? [1]
b Suggest a quantity to be controlled. [1]
c How would you measure the terminal velocity of an air bubble that rises in water?  [1]
d How would you generate bubbles of air of diff erent sizes in water? [1]

3 The count rate from a radioactive source emitting γ-radiation is inversely proportional to the square 
of the distance from the source. Sources emitting γ-radiation also emit α- and β-radiation 
and are roughly spherical with a diameter of 2 cm.
a What are the dependent and independent variables? [1]
b Suggest a quantity to be controlled. [1]
c How could you make sure that only γ-radiation is detected? [2]
d How would you measure the count rate? Draw a diagram of the apparatus and explain how it is used. [2]
e How would you make the uncertainty in the count rate as small as possible? [1]
f Suggest one diff iculty in measuring the distance and how this diff iculty may be reduced. [2]
g Suggest a safety precaution. [1]

4 The size of a small toy balloon depends on atmospheric pressure.
a What are the dependent and independent variables? [1]
b Suggest a quantity to be controlled. [1]
c Draw a diagram of an apparatus to investigate the change in size of the balloon as atmospheric 

pressure changes. [2]
d State how the pressure is changed in your apparatus and how it is measured? [2]
e Suggest a safety precaution. [1]

5 Quantities A and B have the following values: A = 3.0 ± 0.2 cm, B = 2.0 ± 0.1 cm. Find the value of the 
following expressions and their absolute uncertainties.
a AB [1]

b 
A
B [1]

c A2 [1]
d A – B [1]
e A2 – B2  [1]
f A [1]
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 6 Explain how you draw the best fit line and the worst fit line on a graph and how you find the 
uncertainty in the intercept on the y-axis. [2]

 Questions 7–11 ask you to design an experiment based on the information given. All these questions 
have the same marking structure, with marks allocated to the diff erent aspects as shown below.
a the procedure to be followed [2]
b the measurements to be taken [4]
c the analysis of data [3]
d the safety precautions to be taken [1]
e additional detail. [5]

 7 The resistance R of a light-dependent resistor (LDR) varies with the distance d from a very bright source 
of light. It is suggested that R and d are related by the formula R = kd n, where k and n are constants. 
Design a laboratory experiment to test this relationship. The LDR has a resistance of 50 Ω in bright light 
and 200 kΩ in the dark. 

 8 A ruler with a small mass at one end is clamped at the other end, as shown in Figure P2.9, and 
oscillates up and down when plucked by hand.

Figure P2.9 For End-of-chapter Question 8. 

 It is suggested that the period of oscillation T of the ruler is related to the length l by the relationship 
T = kl n, where k and n are constants. Design a laboratory experiment to test this relationship and to 
find the value of n. 

 9 A current-carrying coil produces a magnetic field. It is suggested that the magnetic field strength B 
at the centre of the coil is proportional to the current I in the coil. Design a laboratory experiment that 
uses a Hall probe to test this relationship. 

10 A bar magnet dropped into a coil induces an e.m.f. in the coil. It is suggested that E, the maximum 
induced e.m.f., is proportional to v, the speed of the magnet. Design a laboratory experiment to test 
this relationship. You might like to look at Figure 28.24 in Chapter 28.

11 A student has a number of diff erent transformers of varying numbers of turns. An alternating input 
current to the transformer induces an output e.m.f. It is suggested that the output e.m.f. Vs is directly 
proportional to the frequency f of the applied current. Design a laboratory experiment to test 
this relationship. 

block
of wood

clamp

ruler

l

small mass



P2: Planning, analysis and evaluation

541

12 The period T of a simple pendulum is related to its length l by the equation:

 T = 2π    
l
g

 where g is the acceleration of free fall.
a A graph is plotted with T 2 on the y-axis and l on the x-axis. Express the gradient in terms of g. [1]
b A student measures the time t for 10 oscillations for diff erent lengths l. Table P2.6 shows her data.

l / m t / s T T2

0.300 11.1 ± 0.1

0.400 12.8 ± 0.1

0.500 14.2 ± 0.1

0.600 15.8 ± 0.1

0.700 16.9 ± 0.1

0.800 18.1 ± 0.1

Table P2.6

i Calculate and record values of T and T 2, including the absolute uncertainties in T and T 2. [2]
ii Plot a graph of T 2 / s2 against l / cm including error bars for T 2. [2]
iii Draw a straight line of best fit and a worst acceptable line on your graph. [2]
iv Determine the gradient of your line and include the uncertainty in your answer. [2]
v Use your value of the gradient to determine g and include the absolute uncertainty in your value. [2]
vi Using your value of g and its uncertainty, calculate the value of t when the length l is 0.900 m. 

Include the absolute uncertainty in your answer. [2]

13 Readings are taken of the resistance R of a thermistor at diff erent temperatures T. It is suggested that 
the relationship between R and T is R = kT n, where k and n are constants.
a A graph is plotted with lg R on the y-axis and lg T on the x-axis. State the value of the gradient and the 

y-intercept in terms of k and n. [2]
b Values for T and R are shown in Table P2.7.

T / K R / Ω lg (T / K) lg (R / Ω)
273 550 ± 10  

283 480 ± 10

293 422 ± 10

303 370 ± 10

313 330 ± 10

Table P2.7 For End-of-chapter Question 13. 

 Complete the table and include absolute uncertainties in lg (R / Ω).
c i Plot a graph of lg (R /Ω) against lg (T / K). Include error bars. [2]

ii Draw the line of best fit and a worst acceptable line on your graph. [2]
iii Determine the gradient of your line of best fit and the uncertainty in your value. [2]
iv Determine the y-intercept of your graph (this is where the x-value, in this case lg (T / K), is zero). 

Give the uncertainty in your value. [2]
v Determine values for n and k and the uncertainties in your answers. [3]
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Physical quantities have a numerical value and a unit. 
In physics, it is essential to give the units of physical 
quantities. For example, mass can be measured in 
kilograms. Hence you might write the mass of the  
trolley as:

mass of trolley = 0.76 kg
It would be a serious error to omit the unit kg at the end of 
the numerical value.

The scientific system of units is called the Système 
Internationale d’Unités (or SI system). The seven base 
units of this system are listed in Table 1. Each of the units 
is carefully defined, but the definitions need not concern 
us here.

All other units can be derived from the seven base 
units. For example:

■■ volume is measured in cubic metres (m3)
■■ velocity is measured in metres per second (m s−1)
■■ density is measured in kilograms per cubic metre (kg m−3).

Physical quantity Unit
mass kilogram, kg

length metre, m

time second, s

temperature kelvin, K

electric current ampere, A

amount of substance mole, mol

luminous intensity candela, cd

Table 1  The seven base units of the SI system. (Note that you 
are not required to use the candela in this book.)

Prefixes
In physics, you will have to cope with very small and very 
large numbers. Numbers are written using powers of 10 
to make them less awkward. This is known as scientific 
notation. Prefixes are used as an abbreviation for some of 
the powers of 10. For example, the height of a 5400 m high 
mountain may be written as either 5.4 × 103 m or 5.4 km. 
The prefixes you will need most often are shown in Table 2.

Prefix Symbol Value

Table 2  Some of the prefixes 
used in the SI system.

pico p 10−12

nano n 10−9

micro 10−6

milli m 10−3

centi c 10−2

deci d 10−1

kilo k 103

mega M 106

giga G 109

tera T 1012

Estimation
When you carry out an experiment or a calculation, it 
is sensible to look at the answer that you get (and the 
results of intermediate calculations) to see if they seem 
reasonable. The only way you can know if an answer is 
absurd is if you are aware of some benchmarks. Some 
suggestions are given below. Try to add to this list as you 
go through your physics course.

mass of a person	 70 kg
height of a person	 1.5 m
walking speed	 1 m s−1

speed of a car on the motorway	 30 m s−1

volume of a can of drink	 300 cm3

density of water	 1000 kg m−3

weight of an apple	 1 N
typical current in domestic appliance	 13 A
e.m.f. of a car battery	 12 V

Appendix 1: 
Physical quantities and units
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Data
Values are given here to three significant figures, except where more 
significant figures are useful.

speed of light in free space	 c	 3.00 × 108 m s−1

permeability of free space	 μ0	 4π × 10−7 H m−1

permittivity of free space	 ε0	 8.85 × 10−12 C2 N−1 m−2 (F m−1)
elementary charge	 e	 1.60 × 10−19 C
Planck constant	 h	 6.63 × 10−34 J s
rest mass of electron	 me	 9.11 × 10−31 kg
rest mass of proton	 mp	 1.67 × 10−27 kg
rest mass of neutron	 mn	 1.675 × 10−27 kg
rest mass of α-particle	 mα	 6.646 × 10−27 kg
molar gas constant	 R	 8.31 J K−1 mol−1

Avogadro constant	 NA	 6.02 × 1023 mol−1

Boltzmann constant	 k	 1.38 × 10−23 J K−1

gravitational constant	 G	 6.67 × 10−11 N m2 kg−2

acceleration of free fall*	 g	 9.81 m s−2

*Note that this is the value of g which you should use in answering questions; 
g varies significantly over the Earth’s surface, with values ranging from 
9.78 m s−2 at the equator to 9.83 m s−2 at the poles.

Conversion factors
unified atomic mass unit	 1 u = 1.661 × 10−27 kg
electronvolt	 1 eV = 1.60 × 10−19 J
	 1 day = 8.64 × 104 s
	 1 year ≈ 3.16 × 107 s
	 1 light year ≈ 9.5 × 1015 m

Appendix 2: 
Data, formulae and relationships
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Mathematical equations
arc length = rθ
circumference of circle = 2πr
area of circle = πr2

curved surface area of cylinder = 2πrh
volume of cylinder = πr2h
surface area of a sphere = 4πr2

volume of sphere =  43 πr3

Pythagoras’ theorem: a2 = b2 + c2

cosine rule: a2 = b2 + c2 − 2bccos A

sine rule: a
sin A

 = b
sin B

 = c
sin C

for small angle θ: sin θ ≈ tan θ ≈ θ and cos θ ≈ 1
lg(AB) = lg(A) + lg(B)

lg    A
B  

 = lg(A) − lg(B)

ln(x n) = nln(x)
ln(ekx ) = kx

Formulae and relationships
uniformly accelerated motion	 v = u + at

	 s = 12 (u + v)t

	 s = ut + 12 at2

	 v2 = u2 + 2as

work done on or by a gas	 W = pΔV

gravitational potential	 φ = –Gm
r

hydrostatic pressure	 p = ρgh

pressure of an ideal gas	 p = 1
3 

Nm
V

 <c2>

simple harmonic motion	 a = −ω2x

velocity of a particle in s.h.m.	 v = v0cos ωt

	 v = ±ω    (x2
0 − x2)

Doppler effect	 f0 = fsv
v ± vs

 

electric potential	 V = Q
4πε0r

capacitors in series	 1
C

 = 1
C1

 + 1
C2

 + …

capacitors in parallel	 C = C1 + C2 + …

energy of charged capacitor	 W = 12 QV

electric current	 I = nAvq

resistors in series	 R = R1 + R2 + …

resistors in parallel	 1
R

 = 1
R1

 + 1
R2

 + …

Hall voltage	 VH = BI
ntq

alternating current or voltage 	 x = x0sin ωt

radioactive decay	 x = x0exp(−λt) or
	 x = x0e−λt

decay constant	 λ = 0.693
t 1

2
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absolute scale of temperature;  see thermodynamic scale.
absolute zero  The temperature at which a system has 
minimum internal energy; equivalent to −273.15 °C.
absorption line spectrum  A dark line of a unique 
wavelength seen in a continuous spectrum.
acceleration  The rate of change of an object’s velocity:

a = Δv
Δt

Unit: m s−2.

accuracy  An accurate value of a measured quantity is one 
which is close to the true value of the quantity.
acoustic impedance  Acoustic impedance Z is the product 
of the density ρ of a substance and the speed c of sound in 
that substance (Z = ρc). Unit: kg m−2 s−1.
activity  The rate of decay or disintegration of nuclei in a 
radioactive sample.
ampere  The SI unit of electric current (abbreviated A).
amplitude  The maximum displacement of a particle from 
its equilibrium position.
amplitude modulation  A form of modulation in which 
the signal causes variations in the amplitude of a carrier 
wave.
analogue signal  A signal that is continuously variable, 
having a continuum of possible values.
analogue-to-digital conversion (ADC)  Conversion of a 
continuous analogue signal to discrete digital numbers.
angular displacement  The angle through which an object 
moves in a circle.
angular frequency  The frequency of a sinusoidal 
oscillation expressed in radians per second:

angular frequency ω = 2π
T

angular velocity  The rate of change of the angular 
position of an object as it moves along a curved path.
antinode  A point on a stationary wave with maximum 
amplitude.
atomic mass unit  A unit of mass (symbol u) 
approximately equal to 1.661 × 10−27 kg. The mass of an 
atom of 12

6 C = 12.000 u exactly.
attenuation  The gradual loss in strength or intensity of a 
signal.
average speed  The total distance travelled by an object 
divided by the total time taken.

Avogadro constant  The number of particles in one 
mole of any substance (approximately 6.02 × 1023 mol−1), 
denoted NA.
band theory  The idea that electrons in a solid or liquid 
can have energies within certain ranges or bands, between 
which are forbidden values.
bandwidth (communications)  A measure of the width of 
a range of frequencies being transmitted.
base units  Defined units of the SI system from which all 
other units are derived.
best fit line  A straight line drawn as closely as possible to 
the points of a graph so that similar numbers of points lie 
above and below the line.
binding energy  The minimum external energy required 
to separate all the neutrons and protons of a nucleus.
bit  A basic unit of information storage, the amount of 
information stored by a device that exists in only two 
distinct states, usually given as the binary digits 0 and 1.
Boltzmann constant  A fundamental constant given by 
k = R

NA
, where R is the ideal gas constant and NA is the 

Avogadro constant.
Boyle’s law  The pressure exerted by a fixed mass of gas 
is inversely proportional to its volume, provided the 
temperature of the gas remains constant.
braking radiation  X-rays produced when electrons are 
decelerated (also called Bremsstrahlung radiation).
capacitance  The ratio of charge stored by a capacitor to 
the potential difference across it.
carrier wave  A waveform (usually sinusoidal) which is 
modulated by an input signal to carry information.
centre of gravity  The point where the entire weight of an 
object appears to act.
centripetal force  The resultant force acting on an object 
moving in a circle; it is always directed towards the centre 
of the circle.
characteristic radiation  Very intense X-rays produced in 
an X-ray tube, having specific wavelengths that depend on 
the target metal.
charge carrier  Any charged particle, such as an electron, 
responsible for a current.
Charles’s law  The volume occupied by a gas at constant 
pressure is directly proportional to its thermodynamic 
(absolute) temperature.

Glossary
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closed system  A system of interacting objects in which 
there are no external forces.
coaxial cable  An electrical cable with an inner conductor 
surrounded by a tubular insulating layer and an outside 
conducting layer.
coherent  Two sources are coherent when they emit waves 
with a constant phase difference.
collimated beam  A parallel-sided beam of radiation.
components (of a vector)   The magnitudes of a vector 
quantity in two perpendicular directions.
compression  A region in a sound wave where the air 
pressure is greater than its mean value.
compressive  Describes a force that squeezes an object.
computerised axial tomography  A technique in which 
X-rays are used to image the human body in order to 
produce a computerised 3-D image.
conduction band  A range of electron energies in a 
solid; electrons in the conduction band are free to move 
throughout the material.
conservation of momentum  In a closed system, when 
bodies interact, the total momentum in any specified 
direction remains constant.
constructive interference  When two waves reinforce to 
give increased amplitude.
contact force  The force an object exerts on another with 
which it is in contact.
contrast  In a high-contrast image, there is a big difference 
in brightness between bright and dark areas.
contrast media  Materials such as barium that easily 
absorb X-rays. A contrast medium is used to reveal the 
outlines or edges of soft tissues in an X-ray image.
coulomb  The SI unit of electrical charge (abbreviated C). 
A charge of 1 C passes a point when a current of 1 A flows 
for 1 s. 1 C = 1 A s.
Coulomb’s law  Any two point charges exert an electrical 
force on each other that is proportional to the product of 
their charges and inversely proportional to the square of 
the distance between them.
count rate  The number of particles (beta or alpha) or 
gamma-ray photons detected per unit time by a Geiger–
Müller tube. Count rate is always a fraction of the activity 
of a sample.
couple  A pair of equal and antiparallel forces having a 
turning effect but no resultant force.
damped  Describes an oscillatory motion in which the 
amplitude decreases with time due to energy losses.

de Broglie wavelength  The wavelength associated with a 
moving particle, given by the equation:

λ = h
mv

decay constant  The constant λ for an isotope that 
appears in the equation A = −λN. It is the probability of an 
individual nucleus decaying per unit time interval.
decibel  A logarithmic unit of measurement that expresses 
the relative sizes of two powers using the formula 10 lg (P1

P2
).

density  The mass per unit volume of a material:

ρ = m
V

Unit: kg m−3.

dependent variable  The variable in an experiment with a 
value that changes as the independent variable is altered by 
the experimenter.
derived units  Units which are combinations of the base 
units of the SI system.
destructive interference  When two waves cancel to give 
reduced amplitude.
diffraction  The spreading of a wave when it passes 
through a gap or past the edge of an object.
digital signal  A signal that has only a few possible values, 
often only two.
digital-to-analogue conversion (DAC)  Conversion of 
a series of digital numbers into a continuous analogue 
signal.
dispersion  The splitting of light into its different 
wavelengths.
displacement  The distance moved by an object in a 
particular direction (measured from a fixed starting 
point).
Doppler effect  The change in frequency or wavelength of 
a wave observed when the source of the wave is moving 
towards or away from the observer (or the observer is 
moving relative to the source).
drag  A force that resists the movement of a body through 
a fluid.
drift velocity, mean  The average speed of a collection of 
charged particles when a current flows.
dynamics  The study of motion using quantities such as 
force and mass.
e.m.f.  The total work done when unit charge is moved 
round a complete circuit. Unit: J C−1 or volt (V).
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efficiency  The ratio of useful output energy to the total 
input energy for a device, expressed as a percentage:

efficiency = useful output energy
total input energy

 × 100%

Einstein relation  This refers to the equation for the 
energy of a photon:

E = hf  or  E = hc
λ

elastic limit  The value of stress beyond which an object 
will not return to its original dimensions.
elastic potential energy  Energy stored in a stretched or 
compressed material.
electric charge  A property of a body that gives rise to a 
force on the body when it is within an electric field.
electric field  A region in which a charged body 
experiences a force.
electric field strength  The force per unit positive charge 
at a point. Unit: V m−1 or N C−1.
electric potential  The energy per unit charge due to a 
charged body’s position in an electric field.
electrical resistance  The ratio of potential difference to 
current. Unit: ohm (Ω).
electrolyte  An electrically conducting solution. The 
conduction is due to positive and negative ions in the 
solution.
electromagnetic spectrum  The family of waves that travel 
through a vacuum at a speed of 3.00 × 108 m s−1.
electronvolt  The energy gained by an electron travelling 
through a p.d. of 1 volt. 1 eV = 1.60 × 10−19 J.
elementary charge  The smallest unit of charge that 
a particle or an object can have. It has a magnitude of 
1.60 × 10−19 C.
emission line spectrum  A sharp and bright line of a 
unique wavelength seen in a spectrum.
energy  A calculated quantity which is conserved during 
any change; that which is transferred when a force does 
work.
energy band  A range of permitted electron energies in a 
solid.
energy level  A quantised energy state of an electron in an 
atom.
equation of state  for an ideal gas:

pV = nRT  or  pV = NkT
(Also known as the ideal gas equation.)

equations of motion  Four interrelated equations that can 
be used to determine the displacement, initial velocity, 
final velocity and acceleration of a body moving with 
constant acceleration.
equilibrium  An object in equilibrium is either at rest or 
travelling with a constant velocity because the resultant 
force on it is zero.
errors  Inaccuracies when taking measurements.
evaporation  The process by which a liquid becomes a gas 
at a temperature below its boiling point.
exponential decay  Describes the decrease of a quantity 
where the rate of decrease is proportional to the value of 
the quantity.
extension  The change in the length of a material from its 
original length.
farad  The unit of capacitance (abbreviated F). 1 F = 1 C V−1.
Faraday’s law of electromagnetic induction  The induced 
e.m.f. is proportional to the rate of change of magnetic flux 
linkage.
field lines  Lines drawn to represent the strength and 
direction of a field of force.
field of force  A region of space where an object feels a 
force; the force may be gravitational, electric, magnetic, 
etc.
First law of thermodynamics  The increase in internal 
energy of a body is equal to the thermal energy transferred 
to it by heating plus the mechanical work done on it.
Fleming’s left-hand (motor) rule  This rule is used to 
predict the force experienced by a current-carrying 
conductor placed in an external magnetic field:  
thumb → motion, first finger → magnetic field and  
second finger → conventional current.
Fleming’s right-hand (generator) rule  This rule is used 
to predict the direction of the induced current or e.m.f. 
in a conductor moved at right angles to a magnetic field: 
thumb → motion, first finger → magnetic field and  
second finger → induced conventional current.
forbidden gap  A range of energy values which an electron 
in a solid cannot have.
force constant  The ratio of force to extension for a spring 
or a wire. Unit: N m−1.
forced oscillation  An oscillation caused by an external 
driving force; the frequency is determined by the driving 
force, and is not the natural frequency of the oscillator.
free-body force diagram  A diagram showing all the 
forces acting on an object (but not the forces it exerts on 
other objects).
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free oscillation  An oscillation at is the natural frequency 
of the oscillator.
frequency  The number of oscillations per unit time. Unit: 
hertz (Hz).
frequency modulation  A form of modulation in which 
the signal causes variations in the frequency of a carrier 
wave.
fundamental frequency  The lowest-frequency stationary 
wave for a particular system.
gain  The voltage gain of an amplifier is the ratio of the 
output voltage to the input voltage.
geostationary orbit  The orbit of an artificial satellite 
which has a period equal to one day so that the satellite 
remains above the same point on the Earth’s equator. 
From Earth the satellite appears to be stationary.
gravitational field  A region where any object with mass 
experiences a force.
gravitational field strength  The gravitational force 
experienced by an object per unit mass:

g = F
m

gravitational potential  The gravitational potential energy 
per unit mass at a point in a gravitational field.
gravitational potential energy  The energy a body has due 
to its position in a gravitational field.
ground state  The lowest energy state that can be occupied 
by an electron in an atom.
hadron  Any particle which is affected by the strong nuclear 
force, made from two or three quarks or anti-quarks.
half-life  The mean time taken for half the number of 
active nuclei in a radioactive sample to decay.
half-thickness  The mean thickness of an absorbing 
material required to reduce the intensity of radiation by 
half.
Hall effect  The production of a voltage across a conductor 
when a current flows through the conductor at right angles 
to a magnetic field.
Hall voltage  The voltage produced across a conductor 
when a current flows through the conductor at right angles 
to a magnetic field; used in a Hall probe to measure B since 
VH ∝ B.
harmonic  A wave of frequency n times the fundamental 
frequency, where n is an integer.
Hooke’s law  The extension produced in an object is 
proportional to the force producing it.
ideal gas  A gas that behaves according to the equation 
pV = nRT or pV = NkT.

ideal gas equation  for an ideal gas:
pV = nRT  or  pV = NkT
(Also known as the ideal gas equation.)

image intensifier  A device used to change a low-intensity 
X-ray image into a bright visual image.
impedance matching  The reduction in intensity of 
ultrasound reflected at the boundary between two 
substances, achieved when the two substances have similar 
acoustic impedances.
independent variable  The variable in an experiment with 
a value that is altered by the experimenter.
inelastic  A collision is inelastic when kinetic energy is not 
conserved; some is transferred to other forms such as heat. 
Momentum and total energy are always conserved.
inertia  A measure of the mass of an object. A massive 
object has large inertia.
instantaneous speed  The speed of an object measured 
over a very short period of time.
intensity  The power transmitted normally through a 
surface per unit area:

intensity = power
cross-sectional area

Unit: W m−2.

interference  The formation of points of cancellation and 
reinforcement where two coherent waves pass through 
each other.
internal energy  The sum of the random distribution of 
kinetic and potential energies of the atoms or molecules in 
a system.
internal resistance  The resistance of an e.m.f. source. 
The internal resistance of a battery is due to the chemicals 
within it.
intrinsic semiconductor  A pure substance whose 
resistivity is intermediate between that of a conductor and 
an insulator.
inverting amplifier  A circuit, involving the use of an 
amplifier, where the output is 180° out of phase with the 
input.
ion  An atom with a net positive or negative charge.
isotopes  Nuclei of the same element with a different 
number of neutrons but the same number of protons.
I–V characteristic  A graph of current against voltage for a 
particular component of an electrical circuit. 
kinematics  The study of motion using quantities such 
as time, distance, displacement, speed, velocity and 
acceleration.
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kinetic energy  Energy of an object due to its motion.
kinetic theory of gases  A model based on the microscopic 
motion of atoms or molecules of a gas.
Kirchhoff ’s first law  The sum of the currents entering any 
point (or junction) in a circuit is equal to the sum of the 
currents leaving that same point. This law represents the 
conservation of charge.
Kirchhoff ’s second law  The sum of the e.m.f.s round a 
closed loop in a circuit is equal to the sum of the p.d.s in 
that same loop.
Larmor frequency  The frequency of precession of a 
nucleus in an external magnetic field.
Lenz’s law  An induced current or e.m.f. is in a direction 
so as to produce effects which oppose the change 
producing it.
lepton  A sub-atomic particle which is not affected by the 
strong nuclear force.
light-dependent resistor (LDR)  A resistor whose 
resistance decreases as the intensity of light falling on it 
increases.
light-emitting diode (LED)  A semiconductor component 
that emits light when it conducts electricity.
linear momentum  The product of an object’s mass and its 
velocity, p = mv. Momentum is a vector quantity.
longitudinal wave  A wave in which the particles of the 
medium oscillate along the direction in which the wave 
travels.
lost volts  The difference between the e.m.f. and the 
terminal p.d. in a circuit. It is equal to the voltage across 
the internal resistance.
magnetic field  A force field in which a magnet, a wire 
carrying a current, or a moving charge experiences a force.
magnetic flux  The product of magnetic flux density 
normal to a circuit and the cross-sectional area of the 
circuit. Unit: weber (Wb).
magnetic flux density  The strength of a magnetic field. 
Magnetic flux density B is defined as:

B = F
IL

where F is the force experienced by a conductor in the 
magnetic field, I is the current in the conductor and L is 
the length of the conductor in the magnetic field. (The 
conductor is at right angles to the field.)
magnetic flux linkage  The product of magnetic flux and 
the number of turns. Unit: weber (Wb).
magnetic resonance imaging (MRI)  A medical imaging 
technique which uses nuclear magnetic resonance.

mass  A measure of the amount of matter within an 
object. Unit: kilogram (kg).
mass defect  The difference between the total mass of the 
individual, separate nucleons and the mass of the nucleus.
mass excess  the difference between the mass of a nuclide 
(in u) and its mass number.
mean drift velocity  The average speed of a collection of 
charged particles when a current flows.
microwave link  A communications system that uses a 
beam of radio waves in the microwave frequency range to 
transmit audio, data or video information.
modulation  The process of using one waveform to alter 
the frequency, amplitude or phase of another waveform.
mole  The amount of matter which contains 6.02 × 1023 
particles.
moment  The moment of a force about a point is the 
magnitude of the force, multiplied by the perpendicular 
distance of the point from the line of the force. Unit: N m.
monochromatic  Describes light of a single frequency.
natural frequency  The unforced frequency of oscillation 
of a freely oscillating object.
negative feedback  The output of a system is used to 
oppose changes to the input of the system, with the result 
that the changes are reduced.
neutrino  A lepton, released during beta-decay.
neutron number  The number of neutrons in the nucleus 
of an atom.
newton  The force that will give a 1 kg mass an 
acceleration of 1 m s−2 in the direction of the force. 
1 N = 1 kg m s−2.
Newton’s first law of motion  An object will remain at rest 
or keep travelling at constant velocity unless it is acted on 
by a resultant force.
Newton’s law of gravitation  Any two point masses attract 
each other with a force that is directly proportional to the 
product of their masses and inversely proportional to the 
square of their separation.
Newton’s second law of motion  The resultant force 
acting on an object is equal to the rate of change of 
its momentum. The resultant force and the change in 
momentum are in the same direction.
Newton’s third law of motion  When two bodies interact, 
the forces they exert on each other are equal and opposite.
node  A point on a stationary wave with zero amplitude.
noise  An unwanted random addition to a transmitted 
signal.
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non-inverting amplifier  A circuit, involving the use of an 
amplifier, in which the output is in phase with the input.
nuclear fission  The splitting of a nucleus (e.g. 235

92 U) into 
two large fragments and a small number of neutrons.
nuclear fusion  A nuclear reaction in which two light 
nuclei (e.g. 2

1 H) join together to form a heavier but more 
stable nucleus.
nuclear magnetic resonance  A process in which radio 
waves are absorbed or emitted by nuclei spinning in a 
magnetic field.
nuclear model of the atom  A model of the atom in which 
negative charges (electrons) are distributed outside a tiny 
nucleus of positive charge.
nucleon number  The number of neutrons and protons in 
the nucleus of an atom (also called mass number).
nucleon  A particle found in an atomic nucleus, i.e. a 
neutron or a proton.
nucleus  The tiny central region of the atom that contains 
most of the mass of the atom and all of its positive charge.
nuclide  A specific combination of protons and neutrons 
in a nucleus.
number density  The number of particles, such as free 
electrons, per unit volume in a material.
Ohm’s law  The current in a metallic conductor is directly 
proportional to the potential difference across its ends, 
provided its temperature remains constant.
operational amplifier (op-amp)  A high-gain electronic 
d.c. voltage amplifier with differential inputs and, usually, 
a single output.
optic fibre  A glass or plastic fibre that carries light along 
its length.
oscillation  A repetitive back-and-forth or up-and-down 
motion.
parallel  Describes components connected side-by-side in 
a circuit.
path difference  The difference in the distances travelled 
by two waves from coherent sources at a particular point.
perfectly elastic  A collision is perfectly elastic when 
kinetic energy is conserved. Momentum and total energy 
are always conserved.
period  The time taken by an object (e.g. a planet) to 
complete one cycle (e.g. an orbit). The period is also the time 
taken for one complete oscillation of a vibrating object. 
Unit: second (s).
phase  Refers to the point that an oscillating mass has 
reached in a complete cycle.

phase difference  The difference in the phases of two 
oscillating particles, expressed in degrees or radians.
photoelectric effect  An interaction between a photon and 
an electron in an atom, in which the electron is removed 
from the atom.
photon  A particle of electromagnetic radiation.
piezo-electric crystal  A material that produces an e.m.f. 
when it is stressed, causing its shape to change. Also, when 
a voltage is applied across it in one direction, it changes its 
dimensions slightly.
piezo-electric effect  The production of an e.m.f. between 
the faces of a crystal when the crystal is compressed.
Planck constant  The constant which links the energy of a 
photon and its frequency, in the equation:

E = hf

plum-pudding model  A model of the atom in which 
negative charges are distributed throughout a sphere of 
positive charge.
positron  An anti-electron.
potential difference (p.d.)  The energy lost per unit charge 
by charges passing through a component. Unit: J C−1 or 
volt (V).
potential divider  A circuit in which two or more 
components are connected in series to a supply. The 
output voltage from the circuit is taken across one of the 
components.
potentiometer  A circuit which allows the measurement of 
an e.m.f. by comparison with a known e.m.f.
power  The rate at which energy is transferred or the rate 
at which work is done. Unit: watt (W).
precession  The movement of the axis of a spinning object 
(proton) around another axis.
precision  The smallest change in value that can be 
measured by an instrument or an operator. A precise 
measurement is one made several times, giving the same, 
or very similar, values.
pressure  The force acting normally per unit area of a 
surface:

p = F
A

Unit: N m−2 or pascal (Pa).

principle of conservation of energy  The idea that, within 
a closed system, the total amount of energy in all its forms 
is unchanged during any change.
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principle of moments  For an object in equilibrium, the 
sum of clockwise moments about a point is equal to the 
sum of anticlockwise moments about the same point.
principle of superposition  When two or more waves 
meet at a point, the resultant displacement is the sum of 
the displacements of the individual waves.
progressive wave  A wave that carries energy from one 
place to another.
projectile  Any object thrown in the Earth’s gravitational 
field.
proton number  The number of protons in the nucleus of 
an atom (also called atomic number).
quarks  The fundamental particles of which hadrons are 
made.
radian  A unit for measuring angles.  
2π radians = 360° or π radians = 180°.
range  The horizontal distance covered by an object.
rarefaction  A region in a sound wave where the air 
pressure is less than its mean value.
rectification  The process of converting alternating 
current (a.c.) into direct current (d.c.).
red shift  the change in frequency or wavelength of a 
spectral line observed when the source of light is moving 
away from the observer; see Doppler effect.
reflection  The bouncing back of a wave from a surface.
refraction  The change in direction of a wave as it crosses 
an interface between two materials where its speed 
changes.
regeneration  Restoration of a signal to its original form, 
usually by removing or reducing noise and increasing 
signal strength.
relative speed  The magnitude of the difference in 
velocities between two objects.
relaxation time  The time taken for a nucleus or other 
excited system to fall back to a lower energy state.
relay  An electrically operated switch, caused to open and 
close by current in a coil.
repeater  An electronic device that receives a signal and 
retransmits it.
resistivity  A property of a material, a measure of its 
electrical resistance, defined by:

ρ = RA
L

Unit: Ω m.

resistor  An electrical component whose resistance in 
a circuit remains constant, is independent of current or 
potential difference.
resonance  The forced motion of an oscillator 
characterised by maximum amplitude when the forcing 
frequency matches the oscillator’s natural frequency. A 
system absorbs maximum energy from a source when the 
source frequency is equal to the natural frequency of the 
system.
rest mass  The mass of a an isolated stationary particle.
resultant force  The single force that has the same effect as 
all of the forces acting on an object.
right-hand grip rule  A rule for finding the direction of 
the magnetic field inside a solenoid. If the right hand grips 
the solenoid with the fingers following the direction of the 
conventional current around the solenoid, then the thumb 
points in the direction of the magnetic field.
sampling  Taking the value of a continuous signal at 
regular intervals.
scalar quantity  A scalar quantity has magnitude but no 
direction.
semiconductor diode  An electrical component made 
from a semiconductor material (e.g. silicon) that only 
conducts in one direction. A diode in ‘reverse bias’ has an 
infinite resistance.
sensor  A device that produces an output (usually a 
voltage) in response to an input.
series  A term used when components are connected end-
to-end in a circuit.
sharpness  The degree of resolution in an image, which 
determines the smallest item that can be identified.
simple harmonic motion  Motion of an oscillator in 
which its acceleration is directly proportional to its 
displacement from its equilibrium position and is directed 
towards that position.
solenoid  A long current-carrying coil used to generate a 
uniform magnetic field within its core.
specific heat capacity  The energy required per unit mass 
of a substance to raise its temperature by 1 K (or 1 °C). 
Unit: J kg−1 K−1.
specific latent heat of fusion  The energy required per 
unit mass of a substance to change it from solid to liquid 
without a change in temperature. Unit: J kg−1.
specific latent heat of vaporisation  The energy required 
per unit mass of a substance to change it from liquid to gas 
without a change in temperature. Unit: J kg−1.
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speed  The rate of change of the distance moved by an 
object:

speed = distance
time

Unit: m s−1.

spin  A fundamental property of subatomic particles 
which is conserved during atomic and nuclear reactions.
stationary wave  A wave pattern produced when two 
progressive waves of the same frequency travelling in 
opposite directions combine. It is characterised by nodes 
and antinodes. Also known as a standing wave.
strain  The extension per unit length produced by tensile 
or compressive forces:

strain = extension
original length

strain energy  The potential energy stored in an object 
when it is deformed elastically.
strain gauge  A device that contains a fine wire sealed in 
plastic. Its electrical resistance changes when the object to 
which it is attached changes shape.
stress  The force acting per unit cross-sectional area:

stress = force
cross-sectional area

strong nuclear force  A fundamental force which acts 
between hadrons.
systematic error  An error in readings which is repeated 
throughout an experiment, producing a constant absolute 
error or a constant percentage error.
tensile  Associated with tension or pulling, e.g. a tensile 
force.
terminal p.d.  The potential difference across an external 
resistor connected to an e.m.f. source.
terminal velocity  The maximum velocity of an object 
travelling through a fluid. The resultant force on the object 
is zero.
tesla  The SI unit of magnetic flux density (abbreviated T).  
1 T = 1 N A−1 m−1.
thermal energy  Energy transferred from one object to 
another because of a temperature difference; another term 
for heat energy.
thermal equilibrium  A condition when two or more 
objects in contact have the same temperature so that there 
is no net flow of energy between them.
thermistor  A device whose electrical resistance changes 
when its temperature changes.

thermocouple  A device consisting of wires of two 
different metals across which an e.m.f. is produced when 
the two junctions of the wires are at different temperatures.
thermodynamic scale  A temperature scale in which 
temperature is measured in kelvin (K).
threshold frequency  The minimum frequency of 
electromagnetic radiation that will eject electrons from the 
surface of a metal.
threshold voltage  The minimum forward bias voltage 
across a light-emitting diode (LED) when it starts to 
conduct and emit light.
time constant  The time taken for the current, stored 
charge or p.d. to fall to 1/e (about 37%) of its original value 
when a capacitor discharges through a resistor. It is also 
equal to the product of capacitance and resistance.
torque of a couple  The product of one of the forces of 
a couple and the perpendicular distance between them. 
Unit: N m.
tracers  Radioactive substances used to investigate the 
function of organs of the body.
transducer  A general term used for any device that 
changes one form of energy into another.
transition  When an electron makes a ‘jump’ between two 
energy levels.
transverse wave  A wave in which the particles of the 
medium oscillate at right angles to the direction in which 
the wave travels.
triangle of forces  A closed triangle drawn for an object in 
equilibrium. The sides of the triangle represent the forces 
in both magnitude and direction.
turns-ratio equation  An equation relating the ratio of 
voltages to the ratio of numbers of turns on the two coils 
of a transformer:

Vs
Vp

 = Ns
Np

unified atomic mass unit  A convenient unit used for the 
mass of atomic and nuclear particles (1 u is equal to the 
mass of a 12

6C carbon atom).
1 u = 1.66 × 10−27 kg

uniform acceleration  Acceleration that remains constant.
uniform motion  Motion of an object travelling with a 
constant velocity.
upthrust  The upward force that a liquid exerts on a body 
floating or immersed in a liquid.
valence band  a range of electron energies in a solid; 
electrons in the valence band are bound to individual 
atoms.
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vector addition  Using a drawing, often to scale, to find 
the resultant of two or more vectors.
vector quantity  A quantity which has both magnitude 
and direction.
vector triangle  A triangle drawn to determine the 
resultant of two vectors.
velocity  The rate of change of the displacement of an 
object:

velocity = change in displacement
time

Unit: m s−1. 

You can think of velocity as ‘speed in a certain direction’.

virtual earth approximation  An approximation in 
which the two inputs of an op-amp are nearly at the same 
potential.
viscous forces  Forces that act on a body moving through 
a fluid that are caused by the resistance of the fluid.
voxel  A small cube in a three-dimensional image, the 
equivalent of a pixel in a two-dimensional image.
wave  A periodic disturbance travelling through space, 
characterised by a vibrating medium.
wavelength  The distance between two adjacent peaks or 
troughs in a wave.

weak nuclear force  A fundamental force, involved in 
radioactive β-decay.
weight  The force on an object caused by a gravitational 
field acting on its mass:

weight = mass × acceleration of free fall

Unit: newton (N).

wire-pair  A type of electrical wiring in which the two 
conductors needed to carry a signal are placed close 
together.
work done  The product of the force and the distance 
moved in the direction of the force.
work function  The minimum energy required by a single 
electron to escape a metal surface.
X-ray tube  A device that produces X-rays when 
accelerated electrons hit a target metal.
Young modulus  The ratio of stress to strain for a given 
material, resulting from tensile forces, provided Hooke’s 
law is obeyed:

Young modulus = stress
strain

Unit: pascal (Pa; or MPa, GPa).

zero error  A systematic error in an instrument that gives 
a non-zero reading when the true value of a quantity is 
zero.
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absolute zero, 333–4
absorption line spectra, 475–6
acceleration, 15–17, 18–20, 38–9
acceleration, and projectiles, 29–31
acceleration, due to gravity, 25–7, 41–3
acceleration, in equations of motion, 20–3
acceleration, non-uniform, 24
acceleration, of free fall, 41–3
acceleration, uniform, 24
acceleration–time graphs, 292–3
acoustic impedance, 519–20
air columns, and observation of stationary waves, 213–15
air resistance, 42–6, 298, 445
alpha-decay, 229, 231, 232, 490–1, 494, 496–8
alpha-particles, 223–5, 231, 232–3, 234
alpha-radiation, 233, 234
alpha-scattering, 223–5
alternating currents, 416–27, 452–6
alternating currents, from generators, 446
alternating currents, in electricity supply, 457
alternating currents, in transformers, 446, 458–9
alternating currents, rectification of, 460–1
alternating voltages, 453–5, 457, 460
alternating voltages, in electricity supply, 457
aluminium, as absorber of radiation, 234
ammeters, 129, 136
ampere, as SI base unit, 40
ampere, definition of, 131, 416
amplifiers, inverting, 397
amplifiers, non-inverting, 398
amplifiers, operational (op-amps), 393–8
amplitude, and damping, 297–9
amplitude, and intensity, 182
amplitude, and resonance, 299–301
amplitude, angular, 245
amplitude, of alternating current, 452
amplitude, of alternating voltage, 453
amplitude, of oscillations, 288, 291, 293, 295
amplitude, of particle vibrations, 162,
amplitude, of signals on an oscilloscope, 454 
amplitude, of stationary waves, 211–12, 213
amplitude, of waves, 179–80, 182–3, 196, 197–8, 521
amplitude modulation (AM), 310–11, 313–4
AM transmissions, 311, 313–14
analogue meters, 400
analogue signals, 314–15 

analogue-to-digital conversion (ADC), 315–17
angle, of alpha-scattering, 224
angle, of diffraction, 204, 205–6
angles, in circular motion, 259
angles, measured in radians, 260
angles, uncertainty in measurement of, 243
angular displacement, 259–60, 261
angular frequency, 292, 294, 452, 523
angular momentum, 88
angular velocity, 261–2, 264, 523
antimatter, 230-1
antinodes, 212–3, 216
atomic structure, 223–6
atoms, 42, 130, 476, 478–9
atoms, and elastic potential energy, 108
atoms, and ionising radiation, 509–10
atoms, and radioactivity, 497
atoms, as impurities, 162
attenuation, 315–19, 320, 323, 509–12
attraction, between currents, 415
attraction, electrostatic force of, 117, 361, 366
attraction, gravitational force of, 274, 277, 366
Avogadro constant (or number), 349, 354, 543

balanced equations, 5–6, 96, 490
balanced forces, 44–5, 60, 428–9
balanced potentiometer, 173
bandwidth, 312–4, 320, 321–3, 394, 396–7
Barton’s pendulums, 299–300
base stations, 279
base units, 40, 416, 542
beta-decay, 80, 231–2, 490, 494, 500
beta-particles, 231–3
beta-radiation, 234
binding energy, 494–6
Boyle’s law, 349–50, 354
braking radiation, 508–9
Bremsstrahlung radiation, 508–9
bridge rectifier, 460
Brownian motion, 346–7

calibration, 242, 335, 400
capacitance, 373–82
capacitors, 129, 373–82, 393, 461, 535
carrier waves, 310–14
cathode-ray oscilloscopes (c.r.o.), 180, 453–4

Index
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cell phone network see mobile phone network
cells, electrical, 129, 169–70
centre of gravity, 41–2, 59, 381
centripetal acceleration, 262–4, 265
centripetal forces, 262–4, 265–6, 277–9, 425
changes of state, 328–30, 336, 338
channels of communication, 317–23
charge, electrostatic, 117–122
charge, on electron, 132, 231,426, 430, 436
charge, on proton, 231
charge carriers, 130–1, 132–4, 429
charge storage, 374
charge-to-mass ratio of electron, 426, 430
charged particles, 117–9, 122, 430, 470, 509
charges, orbiting, 425–6
charges, point, 360–2
Charles’s law, 350–1
circuit design, 144
circuit symbols and diagrams, 128–9
circular motion, 259–66, 292
circular orbits, 264, 278–9, 417, 425
climbing bars, 78–9
clocks, pendulum, 251–2
closed systems, 79, 88
coaxial cables, 317, 319–20
coherence, 199–200
collimated beam, 508, 510, 512
collisions, as a cause of pressure, 48, 352–4
collisions, between gas particles, 346–8, 352–4
collisions, elastic, 89–90
collisions, in particle acclerators, 230
collisions, inelastic, 89–91
collisions, of objects, 86–90
combining displacements, 8–10
combining forces, 54–6
combining velocities, 10
combining waves, 193–4
compressive forces, 296, 332, 349–50, 389–90
computer-aided design (CAD), 144
computerised axial tomography (CAT or CT), 513–6
conductance, 380
conduction, and band theory, 478–9
conduction, of electricity, 117, 130–2, 157, 162, 470 , 478–9
conduction, of thermal energy, 333, 339–40
conduction electrons, 130, 132–4, 162, 388–9, 439, 443
conductors, 129, 132, 136, 157–8, 160, 163, 185–6, 320, 

409–15, 429, 437–9, 443–5
conservation, mass–energy, 492–3
conservation of charge, 144, 379
conservation of energy, 79–80, 90, 148, 296, 332, 444, 492

conservation of mass, 491–2
conservation of momentum, 88, 90–1
constant, Avogadro, 349, 354, 543
constant, Boltzmann, 354–5, 543
constant, decay, 498–9, 501, 544
constant, force (of spring), 104–5
constant, gravitational (G), 273, 276, 543
constant, Planck, 469, 470–1, 480, 543
constant, universal molar gas, 351
constant of proportionality, 96, 294, 351, 361, 441
constant phase difference, 200–1
constructive interference, 196–9, 201, 202–3, 204
contact force, 47–9, 54, 56–7, 265–6
contrast media, 513
conventional current, 129–30, 374, 410, 423–4, 439, 443
Coulomb’s law, 360–7
count rate, 496–7, 498, 500
couple, 63
crash-landings, 91–2
crosslinking, 317
crystals, piezo-electric, 517–8
current, conventional, 129–30, 374, 410, 423–4, 439, 443
current–voltage (I–V) characteristic, 157–8
currents, alternating, 416–27, 452–6
currents, electric, 40, 117, 129–34, 160, 185, 289, 423, 428, 

443, 479, 542
currents, root-mean-square (r.m.s.), 455–7
currents, sinusoidal, 416–27, 452–6
curved trajectory, 122

damped oscillations, 297–9
damping, 298–9, 301, 518
damping, critical, 301
damping, eddy current, 445
de Broglie wavelength, 480
decay, spontaneous, 497
decay constant, 498–9, 501, 544
decay graphs and equations, 298, 499–501
deformation, plastic, 107–8
density, 102, 103, 354, 542
density, and acoustic impedance, 519
density, magnetic flux, 411–3, 414, 416, 424–5, 428, 523, 524
density, nuclear, 226
density, number, 132–4
derived units, 40, 416
destructive interference, 197–9
dielectrics, 373–4
difference, potential (p.d.), 134–7, 146, 151, 157–8, 160, 170, 

172–4, 319–20, 363–5, 373–4, 393–6, 470
diffraction, 194, 196, 202–6, 468, 480–1
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diffraction, electron, 480–1, 482
diffraction gratings, 202–6, 475
diffraction patterns, 199, 481
digital signals, 314–5
digital-to-analogue conversion (DAC), 315
direct current, 455
dispersion, 205, 475
displacement, 4–10, 17–18, 20
displacement–distance graphs, 179, 193, 212
displacement–time graphs, 6–10, 17–18, 282, 291–2
distance, 4, 8
dividers, potential, 172, 388–90, 391–2, 398
Doppler effect, 184–5
drag, 45–6, 47
driver cells, 172–3

earth, electrical, 119, 129, 363–4, 393–4
Earth, gravitational field due to, 41, 49, 59, 71, 92, 122, 264, 

272–9, 346
Earth, magnetic field of, 412, 523
Earth, orbit around Sun, 262–3
earth, virtual, 397
earthquakes, 301
echo sounding, 517, 518–9
eddy currents, 445–7
effect, Doppler, 184–5
effect, photoelectric, 469–74
effect, piezo-electric, 517–8
Einstein, and the photoelectric effect, 469, 472–4
Einstein relation, 469
Einstein’s mass–energy equation, 492–3
elastic collisions, 89–90
elastic limit, 105, 108–9
elastic potential energy, 108–9, 296
electric charges, 117–8, 131–2, 134, 232, 360, 363, 366–7, 

428
electric currents, 40, 117, 129–34, 160, 185, 289, 423, 428, 

443, 479, 542
electric currents, and magnetic fields, 413–6, 436–7
electric currents, induced, 436–7, 443
electric fields, 75, 117–22, 130, 188, 225, 233, 360–7
electric force, 130, 133, 351, 360, 417, 429–30, 484
electric potential, 363–6, 367, 544
electric potential energy, 75, 363
electrical cells, 129, 169–70
electrical components, 129, 136
electrical power, 151, 419–20, 424
electrical resistance, 135, 149–50, 152, 457, 459, 479, 532–3
electricity, generation of, 436, 443, 446, 457
electricity, mains, 452, 455, 457

electricity supply, 457
electrolytes, 130, 
electromagnetic energy, 231
electromagnetic fields (EM fields), 320, 417
electromagnetic force, 118
electromagnetic induction, 436–47, 453
electromagnetic radiation, 186–7 
electromagnetic spectrum, 314, 469
electromagnetic waves, 181–2, 185–6, 188, 310, 319, 320, 

468–9
electromagnets, 26, 157, 251, 399, 407–9, 416, 423–4, 436–7, 

443–4, 446
electromotive force (e.m.f.), 134, 169–74, 335, 373–4, 399, 

437–9, 453, 458
electromotive force (e.m.f.), and Kirchhoff’s laws, 145–8
electromotive force (e.m.f.), induced, 439–47, 517
electron beam tubes, 423, 424, 453–4
electron beams, 122, 423, 427–8, 511
electron diffraction, 480–2
electronic sensors, 387
electronic timers, 26
electrons, 117, 122, 132–4, 223–30, 289, 408, 423–4, 428, 

471–4, 483, 491–2
electrons, and the origin of line spectra, 476
electrons, and the photoelectric effect, 471–4
electrons, as beta-particles, 231–3
electrons, charge of, 131
electrons, charge-to-mass ratio of, 426
electrons, conduction, 130, 132–4, 162, 388–9, 439, 443
electrons, discovery of, 429–30
electrons, drift velocity of, 429
electrons, energy of, 162, 478–9, 509
electrons, in capacitors, 373–5
electrons, in the production of X-rays, 186–7, 507–9
electronvolt, 235, 470, 543
electron waves, 480–1
electrostatic forces, 117, 224–5, 229, 232, 363, 472
elementary charge, 131
e.m.f. see electromotive force
emission line spectra, 475–6
emission of particles in radioactivity, 490–1, 498
energy, 73–4, 153, 277, 299, 302, 348, 454, 457
energy, atomic, 477
energy, binding, 494–6
energy, conservation of, 79–80, 90, 148, 332, 492–3
energy, electric potential, 363–5
energy, electrical, 138
energy, gravitational potential, 75–9, 276
energy, internal, 90–1, 331–3, 351–5 
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energy, kinetic, 71, 76–7, 79, 89, 90–2, 233–4, 296–7, 426, 
444, 470, 473–4, 494, 508

energy, mass–, 492–3
energy, of electrons, 478–9
energy, of photons, 477
energy, potential, 75
energy, strain, 108
energy, units of, 72, 138, 148, 363, 377, 416, 470, 492–3
energy, wave, 182–3
energy changes, 77–8, 296–7, 329–331, 336–9, 363, 470, 492
energy conservation, 79–80, 90, 148, 332, 492–3
energy graphs, 296–7
energy levels, 476–7
energy storage, 373–6, 494
energy transfers, 78–80, 
energy transformations, 70
equation, wave, 183, 213–4, 469
error bars, 537–8
errors, parallax, 240, 242, 250, 426
errors, percentage, 203
errors, random, 26, 242, 244
errors, reducing and eliminating, 217–8
errors, systematic, 26, 27, 218, 242, 244
errors, zero, 241, 242, 253
evaporation, 330–1
explosions, 91–2
exponential decay, 298, 389, 499–500, 510, 520, 523, 535
exponential envelope, 297

Faraday’s law of electromagnetic induction, 441–2
feedback, negative, 396–7
field of force, 118, 360, 407
fields, electric, 75, 117–22, 130, 188, 225, 233, 360–7, 417
fields, gravitational, 45, 75, 122, 272–80, 363, 366–7, 417, 523
fields, magnetic, 118, 157, 185–6, 188, 233, 399, 407–17, 

522–5
first law of thermodynamics, 332
fission, nuclear, 496
Fleming’s left-hand (motor) rule, 409–10, 411, 416, 423–5, 

443–4
Fleming’s right-hand (generator) rule, 438, 443
fluid resistance, 45–7
fluoroscopy, 511
flux, magnetic, 399, 439–40, 441–2, 446–7
flux density, magnetic, 411–3, 414, 416, 424–6, 428–9, 437, 

523, 524
flux linkage, magnetic, 439–40, 441–2, 446–7
FM transmission, 311–12, 313–4
force, and acceleration, 38–9
force, centripetal, 262–6, 278

force, contact, 47, 48, 49, 57
force, drag, 44, 45
force, electric, 130, 133, 351, 360, 367, 417, 429–30, 484
force, electromagnetic, 186
force, electromotive (e.m.f.), 134, 169–74, 335, 373–4, 399, 

437–9, 453, 458
force, field of, 118, 360, 407
force, frictional, 43, 266, 299
force, gravitational, 28, 29, 41–3, 59, 75, 272–7, 367
force, magnetic, 407–17, 423–8, 429–30, 438–9
force, moment of a, 60
force, normal, 102
force, nuclear, 229, 230, 232, 491, 494
force, restoring, 290
force, resultant, 38, 44, 54, 55–7, 96, 292
force, strong nuclear, 229, 230, 232, 491, 494
force, viscous, 45
force, weak nuclear, 232
force–extension graphs, 104–9
force meters, 242, 252–3
forced oscillations, 286–7
forces, 28, 49–50, 54–5, 71–2, 76, 88, 95, 302, 348, 353
forces, balanced, 44–5, 60, 61–2, 96, 428–9
forces, compressive, 104
forces, coplanar, 54–8
forces, identifying, 47
forces, tensile, 104–9
forces, triangle of, 55
forces, unbalanced, 44–5, 262, 290
free electrons see electrons, conduction
free fall, 535
free fall, acceleration of, 41–3
free oscillations, 286–7
free-body force diagram, 58
frequency, 180, 183, 186, 200, 211–15, 286, 288, 293–5, 

299–300, 312–3, 320–1
frequency, angular, 292, 294, 452, 523
frequency, carrier wave, 310
frequency, fundamental, 216
frequency, Larmor, 523
frequency, natural, 286, 287, 299
frequency, observed, 184–5
frequency, resonance, 301
frequency modulation (FM), 196, 311–12, 313–14
friction, 43, 266, 299
fringe separation, 202–3
fundamental frequency, 216
fundamental mode of vibration, 216
fuses, electrical, 137
fusion, nuclear, 496
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gain, 393–5
gamma-emission, 231
gamma-radiation, 231, 233, 234, 469
gamma-rays, 231, 469
gas atoms, 351
gases, 74, 328, 346–55
gases, ideal, 346–55
gases, kinetic theory of, 352–5
gases, real, 350–1
Geiger–Müller (GM) tube, 234, 496
generators, 436, 438, 445–6
generators, Van de Graaff, 365
geostationary orbit, 279–80, 322–3
graphs, acceleration–time, 292–3
graphs, displacement–distance, 179, 193, 212
graphs, displacement–time, 6–10, 17–18, 282, 291–2
graphs, force–extension, 104–9
graphs, stress–strain, 106–7
graphs, velocity–time, 17–20, 22–3, 24, 291–2
gravitational constant (G), 273, 276, 543 
gravitational field strength (g), 42, 75, 274–5
gravitational fields, 45, 75, 122, 272–80, 363, 366–7, 417, 

523
gravitational force, 28, 29, 41–3, 59, 75, 272–7, 367
gravitational potential, 276–7, 364–5, 367, 544
gravitational potential energy (GPE), 75–9, 276
gravitational pull, 262–3
gravity, 25–30, 41–2, 47, 73, 92, 103, 264, 272–80, 417
gravity, centre of, 41–2, 59, 381
ground state, 477
gyromagnetic ratio, 523

half-life, 298, 499–501
Hall probe, 411–12, 428–9
heating ice, 329–30
Helmholtz coils, 427
high-speed trains, 407
Hooke’s law, 104–9, 538
human power, 81

I–V (current–voltage) characteristic, 157–8
ice, 329–30
ideal gases, 346–55
image intensifiers, 511
impedance matching, 519–20
inelastic collisions, 89–91
inertia, 39, 43–4, 426
instantaneous speed, 2
intensifier screens, 511
intensifiers, image, 511

intensity, 182–3, 199, 202, 214, 225, 234, 388, 391, 473–4, 
509, 519–20

interference, electrical, 313, 315, 319–20
interference, of waves, 196–9, 468
interference fringes, 201–3
interference pattern, 200–1
internal energy, 90–1, 331–3, 351–5 
internal resistance, 134, 169–71, 394
intrinsic semiconductor, 479
inverting amplifiers, 397
ionisation, 232–3
ionising radiation, 232–4
ions, 234
isolated atoms, 329, 478
isotopes, 227–8, 499

joules, 72, 138, 148, 363, 377, 416, 470, 492–3

Kelvin scale, 333–4
kinematics, 2–11
kinetic energy, 71, 76–7, 79, 89, 90–2, 233–4, 296–7, 426, 

444, 470, 473–4, 494, 508
kinetic model of a gas, 352–5
kinetic model of matter, 328–32
kinetic theory of gases, 352–5
Kirchhoff ’s first law, 144–5, 146–52
Kirchhoff ’s second law, 145–6, 146–52
Kundt’s dust tube, 216–7

Larmor frequency, 523
LDR see light-dependent resistor
LED see light-emitting diode
Lenz’s law, 441–3, 445
light beams, 3–4, 19, 27, 198, 202–3 
light-dependent resistor (LDR), 129, 387, 388, 391–2, 479
light-emitting diode (LED), 129, 323, 374, 399–400, 470–1
light gates, 3, 19, 27, 251
light waves, 186, 193–206
line spectra, 475–80
linear momentum, 86–97, 232, 348, 353, 426, 480
longitudinal waves, 181–2, 214–5, 517
lost volts, 170–1, 173, 394
loudspeakers, 129, 196–7, 198–9, 200, 216–7, 287, 393

magnetic fields, 118, 157, 185–6, 188, 233, 399, 407–17, 
522–5

magnetic flux, 399, 439–40, 441–2, 446–7
magnetic flux density, 411–3, 414, 416, 424–6, 428–9, 437, 

523, 524
magnetic flux linkage, 439–40, 441–2, 446–7
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magnetic forces, 407–17, 423–8, 429–30, 438–9
magnetic resonance imaging (MRI), 522–5
magnets, 97, 157, 407–16, 423, 436–47, 524
magnitude, of electric charge, 131
magnitude, of forces, 48–9, 54–5, 60, 294, 414, 425
magnitude, of induced e.m.f., 441
magnitude, of momentum, 90, 93
magnitude, of scalar and vector quantities, 4, 10, 261
magnitude, orders of, 133, 187, 483
mass, 38–9
mass, and density, 102
mass, and gravitational forces, 272–4
mass, and inertia, 43–4
mass, and momentum, 87–8, 95–6 
mass, and weight, 42–3, 75
mass, as SI base unit, 39–40
mass, electron, 223, 231
mass, proton, 226
mass, relative atomic, 228
mass defect, 492
mass–energy conservation, 232, 492–3
mass–energy equation, 492
mass number, 226
mass–spring system, 287–90
masses, point, 272–4, 276
matter, 102–3, 223, 230, 509–10
mechanical waves, 180–3
medical imaging, 507–25
Melde’s experiment, 213–5
metallic conductors, 136, 157–8
metal-wire strain gauge, 389–90
microwave links, 317, 320–2
microwave transmitters, 199, 214
microwaves, 187, 196, 214, 320–2, 469, 507
microwaves, interference of, 199
Millikan’s oil-drop experiment, 430
mobile phone network, 196
mobile phones, 196, 315, 321, 360
model, plum pudding, 225
molecular energy, 331–2, 354–5
molecules, 331–3, 346–9, 351–4
moments of forces, 60–3
momentum, angular, 88
momentum, linear, 86–97, 232, 348, 353, 426, 480
monochromatic light, 202–3, 204
Moon, 41, 42, 272, 279
motion in two dimensions, 328–31
motion sensors, 4, 19–20, 291
MRI (magnetic resonance imaging), 407–17, 423–8, 

429–30, 438–9

musical instruments, 216, 289, 301

natural frequency, 286, 287, 299
negative feedback, 396–7
negative temperature coefficient (NTC) thermistors, 159, 

161, 391
neutron number, 226–7, 490–1
neutrons, 117, 132, 225–7, 491–2, 494, 495
newtons, 72–3
Newton’s first law of motion, 96, 262
Newton’s law of gravitation, 273–4
Newton’s second law of motion, 38–9, 57, 96–7, 264–5, 353
Newton’s third law of motion, 49, 97, 360, 412, 416
noise, 313–5, 318–9, 394
non-inverting amplifiers, 398
non-uniform acceleration, 24
NTC (negative temperature coefficient) thermistors, 159, 

161, 391
nuclear density, 226
nuclear fission, 496
nuclear forces, 229, 230, 232, 491, 494
nuclear fusion, 496
nuclear model of atoms, 223–6
nuclei, 225–8, 
nucleon number, 226–9, 232, 490–6
nucleons, 226, 491–6
number, Avogadro, 349, 354, 543
number, neutron, 226–7, 490–1
number, nucleon, 226–9, 232, 490–6
number, proton, 226–9, 232, 490–1

ohm, 135
ohmic components, 158–9
Ohm’s law, 158–9
open-ended air columns, 215
operational amplifiers (op-amps), 393–8
optic fibres, 317, 322–3
orbital period, 278–9
orbital speed, 265
orbiting charges, 425–6
orbits, 262–5
oscillations, 286–302
oscilloscopes, 180, 453–4

particle models, 467–9
p.d. (potential difference), see potential difference
pendulums, 41, 77, 243, 251–2, 256, 287, 289, 290
pendulums, Barton’s, 299–300
penetrating power, 234
people waves, 482
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perfectly elastic collisions, 89–90
period, 180–1, 183, 212, 278–9, 288, 291–2, 295–6, 322–3, 

452, 453–4
period, orbital, 278–9
Periodic Table, 227, 545
periodic variation, 188
permanent magnets, 407–8, 410
permittivity of free space, 361, 543
phase, 182, 288–9
phase difference, 182, 197–8, 200–1, 212, 288–9, 397
photoelectric effect, 469–74
photon energies, 477
photons, 469–80
piezo-electric crystals, 517–8
piezo-electric effects, 517–8
piezo-electric transducers, 517–8
Planck constant, 469, 470–1, 480, 543
plastic deformation, 107–8
plum pudding model, 223
point charges, 360–2
point masses, 272–4, 276
potential difference (p.d.), 134–7, 146, 151, 157–8, 160, 170, 

172–4, 319–20, 363–5, 373–4, 393–6, 470
potential dividers, 172, 388–90, 391–2, 398
potential energy, 75
potential energy, electric, 363–5
potential energy, gravitational, 75–9, 276
potentiometer circuits, 172–4
potentiometers, 172–4
power, 80–2, 136, 138, 182, 313, 317–8, 338, 393, 455–7, 510
power, penetrating, 234
power lines, 323, 457
powers of ten, 6, 121, 542
prefixes, 41, 542
pressure, 47–8, 74, 102–3, 181, 314, 333, 346, 348, 351–4
principle of conservation of energy, 79–80, 90, 148, 296, 

332, 444, 492
principle of moments, 60–2
principle of superposition, 193–4
progressive waves, 179, 211–3, 
projectiles, 28–31
proton number, 226–9, 232, 490–1
protons, 117, 130–2, 225–232, 491–5, 522–4

quantum physics, 467–83

radiation from radioactive substances, 223, 229, 231, 232–4
radiation penetration, 233–4
radioactive decay, 80, 186–7, 231–4, 490–501
radioactivity, 231–4, 490–501

radioisotopes, 499
radio telescopes, 179
radio waves, 186, 196, 198, 302, 310–14, 320–2, 469
real gases, 350–1
rectification, 460–1
rectifiers, 460–1

relative speed, 90
relays, 398–9
repeaters, 318–9, 323
repulsion, 117–8, 363, 367
repulsion between currents, 415
resistance, air, 42–6, 298, 445
resistance, electrical, 135, 149–50, 152, 457, 459, 479, 532–3
resistance, internal, 134, 169–71, 394
resistivity, 162–3
resistors, 129, 134, 145, 170, 172, 379–80, 388, 544
resonance, 214, 217–8, 299–302
resonance, magnetic, 522–5
resonance tubes, 214
rest mass, 492
resultant force, 38, 44, 54, 55–7, 96, 292
resultant velocity, 10
right-hand grip rule, 409
ripple tanks, 181–4, 195
ripples in water, 195–8
road traffic accidents, 23
root-mean-square (r.m.s.) currents and voltages, 455–7

scalar quantity, 4, 10, 261
semiconductor diodes, 129, 160
semiconductors, intrinsic, 479
sensors, 335, 337, 387–91
sensors, motion, 291
shock waves, 301
sidebands, 312–3
signal attenuation, 315–19, 320, 323
signal-to-noise ratio, 318–9
sign conventions, 29, 54
simple harmonic motion (s.h.m.), 289–302
sinusoidal currents, 416–27, 452–6
SI units, 39–41, 416, 542
slit separation, 201–5
slit-to-screen distance, 201–2
solenoids, 407–9, 440, 444–5
sound waves, 180–1, 183, 184–5, 213–15, 289, 310
specific heat capacity, 336–8
specific latent heat, 338–40
speed, 2–5, 15, 19–20, 43–5, 75
speed, and circular motion, 261–4
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speed, and Doppler effect, 183–4
speed, and kinetic energy, 76–7
speed, and momentum, 87
speed, average, 2
speed, in simple harmonic motion, 287–90, 295–6
speed, instantaneous, 2
speed, of atoms in a gas, 346–7, 354–5
speed, of electrons in a current, 132–3
speed, of light, 186–7, 213, 310
speed, of particles emitted during radioactivity, 231
speed, of sound, 216–7, 310
speed, orbital, 265
speed, relative, 90
speed, top, 44–5
speed, wave, 183, 310
speed cameras, 39
spontaneous decay, 497
spring constant, 104
springs, 47, 104–7, 181, 537–8
spring–trolley systems, 291
springy collisions, 86–7
stationary waves, 211–18
step-down transformers, 458–9
step-up transformers, 458–9
sticky collisions, 87
strain, 105–9, 517
strain energy, 108
strain gauges, 389–90
strength, electric field, 119–22, 360, 362, 365, 367, 411
strength, gravitational field, 42, 75, 274–6, 367, 411
strength, magnetic field, 188, 411
stress, 105–7, 389–90, 517
stretched strings, 47, 104–9, 296
stretching materials, 105–7
superconductivity, 157
superconductors, 157
superposition of waves, 193–4

temperature, 328–40
temperature, thermodynamic, 40, 333–4, 350–355
tensile forces, 104–5
tension, 104–5, 262
terminal velocity, 45–6
tesla, 411
thermal energy, 333, 411
thermal equilibrium, 333
thermistors, 129, 159–61, 334–5, 387, 389
thermocouples, 334–5
thermodynamic scale, 40, 333–4, 350–355
thermometers, 332–3, 334–5

threshold frequency, 471–4
threshold voltage, 160–1, 470–1
ticker-timers, 3, 19, 27
top speed, 44–5
torque, 63
transducers, 387–8, 517–20
transducers, piezo-electric, 517–8
transformers, 446–7
transverse waves, 181–2, 188, 193, 211, 215
triangle of forces, 55
turning forces, 59–63
turns-ratio equation for transformer, 458

ultrasound scanning, 516–22
ultraviolet radiation, 106–7, 472
unbalanced forces, 44–5, 60, 428–9
uncertainty, 26, 55, 202, 240–54, 493, 536–8
uniform acceleration, 24–5
uniform electric field, 118–122
uniform motion, 44–5, 262
units, SI, 39–41, 416, 542
upthrust, 47, 48, 103, 346

vapour, 330
variable resistances, 391
vector addition, 10
vector components, 28–9
vector diagrams, 263
vector quantities, 4, 10, 261
velocity, 5–10, 15–24
velocity, angular, 261–2, 264, 523
velocity–time graphs, 17–20, 22–3, 24, 291–2
velocity selectors, 427–8
virtual earth approximation, 397
viscous force, 45
voltage, 49, 120–1, 134–8, 145, 157–8, 159–61, 172–4, 

314–7, 335, 391–2
voltage, alternating, 
voltage, input, 393–4
voltage, output, 393–4
voltage, root-mean-square (r.m.s.), 455–7
voltmeters, 134
volume, 348–55
volume, of proton, 226

watt, 80–1, 136
wave energy, 182–3
wave equation, 183, 213–14, 469
wavelength, 179–87, 193–6, 213–18, 311, 321, 469, 471, 

475–7, 480–3, 507–9
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wave models, 468, 474, 480
wave–particle duality, 480
wave speed, 183
waves, 195–6
waves, carrier, 310–14
waves, electromagnetic, 181–2, 185–6, 188, 310, 319, 320, 

468–9
waves, light, 186, 193–206
waves, longitudinal, 181–2, 214–5, 517
waves, sound, 180–1, 183, 184–5, 213–15, 289, 310
waves, transverse, 181–2, 188, 193, 211, 215
weight, 39–40, 41–2, 266, 273–5
white light, 161, 202–3, 205–6, 475–6
wire-pair, 319–20
work done, 71–2, 74–6, 78–80, 108, 121, 134, 263, 276, 363, 

365, 375–6
work function, 472–4

X-ray attenuation, 509–12
X-ray images, 507–13
X-ray spectrum, 508–9
X-ray tubes, 507–8, 509, 514
X-rays, 186–7, 469, 507–13, 514–16

Young double-slit experiment, 198–9, 200
Young modulus, 106–7
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Advice on how to revise for and 
approach examinations
Tips for revision
Know the syllabus

The Cambridge International AS and A Level Physics syllabus is divided into sections; each section is 
divided into Learning outcomes. The advice here refers to both the AS and A Level examinations. It 
is useful to familiarise yourself with what you are expected to know for examination. You can access 
a copy of the syllabus on the Cambridge International Examinations website, and you should always 
refer to the syllabus for the specific year you are entering the examination. Your class notes may 
contain extra background information to help you understand topics. Use the syllabus to refer to the 
Learning outcomes and then extract the relevant points from class notes when you make learning 
notes (see below) and revision notes.

When planning your revision, allocate your revision time according to:
■■ the amount of material you need to learn
■■ how difficult each section has been for you.

Learn the wording of any Learning outcomes that are definitions of scientific terms, and learn 
any basic proofs that are required in the Learning outcomes – these could form the basis of some 
questions. Remember to use ‘per’ in a definition if a ratio is used; for example, pressure is defined 
as force per unit area, and not force on unit area. However, it is very important not to simply learn 
the material by rote, but to be able to apply your learning to usual and unusual situations, as exam 
questions can present you with a situation in a new context. 

Make learning notes

Many students learn by repetition. As you learn, you can reduce your class notes:

	 class notes → learning notes → revision notes

Each time you complete a topic, it’s helpful to go back through your class notes and organise them in 
a way that suits your style of learning, to make your learning notes. Learning notes are personal and 
individual to you and will emphasise anything that you have found difficult.

You can benefit from rewriting class notes using strategies that work for you – for example, with 
colours, flow diagrams, bullet points or concept maps, in any way that you find helpful and even 
humorous. Check your notes against the coursebook and leave out, or reduce to a minimum, any 
points with which you are thoroughly familiar. Include equations.

To make learning notes:
■■ produce a shortened version of your class notes
■■ check your class notes against your coursebook
■■ leave out background, non-syllabus information
■■ leave out, or reduce to a minimum, points that you know you will never forget; for example, you 

know from earlier courses, such as the IGCSE®, the properties of magnets and magnetic fields, but 
a new formula such as F = BIL sin θ needs to be emphasised

■■ avoid long, flowing sentences that contain many points
■■ use bullet points or short sentences, each containing one or two points that are likely to gain 

marks in an exam – ‘mark points’
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■■ use scientific terminology correctly and as specifically as you can.

Your teacher may have covered topics in a different order from that in the published syllabus. This 
may also be a logical order for you. Make your learning notes for each topic on separate pieces of 
paper to put into your folder in your preferred order.

Making learning notes has benefits:
■■ repeating and reformatting class notes helps learning
■■ it is a first stage in revision for the exams
■■ notes are in your preferred style to optimise learning
■■ you can assess how well you understand each Learning outcome.

Make revision notes

It is likely that you will be trying to cope with other subjects as the exam time approaches, so you can 
reduce your notes further to make revision notes:

	 class notes → learning notes → revision notes

Revision notes should contain only the detail necessary to get your very best grade. Think about 
how you will set out these notes and discuss them with your friends. Make your revision productive 
by making it interesting and fun. Make notes, revision cards or topic maps. Revision should be an 
active process, i.e. you should be ‘doing things’, not just sitting and reading a book. Revise with a 
friend so that you can test each other, or try explaining the physics of a topic to a friend – as if you 
were a teacher! Try not to copy directly from the coursebook or syllabus, but put the ideas in your 
own words, checking them later. At this stage you should incorporate your experience of practice 
questions and their mark schemes from past papers.

You might try another process. Using the syllabus as your starting point:

1	 Write down on a sheet of paper or card each definition, law and equation. Some equations will be 
given to you on the examination paper, but you must still learn what the letters stand for, and the 
units.

2	 On another sheet or card, write down the title of each important experiment.

3	 On a third sheet, write down the title for each important idea that you need to understand 
(e.g. the difference between AM and FM modulation).

4	 On the next sheet, write down any parts of the syllabus you do not understand.

Now, with your sheets or cards labelled 1, 2, 3 or 4, you should:

1	 Write out the definitions, laws and equations from your own memory. Tick each one off when 
you are sure you know it and it is the same as in your notes or in the coursebook.

2	 Test your knowledge by drawing a clearly labelled diagram, listing the readings taken and 
explaining the conclusion. Go back to the page in your notes or the coursebook to check.

3	 Test your understanding by drawing labelled diagrams and/or brief notes. Go back to the page in 
your notes or coursebook to check.

4	 Seek help! Ask your teacher, or read the coursebook.
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Know what to expect for each exam

Before you enter the exam room, you should know what to expect in the exam paper you are facing. 
Exam papers have different types of questions, including multiple choice questions, structured 
questions and practical questions. It is important to know how long the exam lasts and how many 
questions you need to answer. You can find this information in the syllabus. 

The table below, based on the latest syllabus, shows the types of questions in each of the Cambridge 
International Examinations papers.

Paper Level Type of paper and questions it contains

1 AS written; multiple choice questions

2 AS written; structured questions

3 AS practical; testing skills such as manipulation, measurement and observation, presentation of 
data and observations, analysis, conclusions and evaluation

4 A written; structured questions

5 A written; testing the practical skills of planning, analysis and evaluation

Apart from multiple choice questions, it is rare for questions to be worded as straightforward 
questions with question marks. They generally have command terms. A list with explanations of the 
most common command terms that you should understand is in the syllabus. The most common 
terms are: state, describe, explain and calculate. Make sure you know exactly what is required for 
each command term. For example, there is no point in writing a long explanation of why something 
happens if the question merely asks you to state what happens.

Use past papers to help you revise

You will find it helpful to look at or practise past exam papers.

You will also need to learn and practise the practical skills that are tested in the AS practical 
examination and the A Level paper that concentrates on the skills of planning, analysis and 
evaluation.

Your teacher may have copies of past papers and mark schemes. 

Approaching the examinations
Make sure that you know about the data and formulae given at the front of the question paper. You 
should be so familiar with this data and these formulae that you almost do not need to look them 
up, but it is better to refresh your memory each time that you use an equation, to check that you 
have not made a mistake in writing down a formula or have used a wrong power of ten in a constant.

Suggestions on how to approach multiple choice question papers

Understanding multiple choice questions

Each question may be posed on its own or may be preceded by some information. There are four 
answer options: A, B, C and D. You must choose the one that is the correct answer.

Some questions have a simple construction in which the options A, B, C and D appear directly below 
the question. The options could be one or more sentences long. Other questions have a construction 
in which each option is a row in a headed table.
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During the exam

When tackling questions:
■■ read questions through more than once
■■ check whether a positive or negative answer is being asked for, e.g. whether the question says 

‘which of the following is ...?’ or, ‘is not …?’; for example, when asked for an incorrect ray diagram, 
be careful not to pick a correct diagram as your answer

■■ underline or circle important information in the stem of the question to help you understand the 
important points

■■ never leave a question unanswered; marks are not deducted for incorrect answers
■■ try to eliminate some of the possible answers if you are not sure of the answer
■■ write out your working to numerical questions clearly (on the question paper in the space 

provided near the question) so you can check it later; do not try to do all the working in your 
head, as you are likely to make mistakes

■■ if option A appears to be correct, read on and check the others before you confirm your choice
■■ do not look at the pattern of answers on the answer sheet to predict the correct option – you 

should not expect there to be an equal number of correct option letters in the whole exam; 
likewise, if the last answer was an A, you cannot assume that the next one must be a B, C or D, for 
example. For questions that assess topics which you find difficult, try to recall the relevant section 
of your revision notes before looking at the options (A, B, C and D) available.

Suggestions on how to approach papers with structured questions

During a ‘real’ examination is not the time to work out your preferred strategy for coping with 
structured questions in exam papers. If you can, practise beforehand by using, for example, past 
papers, and try different exam approaches to see what is best for you.

Exam papers aren’t long enough to test your knowledge and understanding of all the Learning 
outcomes. Ensure that you have revised well and are prepared for your less-favourite topics to turn 
up in the exam. In both of the structured-question papers, each main question can assess Learning 
outcomes from more than one syllabus section.

Approaching the exam paper

The first question in a structured-question paper is sometimes slightly easier, so it can be completed 
with relative ease and gives you confidence. However, make sure that you read through all of the 
questions thoroughly and then decide which question to tackle first. You should monitor the time 
that you spend on each question throughout any paper and adjust your working accordingly. This 
will ensure that towards the end of the examination you will have sufficient time to finish. Practise 
with past papers under timed conditions to develop your timing skills.

Always show your working when answering a question. You must include the method as well as the 
answer, and show every step in each calculation. It is also true that you should not give up on any 
question, but should show what you can do, even if you cannot work the question through to the end. 

In calculations, it is best to start by writing down the equation that you will use, then substitute the 
values in another written expression, and finally give the answer. All of these stages should appear. 
During the calculation do not prematurely round your answer, and always keep and use more 
significant figures than are given in the question. You can round your answer at the end, but make 
sure you do so correctly: for example, 1.86 is 1.9 to two significant figures, not 1.8. Always use g as 
9.81 m s–2 and not 10 m s–2. Check that the units you have used are consistent; for example, if the 
distance is given in km and the speed is given in m s−1, then you must convert km to m.
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When you have obtained the final answer, make sure that:
■■ it is a sensible and realistic number; for example, if you have worked out the current in a wire to 

be 3 000 000 A, then this is likely to be wrong and you should look for the mistake
■■ it has units; look out, in particular, for questions that ask you to give the units of your answer or 

that do not have the units on the answer line
■■ it has the correct number of significant figures; this should be the least number of significant figures 

in the data in the question – this data is often given to two or three significant figures, so if you write 
your answer down to one or to four or more figures, then you should have a good reason. Think very 
carefully indeed before you write down all the figures you see on your calculator!

If you have difficulty in giving an answer in writing, then provide a sketch or diagram; this is 
sometimes much easier than using many words. Diagrams or sketches should always be labelled 
with as much detail as you can. Try to make your explanations as clear as possible and use technical 
terms correctly; for example, it is better to say ‘resistance is inversely proportional to area’ than ‘as 
area increases resistance decreases’. Sketch graphs should have their axes labelled, and the values of 
any important points on the axes should be shown, particularly the origin. 

Some questions require longer written answers. Before you start these questions, look at the 
number of marks that they are worth. This will help you decide how many important points you 
should include in your answer. Then it is best to briefly plan the structure of your answer before 
starting to write. If there are three marks for the question, then include at least three different and 
valid points if you can. You do not need to start your answer by rewriting the question itself because 
then there may be too little space left for your answer. 

Suggestions on how to approach practical papers

Practical examination papers

Read through each question carefully before you start to take any readings. Do not worry if you 
have never met the experiment before or if it contains unusual apparatus. The question paper itself 
should tell you what to do, and you must follow the instructions that you are given.

If there is a problem with your apparatus, for example the power supply does not work, then you can 
ask the supervisor for help. You may lose some marks if the supervisor has to set the apparatus up 
for you, but not if there was a genuine failure in the apparatus.

The syllabus gives a lot of information on the skills that you will need. Many of these skills are 
straightforward but may not be clear from the instructions for the examination. For example, you 
should choose values for the independent variable that:
■■ cover the largest possible range of readings that can be obtained using the apparatus, or that are 

consistent with the instructions given
■■ give, ideally, an even spread of readings across the range.

For example, if you are asked to measure the resistance of a wire for five different lengths and the 
wire is stretched along a metre rule, you would not choose to measure lengths of 1, 2, 3, 4 and 5 cm 
or 10, 20, 30, 40 and 100 cm, but you might suggest 20, 40, 60, 80 and 100 cm.

You may be asked to make a table of your readings. It is best to plan this and to draw the columns 
and headings before you take any readings. Then, as you take each reading you can enter it directly 
into the table. This will save time.

Before you start:
■■ look through the question to see whether you need a column for a derived quantity as well the 

columns for the readings themselves
■■ think about which readings you will repeat.
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For example, if you are measuring the resistance of different lengths of wire, you may record the 
value of current and voltage twice and calculate the resistance for each length twice. This means 
that the column for resistance has to have three small sections, two for the values of resistance and 
one for the average. Do not waste time taking readings more than once unless you are asked to do 
so. Thus the column headings and first row of your table might be:

Length / cm Reading 1 Reading 2 Resistance / Ω

Current / A Voltage / V Current / A Voltage / V Reading 1 Reading 2 Average

10.0 1.20 3.45 1.22 3.50 2.88 2.87 2.87

Make sure that each column has a quantity and a unit.

All the readings in a particular column should be recorded to the same number of decimal places, 
corresponding to the precision of the instrument that you are using. In the example above, every 
current recorded should be to the nearest 0.01 A if that is the smallest division on the instrument. If the 
current happens to be 1.20, do not just write down 1.2, as there will be other currents such as 1.51 that 
have a different number of decimal places.

In the example above, notice that the length was written as 10.0 cm, as it is possible to measure to 
1 mm on a rule. Of course the uncertainty in a reading can be larger than the smallest division on the 
instrument and the ammeter readings may be fluctuating by more than 0.01 A. It is usually best to 
write down what you see on the instrument. Sometimes the readings will differ when repeated, due 
to random error.

The number of significant figures in any derived quantity (the resistance in the example above) 
should be equal to the smallest number of significant figures in the data. If your measurements 
permit, you may also give one more figure than this. In the example above, the resistance could be 
given to three or four significant figures.

In most practical examinations you will be required to draw a graph to represent the data you have 
collected. Make sure before the examination that you have a sharp pencil and a long, clear plastic 
ruler to draw the graph. You should be thoroughly familiar with the details about drawing graphs, in 
the section on analysing results in Chapter P1 of the coursebook. To summarise:
■■ each axis must be labelled with the appropriate quantity and unit
■■ the plotted points should occupy at least half the grid in both the x and y directions
■■ the x-axis scale should increase positively to the right
■■ the y-axis scale should increase positively upwards
■■ the scale should have 1, 2 or 5 units to a 2 cm square 
■■ all plotted points should appear on the grid itself and none should be outside of it
■■ check that your points are plotted accurately
■■ when drawing a line of best fit, make sure there is a balance of points on either side of the line 

along all of its length
■■ when finding a gradient, draw a triangle that covers more than half of the actual graph line
■■ show all your working when calculating a gradient
■■ if you are asked for an intercept, you can read it from the graph; if this is not possible, you can 

take the equation of the straight line and a point on the line to calculate the intercept.

A practical examination will also ask you to calculate uncertainties and suggest improvements. It is 
important that these improvements relate to the actual experiment and are possible to carry out, 
although you will not have to alter the apparatus yourself or take further readings.
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Written examination of practical skills

The best preparation for a written examination of practical skills is to have practised the skills you 
need to answer the examination questions on many occasions, by:
■■ planning a number of experiments yourself
■■ taking readings according to your own plan
■■ evaluating the results.

It may help for you to swap plans with a fellow student and for each to try to follow the other’s plan. 
You will see how difficult it is to describe in detail what is to be done.

As the examination time draws closer, practise by, for example, looking at past papers and their 
mark schemes under the supervision of your teacher. Remember, you need to have developed and 
practised the skills you need in ‘real’ experiments. You need the ability to think for yourself, to know 
what apparatus is available in a physics laboratory and to know how it is used, so that you can take 
the correct approach to the questions in the exam paper.

There are three main types of question you will face in an examination of this type.

1 Planning question

First read the question through several times and identify the dependent and independent variables. 
You may have to consider a number of other issues, which may involve:
■■ choosing what apparatus you will use to solve the problem set in the question
■■ describing the experimental arrangement
■■ describing a sequence of instructions to take the readings
■■ stating and describing how you will keep other variables constant (remember to include 

sufficient detail)
■■ describing how the data is processed, often in the form of a graph (remember to state the axes 

on the graph and the form you expect the graph to take; if you sketch the graph, make sure the 
sketch is consistent with your description)

■■ describing relevant safety precautions; give detail and reasons; do not just say, for example, ‘do 
not touch the resistor’ but explain that the resistor may be hot.

The question will suggest a structure, and it is sensible to make sure that your answer follows 
this structure and includes as much detail as you can about each point as you go along. Marks for 
additional detail are likely to be offered, so you should answer each section with a wealth of detail 
and supporting material. For example, you could suggest how additional variables are kept constant, 
give circuit diagrams or describe additional safety precautions. 

The diagram of your apparatus is important:
■■ it should be labelled with as much detail as you can provide
■■ you should check that it is possible to take the measurements and alter the independent variable 

with the actual apparatus that you draw
■■ you should re-check your diagram, imagining that you are another person who is not familiar with 

the experiment – could they actually take the necessary readings for the experiment?

2 Analysis and evaluation question

Refresh your memory on the important points in the practical examination paper section guidance 
above concerning significant figures, graphs, gradients and intercepts; they also apply to a written 
examination of practical skills.

You should also practise using expressions that involve the exponential function and rearranging 
them to plot an appropriate graph. More help is given on this topic in Chapter P2 of the coursebook.
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Remember that the unit for a logarithmic quantity is written slightly strangely, for example 
ln (d / cm). The logarithm itself does not have a unit.

You will need plenty of practice in using calculated uncertainties to draw error bars and in using 
these error bars to draw a ‘worst acceptable’ line as well as a line of best fit. You should draw your 
‘worst acceptable’ line as a broken line or, preferably, clearly label each line as ‘best-fit line’ or ‘worst 
acceptable line’.

The skills of data analysis involved in this question are ones that you can practise again and again, 
for example by using past papers, until you are sure that you can:
■■ complete tables of results using the right headings
■■ rearrange equations such as: y = mx + c, y = axn and y = aekx

■■ plot ordinary and log graphs, knowing how logarithms are taken of each side in the 
above equations 

■■ show error bars on graphs
■■ calculate gradients
■■ use the correct number of significant figures
■■ draw curved trend lines and tangents when required to do so
■■ write sensible conclusions.

If you practise using past papers, ask your teacher for the mark scheme or sample answers, or swap 
with a friend and discuss your answers, to make sure that you have understood all of the points. If 
you do this, then the examination itself will not be a great surprise and you will show that you have 
the determination to succeed.

Finally

Some questions in examination papers are likely to seem strange, and you may be unsure of the 
answer. There is no need to panic, as this is likely to be the same for every student. If you are in 
doubt, first make sure that you have understood the question, and then make sure that you are 
describing when the question says ‘describe’ or applying physics principles when the question 
says ‘explain’. Try to think carefully to yourself about what physics principle is actually involved, 
and perhaps roughly plan your approach before starting to write the answer. Avoid repeating the 
question or writing out pages from your notes or from the coursebook, but make it your aim to relate 
the principle to the question itself. An examination is trying to discover what you really know and 
can do. If all has gone well during your course and when using the coursebook, you will have ensured 
that you not only understand these principles but can apply them to a range of questions. If that is 
the case, then you can be confident of giving a good performance.

The questions, example answers, marks and comments that appear in the Coursebook and this 
accompanying CD-ROM were written by the authors. In examination, the way in which marks would be 
awarded to answers may be different.
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Introduction  to the examination and 
changes to the syllabus
The Cambridge International Examinations Physics 
examination – a student’s perspective
You should find out from your teacher which examination you will take and when. The following 
details refer to the latest syllabus, but it is important that you refer to the syllabus for the year in 
which you are taking the examination, in case details change.

If you are entered for the Advanced Subsidiary (AS) Physics examination, then you will take three 
papers, Papers 1, 2 and 3, in a single examination series in either June or November, or in March for 
candidates in India. 

After your AS level examination, you may, if you wish, continue to study physics and then take the 
full Advanced Level Physics qualification. If you do this, your AS level marks in Papers 1, 2 and 3 are 
carried forward and you take two more papers, Papers 4 and 5, in a single session. Your final grade 
for the full A level is based on all of the papers you have taken, Papers 1 to 5.

However, you may take the complete Advanced Level Physics qualification in a single examination 
series. In this case you take all the five papers in one single session. This may not be as hard as you 
think, as some of the questions in Papers 4 and 5 rely on material taught for the previous papers and 
you will be much more experienced when answering Papers 1, 2 and 3 if you take them later. On the 
other hand, there are fewer papers to take in any single series if you take the AS level examination 
before the final two papers.

The coursebook is divided into two sections to help you prepare for the AS level and the full A level 
separately, but you will need to know all the material from the AS level when you take Papers 4 and 5.

Details about the papers
Paper How long is 

the paper and 
with how many 
marks?

What is in the paper? What is the 
paper worth 
for the AS level 
exam?

What is the 
paper worth 
for the full A 
level exam?

Paper 1

Multiple 
choice

1 hour and 
15 minutes

40 marks

This paper has 40 multiple choice 
questions, each with four options and 
based on the AS syllabus. You answer 
all the questions on an answer grid.

31% 15.5%

Paper 2 

AS structured 
questions

1 hour and 
15 minutes

60 marks

This paper has a variable number 
of structured questions of variable 
value. You answer all the questions 
and write on the question paper.

46% 23%
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Paper 3

Practical test

2 hours

40 marks

You carry out practical work 
under timed conditions, with two 
experiments from different areas 
of physics, using the apparatus for 
each experiment for 1 hour. The 
experiments test your practical 
skills rather than theory and may be 
based on physics not included in the 
syllabus content. You write on the 
question paper itself.

23% 11.5%

Paper 4 

A level 
structured 
questions

2 hours

100 marks

This paper has a variable number 
of structured questions of variable 
mark value. All questions are based 
on the A level syllabus content, but 
knowledge of AS level content is 
assumed for this paper. You answer 
all the questions and write on the 
question paper.

– 38.5%

Paper 5

Planning, 
analysis and 
evaluation

1 hour and 
15 minutes

30 marks

This paper has two questions, each 
worth equal marks and based on the 
practical skills of planning, analysis 
and evaluation. You are tested on 
these skills rather than on your 
knowledge of any theory; the context 
of the questions may be outside of 
the syllabus content. You answer both 
questions on the question paper itself.

– 11.5%

Changes for the 2016 syllabus
You should make sure that you use the correct syllabus for the session that you are taking the 
examination. You will find the syllabus on the Cambridge International Examinations (CIE) website at 
www.cie.org.uk, or you should ask your teacher.

For 2016 examinations, there were a number of changes made to the syllabus. It may be important 
that you know about these changes. 

Changes to the examinations
The main change to the examinations themselves is that in Paper 4 there is now only one section. For 
examinations taken before 2016, Paper 4 contained two sections, with section B based on applications 
of physics. Although these applications are largely still in the syllabus, they are now more closely 
related to the appropriate area of physics. For example, nuclear magnetic resonance imaging (MRI) is 
now part of the section on magnetic fields, rather than being in a separate applications section called 
Remote sensing. Questions on these applications may appear at any place within Paper 4. 

The second edition of the coursebook now incorporates many of these applications alongside the 
appropriate topic, rather than as a separate section.

http://www.cie.org.uk


Cambridge International AS and A Level Physics

Cambridge International AS and A Level Physics © Cambridge University Press 2014

Changes to the syllabus
New material in the 2016 syllabus

The 2016 syllabus includes some new material, with the introduction of extra topics:

■■ the Doppler shift for a moving source of waves
■■ basic ideas about fundamental particles such as quarks and neutrinos
■■ the band theory of energy levels in solids
■■ the derivation of the Hall voltage
■■ the derivation and use of the equation I = nAvq for current-carrying conductors 
■■ the conservation of momentum applied to problems in two dimensions.

Minor additions or clarifications

There have been some clarifications and minor additions:

■■ sources of energy loss in a transformer
■■ the effect of internal resistance of a source of e.m.f. on the terminal p.d.
■■ capacitance applied to both isolated conductors and parallel plate capacitors
■■ the charge on a sphere and the mass of a sphere to be taken at its centre
■■ thermistor thermometers rather than resistance thermometers
■■ the definition of the radian
■■ the introduction of  the Boltzmann constant into the kinetic theory of gases.

Material moved from AS to A  level

The following have been moved from AS to A level:

■■ the concept of internal energy and the simple kinetic model for solids, liquids and gases
■■ the difference in structure and density related to the spacing, ordering and motion of molecules
■■ Brownian motion
■■ the temperature characteristic of a thermistor
■■ thermistors and light-dependent resistors in potential dividers providing a p.d. dependent on 

temperature and illumination 
■■ simple nuclear reactions and nuclear equations
■■ the spontaneous and random nature of nuclear decay.

Material removed from the syllabus

The following material has been removed from the syllabus:

■■ the structure of crystalline and non-crystalline solids 
■■ distinguishing between the processes of melting, boiling and evaporation
■■ the force–extension graphs for typical ductile, brittle and polymeric materials, including an 

understanding of ultimate tensile stress
■■ polarisation as a phenomenon associated with transverse waves
■■ Millikan’s experiment and the evidence for quantisation of charge
■■ the need for remote sensing in medicine
■■ the mobile-phone system, the public switched telephone network and the mobile phone handset.

All of these changes have been incorporated, where necessary, into the coursebook.
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Chapter 1
1		  average speed = 10 000

1577.53 = 6.34 m s–1

2	 a	 mm s–1

b	 mph
c	 km s–1

d	 m s–1

e	 km h–1

3		  distance = 12 cm = 120 mm, so
average speed = 120 

60  = 2.0 mm s–1

4		  average speed �= 0.050 m
0.40 s  = 0.125 m s–1  

≈ 0.13 m s–1

5	 a	 Constant speed
b	 Increasing speed (accelerating)

6		  For example, attach a card to a weight and 
drop it through a light gate. Alternatively, 
attach ticker-tape to the falling mass.

7	 a	 Displacement
b	 Speed
c	 Velocity
d	 Distance

8		  Distance d = v × t = 1500 × 0.2 = 300 m. 
(Remember the 0.4 s total time is that taken 
for the sound waves to travel out and be 
reflected back from the surface of the water.)

9		  Time taken for orbit is one year 
= 1 × 365.25 × 24 × 60 × 60 = 31 557 600 s.
Distance travelled = circumference of orbit 
= 2 × π × 1.5 × 1011 = 9.425 × 1011 m.
So the Earth’s speed = 29.9 km s–1 ≈ 30 km s–1.
As the Earth orbits the Sun, its direction of 
motion keeps changing. Hence its velocity 
keeps changing. In the course of one year, its 
displacement is zero, so its average velocity 
is zero.

 10		  Sloping sections: bus moving. Horizontal 
sections: bus stationary (e.g. at bus stops).

 11		  OA: constant speed.  
AB: stationary.  
BC: reduced constant speed.  
CD: running back to gate.
s

t

A

0
0

B

C

D

 12	 a	 85 m s–1

b	 Graph is a straight line through the origin, 
with gradient = 85 m s–1.

 13	 a	 Graph is a straight line for the first 3 h; then 
less steep for the last hour.

b	 Car’s speed in first three hours = 23 km h–1

c	 Car’s average speed in first four hours  
= 84 

4  = 21 km h–1

 14	 a	 Total distance travelled = 3.0 + 4.0 = 7.0 km
b, c	 The two parts of the journey are at 90° to 

each other, so the resultant displacement is 
given by Pythagoras’ theorem.
	 displacement2	 = 3.02 + 4.02 = 25.0, so  
	 displacement	 = 5.0 km
	 angle = tan–1(4.0

3.0)	= 53° E of N (or 37° N of E)

 15	 a, b	 8.5 km; 48° W of S

W SE

A

12.0 km

8.5 km 8.0 km

45°48°
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 16		  Swimmer aims directly across river; river 
flows at right angles to where she aims. So 
resultant velocity is given by geometry:
magnitude2	= 2.02 + 0.82 = 4.64 so  
magnitude	 =    4.64 = 2.154 ≈ 2.2 m s–1

direction = tan–1(0.8
2 ) ≈ 22° to the direct route 

(68° to the river bank)

 17	 a	  
 
 
 
 
 
 
 
 

resultant
25 ms–1vertical

18 ms–1

horizontal
17 ms–1

44°

b	 17.3 m s–1 ≈ 17 m s–1

c	 43.9° ≈ 44° to the vertical
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Chapter 2
1		  Change in velocity Δv = (18 – 0) = 18 m s–1

Time taken Δt = 6.0 s
So acceleration a = Δv

Δt  = 18
6.0  = 3.0 m s–2

2		  Change in velocity Δv = (11 – 23) = –12 m s–1

Time taken Δt = 20 s
So acceleration a = Δv

Δt  = –12
20  = –0.60 m s–2

The magnitude of the deceleration is 
0.60 m s–2

3	 a	 Rearranging the equation a = v – u
t  gives  

v = u + at
So after 1 s, v = 0.0 + (9.81 × 1) = 9.81 ≈ 9.8 m s–1

b	 After 3 s, v �= 0.0 + (9.81 × 3) 
= 29.4 m s–1 ≈ 29 m s–1

4	  
 
 
 
 
 
 

v

t

5	 a 	  
 
 
 
 
 
 
 
 
 
 

v / m s–1

t / s
0

10

20

30

0 5 10 15 20 25 30

b, c	 During first 10 s,  
acceleration a = Δv

Δt  = 30
10 = 3.0 m s–2

d	 During last 15 s,  
acceleration a = Δv

Δt  = (0 – 30)
(30 –15) = –30

15  = –2.0 m s–2

e	 From area under graph: 525 m

6		
Dots evenly spaced, then getting steadily 
closer together.

7		  If l1 = length of first section of interrupt card, 
t1 = time when first section enters light gate, 
t2 = time when first section exits light gate,  
l2 = length of second section of interrupt card, 
t3 = time when second section enters light gate,  
t4 = time when second section exits light gate, 
then:
initial velocity u = l1

t2 – t1
 = 0.05

0.20 – 0.0 = 0.25 m s–1

final velocity u = l2

t4 – t3
 = 0.05

0.35 – 0.30 = 1.0 m s–1

Δt = t3 – t1 = 0.30 – 0.0 = 0.30 s
So acceleration a = Δv

Δt  = 1.0 – 0.25
0.30  = 2.5 m s–2

8		  For first ticker-tape section, length l1 = 10 cm, 
time taken t1 = 5 × 0.02 = 0.10 s
so initial velocity u = l1

t1
 = 0.10

0.10 = 1.0 m s–1

For second ticker-tape section, length  
l2 = 16 cm, time taken t2 = 5 × 0.02 = 0.10 s
so final velocity v = l2

t2
 = 0.16

0.10 = 1.6 m s–1

Sections of tape are adjacent, so time 
between start of first section and start of final 
section, Δt �= time taken by first section 

= 5 × 0.02 = 0.10 s
so acceleration a = Δv

Δt  = 1.6 – 1.0
0.10  = 6.0 m s–2

9	 a	 We know u, a and t and we want to know v, 
so we use the equation
velocity v = u + at = 0.0 + (2.0 × 10) = 20 m s–1

b	 We know u, a and t and we want to know s, 
so we use the equation
distance s �= ut + 12 at2 = 0.0 + 12 × 2.0 × 10 × 10 

= 100 m
c	 We know u, v and a and we want to know t, 

so we rearrange the equation v = u + at so that
time t = v – u

a  = 24 – 0
2.0  = 12 s

 10	 a	 We know u, v and t and we want to know a, so 
we use the equation
acceleration, a = v – u

t  = 20 – 4.0
100  = 0.16 m s–2

b	 Average velocity, vavg = v + u
2  = 20 + 4.0

2  = 12 m s–1
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c	 We could use s = ut + 12 at2 but given that we 
have worked out the average speed, it is 
simpler to use
distance, s = vavg × t = 12 × 100 = 1200 m

 11		  We know u, a and s and we want to know v, 
so we use the equation
v2 = u2 + 2as
So final velocity v =    u2 + 2as 
=    (8.0)2 + 2 × 1.0 × 18 =    100 = 10 m s–1

 12		  We know u, v and a and we want to know s, 
so we rearrange the equation v2 = u2 + 2as, 
so that distance 
s = v

2 – u2

2a  = (0)2 – (30)2

2 × (–7)  = 900
14  = 64.3 m ≈ 64 m

 13		  We know v, a and s and we want to know u, 
so we rearrange the equation v2 = u2 + 2as into 
u2 = v2 – 2as, so initial speed
u �=    v2 – 2as =    (0.0)2 + 2 × (–6.5) × 50 =    650 

= 25.5 m s–1

This is just over the speed limit.

 14	 a	 t = 7.5 s; v = 220 m s–1

b	 Draw a tangent to the curve at point P. Read 
off two sets of values from the tangent to find 
the gradient. For example:
at time t1 = 0 s, v1 ≈ 60 m s–1

at time t2 = 12 s, v2 ≈ 300 m s–1

So, approximately, acceleration 
a = Δv

Δt  = 300 – 60
12 – 0  = 20 m s–2

 15	 a	 The car is slowing down with constant 
(uniform) deceleration.

b	 Initial velocity v1 = 20 m s–1  
final velocity v2 = 8 m s–1

c	 Acceleration a = Δv
Δt  = 8 – 20

30 – 0 = –0.40 m s–2

d	 Displacement of car = area under graph  
= (area of rectangle with side 8 m s–1 and 
length 30 s) + (area of triangle with side 
12 m s–1 and base 30 s)
= (8 × 30) + (1

2 × 12 × 30) = 420 m
e	 Displacement of car, s = ut + 12 at2  

= (20 × 30) + (1
2 × (–0.40) × 30 × 30) = 600 – 180  

= 420 m

 16	 a	 Calculate distance fallen for each time using 
s = ut + 12 at2, with u = 0.

Time / s 0 1.0 2.0 3.0 4.0

Displacement / m 0 4.9 19.6 44.1 78.5

b	 Graph is a parabola through the origin.
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c	 In 2.5 s, stone falls 30.6 m ≈ 31 m. Check using
s = ut + 12 at2 = 0 + (1

2 × 9.81 × 2.5 × 2.5) ≈ 31 m
d	 Time taken = 2.86 s ≈ 2.9 s

Check by rearranging , remembering that  
u = 0, so that time t = 2.86 s ≈ 2.9 s

 17	 a	 We know s and a, and that u = 0, and we need 
to find t.
Rearrange s = ut + 12 at2, remembering that u = 0,

so that time t =    2s
a  =     2 × 0.8

9.81  ≈ 0.40 s
b	 We know s and a, and that u = 0, and we need 

to find v.
Use v2 = u2 + 2as so that impact velocity
v �=    u2 + 2as =    (0)2 + 2 × 9.81 × 0.8 =    15.7 

�≈ 4.0 m s–1

 18	 a	 Using the method in the worked example, 
calculate the average speed of the steel ball 
=  s

t  = 2.10
0.67 = 3.134 m s–1

Then find the values of v and u:
final speed, v = 2 × 3.134 m s–1 = 6.268 m s–1

initial speed, u = 0.0 m s–1

Substitute these values into the equation for 
acceleration
a = v – u

t  = 6.268
0.67  = 9.355 m s–2 ≈ 9.4 m s–2

b	 Air resistance; delay in release of ball.
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 19	 a	  
 
 
 
 
 
 
 

h / m

0
0 0.5 1.0

0.5

1.0

1.5

2.0

1.5 2.0 2.5 3.0 t2 / s2

b	 Because s = 12 at2 the gradient is g2, the
acceleration of free fall, g ≈ 1.6 m s–2

c	 This object is not falling on the Earth, 
perhaps on the Moon.

 20		  Drop an object towards the sensor, but take 
care not to break it. A better method is to 
use a sloping ramp with a trolley; gradually 
increase the angle of slope. Deduce the value 
of the acceleration when the ramp is vertical.

 21	 a	 Fx = 17.3  N ≈ 17  N; Fy ≈ 10  N
b	 vx = 1.7 m s–1; vy = –4.7 m s–1

c	 ax = –5.2 m s–2; ay = –3.0 m s–2

d	 Fx = 77.3 N ≈ 77 N; Fy = 20.7 N ≈ 21 N

 22		  The stone’s displacement now is s = –25 m. 
Substituting in s = ut + 12 at2 gives 
–25 = 20t + 12 × (–9.81) × t2

So 4.9t2 – 20t – 25 = 0 or approximately 
5t2 – 20t – 25 = 0, which can be simplified to 
t2 – 4t – 5 = (t – 5)(t + 1) = 0.
So time taken to reach the foot of the cliff 
= 5 s (i.e. 1 s more). Accurate answer is 5.08  
≈ 5.1 s.
In solving the quadratic equation, you 
will have found a second solution, t = –1 s. 
Obviously, the stone could not take a negative 
time to reach the foot of the cliff. However, 
this solution does have a meaning: it tells us 
that, if the stone had been thrown upwards 
from the foot of the cliff at the correct speed, it 
would have been travelling upwards at 20 m s–1 
as it passed the top of the cliff at t = 0 s.

 23	 a	 Use v = u + at to calculate v, remembering 
that a = –9.81 m s–2

Velocity / m s–1 30 20.19 10.38 0.57 –9.24 –19.05

Time / s 0 1.0 2.0 3.0 4.0 5.0

b	  
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c	 3.1 s

 24	 a	 Horizontal speed remains constant after 
being thrown (ignoring air resistance), so 
horizontal velocity = s

t  = 12.0
4.0  = 3.0 m s–1

b	 For vertical distance, use s = ut + 12 at2, 
remembering that u = 0.
s �= ut + 12 at2 = 0 + 12 × (–9.81) × 4.0 × 4.0  

= –78.5 m, so height of cliff is 78.5 m.

 25	 a	 Vertical component of velocity = 8 × sin 40°  
= 5.14 ≈ 5.1 m s–1

b	 Vertical component of velocity = 0 m s–1

c	 Rearrange v = u + at, so that time t = v – u
a  

= 0 – 5.14
–9.81  = 0.524 ≈ 0.52 s

d	 Horizontal component of velocity = 8 × cos 40° 
= 6.13 ≈ 6.1 m s–1

e	 Assume horizontal component of velocity is 
constant and use
distance s �= ut + 12 at2 = 6.1 × 0.52 + 0  

= 3.21 ≈ 3.2 m

 26		  First calculate the time taken for the 
projectile to return to the ground.
Initial vertical velocity,  
uver = 40 × sin45° = 28.3 m s–1

We know the vertical distance travelled when 
the projectile hits the ground = 0 m.
So rearrange s = ut + 12 at2 to find t.
0 = 28.3t + 12 × 9.81t2 = 28.3t + 4.905t2

So t = 0 (when the projectile is launched)  
or t = 5.77 s (when it returns to the ground).
Assume horizontal velocity is constant,  
uhor = 40 × cos45° = 28.3 m s–1

So horizontal distance  
s = ut = 28.3 × 5.77 = 163 m ≈ 160 m
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Chapter 3
1		  Force, F = ma = 800 × 2.0 = 1600 N

2		  Acceleration, a = F
m = 200 000

5000  = 40 m s–2

3		  Acceleration, a = F
m = 200

(60 + 40) = 2.0 m s–2

Bike has zero initial velocity, so final velocity 
v = at = 2.0 × 5.0 = 10 m s–1

4		  Apples vary in mass; the acceleration due to 
gravity varies from place to place.

5	 a	 Pressure = F
A , F = ma, so pressure has base 

units kg m s–2

m2  = kg m–1 s–2

b	 Energy = force × distance so energy has base 
units kg m2 s–2

c	 Density = mass
volume, so density has base units 

kg m–3

6	 a	 Base units of pressure = kg m–1 s–2

Base units of ρgh �= (kg m–3) × ( m s–2) × ( m)  
= kg m–1 s–2

Since the base units are the same, the 
equation is homogeneous.

b	 Base unit of speed × time = (m s–1) × (s) = m
Base unit of at2 = (m s–2) × (s2) = m
Since both terms have base unit m, the 
base unit of distance, the equation is 
homogeneous.

7		  Sides are 27.5 cm and 21.8 cm (note: your 
coursebook may have a slightly different 
trimmed page size)
Area �= 27.5 × 21.8  

= 599.5 ≈ 600 cm2 to 3 sig. figs 
= 0.0600 m2 to 3 sig. figs

8	 a	 6 × 10–8 A
b	 5 × 108 W
c	 20 = 2 × 101 m

9		  Estimated masses are shown in brackets. 
Note that g has been rounded appropriately 
to 10 m s–2 in these estimates.

a	 (1.0 kg), so weight = mg = 1.0 × 10 = 10 N

b	 (1.0 kg), so weight = 10 N
c	 (60 kg), so weight = 600 N
d	 (0.025 kg), so weight = 0.25 N
e	 (40 000 kg), so weight = 400 000 N

 10		  The greater the mass of the car, the greater 
the force needed to slow it down with a 
given deceleration. For large cars, it is less 
demanding on the driver if the engine 
supplies some of the force needed to brake 
the car.

 11		  Due to inertia, the driver continues to move 
forward, although the car stops. A seat belt 
provides the force needed to overcome this 
inertia.

 12		  The large one; its weight is greater, so it 
reaches a greater speed before air resistance 
is sufficient to equal its weight.

 13	 a	 Lubricate the skis to reduce friction.
b	 Wear tight-fitting, smooth clothing to reduce 

air resistance.
c	 Develop powerful muscles to provide a large 

forward force.
d	 The steeper the slope the better, to maximise 

the effect of gravity.

 14	 a	 The lighter one: lower terminal velocity.
b	 Turn head-first and pull in his arms and legs 

to produce a streamlined shape and reduce 
air resistance.

 15	 a	 Upthrust
b	 Friction
c	 Weight (= force of gravity)
d	 Contact force (normal reaction)
e	 Tension
f	 Drag

 16	  
 
 
 

drag or air 
resistance 

contact force 

weight driving force between
tyres and road
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 17	  
 
 
 
 

air resistance

weight

air resistance weight

a	 Going up b	 Going down

 18	 a	 Force up on your foot and down on the foot 
that you tread on. Both forces are contact 
forces (normal reactions).

b	 Force backwards on the car and forwards 
on the wall. Both forces are contact forces 
(normal reactions).

c	 Backwards force on car and forwards force 
on ground. Both forces are frictional forces.

d	 Upwards force on ball and downwards force 
on your hand. Both forces are contact forces 
(normal reactions).
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Chapter 4
1	 a	  

 
 
 
 
 

force of parachute
= 2000 N  

weight of parachutist
= 1000 N  

direction
of

travel

b	 Force upwards �= 2000 – 1000  
= 1000 N upwards

c	 She will accelerate upwards (i.e. decelerate).

2	 a	 Yes, the ship is in equilibrium, because it 
travels at a constant velocity (not accelerating, 
so no resultant force acting on it).

b	 Upthrust is equal and opposite to weight of 
boat, as it is floating, so = 1000 kN

c	 Because the velocity is constant, we know 
that the drag is equal and opposite to the 
force of the engines, so = 50 kN

3	 a	 Vertical component of force  
= weight – upthrust  
= 2.5 – 0.5 = 2.0 N downwards
Horizontal component of force = 1.5 N
So resultant force is obtained from  
R2 = (2.0)2 + (1.5)2 = 6.25 
So R = 2.5 N
Angle = tan–11.5

2.0 = 37° to vertical.
b	 No, there is a net force acting upon it.

4		  With rope horizontal, the force pulling the 
box is F. With the rope at an angle θ to 
the horizontal, the horizontal component 
(= F cos θ) is less, since cos θ is less than 1.

5	 a	  
 
 
 
 
 
 
 

contact force

30°

500 N

60°

b	 Component of weight down slope  
= 500 sin 30° = 250 N

c	 The contact force of the slope is a normal 
reaction, so it is at 90° to the slope.

d	 Friction; up the slope.

6	 a	 Component of acceleration parallel to slope  
= 9.81 × sin 25° = 4.1 m s–2

b	 Net force down slope �= 40 × 9.81 × sin25°– 80  
= 85.8

acceleration = 85.8
40  = 2.1 m s–2

7	 a	 sum of clockwise 
moments   =  sum of anticlockwise 

moments
 

	 400 × 0.20 = F × 1.20
So force required is F = 400 × 0.20

1.20  = 67 N
b	 sum of clockwise 

moments   =  sum of anticlockwise 
moments

 

	 400 × 0.20 = F × 0.50
So force on legs of wheelbarrow is 
F = 400 × 0.20

0.50  = 160 N

8	 a	 Remember that weight = mg, and that the 
acceleration g is the same for all the masses; 
in our moments equation, g cancels out from 
both sides.
sum of clockwise 

moments   =  sum of anticlockwise 
moments

 

(100 × 30) + (10 × 45) = M × 20
so mass M = 3000 + 450

20  = 172.5 ≈ 173 g
b	 By this method, weighing could be carried 

out with a limited selection of relatively small 
masses.

9	 a, b	 F1 = 0 N m
F2 = 10 × 0.25 = 2.5 N m clockwise
F3 = 10 sin 30° × 0.50 = 2.5 N m clockwise
F4 = 5 × 1.0 = 5 N m anticlockwise

c	 Sum of clockwise moments = 2.5 + 2.5 = 5 N 
= sum of anticlockwise moments. So, yes, the 
moments are balanced.

 10		  Torque = force × radius, so
force = torque

radius  = 137
0.18 = 761 N ≈ 760 N
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Chapter 5
1	 a	 Yes, work done against friction.

b	 Yes, gravity does work in making you go 
faster.

c	 No, because the stone remains at a constant 
distance from the centre of the circle.

d	 No, because you do not move.

2		  Work done, W = F × s = mg × s  
= 70 × 9.81 × 2.5 = 1720 ≈ 1700 J

3	 a	 Work done, W = F × s = 10 × 250 = 2500 J
b	 2500 J (ignoring work done against air 

resistance)

4		  The crane does work to overcome the 
downward force of gravity, so all that matters 
is the vertical height through which the crane 
lifts the load.
Work done, W �= F × s = 500 × 40  

= 20 000 J = 20 kJ

5		  Work done by force up slope,  
W = F × s = 100 × 0.50 = 50 J
Work done by contact force = 0 J
Work done by force down slope,  
W = F × s = – (30 × 0.50) = –15 J  
(note the movement is in the opposite 
direction to the force)
Work done by gravity,  
W = F × s = –(100 sin 45° × 0.50) = –35 J

6		  Work done, W = p∆v = 1.0 × 105 × 0.002 = 200 J

7		  Change in gravitational potential energy,  
Ep = mgh = 52 × 9.81 × 2.5 = 1275 J ≈ 1300 J

8		  Change in gravitational potential energy,  
Ep �= mgh = 100 × 9.81 × 5500  

= 5400 kJ or 5.4 MJ

9	 a	 Elastic potential energy.
b	 Work is done on the magnets in pulling them 

apart. The potential energy transferred to the 
magnets has come from chemical energy in 
the student.

 10		  Kinetic energy of car, 
Ek = 12 mv2 = 12 × 500 × (15)2 = 56 kJ
Kinetic energy of motorcycle, 
Ek = 12 mv2 = 12 × 250 × (30)2 = 156 kJ
The motorcycle has more k.e.

 11		  Change in kinetic energy  
= k.e. before – k.e. after:
= 12 × 0.200 × (15.8)2 – 12 × 0.200 × (12.2)2 
= 25 – 15 = 10 J

 12		  Calculate the loss in g.p.e. as the sphere falls 
from its highest position.
Ep = mgh = 10.0 × 9.81 × 0.15 = 14.7 J
The gain in the sphere’s k.e. is 14.7 J. Using 
this to calculate the sphere’s speed,
Ek = 12 mv2 = 12 × 10.0 × v2 = 14.7 J

So v2 = 14.7
5.0  = 2.94 m2 s–2 and v = 1.7 m s–1, 

the same as for the sphere of mass 5.0 kg; the 
result is unchanged for any value of mass.

 13		  Reduction in gravitational potential energy,
∆Ep �= mg∆h = 80 000 × 9.81 × (10 000 – 1000)  

= 7.1 × 109 J
This energy becomes increased kinetic 
energy of air molecules – the air temperature 
rises.

 14		  We can say that the change in g.p.e. from the 
top of the jump to the point just before she 
enters the water is equal to the change in 
kinetic energy, so that: mgh = 12 mv2

This means that her speed just before the 
point where she enters the water is
v =   2gh =    2 × 9.81 × 10 =    196 = 14 m s–1

 15	 a	 Kinetic energy as stone reaches foot of cliff,
Ek = 12 mv2 = 12 × m × (38)2 = m × 722 J 
Gravitational potential energy change,  
Ep = mgh = m × 9.81 × 80 = m × 785 J
So proportion of g.p.e. converted to k.e.

k.e.
g.p.e. = 722

785 = 0.92 = 92%

b	 The rest of the stone’s initial energy is 
converted to heat (because work is done 
against air resistance).
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 16		  Rearranging power = work done
time taken gives

work done = power × time taken 
= 50 000 W × 60 s = 3.0 × 106 J (or 3.0 MJ)

 17		  Power = Wt  = 4 200 000
60  = 70 000 W (or 70 kW)

 18	 a	 Work done in one second,  
W = Fs = 700 × 40 = 28 000 J (28 kJ)

b	 28 kW

 19		  Work done against gravity,
W �= Fs = weight × height moved  

= mgh = 55 × 9.81 × 28 × 0.20 = 3020 J
So her useful power = Wt  = 3020

5.4  = 560 W
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Chapter 6
1	 a	 Ball B has greater mass.

b	 Trolley B has greater mass.

2	 a	 Momentum, p = mv = 0.50 × 20 = 10 kg m s–1

b	 Momentum, p �= mv = 25 000 × 20 
= 5.0 × 105 kg m s–1

c	 Momentum, p �= mv = 9.1 × 10–31 × 2.0 × 107  
= 1.82 × 10–23  
≈ 1.8 × 10–23 kg m s–1

3		  Momentum before  
= mA uA + mB uB = (0.50 × 2.0) + (0.50 × (–3.0))  
= 1.0 – 1.5 = –0.5 kg m s–1 (i.e. to the left)
Momentum after = mA vA + mB vB  
= (0.50 × (–2.0)) + (0.50 × 1.0) = –1.0 + 0.5  
= –0.5 kg m s–1 (i.e. to the left)

4	  
 
 
 

Type of collision perfectly elastic inelastic

Momentum conserved conserved

Kinetic energy conserved not conserved

Total energy conserved conserved

5	 a	 Before collision:
momentum of ball A,  
pA = mA uA = 4.0 × 2.5 = +10 kg m s–1

momentum of ball B,  
pB = mB uB = 4.0 × (–1.5) = –6 kg m s–1

b	 After collision:
momentum of ball A,  
pA = mA uA = 4.0 × (–1.5) = –6 kg m s–1

momentum of ball B,  
pB = mB uB = 4.0 × 2.5 = +10 kg m s–1

c	 Total momentum before collision  
= pA + pB = +4 kg m s–1

Total momentum after collision  
= pA + pB = +4 kg m s–1

So momentum is conserved.
d	 Kinetic energy before collision

= 12 mA u
2
A + 12 mB u

2
B 

= (1
2 × 4.0 × (2.5)2) + (1

2 × 4.0 × (1.5)2) 
= 12.5 + 4.5 = 17 J

Kinetic energy after collision
= 12 mA v

2
A + 12 mB v

2
B 

= (1
2 × 4.0 × (1.5)2) + (1

2 × 4.0 × (2.5)2) 
= 4.5 + 12.5 = 17 J
So k.e. before = k.e. after.

e	 Relative speed before = 2.5 – (–1.5) = 4.0 m s–1

Relative speed after = 2.5 – (–1.5) = 4.0 m s–1

6	 a	  
 
 
 
 
 

A BBA

2.0 m s–1 1.2 m s–1

1.0 kg

u = 0 v = ?

before a�er

2.0 kg 1.0 kg 2.0 kg

b	 Call 1.0 kg trolley A.
Call 2.0 kg trolley B.
Conservation of momentum means:
momentum before collision  
= momentum after collision
So mA uA + mB uB = mA vA + mB vB

Rearrange to find speed of first trolley after 
collision, vA.
mA uA + mB uB – mB vB = mA vA

vA	= mA uA + mB uB – mB vB

mA
 

	 = (1.0 × 2.0) + (2.0 × 0.0) – (2.0 × 1.2)
1.0

 

 	 = –0.40 m s–1

The minus sign indicates that the first trolley 
reverses direction.

7	 a	 If you consider the star to be stationary before 
exploding, the star has zero momentum. After 
the explosion, matter flies off in all directions 
– equal amounts of momentum are created 
in all directions, so their (vector) sum is zero. 
Momentum is conserved.

b	 You give downward momentum to the Earth; 
as you slow down, so does the Earth; as you 
start to fall back down, the Earth starts to 
‘fall’ back up towards you. At all times, your 
momentum is equal and opposite to that of 
the Earth, so combined momentum is zero, 
i.e. conserved.
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8		  If u = initial velocity and v = final velocity, 
change in momentum of ball
∆p �= mv – mu = m(v – u) = 0.40 × (1.5 – (–1.2)) 

= 1.08 kg m s–1

Change in k.e.
∆Ek	= 12 mv2 – 12 mu2 = 12 m(v2 – u2) 

	 = 12 × 0.40 × ((1.5)2 – (1.2)2) = –0.162 J
The wall has gained momentum. The ball 
has lost kinetic energy, which has become 
thermal energy (heat) of the ball and air.

9		  Consider the movement of the moving 
ball before the collision. If we take its 
direction of movement as the x-axis, and the 
perpendicular to its direction of movement 
as the y-axis, then compare before and after 
the collision.
Before collision: component of momentum 
along x-axis only; no component along y-axis.
After collision: the second ball has a 
component of momentum along the y-axis 
(as it moves away at an angle to the x-axis). 
Therefore, to conserve momentum along the 
y-axis, after the collision the first ball must 
also have an equal and opposite component 
of momentum along the y-axis. So the first 
ball must change direction.

u

Before A�er

v1

v2

 10		   
 
 
 
 
 
 
 

4.0 kg ms–1 3.0 kg ms–1

5.0 kg ms–1

36.9° 53.1°

 11		  Consider momentum changes in the 
y-direction.
Before collision:
momentum = 0
After collision:
component of momentum of particle 1 
= 2.40 sin 60° = 2.08 kg m s–1 upwards
component of momentum of particle 2 
= 2.40 sin 60° = 2.08 kg m s–1 downwards
These components are equal and opposite 
and hence their sum is zero.
Consider momentum changes in the 
x-direction.
Before collision:
momentum = 2.40 kg m s–1 to the right
After collision:
component of momentum of particle 1 
= 2.40 cos 60° = 1.20 kg m s–1 to the right
component of momentum of particle 2 
= 2.40 cos 60° = 1.20 kg m s–1 to the right
Total momentum  
= 1.20 + 1.20 = 2.40 kg m s–1 to the right
Hence momentum is conserved in both the 
x- and y-directions, so total momentum is 
conserved.

 12	 a	 Component of velocity of first ball in 
x-direction = 1.00 m s–1

Component of velocity of first ball in 
y-direction = 0

b	 Assume that each ball has mass m and that 
the second ball has velocity V at an angle θ 
to the x-direction (with components Vx in the 
x-direction and Vy in the y-direction)
Consider momentum conservation in the 
x-direction:
m × 1.00 = m × 0.80 cos 20° + m × Vx

Cancel m from all terms, so  
Vx = 1.00 – 0.80 cos 20° = 0.25 m s–1

Consider momentum conservation in the 
y-direction (taking ‘upwards’ as positive):
0 = –m × 0.80 sin 20° + m × Vy

So Vy = 0.80 sin 20° = 0.27 m s–1

c	 Magnitude of velocity of second ball, V, is 
given by Pythagoras’ theorem:
V2	 = (Vx)

2 + (Vy)
2 

so V =    [(0.25)2 + (0.27)2] = 0.37 m s–1



Answers to self-assessment questionsCambridge International AS Level Physics

Cambridge International AS and A Level Physics © Cambridge University Press 2014

Direction of velocity of second ball, angle θ to 
the x-direction
= tan–1(Vy

VX
) = tan–1(0.27

0.25) = 47°

 13	 a	 Change in momentum
∆p �= mv – mu = m(v – u) = 1000 × (24 – 10) 

= 1.4 × 104 kg m s–1

b	 Force F = 
Δp
Δt  = 1.4 × 104

15  = 933 N ≈ 930 N

 14	 a	 Rearrange F = 
Δp
Δt  to give change in 

momentum,
∆p = F∆t = 240 × 0.25 = 60 kg m s–1 (or 60 N s)

b	 In the direction of the kicking force.

 15		  Force applied to water, 

F	= 
Δp
Δt  = 

m(v – u)
Δt  

	 = 
m
Δt (v – u) 

	 = 10 × (0 – 5.0) = –50 N 
(negative because force applied to water is 
against the direction of water flow)
So force of water on wall = 50 N
If the water bounces, a greater force is 
applied because of a greater change in 
momentum.

 16		  Force exerted by golf club, 

F	= 
Δp
Δt  = 

m(v – u)
Δt  = 0.046 × (50–0)

0.0013  

	 = 1.77 × 103 N ≈ 1.8 kN
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Chapter 7
1		  Volume  of cube = 3.0 × 3.0 × 3.0 = 27 cm3

Density = mass
volume = 240

27  = 8.89 g cm–3 = 8890 kg m–3 

2		  Volume of sphere 
V = 43 πr3 = 43 × π × (0.15)3 = 0.0141 m3

Rearrange density = mass
volume so

mass �= density × volume  
= 7850 × 0.0141 = 111 kg

3		  Pressure, p = F
A  = 80

4 × 0.0010 = 20 kPa

4		  Estimate weight = 600 N,  
area of feet = 500 cm2 = 0.05 m2

So pressure p = F
A  = 600

0.05  = 12 kPa.

5		  Pressure at depth 0.8 m is  
p = ρgh1 = 1000 × 9.81 × 0.8 = 7.85 × 103 Pa
Pressure at depth 2.4 m is  
p = ρgh2 = 1000 × 9.81 × 2.4 = 2.35 × 104 Pa
Maximum total pressure, p = patm + pwater 
= 1.01 × 105 + 2.35 × 104 = 1.25 × 105 Pa

6		  Rearrange p = ρgh to give height 

h = 
p

ρg  = 1.01 × 105

1.29 × 9.81  = 7980 m ≈ 8000 m. 
This figure is too small because it assumes 
the density of the air is constant. In fact, 
density decreases with height.

7	 a	 Spring D has the greatest value of force 
constant (the graph has the steepest 
gradient).

b	 Spring A is the least stiff (it extends the most 
for each unit of force applied).

c	 Spring C does not obey Hooke’s law – there is 
no section of the graph that forms a straight 
line.

8		  Metals from stiffest to least stiff:
Metal Young modulus / GPa

Most stiff steel 210

iron (wrought) 200

copper 130

brass 90–110

aluminium 70

tin 50

Least stiff lead 18

9		  Stiffest non-metal is glass (Young modulus 
= 70–80 GPa).

 10		  For material A, Young modulus 

EA = stress
strain  = σ

ε  = 15 × 106

0.001  = 1.5 × 1010 Pa = 1.5 GPa
For material B, Young modulus, 

EB = stress
strain  = σ

ε  = 12 × 106

0.0024  = 5.0 × 109 Pa = 5.0 GPa

 11		  Stress = force
cross-sectional area  

	 = 50
0.5 × 10–6  = 1.0 × 108 Pa

(remember that 0.5 mm2 = 0.5 × 10–6 m)
Strain = extension

original length = 0.1
200.0  

= 5.0 × 10–4 (0.05%)

Young modulus	= stress
strain  = 1.0 × 108

5.0 × 10–4  

	 = 2.0 × 1011 Pa

 12		  Young modulus, E = stress
strain

Rearrange so strain = stress
Young modulus

Then insert formulae for stress and strain 
x
L  = F

A × E 
and cross-sectional area, A = πd2

4
This gives extension	= 4FL

πd2 × E 

		  = 4 × 10 × 1.00
π × (0.001)2 × 130 × 109

		  = 9.796 × 10–5 m 
		  ≈ 9.8 × 10–5 m

 13		  Stress	= force
cross-sectional area  = 4F

πd2 

	 = 4 × 1.00
π × (0.0004)2  = 8.0 × 106 Pa

Strain	= extension
original length = 0.001

0.800  
	 = 1.25 × 10–3 (at most)
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Young modulus = stress
strain  = 8.0 × 106

1.25 × 10–3 
= 6.4 × 109 Pa (but could be more, because 
extension may be less than 1 mm).

 14	 a	 Young modulus =  stress
strain  = 150 × 106

0.003  = 50 GPa, 
breaking stress = 150 MPa

b	 Young modulus = stress
strain  = 100 × 106

0.001  = 100 GPa, 
breaking stress = 130 MPa
Note that the Young modulus is only found 
for the straight portion of the stress–strain 
graph.

c	 Young modulus = stress
strain  = 100 × 106

0.004  = 25 GPa, 
breaking stress = 100 MPa

 15		  Elastic potential energy, 
E = 12 Fx = 12  × 12 × 0.18 = 1.08 J ≈ 1.1 J
The rubber band is assumed to obey Hooke’s 
law; hence the answer is an estimate.

 16		  Elastic potential energy, E = 12 Fx = 12 kx2 
= 12  × 4800 × (0.0020)2 = 9.6 × 10–3 J

 17	 a	 A has greater stiffness (less extension per unit 
force).

b	 A requires greater force to break (line 
continues to higher force value).

c	 B requires greater amount of work done to 
break (larger area under graph).
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Chapter 8
1	 a	 Diagram i shows positive charges repelling.

b	 Diagram iii shows negative charges repelling.
c	 Diagram ii shows opposite charges 

attracting.

2	  
 

3		  The field strength is greatest at the top 
(pointed) part of the building. The electric 
field lines are closest together there.

4	  
 
 
 
 
 
 
 
 
 

0 V+6.0 kV+2.0 kV0 V

5		  Electric field strength 
E = F

Q = 150
20 × 10–3 = 7500 N C–1 downwards

6		  Electric field strength 
E = V

d  = 1000
0.40  = 2500 V m–1 = 2500 N C–1

7		  Electric field strength 
E = F

Q = 8 × 10–16

1.6 × 10–19 = 5000 V m–1 or N C–1

8	 a	 Rearrange E = V
d  so that voltage to cause 

sparks is given by
V = Ed = 40 000 × 4 = 160 000 V

b	 Rearrange E = V
d  so that minimum distance is 

given by
d = V

E  = 325 V
40 000 V cm–1  = 0.008 cm = 0.08 mm

c	 Rearrange E = V
d  so that voltage to cause 

lightning is given by
V = Ed = 40 000 × 10 000 = 400 MV
(Remember that the field strength was given 
in volts per centimetre.)

9	 a	  
 
 
 
 
 
 

C D B

0 V +2.0 kV 

earth

A

b	 Potential difference = 2.0 kV
c	 Electric field strength between parallel plates 

is uniform, so has the same value at both 
points.
E = V

d  = 2.0 × 103

0.25  = 8.0 kV m–1

d	 F = QE = +5 × 10–6 × 8.0 × 103 = 0.04 N to the left

 10		  E = V
d  = 5.0 × 103

0.10  = 5.0 × 104 V m–1 or N C–1

F = QE = +2 × 10–6 × 5.0 × 104 = 0.10 N

 11		  Force F	 = QE = –1.6 × 10–19 × 5.0 × 106 
	 = –8.0 × 10–13 N
Rearrange F = ma to give magnitude of 
acceleration: 

a = F
m = 8.0 × 10–13

9.11 × 10–31 = 8.8 × 1017 m s–2

 12	 a	  
 
 
 

(smaller mass)

e+, e–

e+

3+

2+ 1+

1+

e–
+

–

+

–

b	  
 
 
 

(smallest mass)

e+, e–

e+

3+

2+

1+

e–
+

–

+

–

Ions with a greater mass will show smaller 
deflection.
Ions with greater charge will have greater 
deflection.
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Chapter 9
1		  Towards the right.

2	 a, b, c  
 
 
 
 
 
 
	

A B
a

c

b

– +

+
–

c c

3		  Charge ΔQ = IΔt = 0.4 × 15 = 6.0 C

4		  Rearrange ΔQ = IΔt so I = ΔQ
Δt  = 150

30  = 5 A

5		  Rearrange ΔQ = IΔt so I = ΔQ
Δt  = 50

20 = 2.5 A

6	 a	 Rearrange ΔQ = IΔt and use 50 A per hour as 
the charge available, so 
Δt = ΔQ

I  = 50
200 = 0.25 hours = 15 minutes

b	 ΔQ = IΔt; for a current of 200 A, 
ΔQ = 200 × 15 × 60 = 180 000 C

7		  Number of protons in 1 C 
= 1

1.6 × 10–19 = 6.2 × 1018 protons

8		  The smallest possible unit of electric charge 
is the elementary charge, 1.6 × 10–19 C. So the 
only possible electrical charges are whole 
multiples of this elementary charge. The only 
value from the list that is a whole multiple is 
8.0 × 10–19 C.

9		  Current I = nAve 
= 5.9 × 1028 × 2.0 × 10–6 × 0.1 × 10–3 × 1.6 × 10–19 
= 1.9 A

 10		  Cross-sectional area of copper wire 

A = πr 2 = πd2 
4  = π × (1.0 × 10–3)2 

4  = 0.79 × 10–6 m2

Rearrange I = nAve to give drift velocity 

v	= I
nAe = 5.0

8.5 × 1028 × 0.79 × 10–6 × 1.6 × 10–19 

	 = 0.47 × 10–3 m s–1 = 0.47 mm s–1

 11		  Current I = nAve, but remember that, in a 
series circuit, current is the same all the 
way round the circuit. Also, A and e are the 
same for both lengths of wire. This means 
that n1Av1e = n2Av2e, where the 1 denotes the 
copper wire and the 2 denotes the silver wire. 

So that means V2

V1
 = n1

n2
 = 8.5 × 1028

5.9 × 1028 = 1.4. 

This means that the drift velocity in the 
silver wire is 1.4 times the drift velocity in the 
copper wire.

 12		  Current I = VR = 12
36 = 0.33 A

 13		  A 60 W lamp has higher resistance. It allows 
less current through for the same potential 
difference (power is current × potential 
difference, so, applying Ohm’s law, power is 
inversely proportional to resistance).

 14	 a	 Potential difference, V = IR = 1.0 × 50 = 50 V
b	 Potential difference, V = IR = 2.0 × 50 = 100 V

 15		  Resistance R = VI  = 230
0.40 = 580 Ω (to 2 sig. figs)

 16		  Resistance R = VI  = 6.0
2.4 = 2.5 Ω

 17		  Power P = VI, so rearrange to give current: 
I = PV = 60 

230  = 0.26 A

 18		  Power P = VI = 25 × 103 × 40 × 103 = 1.0 × 109 W 
(1000 MW or 1 GW)

 19	 a	 Power P = VI so rearrange to give current: 
I = PV = 104 

230  = 43 A

b	 Fuse needs to be rated above, but close to, 
full normal current draw, so a fuse of 45 to 
50 A would be appropriate.

 20		  Power P = V 2 
R  = (3.0)2

(20 × 103)
 = 0.45 mW

 21	 a	 Current I = PV = 15 
230  = 0.065 A

b	 Resistance R = VI  = 230 
0.065 = 3500 Ω

 22		  Rearrange power P = I2R to give resistance: 
R = P

I2  = 100
(0.43)2 = 540 Ω
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 23		  Energy transferred 
W �= IVΔt = 10 × 12 × (5.0 × 60 × 60)  

= 2200 000 J, or 2.2 MJ

 24	 a	 Charge through lamp  
ΔQ = IΔt = 10 × 20 = 200 C

b	 Per coulomb of charge, 
energy = W

ΔQ = 400
200 = 2.0 J C–1

c	 Rearrange energy transferred, W = IVΔt, 
to give potential difference: V	= ΔW

IΔt  

		  = 400
(10 × 20) = 2.0 V 

or use potential difference	= energy
charge  

		  = 400
200 = 2.0 V
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Chapter 10
1		  Kirchhoff’s first law means that  

I + 3.0 A = 7.5 A, so I = 7.5 – 3.0 = 4.5 A

2		  Current flowing into P equals current flowing 
out of P, so if current in wire X is Ix, then
Ix + 3.0 A + 2.5 A = 7.0 A
So Ix = 7.0 – 3.0 – 2.5 = 1.5 A, towards P

3		  Current flowing into junction 
ΣIin = 3.0 + 2.5 + 1.0 = 6.5 A
Current flowing out of junction 
ΣIout = 4.0 + 0.5 + 2.0 = 6.5 A
Yes, Kirchhoff’s law is satisfied.

4		  Ix = 3.0 + 2.0 – 7.0 = –2.0 A, which means the 
current is towards P.

5		  Sum of e.m.f.s around any loop in a circuit is 
equal to the sum of the p.d.s around the loop.
So e.m.f. of power supply = Σp.d.s across 
resistors, meaning p.d. across resistor R 
= e.m.f. of 

power supply
 – p.d. across 

20 Ω resistor
= 10 – (0.1 × 20) = 8.0 V
V = IR so resistance R = VI  = 8.0

0.1 = 80 Ω

6	 a	 Choose the loop containing the 5 V cell at the 
top, the 10 Ω resistor with current I, and the 
central 5 V cell, as the only current involved is I.

b	 Sum of e.m.f.s of cells in loop = 5.0 + 5.0 = 10 V 
= p.d. across resistor.
V = IR so I = VR = 10

10 = 1.0 A

7		  In loop, sum of p.d.f.s = 30 – 10 = 20 V, which 
by Kirchhoff’s second law must equal the 
sum of the p.d.s across the resistors, given by 
V = IR.
Sum of p.d.s across resistors  
= (0.5 × R) + (0.5 × 10) + (0.2 × 10) + (0.2 × 20)
So 20 = (0.5 × R) + 11, giving 
R = (20 – 11)

0.5  = 18 Ω

8		  In series, the 1 C charge passes through both 
batteries and gains or loses 6 J in each. If the 
batteries are connected so that both of them 

move the charge in the same direction, the 
total e.m.f. = 6 + 6 = 12 V.
If the batteries are connected back to front, 
the charge gains energy in one cell but loses 
it in the other, so total e.m.f. = 0 V.
In parallel, half the charge flows through one 
battery and half through the other, so the 
total energy gained is 6 J, meaning the total 
e.m.f. = 6 V.

9		  Consider the circuit loop at the top, 
containing the 10 V cell and a 20 Ω resistor. 
Use Kirchhoff’s second law and V = IR to give
10 V = I1 × 20 Ω, so current through A1 is 
I1 = 10

20 = 0.50 A
Consider the circuit loop at the bottom, 
containing the 5 V cell and a 20 Ω resistor.
Use Kirchhoff’s second law and V = IR to give
5 V = I1 × 20 Ω, so current through A3 is 
I3 = 5

20 = 0.25 A
Now use Kirchhoff’s first law at the circuit 
junction to the right of ammeter A2 to give
I1 = I2 + I3

So current through A2 is  
I2 = I1 – I3 = 0.50 – 0.25 A

 10		  Total resistance = 5 + 5 + 10 = 20 Ω

 11		  Use Kirchhoff’s second law to give  
e.m.f. = V1 + V2

So V2 = e.m.f. – V1 = 2.0 – 1.2 = 0.8 V

 12	 a	 All five in series and pointing the same way, so  
e.m.f. = 1.5 + 1.5 + 1.5 + 1.5 + 1.5 = 7.5 V

b	 Five in series, with two facing in the opposite 
direction, so  
e.m.f. = 1.5 + 1.5 + 1.5 – 1.5 – 1.5 = 1.5 V
or all five in parallel

c	 Five in series, with one facing in the opposite 
direction, so  
e.m.f. = 1.5 + 1.5 + 1.5 + 1.5 – 1.5 = 4.5 V
or two in parallel to give e.m.f. of 1.5 V, 
connected in series to two more in parallel (also 
giving e.m.f. of 1.5 V), then connected in series 
to the single remaining cell with e.m.f. of 1.5 V.
Sum of e.m.f.s = 1.5 + 1.5 + 1.5 = 4.5 V
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 13		  1
RTotal

 = 1
R1

 + 1
R2

 + 1
R3

 + 1
R4

 = 4
10

So RTotal = 10
4  = 2.5 Ω

 14	 a	 R = R1 + R2 = 100 + 200 = 300 Ω
b	 1

R = 1
R1

 + 1
R2

 = 1
100 +  1

200 = 3
200, so R = 200

3  = 67 Ω

c	 Resistance of the series combination is given 
in part a, 300 Ω
So for full combination,
1
R = 1

R1
 + 1

R2
 = 1

300 +  1
200 = 5

600
So R = 600

5  = 120 Ω

 15	 a	 Rearrange V = IR to give I = VR = 12
500 = 0.024 A

b	 Total resistance  
R = R1 + R2 = 500 + 1000 = 1500 Ω
Rearrange V = IR to give I = VR = 12

1500 = 0.008 A
c	 Total resistance R is given by

1
R = 1

R1
 + 1

R2
 = 1

500 +  1
1000 = 3

1000 

So R = 1000
3  = 333 Ω

Rearrange V = IR to give I = VR = 12 × 3
1000  = 0.036 A

 16		  Total resistances possible are: 40 Ω, 50 Ω, 
67 Ω, 75 Ω, 100 Ω (two ways), 167 Ω, 200 Ω 
(two ways), 250 Ω, 300 Ω and 400 Ω. In detail:
i	 One 100 Ω on its own
ii	 One 200 Ω on its own
iii	Both 100 Ω in series, R = 200 Ω
iv	100 Ω + 200 Ω in series, R = 300 Ω
v	 All in series, R = 200 + 100 + 100 = 400 Ω
vi	Both 100 Ω in parallel, 

1
R = 1

R1
 + 1

R2
 = 1

100 +  1
100 = 2

100 so R = 50 Ω
vii	 100 Ω and 200 Ω in parallel, 

1
R = 1

R1
 + 1

R2
 = 1

100 +  1
200 = 3

200 so R = 67 Ω
viii	100 Ω and 200 Ω in parallel, plus 100 Ω in 

series, R = 67 + 100 = 167 Ω
ix	100 Ω and 100 Ω in parallel, plus 200 Ω in 

series, R = 50 + 200 = 250 Ω
x	 100 Ω and 100 Ω in series, connected in 

parallel with 200 Ω, so 
1
R = 1

R1
 + 1

R2
 = 1

200 +  1
200 = 2

200 so R = 100 Ω
xi	100 Ω and 200 Ω in series, connected in 

parallel with 100 Ω, so 
1
R = 1

R1
 + 1

R2
 = 1

300 +  1
100 = 4

300 so R = 75 Ω
xii	 All in parallel, so 1R = 1

R1
 + 1

R2
 + 1

R3
 

= 1
100 +  1

100 +  1
200 = 5

200 so R = 40 Ω

 17		  10 Ω (remember, for resistors connected in 
parallel, their combined resistance is smaller 
than any of the individual resistances).

 18		  The p.d. across each resistor is the same as 
the e.m.f. of the battery. Rearrange V = IR to 
give current, I = VR = 10

20 = 0.50 A

 19		  Combined resistance of all resistors, R, is 
given by 1R = 1

R1
 + 1

R2
 + 1

R3
 = 1

20 +  1
40 +  1

50 = 19
200 so 

R = 200
19  = 10.5 Ω

Rearrange V = IR to give current 

I = VR = 10
10.5 = 0.95 A

But an easier way to approach this is to calculate 
the current through each resistor using 
I = VR, given that the p.d. across each resistor 
is the same and equals the e.m.f. of the battery.
Sum of currents = 10

20 + 10
40 + 10

50 = 190
200 = 0.95 A

 20		  1
R = 1

R1
 + 1

R2
 so 1

10 = 1
20 + 1

R2
 

So 1
R2

 = 1
10 –  1

20 = 1
20, hence second resistor 

R2 = 20 Ω

 21		  Two in parallel, connected in series with a 
further two.
For the parallel combination, 
1

RP
 = 1

100 +  1
100 = 1

50 so RP = 50 Ω
Thus the total resistance of the series 
combination is RS = 100 + 100 + 50 = 250 Ω

 22		  Resistance of parallel combination given by 
1

RP
 = 1

300 +  1
60 = 1

50 so RP = 50 Ω
So total resistance of circuit  
R = 50 + 50 = 100 Ω
Rearrange V = IR to give current, I = VR 
Current at A, I = 600

100 = 6.0 A
Current at B is the same as at A, 6.0 A
The p.d. across parallel combination  
= e.m.f. – p.d. across 50 Ω resistor  
= 600 – (6.0 × 50) = 300 V
Current at C is VR = 300

300 = 1.0 A

Current at D is 300
60  = 5.0 A

Current at E = current at A = 6.0 A

 23	 a	 Current = VR = 10
100 = 0.10 A

b	 Current = VR = 10
100 + 5.0  = 0.095 A
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Chapter 11
1	 a	  

 
 
 
 
 
 

V / V10 1286 420

0.25

0.20

0.15

0.10

0.05

0.00

I / A

b	 All except point at 7.9; this point is 
anomalous and can be ignored.

c	 48 Ω
d	 Yes

2		  At 2.0 V, R =  V
I  = 2.0

0.010 = 200 Ω; 

at 8.0 V, R =  8.0
0.060 = 133 Ω. 

No, it does not obey Ohm’s law.

3	 a	 At θ1, R =  V
I  = 30

2.4 = 12.5 Ω; at θ2, R = 15
1.5 = 10 Ω.

b	 θ1 is the higher temperature.

4	 a	 Filament lamp is A, steel wire is B.
b	 8.0 V
c	 Resistance, R =  V

I  = 8.0
3.4 = 2.4 Ω

5	 a	 i	 3.1 kΩ
ii	 1.5 kΩ

b	 i	 5 °C
ii	 36 °C

6		  The lamp will become brighter because the 
resistance of the thermistor decreases. This 
reduces the total resistance in the circuit and 
therefore the current increases.

7	 a	 A thermistor’s resistance changes more per 
degree of temperature change than a metal 
wire. This makes the thermometer more 
sensitive.

b	 A metal wire will work over a much wider 
range than a thermistor. Or, the metal's 
resistance increases almost linearly, making 
the thermometer more linear.

8	 a	 Rearrange resistance, R = ρL
A  to give length 

L = RA
ρ  , where cross-sectional area 

A = 14 πd2 = 14 × π × (0.5 × 10–3)2 = 1.96 × 10–7m2

So length for 1.0 Ω resistance 

= RA
ρ  = 1.0 × 0.2 × 10–6

44.0 × 10–8  = 0.45 m

b	 Length for 5.0 Ω resistance 

= RA
ρ  = 5.0 × 0.2 × 10–6

44.0 × 10–8  = 2.2 m

c	 Length for 10 Ω resistance 

= RA
ρ  = 10 × 0.2 × 10–6

44.0 × 10–8  = 4.5 m

9		  Volume of copper, V = 1.0 cm3  

= length L × cross-sectional area A
So length L = VA
Thus resistance 

R = ρL
A2  = 1.69 × 10–8 × 1.0 × 10–6

(4.0 × 10–7)2  = 0.11 Ω

 10	 a	 Resistance, R = ρL
A . We know the first length, 

L1 = 1.0 m, as well as the resistivity of copper 
and the resistance R1. So the cross-sectional 
area of the wire is A = ρL1

R1
. 

The resistance of the 5.0 m length of wire is
R2 = ρL2

A  = L2R1
L1

 = 5.0 × 0.50
1.0  = 2.5 Ω

b	 Area = 14 πd2, so halving the diameter reduces 
the area by a factor of 4. Resistance is inversely 
proportional to area. Therefore halving the 
diameter increases the resistance by a factor 
of 4. So resistance R = 0.50 × 4 = 2.0 Ω.

 11		  40 Ω. The resistance increases by a factor of 4 
(because cross-sectional area has halved and 
length has doubled).
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Chapter 12
1	  

 
 
 
 
 

E = 5.0 V

r = 20 Ω

R = 80 Ω

current = 0.50 A

Rearrange e.m.f. E = I(R + r) to give current 
I = E

R + r  = 5.0
8.0 + 2.0 = 0.50 A

2	 a	 For circuit (i), rearrange e.m.f. E = I(R + r) to 
give current 

I = E
R + r  = 3.0

10 + 10 + 4.0 = 0.125 ≈ 0.13 A
For circuit (ii), external resistance R is given 
by 1R = 1

R1
 + 1

R2
 + 1

R3
 = 1

10 +  1
10, so R = 5.0 Ω. 

So current I = E
R + r  = 3.0

5.0 + 4.0 = 0.33 A.

b	 For circuit (i),  
lost volts = Ir = 0.125 × 4.0 = 0.5 V 
terminal p.d. �= e.m.f. – lost volts  

= 3.0 – 0.5 = 2.5 V
For circuit (ii), 
lost volts = Ir = 0.33 × 4.0 = 1.33 V
terminal p.d. �= e.m.f. – lost volts  

= 3.0 – 1.33 = 1.67 V

3		  Rearrange e.m.f., E = I(R + r) to give current, 

I = E
R + r  = 1.5 × 4

2.0 + (0.1 × 4) = 2.5 A

4		  E = 3.0 V. 
P.d. across 10 Ω resistor = 2.8 V so current in 
circuit with resistor connected 
= VR = 2.8

10  = 0.28 A
Rearrange e.m.f. E = IR + Ir to give internal 
resistance of battery: 
r = E – IR

I  = 3.0 – 2.8
0.28  = 0.71 Ω

5		   
 
 
 
 
 
 
 
 0

0.5

1.0

1.5

0.20.0 0.4 0.6 0.8

V

I
1.0

E = 1.5 V, r = 0.5 Ω

6	 a	 Terminal p.d. = E – Ir = 12 – (100 × 0.04) = 8 V
b	 Power, P = VI, and p.d. V = IR means current, 

I = VR, so P = V
2

R  
Rearrange to give resistance, 

R = V
2

R  = (12)2

36  = 4.0 Ω

c	 Power, P = V
2

R  = (8)2

4  = 16 W

7		  When resistor is set to 0 Ω, Vout = 0 V
When resistor is set to 40 Ω, 
Vout = R2

(R1 + R2) × Vin = 40
(10 + 40) × 10 = 8 V

8	 a	 For a 1 cm length of wire, 
potential difference = 4.0

100 = 0.04 V

Length needed for 1.0 V = 1.0
0.04 = 25 cm

b	 A length of 37.0 cm has a p.d. across it of 
37.0 × 0.04 = 1.48 V. The driver cell will have 
internal resistance and it is supplying current 
to the potentiometer wire. Therefore the 
p.d. across its terminals and the wire will be 
slightly less than the e.m.f. (4.0 V) of the cell.

c	 If a balance length of 31.2 cm is required by 
a cell of e.m.f. 1.230 V, then p.d. supplied by 
unknown e.m.f. cell �= 1.230 × 37.0

31.2  
= 1.459 V ≈ 1.46 V
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Chapter 13
1	 a	 Wavelength 15 cm, amplitude 4.0 cm

b	 Wavelength 20 cm, amplitude 2.0 cm

2		  One complete wave occupies 2.5 scale 
divisions. One scale division represents 
0.005 s, so the period of the wave 
T = 2.5 × 0.005 = 0.0125 s. So the frequency  
f = 1

T  = 1
0.0125 = 80 Hz

3		   
 
 
 
 
 Di
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B

4	 a	 Intensity = power
cross-sectional area = P

A  
Surface area of a sphere = 4πr2

So the intensity at 1.0 m from the lamp 

= P
4πr2  = 100

4 × π × (1.0)2 

= 7.96 W m–2 ≈ 8.0 W m–2

b	 Intensity at 2.0 m from the lamp 

= P
4πr2  = 100

4 × π × (2.0)2  

= 1.99 W m–2 ≈ 2.0 W m–2

5	 a	 Intensity is proportional to (amplitude)2, so 
doubling amplitude multiplies intensity by 4, 
to 1600 W m–2.

b	 Intensity is reduced by a factor of 4, so the 
amplitude decreases by a factor of 2, to 
2.5 cm.

6		  Rearrange speed of wave, v = fλ, to give 
frequency f = v

λ  = 5060
0.25  = 20 240 Hz ≈ 20 kHz

7		  Speed v = fλ = 64 × 1.40 = 89.6 m s–1 ≈ 90 m s–1

8	 a	 Wavelength λ = 20/4 = 5.0 cm
b	 Frequency f = 30 Hz
c	 Speed v = fλ = 30 × 0.050 = 1.5 m s–1

9	  
 
 
 
 
 
 
 
 
 
 

Station Wavelength / m Frequency / MHz
Radio A 
(FM)

= v
f  = 3.0 × 108

97.6 × 106 

= 3.07

97.6

Radio B 
(FM)

= v
f  = 3.0 × 108

94.6 × 106  

= 3.17

94.6

Radio B 
(LW)

1515 = v
λ  = 3.0 × 108

1515 Hz  = 0.198 
(note: MHz)

Radio C 
(MW)

693 = v
λ  = 3.0 × 108

693 Hz  = 0.433

 10	 a	 Observed wavelength  
λobs = (v + vs)

f  = (330 – 80)
120  = 2.1 m

fobs = c
λobs

 = 330
2.1  = 160 Hz

b	 fobs = fS × v
(v + vs)

 = 120 × 330
(330 + 80) = 97 Hz

 11	 a	 In vacuum, frequency 
f = v

λ  = 3.0 × 108

700 × 10–9 = 4.3 × 1014 Hz
b	 In glass, frequency is the same, 

f = 4.3 × 1014 Hz
Wavelength λ	= v

f  

		  = 2.0 × 108

4.3 × 1014 = 465 × 10–9 ≈ 470 nm

 12	 a	 Change in wavelength, Δλ = 550 – 535 = 15 nm

b	 f0 = 3.0 × 108

550 × 10–9 = 5.45455 × 1014 Hz

fS = 3.0 × 108

535 × 10–9 = 5.60748 × 1014 Hz

More sig. figs are included for accuracy because 
the difference in these values is needed.

f0 = fS × v
(v + vs)

 gives

5.45455 = 5.60748 × 3 ×108

(3 × 108 + v)
giving v = 8.4 × 106 ms–1

c	 Observed wavelength is larger than that 
observed in the laboratory, or frequency is 
lower than that observed in laboratory, so 
the star is moving away from the astronomer.
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 13		  Calculate frequencies using f = v
λ ,  

with v = 3.0 × 108 m s–1

Radiation Wavelength range / m Frequency / Hz
radio waves >106 to 10–1 300 to 3 × 109

microwaves 10–1 to 10–3 3 × 109 to 3 × 1011

infrared 10–3 to 7 × 10–7 3 × 1011 to 4.3 × 1014

visible 7 × 10–7 (red) to 4 × 10–7 (violet) 4.3 × 1014 to 7.5 × 1014

ultraviolet 4 × 10–7 to 10–8 7.5 × 1014 to 3 × 1016

X-rays 10–8 to 10–13 3 × 1016 to 3 × 1021

γ-rays 10–10 to 10–16 3 × 1018 to 3 × 1024

 14	 a	 Visible
b	 Ultraviolet
c	 1–100 mm
d	 400–700 nm
e	 4.3 × 1014 Hz to 7.5 × 1014 Hz

 15	 a	 radio waves
b	 microwaves
c	 infrared
d	 visible light
e	 ultraviolet
f	 X-rays or γ-rays

 16		  Use table of answers to question 13:
a	 radio waves
b	 radio waves
c	 visible light
d	 X-rays or γ-rays
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Chapter 14
1	  
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2		  The grid spacing is much smaller than 
the wavelength of the microwaves, so the 
waves do not pass through. However, the 
wavelength of light is much smaller, so it can 
pass through unaffected.

3		  Two loudspeakers with slightly different 
frequencies might start off in step, but they 
would soon go out of step. The interference 
at a particular point might be constructive at 
first, but would become destructive.

4		  The intensity would increase.

5	  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a
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6		  D: dark fringe, because rays from slits 1 and 
2 differ in path length by one-and-a-half 
wavelengths (11

2 λ).
E: bright fringe, because the path difference 
is 2λ.

7		  Wavelength of light used, λ, and separation of 
slits, a, remain the same.
This means that x1

D1
 = x2

D2
. Doubling D means x 

must also double, so separation of fringes  
x2 = 3.0 mm.

8	 a	 x = λD
a . Therefore x ∝ 1

a, so decreasing a gives 
increased x.

b	 Blue light has shorter wavelength, so x is less 
(x is proportional to λ).

c	 For larger D, x is greater, so there is a smaller 
percentage uncertainty in x (x is proportional 
to D).

9		  Rearrange λ = ax
D  to give 

x = λD
a  = 589 × 10–9 × 1.20

0.0002   = 3.5 mm

 10		  D and a are fixed. So λ1

x1
 = λ2

x2
 and so

x2 = 4.5 × 10–7 × 2.4 × 10–3

6.0 × 10–7  = 1.8 × 10–3 m = 1.8 mm

(or wavelength is 3
4 of previous value, so 

spacing of fringes is 3
4 of previous value)

 11		  For the second-order maximum, rays from 
adjacent slits have a path difference of 2λ, so 
they are in phase.

 12	 a	 Rearrange d sin θ = nλ so 

sin θ = nλ
d  = 2 × 580 × 10–9

3.33 × 10–6  = 0.348, so θ = 20.4°

b	 For n = 3, sin θ = 0.522, so θ = 31.5°
For n = 4, sin θ = 0.697, so θ = 44.2°
For n = 5, sin θ = 0.871, so θ = 60.6°
You cannot have sin θ > 1. So there are 11 
maxima.

 13	 a	 θ increases, so the maxima are more spread 
out and there may be fewer of them. (Note: 
sin θ ∝ λ.)

b	 d decreases, so again θ increases, the 
maxima are more spread out and there may 
be fewer of them. (Note: sin θ ∝ 1/d.)
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 14	 a	 By calculation, use λ = ax
D  so fringe separation 

x = λD
a  = 546 × 10–9 × 0.80

0.50 × 10–3  = 0.87 mm

 so ten fringes have a total width of 8.7 mm. 
But using a ruler, the student will measure 
9 mm.

b	 Separation of lines in grating 

= 1
3000 cm 

= 3.33 × 10–6 m.

By calculation, rearrange d sin θ = nλ so

sin θ = nλ
d  = 2 × 546 × 10–9

3.33 × 10–6  = 0.328 

so θ = 19.1°, but the student will measure 19°.
c	 For the double-slit experiment, a measured 

width of 9 mm for ten fringes will give a 
wavelength of 562 nm. For the diffraction 
grating experiment, the measured second-
order angle of 19° will give 543 nm. Hence the 
diffraction grating method is more accurate. 
In practice, it is also much more precise 
because the fringes are bright and sharp 
(well-defined).

 15	 a	 For red light, rearrange d sin θ = nλ so 

sin θ = nλ
d  = 1 × 700 × 10–9

2.00 × 10–6  = 0.350, so 

θred = 20.5°
For violet light, rearrange d sin θ = nλ so 

sin θ = nλ
d  = 1 × 400 × 10–9

2.00 × 10–6  = 0.200, so 

θviolet = 11.5°
Therefore angular separation  
= 20.5° – 11.5° = 9.0°.

b	 The third-order maximum for violet light is 
deflected through a smaller angle than the 
second-order maximum for red light.
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Chapter 15
1	 a	 Wavelength of stationary wave  

= 2 × distance between nodes = 50 cm
b	 Distance from node to adjacent antinode  

= 0.5 × distance between nodes = 12.5 cm

2	 a	 One complete wavelength is shown in the 
image, so wavelength = 60 cm
Separation of two antinodes = λ/2 = 30 cm

b	  
 
 

c	 Length of string = 60 cm, so to produce three 
antinodes, 3λ/2 = 60 cm, meaning λ = 40 cm

3	 a	  
 
 
 
 
 

transmitter reflector

nodes

antinodes

b	 Distance between antinodes = 14 mm = λ/2, 
so wavelength λ = 28 mm. Frequency 
f = v

λ  = 3.0 × 108

0.028  = 1.07 × 1010 Hz ≈ 11 GHz

4		  In both cases, waves are reflected (by the 
metal sheet or by the water). The outgoing 
and reflected waves combine to produce a 
stationary wave pattern.

5	 a	 It is much easier to detect where sound falls 
to zero than where sound is a maximum.

b	 Increased accuracy – if the wavelength 
is short, it is difficult to measure just one 
wavelength.

6	 a	 Three antinodes between them means the 
distance between the two measured nodes  
= 3λ/2 = 20 cm, so wavelength  
λ = 13.3 cm ≈ 13 cm

b	 Speed v = fλ = 2500 × 0.13 = 325 m s–1 ≈ 330 m s–1

7	 a	 For the shorter tube, λ/4 = l1 + c, where l1 is the 
length of the tube and c is the end correction.
For the longer tube, 3λ/4 = l2 + c
Subtract the first equation from the second 
to give λ/2 = l2 – l1 , meaning  
λ = 2 × (0.388 – 0.126) = 0.524 m ≈ 52 cm

b	 For the shorter tube, the end correction 
c = λ

4 – l1 = 52.4
4 – 12.6 = 0.50 cm

c	 Speed v = fλ = 630 × 0.524 = 330 m s–1
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Chapter 16
1		  If there were air molecules in the container, 

the α-particles would scatter off them as well 
and distort the results. The α-particles may 
also be absorbed by 6 cm of air.

2	 a	 More back-scattered, because of greater 
chance of close approach to gold nucleus.

b	 Fewer back-scattered, because their inertia 
would tend to carry them forwards.

c	 Fewer back-scattered, because the repulsive 
force would be smaller. (Note: gold and silver 
atoms occupy roughly equal volumes.)

3		  Density = mass
volume, so 193 g of gold occupy 

volume = mass
density = 0.193

19 700 = 9.8 × 10–6 m3

Therefore the volume occupied by one atom 

= 
volume of 193 g

number of atoms in 193 g  

= 9.8 × 10–6

6.02 × 1023 = 1.6 × 10–29 m3

Volume of one atom, V = 43 πr 3, so

radius = 3  3V
4π = 3  3 × 1.6 ×10–29

4 × π  = 1.6 × 10–10 m

This assumes there is little empty space 
between atoms.

4		  Number of neutrons  
= nucleon number – proton number

a	 7
b	 44
c	 60
d	 118
e	 122

5	 a	 +e
b	 no charge
c	 +Ze, where Z is the proton number
d	 no charge
e	 +2e

6		  Number of neutrons 
= nucleon 

number
 – proton (or atomic) 

number
So isotopes of uranium with nucleon 
numbers 235 and 238 contain 143 and 146 
neutrons, respectively.

7	 a	 Proton number 80 for all.
Neutron numbers 116, 118, 119, 120, 121, 
122, 124.

b	 Average relative atomic mass  
= average nucleon number 

= 
[(196 × 0.2) + (198 × 10) + (199 × 16.8) + (200  × 23.1) 

+ (201 × 13.2) + (202 × 29.8) + (204 × 6.9)]
100  

= 200.6

8		  They are grouped into isotopes as follows: 
A and E; C; D, F and G; B and H.
A = 44

20
 
Ca	 isotope of calcium

B = 50
23

 
V	 isotope of vanadium

C = 46
21

 
Sc	 isotope of scandium

D = 46
22

 
Ti	 isotope of titanium

E = 46
20

 
Ca	 isotope of calcium

F = 48
22

 
Ti	 isotope of titanium

G = 50
22

 
Ti	 isotope of titanium

H = 51
23

 
V	 isotope of vanadium

9	 a	 Gravitational force acts between all protons 
and neutrons in a nucleus, as both types of 
particle have mass.

b	 Electrostatic force acts only between protons 
in a nucleus, as neutrons are uncharged.

c	 Strong nuclear force acts between all protons 
and neutrons in a nucleus.

 10		  Electric charge is conserved in the decay, as 
indicated by the +e charge on the proton and 
the +e charge on the emitted positron. If the 
neutrino were charged, this would violate 
conservation of electric charge.
The mass of the proton ≈ mass of the 
neutron, and each has much greater mass 
than a positron. For mass to be conserved 
in the decay, the neutrino must have a very 
small mass indeed.
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 11		  Mass: a proton has much greater mass (about 
1840 ×) than the positron; a photon has no 
mass.
Charge: a proton has charge +e, a positron 
has charge +e and a photon has no charge.
Particle or anti-particle:  
proton = particle, positron = anti-particle,  
photon = electromagnetic radiation.

 12	 a	 Hadrons: proton, neutron, pion, kaon,  
pi+ meson, phi meson

b	 Leptons: electron, positron, muon, electron 
neutrino, electron antineutrino

 13		  Hadrons are affected by the strong nuclear 
force, leptons are not.
Hadrons are composed of quarks and 
antiquarks, leptons are not.

 14	 a	 A β-particle has less charge, is smaller 
and travels faster, so is less likely to cause 
ionisation of an atom and thus travels further 
before losing all its energy.

b	 Air is much less dense and so less ionisation 
is caused per unit distance travelled.

 15	 a, b	  
 
 
 
 
 
 

α,β
source

slower faster β
faster α

slower

+

–

a

b

The α-particles are deflected much less than 
the β-particles.

 16		  Most strongly ionising implies that many 
more collisions occur, so there is greater 
loss of momentum and therefore less 
penetration.

 17		  The α-particles pass between two plates 
connected to an electric power supply. 
The α-particles cause ionisation in the air 
between the plates and thus a small current 
flows. When smoke enters the device, the 
α-particles are absorbed and there is less 
ionisation of the air and thus a smaller 
current in the external circuit. The circuit 

then switches on the alarm. Alpha-radiation 
is most suitable because it is the most 
strongly ionising. It causes a greater current 
to flow, and also α-particles are more likely to 
be absorbed by smoke. Also, the range of the 
α-particles is so small that they are unlikely 
to constitute a hazard to the user.
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Chapter 17
1	 a	 Full circular face of clock = 360°

Clock face divided into twelve sections, so 
angular displacement of hour hand per hour 
= 360°/12 = 30°

b	 i	 Angular displacement of minute hand  
= half the clock face = 180°

ii	 Angular displacement of hour hand  
= 3.5 × 30° = 105°

2	 a	 Angle of 30° = 30 × π
180  = 0.52 rad

Angle of 90° = 90 × π
180  = 1.57 rad

Angle of 105° = 105 × π
180  = 1.83 rad

b	 Angle of 0.5 rad = 0.5 × 180
π  = 28.6°

Angle of 0.75 rad = 0.75 × 180
π  = 43.0°

Angle of π rad = π × 180
π  = 180°

Angle of 12 π rad = 
1
2 π × 180

π  = 90°

c	 Angle of 30° = 30 × π
180  = π

6  rad

Angle of 120° = 120 × π
180  = 2π

3  rad

Angle of 270° = 270 × π
180  = 3π

2  rad

Angle of 7200° = 720 × π
180  = 4π rad

3		  The magnitude of the velocity remains the 
same (the speed is constant).

4	 a	 Speed is a scalar quantity and is constant, so 
change in speed = 0 m s–1

b	 Velocity changes to be in the opposite 
direction, so change in velocity  
= 0.2 – (–0.2) = 0.2 + 0.2 = 0.4 m s–1

5		  Second hand turns through 360° in 1 minute, 
or 2π rad in 1 minute, which is
2π
60 rad in 1 second.
Angular velocity ω = 2π

60 = 0.105 rad s–1

6	 a	 Number of revolutions per second  
= 1200/60 = 20 rev s–1

b	 Angular velocity = 20 × 2π  
= 40π rad s–1 = 130 rad s–1

7		  Speed v = ωr = 0.105 × 1.8 = 0.19 cm s–1

8	 a	 Angular velocity 
ω = Δθ

Δt  = 90 × π
180 × 15 = 0.105 rad s–1

b	 Speed v = ωr = 0.105 × 50 = 5.2 m s–1

9		  Rearrange v = ωr to give angular velocity 
ω = v

r  = 7800
7000 000 = 1.1 × 10–3 rad s–1

 10	 a	 The gravitational pull of the Earth on the 
Moon.

b	 The frictional force of the road on the wheels.
c	 Tension in the string supporting the 

pendulum.

 11		  There will be no frictional force between 
the road and the wheels. If the driver turns 
the steering wheel, the car will continue in a 
straight line.

 12		  Speed and kinetic energy are scalar 
quantities, the others are vectors. Speed is 
constant; velocity has a constant magnitude 
but continuously changing direction 
(the direction is tangential to the circle); 
kinetic energy is constant; momentum has 
a constant magnitude but continuously 
changing direction (the direction is 
tangential to the circle); the centripetal force 
has a constant magnitude but continuously 
changing direction (the direction is always 
towards the centre of the circle); the 
centripetal acceleration behaves in the same 
way as the centripetal force.

 13		  Acceleration a = v
2

r
v = ωr
a = (ωr)2

r
so a = ω2r

 14		  Distance travelled for one complete orbit  
s = 2πr = 2 × π × 6400 000 = 4.02 × 107 m
Rearrange speed v = s

t  to give time 

t = s
v  = 4.02 × 107

7920  = 5.08 × 103 s (84.6 min)
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 15		  Rearrange centripetal force F = mv2 
r  to give

maximum speed v	 =    Fr
m  =    8.0 × 0.30

0.2  
	 = 3.46 m s–1 ≈ 3.5 m s–1

 16	 a	 Centripetal force  
F = ma = 350 × 103 × 8.8 = 3.1 × 106 N

b	 Rearrange centripetal force F = mv2 
r  to give

speed   Fr
m 	=    3.1 × 106 × (340 + 6400) × 103

350 × 103  

		  = 7.7 × 103 m s–1

c	 Rearrange speed v = s
t  to give

time t �= s
v  = 2πr

v  = 2 × π × (340 + 6400) × 103 
7.7 × 103  

	 = 5.50 × 103 s ≈ 1.5 h
d	 Number of orbits �= length of day

orbit time  = 24 h 
5.5 × 103 s

  
= 15.7 times

 17	 a	 Time taken for one revolution 
t = 13 = 0.333 s

Speed, v = s
t  = 2πr

t  = 2 × π × 0.5 
0.333  

	 = 9.42 m s–1 ≈ 9.4 m s–1

b	 Centripetal acceleration 

a = v
2

r  = (9.42)2

0.5  = 178 m s–2 ≈ 180 m s–2

c	 Tension in string, F = ma = 0.40 × 178 = 71 N

 18	 a	 Speed, v	= s
t  = 2πr

t  = 2 × π × 2.3 × 1011

687 × 24 × 60 × 60  
		  = 2.43 × 104 m s–1 ≈ 24 km s–1

b	 Centripetal acceleration 
a = v

2

r  = (2.43 × 104)2

2.3 × 1011  = 2.57 × 10–3 ≈ 2.6 × 10–3 m s–2

c	 Gravitational force  
F = ma = 6.4 × 1023 × 2.57 × 10–3 = 1.6 × 1021 N

 19		  The tension in the string must have a vertical 
component to balance the weight of the bung.

 20		  In level flight, lift balances the weight. During 
banking, the vertical component of the lift is 
less than the weight, so the aeroplane loses 
height unless the speed can be increased to 
provide more lift.

 21		  The normal contact force of the wall of the 
slide has a horizontal component, which 
provides the centripetal force. If you are going 
fast, you need a bigger force, so the horizontal 
component must be greater. This happens as 
you move up the curved wall of the slide.
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Chapter 18
1	 a	 Size of gravitational force of attraction 

= GMm
r2  = 6.67 × 10–11 × 0.1 × 0.1

(0.01)2  = 6.67 × 10–9 N

b	 Size of gravitational force of attraction 

= GMm
r2  = 6.67 × 10–11 × 5.0 × 1010

(4.0 × 109)2  = 1.0 × 10–8 N

c	 Size of gravitational force of attraction 

= GMm
r2  = 6.67 × 10–11 × 6.0 × 1024 × 1.4 × 104

(6.8 × 106)2  

= 1.2 × 105 N

2		  Estimate that each person has mass 70 kg 
and that they are seated 0.5 m apart.
Size of gravitational force of attraction 
= GMm

r2  = 6.67 × 10–11 × 70 × 70
(0.5)2  = 1.3 × 10–6 ≈ 10–6 N. 

A human with mass 70 kg weighs about 
700 N on Earth. Their weight is greater 
than their mutual attraction by a factor of 
approximately 109.

3		  Difference in weight ΔF = weight at surface of 
Earth – weight at top of Everest = mg – GMm

r2  

= (100 × 9.81) –  6.67 × 10–11 × 6.0 × 1024 × 100
(6.409 × 106)2  ≈ 7 N. 

This would be just about detectable, 
although other factors such as dehydration 
would be more significant.

4	 a	 i	 Gravitational field strength g = –GM
r2  

= – 6.67 × 10–11 × 7.4 × 1022

(1.74 × 106)2  = –1.6 N kg–1

ii	 Gravitational field strength g = –GM
r2  

= – 6.67 × 10–11 × 2.0 × 1030

(7.0 × 108)2  = –270 N kg–1

b	 Gravitational field strength is very weak on 
the Moon, so gas molecules will have enough 
energy to escape from the Moon, whereas the 
Sun has a very high field strength and therefore 
pulls gas molecules very close together.

5	 a	 Gravitational field strength g = –GM
r2  

= – 6.67 × 10–11 × 6.0 × 1024

(3.8 × 108)2  = –2.8 × 10–3 N kg–1

b	 Force �= mg = 7.4 × 1022 × (–2.8 × 10–3)  
= –2.1 × 1020 N

Acceleration = F
m = 2.8 × 10–3 m s–2

6		  Gravitational field strength g = –GM
r2

 so if 

the gravitational field strength of Earth at its 
surface is gE = –9.81 N kg–1, the gravitational 
field strength of Jupiter at its surface is
gJ = 9.81 × 320

(11.2)2  = –25 N kg–1

7		  Gravitational field strength due to the Sun, 
on the surface of the Earth, is
gS = –GM

r2
 = – 6.67 × 10–11 × 2.0 × 1030

(1.5 × 1011)2  = –5.9 × 10–3 N kg–1

Gravitational field strength due to the Moon, 
on the surface of the Earth, is
GM = –GM

r2
 = – 6.67 × 10–11 × 7.4 × 1022

(3.8 × 108)2  = –3.4 × 10–5 N kg–1

So the Sun has a greater pull on each 
kilogram of the seawater.

8	 a	 Size of gravitational force on baby caused by 
Mars
FM = GMm

r2  = 6.67 × 10–11 × 6.4 × 1023 × 4.0
(1.0 × 1011)2  = 1.7 × 10–8 N

b	 Size of gravitational force on baby caused by 
mother
Fm = GMm

r2  = 6.67 × 10–11 × 50 × 4.0
(0.4)2  = 8.3 × 10–8 N

9		  Closer to the Moon, because the Moon has 
less mass than the Earth.
We are looking for a distance x from 
the centre of the Earth where the two 
gravitational fields balance out. If the Earth’s 
mass is ME and the Moon’s mass is MM, and the 
Earth-to-Moon distance is d, then
GME

x2  = GMM

(d – x)2

Rearranging this equation gives ME(d – x)2 = MMx2

meaning x	= d   ME

  MM +   ME
 = 3.8 × 108 ×   6.0 × 1024

  6.0 × 1024 +   7.4 × 1022  

		  = 3.4 × 105 km from the Earth.

 10	 a	 Gravitational potential φ = –GM
r  

= –6.67 × 10–11 × 6.0 × 1024

6.4 × 106  = –6.3 × 107 J kg–1

b	 Gravitational potential φ = –GM
r  

= –6.67 × 10–11 × 7.4 × 1022

1.74 × 106  = –2.8 × 106 J kg–1
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c	  
 
 
 
 
 
 
 

WEarth

WMoon

r

ϕ ϕ

Potential well for Earth Potential well for Moon

r

d	 WEarth is the energy needed for each kilogram, 
initially on the Earth’s surface, to escape from 
the Earth’s field, which can be seen to be 
much greater than WMoon, the energy needed 
for each kilogram, initially on the Moon’s 
surface, to escape from its field. So the rocket 
does not need to carry so much fuel.

 11		  Orbital radius = radius of Earth + altitude of 
satellite above surface
= 6.4 × 106 + 2.0 × 105 = 6.6 × 106 m

Orbital speed  v =    (GM
r ) 

=     6.67 × 10–11 × 6.0 × 1024

6.6 × 106  = 7.8 km s–1

 12		   
 
 
 
 
 
 
 
 
 
 
 
 

Earth

Diagram showing the satellite spiralling in 
towards Earth. The satellite needs to fire 
small thruster rockets to maintain its speed 
and orbit.

 13		  Radius r of a geostationary orbit is given by

r3 = GMT2

4π2  = 6.67 × 10–11 × 6.4 × 1023 × (24.6 × 60 × 60)2

4 × π2  

= 8.7 × 1021 m3, so r = 20 600 km

 14		  Distance travelled by signal sent to and 
returned by satellite  
= 2 × (42 300 000 – 6 400 000) = 7.18 × 107 m
So extra time taken by signal travelling via 
satellite = distance

speed  = 7.18 × 107

3.0 × 108  = 0.24 s. 

So time delay = 0.24 s, signals travel 30% 
slower in cables but the distance is much 
shorter.
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Chapter 19
1	 a	 Forced

b	 Free
c	 Free
d	 Forced

2		  Curved (Figure 19.6a)

3		  Amplitude = 10 cm, period = 120 ms (0.12 s), 
frequency =  1

T  = 1
0.120 = 8.3 Hz

4	 a	 Half an oscillation
b	 The waves have different frequencies so the 

phase difference is continuously changing.

5		  The trolley is the mass; the central position 
of the trolley is the equilibrium position; the 
resultant restoring force of the springs is the 
force.

6		  The restoring force is not proportional to 
the distance from the equilibrium point. 
When the person is not in contact with the 
trampoline the restoring force is equal to the 
person’s weight, which is constant.

7	 a	 Amplitude = 0.02 m
b	 Time period = 0.40 s
c	 Maximum velocity = 0.31 m s–1

d	 Maximum acceleration = 5.0 m s–2

8		  At the extreme left of the oscillation (i.e. 
maximum negative displacement), the 
acceleration is positive (towards the right).

9		  Gradient = 0, velocity = 0

 10	 a	 0 cm s–1

b	 47 cm s–1

c	 0 cm s–2

 11	 a	 Period T = 1
f  = 1.0

2  = 0.5 s
b	 2 Hz
c	 Angular frequency ω = 2πf = 4π rad s–1

 12	 a	 0.20 m
b	 0.4 s
c	 Frequency = 1

T  = 1
0.4 = 2.5 Hz

d	 Angular frequency ω = 2πf = 5π rad s–1

e	 –0.1 m
f	 0 m s–1

g	 3.1 m s–1

 13	 a	  
 
 
 
 
 
 
 

x / 10–12
 m

–2

–1

0

1

2

0.5 t / 10–14
 s1.0

b	 Gradient at steepest point, giving 
approximately 1.3 × 103 m s–1

 14	 a	 3 × 10–4 m (0.3 mm)
b	 Frequency = 240π

2π  = 120 Hz

c	 Period = 1
f  = 1

120 = 8.3 × 10–3 s

 15	 a	 x = 0.15 cos(πt)
b	  

 
 
 
 
 

t / s

+0.15

–0.15

x / m 

0
2.0 4.0

 16	 a	 Angular frequency  
ω = 2πf = 2 × π × 1.4 = 8.80 s–1

So a = –ω2x = –77.4x
b	 Acceleration = –77.4 × 0.050 = 3.9 m s–2

 17		  Angular frequency ω = 2πf so, in acceleration 
equation, a = –ω2x = –4π2f 2x
meaning 4π2f 2 = 300 s–2, therefore 

f =     300
4π2  = 2.76 Hz ≈ 2.8 Hz
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 18	 a	 i	 2.0 s
ii	 Frequency = 1

T  = 1
2.0 = 0.5 Hz

iii	Angular frequency, ω = 2πf = π rad s–1 or 
3.14 rad s–1

b	 a = –ω2x = –9.87x or a = –π2x
c	 Maximum speed �= ωx0 = 3.14 × 12  

= 37.6 cm s–1 ≈ 38 cm s–1

d	 Speed at x = 6 cm is v = ω   [(x0)2 – x2]  
= 3.14 ×   [(12)2 – (6)2] = 32.6 cm s–1 ≈ 33 cm s–1

 19	 a	 The restoring force = kx (from Hooke’s law), 
a ∝ F, therefore a ∝ x. The force acts in the 
opposite direction to the displacement.

b	 a = – F
m  = – kx

m  = –ω2x

ω2 = k
m

ω =      k
m

f = ω
2π = 1

2π      k
m

T = 1
f  = 2π     mk

 20	 a	 Gravitational potential energy
b	 Gravitational potential energy is transferred 

to kinetic energy, which reaches a maximum 
when the bob passes through the lowest 
point; then k.e. is converted to g.p.e. once 
more.

 21	  
 
 
 
 
 
 
 
 
 

total
energy

potential
energy

kinetic
energy

Energy

x

 22	 a	 0.35 m s–1

b	 Maximum kinetic energy = 12 mv2  
= 12  × 2.0 × (0.35)2 = 0.12 J

c	 Maximum potential energy  
= maximum kinetic energy = 0.12 J

d	 Maximum acceleration 0.17 m s–2

e	 Maximum restoring force = ma  
= 2.0 × 0.17 = 3.4 N

 23	 a	  
 
 
 
 
 
 
 
 
 T

2

En
er

gy

potential
energy

total
energy

kinetic
energy

Undamped pendulum

Time
T0

0

b	 The total energy of the pendulum would 
decrease gradually and hence the maximum 
values of k.e. and p.e. would also decrease.

 24		  Any three from:

Example Useful or 
problem?

What is resonating?

Buildings in 
earthquake

Problem Mechanical structure is forced 
to oscillate by energy from 
waves of earthquake.

Components 
in engines

Problem At certain rates of rotation, 
parts of an engine may 
resonate mechanically; the 
resonance is driven by the 
energy output of the engine. 
This can lead to components 
cracking or disintegrating, with 
dangerous consequences.

Positive 
feedback in 
amplification 
systems 
(high-pitched 
squealing 
sound)

Problem Microphone is held too close to 
a loudspeaker that is emitting 
waves of the same frequency 
as the microphone is tuned 
to, so the waves from the 
loudspeaker force the amplifier 
to resonate.

Tuned radio Useful Electric signal in circuit is 
forced to oscillate by incoming 
radio waves.

Microwave 
cooker

Useful Water molecules are forced by 
microwaves.

Magnetic 
resonance in 
atoms

Useful Nuclei in atoms behave as 
magnets; they can be made to 
resonate by electromagnetic 
waves. Each nucleus resonates 
at a different frequency, so the 
structures of molecules can be 
determined.
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Chapter 20
1		  Carrier wave frequency is halved, fc = 50 kHz

Signal wave frequency is halved, fs = 5 kHz

2	  
 
 
 
 
 
 
 
 
 
 

0 1 2 3 4 5 6 7 8 9 10

time for one wave of carrier

time for one wave of signal

Time / µs

3	 a	 The difference in amplitude of the carrier 
wave increases, i.e. the heights of the lower 
peaks of the waveform fall and the heights of 
the higher peaks rise.

b	 The time interval decreases between 
successive instances when the signal 
waveform is at its very highest.

4	 a	 The maximum difference in frequency 
between the signal and the carrier wave 
increases, i.e. the signal has higher and lower 
frequencies.

b	 The signal increases and decreases in 
frequency more times per second.

5	 a	 Maximum frequency shift  
= frequency deviation × amplitude
= 8.0 × 3.0 = 24 kHz

b	 Maximum frequency of modulated carrier 
wave = frequency of carrier wave + maximum 
frequency shift = 500 + 24 = 524 kHz

c	 Number of times per second the modulated 
carrier wave increases and decreases in 
frequency = frequency of signal  
= 16 000 times a second

6	 a	 Amplitude modulation
b	 Carrier frequency = 40 kHz

c	 Frequency of signal used to modulate carrier 
wave = 5 kHz

d	 Bandwidth = 45 – 35 = 10 kHz

7	 a	 Width of frequency spectrum  
= 1700 – 530 = 1170 kHz
Number of stations possible 
= width of frequency spectrum

bandwidth per station  = 1170
9  = 130

b	 Very few FM stations are possible. Number 
= 1170

200  = 5.85, so only five are possible.

8		  If you are concerned about the quality of the 
signal that you are listening to, then FM is 
better. If you want more stations and are not 
in line of sight with the transmitter, then AM 
is better.

9		  AM covers a larger area than FM. FM can 
reach all the inhabitants of a town but the 
expense of aerials and transmitters means 
this is not possible in rural areas.

 10	 a	 14 = (1 × 8) + (1 × 4) + (1 × 2); in binary, 1110
b	 16 = (1 × 16); in binary, 10000

 11	 a	 Binary 1111 is (1 × 8) + (1 × 4) + (1 × 2) + (1 × 1) = 15
b	 Binary 0001011 is (1 × 8) + (1 × 2) + (1 × 1) = 11

 12	 a	 The value on the vertical axis (the voltage) 
has only one of two values, 0 or 1.

b	 Digital signals can be more easily 
regenerated, can be stored and processed 
more easily, errors in transmission can be 
detected and digital electronic systems are 
more reliable.

c	 Noise is introduced, e.g. by random thermal 
motion of electrons. The signal is attenuated 
due to energy loss (I2Rt) in the wires.

 13		  Attenuation	= 10 lg(P1

P2
) = 10 lg( 5.0

0.0002) 

		  = 44 dB (or a gain of –44 dB).
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 14		  Attenuation = 10 lg(P1

P2
)  

Substituting known values gives

30 = 10 lg(6.0 × 10–3

P2 ) meaning 3 = lg(6.0 × 10–3

P2 )
Taking inverse logs, 103 = (6.0 × 10–3

P2 )
Rearranging gives P2	= (6.0 × 10–3

103 )= 6.0 × 10–6 W 
		  = 6.0 × 10–3 mW

 15		  Signal-to-noise ratio = 10 lg(1.0) = 0.0 dB

 16	 a	 Given that gain and attenuation expressed 
in decibels are logarithmic, we can say that 
overall gain 
= gain in amplifier + gain in cable
= gain in amplifier – attenuation in cable 
= 30 – 18 = 12 dB

b	 Substitute values in gain = 10 lg(P2

P1
)

So 12 = 10 lg( P2

1.0 × 10–3 ), 
therefore lg( P2

1.0 × 10–3 ) = 1.2

Take inverse logs to give output power 
P2 = 101.2 × 1.0 × 10–3 = 15.8 mW ≈ 16 mW

 17	 a	 Coaxial cable contains a central copper core 
surrounded by an insulator and a mesh, or 
braid, made of copper wires made into a 
tube.
An analogue signal can have any value, 
within limits, and is not restricted to just a 
few values.
A space wave is an electromagnetic wave 
above 30 MHz that is not reflected or 
refracted back to Earth by the ionosphere 
and may be received by a satellite in space or 
be detected by line of sight within the Earth’s 
atmosphere.
A sky wave is an electromagnetic wave that is 
reflected or refracted back to the Earth by the 
ionosphere.

b	 Space wave frequency greater than 30 MHz, 
wavelength less than 10 m
Sky wave frequency between 3 and 30 MHz, 
wavelength between 10 and 100 m

c	  
 
 
 
 
 
 
 
 
 
 
 

Method Advantage Disadvantage
coaxial less attenuation, 

noise, interference 
than wire pair

more expensive 
than wire pair

analogue 
signal

no ADC and DAC 
conversion required

more noise, 
interference 
than digital

space 
wave

can be received by 
satellite

satellite use 
expensive

sky wave worldwide reception 
possible with 
multiple reflections

reflection by the 
ionosphere is 
not reliable

Other answers are possible.
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Chapter 21
1		  Bonds are still relatively strong (stronger 

than gas but weaker than a solid) and the 
molecules are free to move through the body 
of the liquid.

2	 a	 Energy has to be supplied to convert the 
liquid into vapour – this takes time.

b	 When ice is converted to liquid water, only 
a few intermolecular bonds are broken, 
whereas when liquid is converted to vapour 
all the molecules are totally separated. This 
requires more energy.

c	 Dogs do not sweat through their skin like 
humans; instead they sweat from their 
tongues. The sweat evaporates and cools the 
dog. The panting blows air across the tongue, 
increasing the rate of evaporation.

3	 a	 Change in internal energy = energy supplied 
by heating + energy supplied by doing work  
= 250 + 500 = +750 kJ

b	 Change in internal energy = energy supplied 
by heating + energy supplied by doing work 
= energy supplied by heating – work done by 
the gas on its surroundings  
= 250 – 200 = +50 kJ

4	 a	 T (K) = θ (°C) + 273.15, so
	 0 °C ≈ 273 K
	 20 °C ≈ 293 K
	 120 °C ≈ 393 K
	 500 °C ≈ 773 K
	 –23 °C ≈ 250 K
	–200 °C ≈ 73 K

b	 θ (°C) = T (K) – 273.15, so
	 0 K ≈ –273 °C
	 20 K ≈ –253 °C
	100 K ≈ –173 °C
	300 K ≈ +27 °C
	373 K ≈ +100 °C
	500 K ≈ +227 °C

5		   
 
 
 
 
 
 
 

Temperature / °C Resistance / Ω Temperature / K
10 3120 283

50 3600 323

75 3900 348

100 4200 373

150 4800 423

220 5640 493

260 6120 533
 
 
 
 
 
 
 
 
 
 

Absolute zero is the temperature at which 
all substances have the minimum internal 
energy; the kinetic energy of the atoms of 
copper is zero and their electrical potential 
energy is at a minimum. Therefore we would 
expect the resistance to be zero.

6	 a	 Calibration
b	 Range
c	 Linearity
d	 Sensitivity

7		  Energy E = mcΔθ = 5.0 × 4180 × (100 – 20)  
= 1.67 MJ ≈ 1.7 MJ

8		  Energy required for lead  
Elead = mcΔθ = 2.0 × 126 × 30 = 7.56 kJ
Energy required for copper  
Ecopper = mcΔθ = 4.0 × 380 × 5.0 = 7.60 kJ
So the copper block requires more energy.

9		  Energy supplied in the time is
E = power × time = 50 × 4.0 × 60 = 12 kJ
Rearrange energy E = mcΔθ to give specific 
heat capacity:
c = E

mΔθ = 12 000
1.2  × (45 – 22) 

= 435 J kg–1 K–1 ≈ 440 J kg–1 K–1
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 10		  At higher temperatures, the rate of energy 
loss to the surroundings is greater, therefore 
the temperature rise is slower.

 11		  Systematic – it can (theoretically) be 
removed by perfect insulation.

 12		  Mass of water used,  
m = mass of (beaker + water) – mass of beaker  
= 0.672 – 0.150 = 0.522 kg
Power of heater, P = VI = 11.4 × 3.9 = 44.5 W
So in 13.0 min, energy supplied by heater 
= P × t = 44.5 × 13.0 × 60 = 34.7 kJ
Temperature rise, Δθ = 30.2 – 18.5 = 11.7 K
So, from this experiment, the heat capacity of 
water is

c = E
mΔθ = 34 700

0.522  × 11.7 = 5680 ≈ 5700 J kg–1 K–1

The biggest source of error will be energy loss 
due to poor insulation. There will also be an 
error because we have ignored the specific 
heat capacity of the beaker.

 13	 a	 AB: solid. BC: solid + liquid. CD: liquid.
b	 Internal energy increases in all three sections.
c	 The specific heat capacity is greater when 

it is a solid. The gradient is greater when 
it is a liquid, so it takes less time to raise 
the temperature by the same amount, and 
therefore less energy.

 14		  Energy needed to change ice into water is 
E = mL = 0.0020 × 330 000 = 660 J. When a 
solid melts, only about one bond per atom 
or molecule is broken. On boiling, several 
remaining bonds are broken, requiring more 
energy.

 15		  Rate of loss of mass = 2.25 g per minute 
= 0.002 25

60  = 3.75 × 10–5 kg s–1

Rate of supply of energy to alcohol = 40 × 80% 
= 32 W
So specific latent heat of vaporisation 
= rate of supply of energy 

rate of loss of mass  = 32
3.75 × 10–5 

= 853 000 J kg–1 ≈ 850 kJ kg–1
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Chapter 22
1		  Time taken to cross diameter of container 

once = distance
speed  = 0.1

400 = 2.5 × 10–4 s. So, 
assuming the molecule’s speed is constant, 
that each collision is perfectly elastic and 
that the molecule always crosses the 
diameter of the container, the number of 
collisions = 1t  = 1

2.5 × 10–4 = 4000 s–1

2		  Different numbers of molecules hit one side 
than the other; the number of molecules 
striking any area per second will vary; the 
speed of the molecules hitting will vary; 
the angle that the molecules hit the smoke 
particle will vary.

3		  The small dots of light (smoke particles) 
move faster and more erratically. At higher 
temperature the molecules of air are moving 
faster and on impact cause a greater change 
in momentum of the smoke particle.

4		  Time taken to cross diameter of container 
once 
= distance

speed  = 0.1
400 = 2.5 × 10–4 s.

So, assuming molecule’s speed is constant, 
each collision is perfectly elastic and 
molecule always crosses diameter of 
container,
number of collisions = 1t  = 1

2.5 × 10–4 = 4000 s−1

5		  Pressure increases because more molecules 
are hitting a unit area of the tyre per second. 
The molecules have the same speed and 
each collision causes the same impulse or 
change in momentum. Since more molecules 
hit per second, the rate of change of 
momentum, i.e. the force, increases.

6		  At higher temperatures, the molecules have 
higher internal energy and move faster. The 
number of collisions per second increases 
and the change in momentum of each 
collision also increases. For both these 
reasons the rate of change of momentum 

of the molecules increases. The force on 
the wall is equal and opposite to the rate of 
change of momentum of the molecules. As 
the force increases, the pressure inside the 
can may cause it to explode.

7	 a	 Number of atoms in one mole of carbon 
= Avogadro constant, NA = 6.02 × 1023

b	 Number of moles = mass
mass of one mole  = 54

12 = 4.5

Number of atoms �= number of moles × NA 
= 4.5 × 6.02 × 1023 = 27.1 × 1023

c	 Number of atoms �= 1000
12  × 6.02 × 1023 

= 5.0 × 1025

8	 a	 Single atom has mass	= molar mass
NA

 = 235
6.02 × 1023   

		  = 3.90 × 10–22 g

b	 i	 Number of moles = mass
molar mass = 0.020

235  

= 8.51 × 10–5 ≈ 8.5 × 10–5

ii	 Number of atoms �= 8.5 × 10–5 × 6.02 × 1023  

= 5.12 × 1019 ≈ 5.1 × 1019

9		  Typical relative atomic mass = 10, so 
1 kg contains 100 moles = 6 × 1025 ≈ 1026 
molecules. Note for heavier elements, e.g. 
iron, Ar ≈ 60 and number of atoms ≈ 1025.

 10		  Boyle’s law is p1V1 = p2V2. Rearranging 

this gives pressure required, p2 = p1V1

V2
 

= 120 000 × 0.04
0.025  = 1.92 × 105 Pa ≈ 1.9 × 105 Pa

 11		  Rearrange ideal gas equation pV = nRT to give 
temperature

T = pV
nR  = 1.0 × 104 × 1.0

1.0 × 8.31  = 1200 K

 12	 a	 Number of moles = mass
molar mass = 100

28  = 3.57 mol
b	 Rearrange ideal gas equation pV = nRT to give 

volume

V = 
nRT

p  = 3.57 × 8.31 × 293.15
1.01 × 105  = 0.086 m3 or 86 dm3

 13		  Rearrange ideal gas equation pV = nRT to give 
volume
V = 

nRT
p  = 5.0 × 8.31 × 473.15

1.01 × 105  = 0.0195 m3 ≈ 0.020 m3
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 14		  Number of moles of gas = number of atoms
NA

 

= 3.0 × 1024

6.02 × 1023 = 4.98 mol

Rearrange ideal gas equation pV = nRT to give 
volume

V = 
nRT

p  = 4.98 × 8.31 × 300
1.20 × 105  = 0.104 m3 ≈ 0.1 m3

 15		  Number of moles of gas = mass
molar mass = 1000

32   
= 31.25 mol
Rearrange ideal gas equation pV = nRT to give 
temperature
T = 

pV
nR  = 1.0 × 105 × 1.0

31.25 × 8.31  = 385 K

 16	 a	 Rearrange ideal gas equation pV = nRT to give 
number of moles of hydrogen 
n = 

pV
RT  = 20 × 1.01 × 105 × 0.1

8.31 × 293.15  = 82.9 mol
So mass of hydrogen  
= number of moles × molar mass  
= 82.9 × 2.0 = 166 g ≈ 170 g

b	 If number of moles of oxygen is the same, 
82.9 mol, then mass of oxygen  
= 82.9 × 32 = 2.65 kg ≈ 2.7 kg

 17		  Base units of pressure p = FA = ma
A  

are kg m s–2

m2  = kg m–1 s–2

Base units of the right-hand side Nm<c2>
V  

are kg (m s–1)2

m3  = kg m–1 s–2

 18	 a	 Rearrange p = Nm<c2>
3V  to give

<c2> = 3pV
Nm  = 3 × 105 × 1.0

1.29  = 2.3 × 105 m2 s–2

b	    <c2> =    2.3 × 105 = 480 m s–1, which is 50% 
greater than the speed of sound in air.

 19	 a	 R = 8.31 J K–1, NA = 6.02 × 1023

So k = R
NA

 = 8.31 J K–1

6.02 × 1023  = 1.38 × 10–23 J K–1

b	 E = 32 kT

 20		  Mean translational kinetic energy = 
3RT
2NA

 

= 3 × 8.31 × 300.15
2 × 6.02 × 1023  = 6.2 × 10–21 J

 21		  Rearrange Emean = 12 m<c2> = 
3RT
2NA

 to give 
temperature

T = 2NAEmean

3R  = 2 × 6.02 × 1023 × 5.0 × 10–21

3 × 8.31  

= 242 K (or –31 °C)

 22		  Temperature is proportional to (average 
speed)2. So, if the speed doubles the 
temperature increases by a factor of 22 = 4.

 23	 a	 Halved
b	 Remains the same

 24		  Mean k.e. = 
3RT
2NA

  = 3 × 8.31 × 293.15
2 × 6.02 × 1023  = 6.1 × 10–21 J

Mean k.e. = 12 m<c2> where 

m (mass of one molecule) = molar mass
Avogadro number 

so average speed of oxygen molecule 

=     2 × mean k.e.
m  =     2 × 6.1 × 10–21 × 6.02 × 1023

0.032  

= 480 m s–1

average speed of nitrogen molecule 

=     2 × 6.1 × 10–21 × 6.02 × 1023

0.028  = 510 m s–1

 25		  Internal energy = E = NA(3
2 kT) = 32 RT

Change per kelvin = 32 R
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Chapter 23
1	 a	 Electric field strength due to first sphere,

E1 = Q1

4πε0r2 = 2.0 × 10–6

4 × π × 8.85 × 10–12 × (0.25)2  

= 2.87 × 105 ≈ 2.9 × 105 V m–1 (or N C–1)
b	 Centre-to-centre distance of spheres 

= 20 + 20 + 10 = 50 cm
Force between two point charges 

F = Q1 Q2

4πε0r2 = –1.0 × 10–6 × 2.0 × 10–6

4 × π × 8.85 × 10–12 × (0.50)2  

= –0.072 N 
The minus sign indicates a force of attraction.

c	 In part a, we calculated the electric field due 
to the first sphere at 25 cm from its centre 
(which is also the midpoint between the two 
spheres).
Electric field strength due to second sphere
E2 = Q2

4πε0r2 = –1.0 × 10–6

4 × π × 8.85 × 10–12 × (0.25)2  

= –1.44 × 105 ≈ –1.4 × 105 V m–1 (or N C–1)
The minus sign indicates the field is attractive 
to a sample positive charge towards the 
second sphere, whereas the field of the first 
sphere is repulsive to a positive charge away 
from the first sphere (and towards the second 
sphere). So the total field strength due to both 
spheres = 1.4 × 105 + 2.9 × 105 = 4.3 × 105  V m–1 (or 
N C–1) (towards the second, negative sphere). 

2		  Diameter of sphere 40 cm means distance of 
surface from centre = 20 cm.

Rearrange E = Q
4πε0r2 to find charge Q = 4πε0r2E 

= 4 × π × 8.85 × 10–12 × (0.20)2 × 4.0 × 106 
= 1.8 × 10–5 C

3	 a	 Electrical potential energy  
W = QV = +1 × potential difference.  
So at different positions in the uniform field, 
electrical potential energy is
A, 0 J; B, 2 kJ;  
C, 1 kJ  
(C is halfway between A, 0 V and B, +2 kV); 
D, 1.5 kJ (D is halfway between C, +1 kV and B, 
+2 kV).

b	 Electrical potential energy  
W = QV = +2 × potential difference

= +2 × answers in a.
A, 0 J; B, 4 kJ; C, 2 kJ; D, 3 kJ

4		  Rearrange V = Q2

4πε0r2 to give charge

Q �= 4πε0r2V  
= 4 × π × 8.85 × 10–12 × (0.10)2 × 100 000  
= 1.1 × 10–6 C

Treating charge on the sphere as 
concentrated at a point in the centre of the 
sphere, potential 

V = Q2

4πε0r2 = –1.1 × 10–6

4 × π × 8.85 × 10–12 × (0.20)2  = 25 kV

5	 a	 Work done in uniform field = QV so
E → H, 5 kJ; E → F, 2.5 kJ; F → G, 0 J; H → E, –5 kJ

b	 i	 E → H, –5 kJ; E → F, –2.5 kJ; F → G, 0 J;  
H → E, +5 kJ

ii	 E → H, 10 kJ; E → F, 5 kJ; F → G, 0 J;  
H → E, –10 kJ

6		  Electrostatic force FE = Q1 Q2

4πε0r2 

= (+1.6 × 10–19)2 
4 × π × 8.85 × 10–12 × (1.0 × 10–15)2  = 230 N

Gravitational force FG = – GMm
r2  

= 6.67 × 10–11 × (1.67 × 10–27)2

(1.0 × 10–15)2  = 1.9 × 10–34 N

This answer tells us that the gravitational 
attraction is nowhere near enough to balance 
the electric repulsion. Some other force must 
hold the protons together. (In fact, it is the 
strong nuclear force.)
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Chapter 24
1		  Rearrange capacitance C = Q

V   
to give charge stored
Q �= CV = 220 × 10–6 × 15  

= 3300 µC (or 3.3 × 10–3 C)

2		  Capacitance C = Q
V  = 1.0 × 10–3

500  
= 2.0 × 10–6 F (or 2.0 µF, 2.0 × 106 pF)

3		  Current I = Q
t  so charge Q = It 

Substitute in C = Q
V  = It

V

Rearrange so I	= CV
t  = 50 × 10–6 × 10

0.01  
		  = 0.050 A (50 mA)

4		   
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t / s

Charge = area under graph ≈ 5.1 mC
Capacitance ≈ 6.0 × 10–4 F (600 µF)

5		  Gradient = V
Q  = 1

C

6	 a	 Capacitance = Q
V  

= 1
gradient  = 4 × 10–3

4  = 1.0 × 10–3 F (1 mF)

b	  
 
 
 
 
 

Q / mC V / V Area of strip 
ΔW / mJ

Sum of areas 
W / mJ

1.0 1.0 0.5 0.5

2.0 2.0 1.5 2.0

3.0 3.0 2.5 4.5

4.0 4.0 3.5 8.0

c	  
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5.0

6.0
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1.00.0 2.0 3.0 4.0

Ar
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The graph is a parabola.

7	 a	 Energy stored, E = 12 CV2

E �= 12  × 5 × 10–3 × (5.0)2  
= 6.25 × 10–2 J ≈ 6.3 × 10–2 J

b	 E = 12  × 5 × 10–9 × (5.0)2 = 6.3 × 10–8 J

c	 E = 12  × 0.2 × 10–3 × (230)2 = 5.29 J ≈ 5.3 J

8		  Charge is the same for both capacitors,  
Q = CV = 2.0 × 10–2 C
Energy stored, E = 12 CV2

For 100 µF capacitor,  
E = 12  × 100 × 10–6 × (200)2 = 2.0 J
For 200 µF capacitor,  
E = 12  × 200 × 10–6 × (100)2 = 1.0 J

9	 a	 Energy stored
E = 12 CV2 = 12  × 0.01 × (12)2 = 0.72 J

b	 Rearrange power P = work done
time taken  to give

time = work done
power  = 0.72

36  = 0.02 s

 10	 a	 Charge Q = CV = 0.20 × 9.0 = 1.8 C
Energy E = 12 CV2 = 12  × 0.2 × (9.0)2 = 8.1 J

b	 Power = energy
time taken  = 8.1

0.01  = 810 W

c	 Current = charge
time  = 1.8

0.01  = 180 A

d	 Rearrange power P = I2R to give resistance 
R = P

I2  = 810
(180)2  = 0.025 Ω
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 11	 a	 Ctotal = C1 + C2 = 100 + 100 = 200 µF
b	 Charge stored, Q �= CV = 200 × 10–6 × 20  

= 4.0 × 10–3 C (4000 µC)

 12		  Two 20 µF and one 10 µF connected in 
parallel; or five 10 µF connected in parallel

 13		  Total capacitance of capacitors in series is 
given by

1
Ctotal

 = 1
C1

 + 1
C2

 + 1
C3

 = 1
200 +  1

300 +  1
600 = 6

600 = 1
100 

so Ctotal = 100 µF

 14	 a	 1
Ctotal

 = 1C + 1C = 2C = 1
0.5C

so Ctotal = 0.5C
b	 1

Ctotal
 = nC  so Ctotal = Cn

c	 Ctotal = 2C
d	 Ctotal = nC

 15	 a	 Total resistance is given by Rtotal = R1 + R2 
meaning 1

Gtotal
 = 1

G1
 +  1

G2

b	 Total resistance is given by 1
Rtotal

 = 1
R1

 + 1
R2

 
so Gtotal = G1 + G2

 16	 a	 1
Ctotal

 = 1
C1

 + 1
C2

 + 1
C3

 = 1
100 +  1

100 +  1
100 = 3

100
so Ctotal = 100

3  = 33.3 µF

b	 In parallel,  
Ctotal = C1 + C2 + C3 = 100 + 100 + 100 = 300 µF

c	 Capacitance of the two in parallel = 200 µF, 
therefore

1
Ctotal

 = 1
100 +  1

200 = 3
200 

so Ctotal = 200
3  = 66.7 µF

d	 Capacitance of the two in series is given by
1

Cseries
 = 1

100 +  1
100 = 2

100 = 1
50 

so Cseries = 50 µF
Therefore Ctotal = Cseries + 100 = 50 + 100 = 150 µF

 17	 a	 Four in parallel
b	 Four in series
c	 Two in series with two in parallel

 18		  Maximum: in parallel, 900 pF
Minimum: in series, where 1

Ctotal
 = 1

C1
 + 1

C2
 + 1

C3
 

= 1
100 +  1

200 +  1
600 = 10

600 = 1
60 so Ctotal = 60 pF.

  19		  Total capacitance of the two in parallel is 
Cparallel = 10 + 10 = 20 µF
So total network capacitance is given by

1
Ctotal

 = 1
C1

 + 1
C2

 + 1
C3

 = 1
10 +  1

20 +  1
10 = 5

20 = 1
4  

so Ctotal = 4.0 µF

 20	 a	 1
Ctotal

 = 1
C1

 + 1
C2

 + 1
C3

 = 1
120 +  1

120 +  1
120 = 3

120 = 1
40 

so Ctotal = 40 µF
b	 Charge stored  

Q = CV = 40 × 10–6 × 10 000 = 0.40 C
c	 Energy stored, E = 12 CV2  

= 12  × 40 × 10–6 × (10 000)2 = 2.0 × 103 J

 21	 a	 Total capacitance in parallel = 20 + 5.0 = 25 µF
b	 Charge stored across first capacitor when 

connected to the power supply, Q = CV1 
= 20 × 10–6 × 200 = 4.0 × 10–3 C (4000 µC)

c	 Potential difference across the combination 
is given by the charge stored (which comes 
from the first capacitor) and the total 
capacitance of the combination. 
So Vcombination = Q

C  = 4.0 × 10–3

25 × 10–6  = 160 V

d	 Energy stored by first capacitor when 
charged = 12 C(V1)2 = 12  × 20 × 10–6 × (200)2 = 0.4 J
Energy stored by combination when 
connected = 12 C(Vcombination)2  
= 12  × 25 × 10–6 × (160)2 = 0.32 J
So energy dissipated when the capacitors are 
connected = 0.4 – 0.32 = 0.08 J (80 mJ)

 22		  Capacitance of the Earth (assuming Earth is a 
perfect sphere)  
= 4πε0r = 4 × π × 8.85 × 10–12 × 6.4 × 106  
= 0.000 71 F ≈ 700 µF
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Chapter 25
1		  3

103 × 10 = 0.29 V 
There is 9.7 V across the LDR.

2		  The easiest way is to swap the 3 kΩ resistor 
and the LDR resistor. Alternatively you can 
take the output as the voltage across the 
3 kΩ resistor. You can also use an inverting 
amplifier, which is covered later in the chapter.

3		  If the thermistor is in series with a 
fixed resistor and a battery, a changing 
temperature will cause a changing voltage 
across the thermistor.

4		  Both are made from semiconductor material. 
Both have a decreasing resistance, for an LDR 
when the light intensity increases and for a 
thermistor when the temperature increases. 
Both have a non-linear change in resistance 
with light intensity or temperature.

5	  
 
 
 
 
 
 
 

10 V

output400 Ω

The output voltage is shown across the 400 Ω 
resistor. When the temperature rises, the 
resistance of the thermistor decreases and so 
the p.d. across the thermistor decreases and 
the p.d. across the 400 Ω resistor increases. 
You can instead put the output voltage across 
the thermistor; then, when temperature rises, 
the output voltage falls.

6	 a	 Using Vout = R2

(R1 + R2) × Vin gives 5.1 = R
120 × 10

So R = 124.9 Ω
Remember that Δl is proportional to ΔR. 
A change of 0.10 cm gives a change in 
resistance of 2.4 Ω, and ΔR = 4.9 Ω, so
Δl = 4.9

2.4 × 0.1 = 0.204 = 0.20 cm.

b	 Strain = Δl
l  = 0.204

10  = 0.0204 ≈ 2.0%

c	 Stretch of 0.05 cm produces change in R of 
2.4 × 0.05

0.1  = 1.2 Ω
So R becomes 121.2 Ω

Use Vout = R2

(R1 + R2) × Vin = 121.2
241.2 × 10.0 

which gives V = 5.0249 ≈ 5.0 V.

7		  When thermistor is at 20 °C, 
Vout = R2

R1 + R2
 × Vin = 20 000

1000 + 20 000  × 10 = 9.5 V

When thermistor is at 60 °C, 
Vout = R2

R1 + R2
 × Vin = 100

1000 + 100 × 10 = 0.91 V

8		  The resistance of the LDR decreases so the 
output voltage decreases.

9		  In full sunlight, 

Vout = R2

R1 + R2
 × Vin = 300

300 + 300 × 12 = 6.0 V

In darkness, 

Vout = R2

R1 + R2
 × Vin = 1000 000

300 + 1000 000 × 10 = 12 V 

(just under) in darkness.

 10		   
 
 
 
 
 
 
 

+

–

Vout

 11		  Vout = G0(V + – V –)
Saturation is reached when Vout = 9 V,  
so Vout < 9 V meaning G0(V + – V –) < 9 V.  
So difference between V + and V – 
(V + – V –) < 9

G0
 ≈ 9

105 = 9 × 10–5  V

 12		  The op-amp switches at the same temperature. 
The output voltages become +15 V or –15 V.

 13		  Swap T and the 10 kΩ resistor; swap the 
connections to the V + and V – terminals of the 
op-amp.
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 14		  V + =  10 000
(3000 + 10 000) × 9 V = +6.9 V, V – = +4.5 V so, 

since V + > V –, then Vout = +9 V.

 15	  
 
 
 
 
 
 
 

–

+

10 kΩ

1000 kΩ

 16	 a	 Rearrange G = Vout

Vin
 so 

Vout = GVin = –20 × (+20 mV) = –0.40 V
b	 Vout = GVin = –20 × (–400 mV) = +8.0 V
c	 Vout = GVin = –20 × (+1.0 V) = –20 V, but this 

means the amplifier will be saturated, so the 
output voltage = supply voltage, i.e. –15 V.

 17		  R1 = 0, R2 = ∞, gain = 1 + R1

R2
 = 1 +  0

∞ = 1

 18	  
 
 
 
 
 
 
 

+Vs

9 kΩ

1 kΩ

–Vs

–

+

VoutVin

Any top resistor in the diagram must be nine 
times larger than the bottom resistor. You 
cannot choose very small resistors , e.g. 9 Ω 
and 1 Ω, because the op-amp cannot provide 
large enough currents through such small 
resistances. The input resistance is very high 
because of the very high input resistance to 
the op-amp and because there are no other 
resistors connected to the input.

 19	 a	 Gain = 1 + R1

R2
 = 1 + 50

5  = 11
b	 i	 Vout = GVin = 11 × (–0.1 V) = –1.1 V

ii	 Vout = GVin = 11 × (+1.0 V) = +11 V, but this 
means the amplifier will be saturated, so 
output voltage = supply voltage, i.e. +10 V

 20	  
 
 
 
 
 
 
 

 21		  When the op-amp switches off the coil in the 
relay, there is a large induced e.m.f. because 
of the change in magnetic flux in the coil. The 
reverse-biased diode prevents any induced 
current reaching the op-amp. There is no 
induced e.m.f. in an LED and so the reverse-
biased diode is not needed.

heater

mains
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Chapter 26
1	  

 
 
 
 
 
 

Current flowing into page Current flowing out of
page, strength doubled

2	  
 
 
 
 
 
 
 

C
D

BA S N

I

3		  Pair a will repel; pair b will attract.

4	 a	 No force
b	 Force into the plane of the paper
c	 Force down the page

5		  Force F = BIl = 0.06 × 0.20 × 2.50 = 0.030 N

6		  Rearrange force F = BIl to give flux density 
B =  F

Il = 0.015
(1.5 × 0.20) = 0.050 T

7	 a	 Current I = Q
t  = ne

t  = 1018 × 1.60 × 10–19

1  = 0.16 A
b	 Force F = BIl = 0.005 × 0.16 × 0.50 = 4.0 × 10–4 N 

(0.40 mN)

8	 a	 Section of wire in field tilts down
b	 Tilts down
c	 Will try to move horizontally, into horseshoe
d	 No movement

9		  Remember the principle of moments: sum of 
anticlockwise moments = sum of clockwise 
moments if lever is balanced. Remember also 
that force due to gravity on mass m is mg.

So for force F due to magnet on wire,  
F × 0.20 = 0.02 × 10–3 × 9.81, meaning  
F = 1.96 × 10–4 N
Rearrange force F = BIl to give flux density 

B = F
Il = 1.96 × 10–4

0.50 × 0.050 = 7.8 × 10–3 T

 10		  Force, F = BIl 
= 0.005 × 2.4 × 0.50 = 6.0 × 10–3 N (6.0 mN)

 11	 a	 Force exerted by magnetic field is at a 
maximum when the section of wire in 
the field lies at right angles to the field. 
Remembering there are 200 turns,
Force F = BIl = 0.05 × 1.0 × 200 × 0.20 = 2.0 N

b	 Pivoted along a line parallel to one edge with 
the magnetic field in the same plane as the 
coil.

c	 Greater torque could be provided by: 
increasing current, increasing number of 
turns in coil, increasing length of side in field, 
pivoting by centre of coil and having magnets 
either side, having magnets all round the 
circle through which the coil turns, increasing 
field strength.

 12	 a	 Force F �= BIl sin θ = 0.25 × 3.0 × 0.50 × sin 90°  
= 0.375 N ≈ 0.38 N

b	 Force F �= BIl sin θ = 0.25 × 3.0 × 0.50 × sin 45°  
= 0.265 N ≈ 0.27 N

c	 Current is parallel to magnetic field so force 
F = 0 N.
Both a and b are into the plane of the paper.

 13		  They attract. If you consider each flat coil 
as a small electromagnet, then unlike poles 
are facing one another. If you think of the 
currents in the wires, these are parallel 
(rather than anti-parallel) and the coils 
attract. When the current is reversed, it is 
reversed in both coils and they still attract.
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Chapter 27
1	  

 
 
 
 
 
 

Track A is pushed upwards, meaning it is the 
equivalent of a positive current flowing to the 
right: A must be α-particles.
Track B is not deflected by the magnetic field: 
B must be γ-rays.
Track C is pushed downwards, meaning it is 
the equivalent of a negative current flowing 
to the right: C must be β–-particles.

2	 a	 At right angles to the magnetic field, force  
F �= BQv = 0.50 × 1.6 × 10–19 × 1.0 × 106  

= 8.0 × 10–14 N
b	 At an angle of 45° to the magnetic field, force 

F = BQv sin θ  
= 0.50 × 1.6 × 10–19 × 1.0 × 106 × sin 45°  
= 5.66 × 10–14 N ≈ 5.7 × 10–14 N

3		  Since the particles have opposite charges, 
when moving through a magnetic field at 
right angles to the direction of travel the 
positrons experience a force in the opposite 
direction to the force on the electrons. This 
will separate the particles into two beams.
 
 
 
 
 
 
 
 
 

positrons

electrons
field into 
plane of paper

4		  Out of the plane of the photograph.

5		  All have same mass, charge and speed. 
(There is more about this when you study 
how J.J. Thomson discovered the electron, 
later in this chapter of the coursebook.)

6	 a	 Circular path will have smaller radius.
b	 Electrons will circle in the opposite direction.
c	 Circular path will have smaller radius.
d	 Electrons will spiral around field lines because 

they will have a constant component of 
velocity in the direction of the field lines.

7	 a	 The magnetic force is upwards, towards 
the positive plate, and the electric force is 
downwards, towards the negative plate.

b	 Speed of ion, v = E
B = 1.5 × 103

0.30  = 5.0 × 103 m s–1

c	 Magnetic force > electric force; the ion travels 
in an upward curved path (towards the 
positive plate) and hence misses the slit S.

8	 a	 Hall voltage VH = BI
nte 

= 0.10 × 0.020
(1.5 × 1023 × 0.05 × 10–3 × 1.6 × 10–19)

 

= 1.67 × 10–3 V 
≈ 1.7 mV

b	 The current in a Hall probe must be maintained 
at a constant value because the force that 
acts on the electrons to generate a voltage is 
proportional to both the magnetic flux density 
and the current: F = BIl. The current must be 
kept constant so that the size of the force, and 
therefore the voltage measured, varies only as 
the magnetic flux density changes.

9		  Remember that the Hall voltage VH = BI
nte. Using 

a single sample of a semiconducting material 
of measured thickness, and using a constant 
magnetic field of known flux density, the 
Hall voltage could be measured for different 
values of current. By plotting a graph of Hall 
voltage against current, the graph should form 
a straight line with gradient = BI

nte, from which 
the number density of the semiconductor can 
be calculated.

 10		  Charge-to-mass ratio = e
m, so mass of 

electron, m = 1.60 × 10–19

1.76 × 1011  = 9.1 × 10–31 kg

α-particles, charge +2e

γ-rays, no charge

β–-particles, charge –e

B

C

A
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Chapter 28
1		  The rotating magnet changes the magnetic 

flux linking the coil, hence an e.m.f. is 
induced. The induced current in the coil will 
light the lamp connected to the generator.

2		  Current flows from A to B and from C to D. Y 
is positive so that current flows from Y to X in 
the external circuit to make it flow from A to 
B inside the coil.

3		  Left wingtip will be positive. It is negative in 
the southern hemisphere because the field 
direction is reversed.

4		  Magnetic flux = BA. A stronger magnet means 
greater flux linking the coil and hence a 
greater induced e.m.f. Faster movement 
means more flux cut or linked per second and 
more current generated, or larger e.m.f.

5		  The wire is moved parallel to the field, hence 
only small components are cut due to slight 
curvature at edges of field.

6		  Frequency is determined by speed of rotation 
(so for this to be kept constant, the generator 
must be geared). E.m.f. is affected by magnet 
strength, number of turns in coil, size of coil. 
The e.m.f. is normally affected by the speed 
of rotation, but in this case this has to be 
fixed as the frequency is fixed.

7		  Magnetic flux Φ �= BA = 0.15 × 0.01 × 0.015 
= 2.25 × 10–5 Wb ≈ 2.3 × 10–5 Wb

8		  Magnetic flux linkage = NΦ = NBA = NBπd2

4  
= 200 × 2.0 × 10–5 × π × (0.05)2

4  = 7.9 × 10–6 Wb

9		  Magnetic flux linkage = NΦ = NBA 
= 120 × 1.2 × 0.05 × 0.075 = 0.54 Wb

 10		  Rate of change in area = lv  
Rate of change of flux = B × (lv) = Blv

 11		  Change in magnetic flux = B × change in area 
= 1.5 × (0.10 × 0.02) = 3.0 × 10–3 Wb = Δ(NΦ)
Use Faraday’s law to determine e.m.f.:

E = ∆(NΦ)
∆t  = 3.0 × 10–3

0.50  = 6.0 mV

 12		  Faraday’s law gives e.m.f. E = ∆(NΦ)
∆t  = BAN

∆t  

Rearrange to give B = E∆t
AN  

= 0.40 × 0.20
1.2 × 10–4 × 2000

 = 0.33 T

 13	 a	 Stop pushing implies no change in flux 
linkage, so no current is generated. 
Therefore, no magnetic poles are formed and 
no work is done; there is no movement.

b	 Pull away implies that flux is decreased in the 
flux linkage, but the end of solenoid near the 
magnet becomes a south pole, so the poles 
attract each other, and work has to be done 
to pull magnet and coil apart.

 14	  
 
 
 
 
 
 
 
 

motor
e�ect force

current
induced

force pulling
wire up

 15	 a	 There is a sudden increase in the flux linkage 
for the coil, so there is an induced e.m.f.

b	 There is no change in the flux linking the coil. 
The motion is parallel to the field.

c	 Magnet leaves coil, there is a decrease in the 
flux linking the coil and hence the e.m.f. is in 
the reverse (negative) direction. The induced 
current is in the opposite direction (Lenz’s 
law). Peak e.m.f. is greater because the 
magnet is moving faster (acceleration due to 
gravity); the rate of change of flux linkage is 
greater.
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 16		  You have to do work against the motor effect 
force from an induced current when the 
lights are on. When the lights are off, there is 
no induced current (although there is still an 
induced e.m.f.) and so no motor effect force.

 17	  
 
 
 
 
 
 
 

force on current

D

B

A
C

B

 18		  Alternating current. Usually, a bar magnet 
rotates inside a fixed coil. As the north pole 
passes one side of the coil, the current flows 
one way. Then the south pole passes, and the 
current reverses.

 19		  B greater means greater flux, hence 
∆(NΦ)

∆t  is greater; therefore E ∝ B.
A greater means greater flux, hence 
∆(NΦ)

∆t  is greater; therefore E ∝ A.

N greater means greater flux linkage, 

hence ∆(NΦ)
∆t  is greater; therefore E ∝ N.

f greater means rate of change of flux linkage 

is greater, hence ∆(NΦ)
∆t  is greater; 

therefore E ∝ f.

 20		  For a d.c. supply, the flux linkage is constant 
– there is no change in the flux, and hence no 
induced e.m.f.
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Chapter 29
1	 a	 2 A, positive

b	 15 ms
c	 20 ms
d	 Frequency = 1T = 1

0.020 = 50 Hz

2	 a	 I0 = peak value of current = 2 A
ω = angular frequency  

= 2πf = 2π × 50 = 100π rad s–1

b	 I = 2 sin(100πt)

3	 a	 I0 = 5 A
ω = 120π rad s–1

Frequency f = ω
2π = 60 Hz

Period T = 1f  = 1
60  = 17 ms

b	  
 
 
 
 
 
 
 

5

0

–5

1 t / s

I / A

120
1

60

4	 a	 V0 = peak value of voltage = 300 V
ω = 100π rad s–1

frequency f = ω
2π = 50 Hz

b	 At t = 0.002 s, V �= 300 sin(100π × 0.002)  
= 300 × 0.588 = 176 V

c	  
 
 
 
 
 
 
 

300

V / V

–300

10 20 30 40 t / ms
0

5		  Amplitude = 2 × 5 = 10 V
Period T = 4 × 10 = 40 ms
Frequency = 1T = 1

0.040 = 25 Hz

6	  
 
 
 
 
 
 

1 cm

The exact starting point on the graph may be 
different, but the trace has an amplitude of 1 cm 
and one complete wave is 1 cm horizontally.

7		  Irms = I0

 2  = 2.5
 2  = 1.8 A

8		  Rearrange Vrms = V0

 2  to give 
 V0 = Vrms ×    2 = 230 ×    2 = 325 V

9		  Power dissipated, P	= (Irms)
2R = ( I0

 2 )2

R = I0
2R
2  

		  = (3.0)2 × 100
2  = 450 W

 10	 a	 Vrms = V0

 2  = 325
 2  = 230 V

b	 Irms = Vrms

R  = 230
1000 = 0.23 A

c	 Power dissipated, P �= (Irms)
2R  

= (0.23)2 × 1000 = 53 W

d	 Peak power dissipated, P = V0
2

R  = 3252

1000 = 105.6 
≈ 110 W

 11		  Alternative answers are given here because 
there are two ways of interpreting the 
diagrams and the numbers of turns.

a	 Step-up: 15 : 5 = 3, or 16 : 6 = 2.7
b	 Step-down: 4 : 8 = 0.5, or 5 : 9 = 0.56
c	 Step-up: 30 V or 27 V; step-down: 5.0 V or 5.6 V

 12		  Step-up ratio required = 400 kV
25 kV  = 16

So number of turns = 16 × 2000 = 32 000 turns

 13	 a	 Vs = Vp × turns ratio = 20 × 10 = 200 V
Is = Ip

turns ratio = 50
10 = 5 mA

b	 Power P = VI
If no power loss occurred,  
P = 200 × 0.005 = 1.0 W
Actual power = 180 × 0.0045 = 0.81 W
So percentage of power that is wasted 
= (1.0 – 0.81)

1.0  = 19%
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 14	

Transformer Np Ns Vp / V Vs / V Ip / A Is / A P / W
A 100 500 230 1150 1.0 0.2 230

B 500 100 230 46 1.0 5.0 230

C 100 2000 12 240 0.2 0.01 2.4

 15		  Diode 3 is pointing the wrong way, so the 
current flows through diode 4, through R and 
then through diode 1.

 16		   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Va

b

c

d

e

t

t

t

t

t

V

V

V

V

 17		  The voltage will be half-wave rectified. 
Current can flow through diode 2 when 
terminal A is positive. When terminal B is 
positive, current cannot flow because there is 
no complete path to terminal A.

 18	 a	 Less pronounced ripple
b	 More pronounced ripple
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Chapter 30
1		  Energy E �= hf = 6.63 × 10–34 × 1 × 1026  

= 6.63 × 10–8 J ≈ 6.6 × 10–8 J

2		  Energy E = hc
λ

For red light, E	= 6.63 × 10–34 × 3.0 × 108

700 × 10–9  

		  = 2.8 × 10–19 J
For violet light, E	= 6.63 × 10–34 × 3.0 × 108

400 × 10–9  

		  = 5.0 × 10–19 J

3		  Rearrange energy E = hc
λ  to give 

wavelength λ = hc
E

a	 λ = 6.63 × 10–34 × 3.0 × 108

10–12  ≈ 2.0 × 10–13 m, γ-ray

b	 λ = 6.63 × 10–34 × 3.0 × 108

2.0 × 10–10  ≈ 2.0 × 10–10 m, X-ray

c	 λ = 6.63 × 10–34 × 3.0 × 108

10–18  ≈ 2.0 × 10–7 m, ultraviolet

d	 λ = 6.63 × 10–34 × 3.0 × 108

10–20  ≈ 2.0 × 10–5 m, infrared

e	 λ = 6.63 × 10–34 × 3.0 × 108

10–25  ≈ 2.0 m, radio wave

4		  Energy of one photon, E = hc
λ  

= 6.63 × 10–34 × 3.0 × 108

6.48 × 10–7  = 3.07 × 10–19 J

Number of photons 
per second  = power of laser

energy per photon

= 0.0010
3.07 × 10–19  = 3.26 × 1015 s–1 ≈ 3.3 × 1015 s–1

5		  Energy change, W = 1.2 eV = QV  
= 1.6 × 10–19 × 1.2 = 1.92 × 10–19 J ≈ 1.9 × 10–19 J

6		  Energy in joules, E = hf 
Therefore energy in electronvolts, E = hf

e
where e is the electric charge of the electron.
E = 6.63 × 10–34 × 3.0 × 108

1.6 × 10–19
 = 12 400 eV ≈ 12 keV

7		  Rearrange energy E = hc
λ  to give wavelength 

λ = hc
E  = 6.63 × 10–34 × 3.0 × 108

10 × 1.6 × 10–19  

≈ 1.24 × 10–7 m, ultraviolet

8	 a	 Note that these calculations assume the 
proton is accelerated from rest.
Energy gained 
= work done on proton by potential difference

= QV = 1.6 × 10–19 × 1500 = 2.4 × 10–16 J
b	 Kinetic energy Ek = 12 mv2 so speed v =     2Ek

m

=     2 × 2.4 × 10–16

1.7 × 10–27  = 5.31 × 105 m s–1 ≈ 5.3 × 105 m s–1

9		  Rearrange eV = hc
λ  to give Planck’s constant, 

h = eVλ
c

For infrared LED, 

hi	= 1.6 × 10–19 × 1.35 × 910 × 10–9 
3.0 × 108  = 6.55 × 10–34 J s

For red LED, 

hr 	= 1.6 × 10–19 × 1.70 × 670 × 10–9 
3.0 × 108  = 6.07 × 10–34 J s

For amber LED, 

ha	= 1.6 × 10–19 × 2.00 × 610 × 10–9 
3.0 × 108  = 6.51 × 10–34 J s

For green LED, 

hg	= 1.6 × 10–19 × 2.30 × 560 × 10–9 
3.0 × 108  = 6.87 × 10–34 J s

Average value 
= 14 (6.55 × 10–34 + 6.07 × 10–34  
� + 6.51 × 10–34 + 6.87 × 10–34)  
≈ 6.5 × 10–34 J s

 10	 a	 Energies that exceed the work function can 
cause the release of an electron from the 
metal: 2.0 eV, 3.0 eV.

b	 Rearrange hf = φ + k.e.max to give
k.e.max = hf – φ 
= photon energy – work function
For 2.0 eV photon, k.e.max �= 2.0 eV – 1.8 eV  

= 0.2 eV 
in joules, 0.2 eV �= 0.2 × 1.6 × 10–19 J  

= 3.2 × 10–20 J
For 3.0 eV photon, k.e.max �= 3.0 eV – 1.8 eV  

= 1.2 eV
in joules, 1.2 eV �= 1.2 × 1.6 × 10–19 J  

= 1.9 × 10–19 J

 11	 a	 Gold
b	 Caesium
c	 For zinc, threshold frequency 

f0 = φ
h  = 6.9 × 10–19

6.63 × 10–34 = 1.04 × 1015 ≈ 1.0 × 1015 Hz
d	 For potassium, threshold frequency 

f0 = φ
h  = 3.2 × 10–19

6.63 × 10–34 = 4.83 × 1014 Hz

So wavelength λ = c
f0

 = 3.0 × 108

4.83 × 1014 ≈ 620 nm
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 12	 a	 Energy E = hc
λ  = 6.63 × 10–34 × 3.0 × 108

2.4 × 10–7  = 8.3 × 10–19 J

b	 k.e.max = E – φ = 8.3 × 10–19 – 2.8 × 10–19 = 5.5 × 10–19 J
c	 Rearrange k.e.max = 12 m(vmax)

2 to give 

vmax =     2Ek

m
 =     2 × 5.5 × 10–19

9.1 × 10–31  = 1.1 × 106 m s–1

 13		  Rearrange hc
λ  = φ + k.e.max to give 

work function

φ = hc
λ  – k.e.max = 6.63 × 10–34 × 3.0 × 108

2000 × 10–9 – 4.0 × 10–20 = 5.9 × 10–20 J

 14	 a	 Energy ΔE = E1 – E2 = (7.8 – 2.2) × 10–18 = 5.6 × 10–18 J
Frequency f = ΔE 

h  

= 5.6 × 10–18

6.63 × 10–34 = 8.44 × 1015 ≈ 8.4 × 1015 Hz

Wavelength λ = c
f  

= 3.0 × 108

8.44 × 1015 = 3.6 × 10–8 m (emission)

b	 Energy ΔE = E1 – E2

= (2.2 – 1.7) × 10–18 = 5.0 × 10–19 J
Frequency f = ΔE 

h  

= 5.0 × 10–19

6.63 × 10–34 = 7.54 × 1014 ≈ 7.5 × 1014 Hz

Wavelength λ = c
f  

= 3.0 × 108

7.54 × 1014 = 4.0 × 10–7 m (emission)

c	 Energy ΔE = E1 – E2

= (3.9 – 1.7) × 10–18 = 2.2 × 10–18 J
Frequency f = ΔE 

h  

= 2.2 × 10–18

6.63 × 10–34 = 3.32 × 1015 ≈ 3.3 × 1015 Hz

Wavelength λ = c
f  

= 3.0 × 108

3.32 × 1015 = 9.0 × 10–8 m (absorption)

 15		  9.0 eV, 11 eV, 25 eV, 34 eV and 45 eV correspond 
to differences between energy levels, so they 
can all be absorbed; 6.0 eV and 20 eV do not 
correspond to differences between energy 
levels and so cannot be absorbed.

 16	 a	 Energy E = hc
λ  = 6.63 × 10–34 × 3.0 × 108

83 × 10–9  

= 2.40 × 10–18 J = 2.4 × 10–18

1.6 × 10–19  ≈ 15 eV

Energy E = hc
λ  = 6.63 × 10–34 × 3.0 × 108

50 × 10–9  

= 3.98 × 10–18 J = 3.98 × 10–18

1.6 × 10–19  ≈ 25 eV

Energy E = hc
λ  = 6.63 × 10–34 × 3.0 × 108

25 × 10–9  

= 7.96 × 10–18 J  = 7.96 × 10–18

1.6 × 10–19  ≈ 50 eV

b	 See figure for one possible solution.
 
 
 
 
 
 
 
 
 
 
 
 

0

Energy / eV
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 17	 a	 Insulator
b	 Metal
c	 Semiconductor

 18		  In a semiconductor, the valence band is fully 
occupied by electrons but the conduction 
band is empty. The bands are close in 
energy, so some electrons gain enough 
energy to jump across into the conduction 
band. As temperature decreases, the 
number of electrons that can jump into 
the conduction band also decreases. This 
means conductivity decreases, and resistivity 
increases.

 19	 a	 Electrons can behave as waves so they can 
be diffracted by spaces between atoms.

b	 Each metal has a different lattice structure, 
so each will produce a different diffraction 
pattern.

 20	 a	 1.0 keV
b	 Rearrange kinetic energy Ek = 12 mv2 to give 

speed v	=     2Ek

m
 =     2 × 1000 × 1.6 × 10–19

9.1 × 10–31

		  = 1.9 × 107 m s–1

Momentum mv	= 9.1 × 10–31 × 1.9 × 107  
		  = 1.7 × 10–23 kg m s–1

c	 De Broglie wavelength 
λ = h

mv = 6.63 × 10–34

1.7 × 10–23  = 3.9 × 10–11 m
d	 The wavelength is much smaller than the 

spacing, so there will only be a small amount 
of diffraction.
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Chapter 31
1	 a	 220

86
 
Rn → 216

84
 
Po + 4

2
 
He

b	 25
11

 
Na → 25

12
 
Mg + 0

–1
 
e

2		  41
18

 
Ar → 41

19
 
K + 0

–1
 
e

3		  Rearrange E = mc2 to give mass decrease per 
second, m = E

c2 = 4.0 × 1026

(3.0 × 108)2 ≈ 4.4 × 109 kg

4	 a	 Helium nucleus is formed from two protons 
and two neutrons. Energy released is given 
by the difference in mass between the four 
separate nucleons and the helium nucleus:
Δm = 2mp + 2mn – mHe

= (2 × 1.672 623 + 2 × 1.674 929 – 6.644 661) × 10–27

= 5.04 × 10–29 kg
Energy released, ΔE = Δmc2

= 5.04 × 10–29 × (3.00 × 108)2 = 4.5 × 10–12 J
b	 1.1 × 10–12 J

5		  Kinetic energy of golf ball 
= 12 mv2 = 12  × 0.150 × (50)2 = 187.5 J
Mass equivalent of energy 

= E
c2 = 187.5

(3.0 × 108)2 = 2.1 × 10–15 kg

Percentage of rest mass = 2.1 × 10–15

0.150  = 1.4 × 10–12 %

6	 a	 Mass of atom 56
26

 
Fe �= 55.934 937 × 1.6605 × 10–27 

= 9.2880 × 10–26 kg
b	 Mass of atom 16

8
 
O = 2.656 015 × 10–26

1.6605 × 10–27  = 15.995 u

7	 a	 Mass excess of helium-4 �= 4.002 602 – 4 
= 0.002 602

b	 Mass excess of potassium-40 �= 39.963 998 – 40  
=  –0.036 002

8	 a	 10
4
 
Be → 10

5
 
B + 0

–1
 
e

b	 Mass difference  
Δm = 1.662 38 × 10–26 – 1.662 19 × 10–26 
� – 9.109 56 × 10–31 

= 9.890 44 × 10–31 kg
Energy released  
Δmc2 �= 9.890 44 × 10–31 × (2.997 92 × 108)2  

≈ 8.9 × 10–14 J
The energy is released as kinetic energy of 
the products.

9		  It is a single nucleon and hence does not 
have binding energy.

 10	 a	 Mass defect Δm = 4 × mp + 4 × mn – mBe  

≈ (8 × 1.67 – 13.3) × 10–27 = 6.00 × 10–29 kg
b	 Binding energy EB = Δmc2

= 6.00 × 10–29 × (3.00 × 108)2 

= 5.4 × 10–12 J = 5.4 × 10–12

1.6 × 10–19 eV = 3.4 × 107 eV

c	 Binding energy per nucleon = EB

n  
= 5.4 × 10–12

8  = 6.8 × 10–13 J = 4.2 × 106 eV

 11		  Fission for A < 20 is unlikely because the 
products would have a smaller binding 
energy per nucleon. The reaction would 
require an input of external energy. Fusion for 
A > 40 is unlikely for the same reason.

 12		  Activity A �= λN = 0.30 × 500 000  
= 150 000 s–1, or 150 000 Bq

 13		  Activity A = 10 × count rate of detector 
= 10 × 20 min–1 = 200 min–1 = 200

60  s–1 = 10
3  s–1

Rearrange activity A = λN to give decay 
constant
λ = A

N = 10
(3 × 1.5 × 109)

 = 2.2 × 10–9 s–1

 14		  Count rate might be less than activity 
because:
i	 Gamma-rays are not always detected 

(weakly ionising).
ii	 The counter is inefficient.
iii	Some radiation is absorbed within the 

sample before reaching the detector.
iv	The detector is directional, so some 

radiation will move away from the detector 
rather than towards it.

 15	 a	 N = N0 e–λt

b	 After 10 minutes, half the nuclei will decay, so 
half will remain undecayed, or 4.0 × 1010

After a further 10 minutes, half the remaining 
number will decay, leaving one-quarter of the 
original number, or 2.0 × 1010

c	 After 30 minutes, three half-lives have 
elapsed. Number of original nuclei decaying 
in this time = 12 + 14 + 18 = 78 of total = 7.0 × 1010
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 16	 a	 N = N0 e–λt = 5.0 × 109 × e(–0.10 × 50)  
= 3.37 × 107 ≈ 3.4 × 107

b	 Activity A = λN = 0.10 × 3.37 × 107 ≈ 3.4 × 106 Bq

 17		   
 

t / s 0 20 40 60 80 100 120 140

N 400 330 272 224 185 153 126 104
 
 
 
 
 
 
 
 
 
 
 
 

Time / s
0

0

100

200

300

400

40 60 80 100 120 140

N

20

Half-life is about 70 s.

 18		  Half-life is 2.4 years.
Decay constant λ = 0.693

2.4  = 0.29 year–1

 19		  Time taken for activity to decrease to 18 of 
initial value is three half-lives  
(sequence 12, 14, 18).
Therefore time taken = 3t1/2 = 3 × 0.693

λ
  

= 3 × 0.693
3.0 × 10–4  = 6.93 × 103 ≈ 6900 s

 20	 a	 Decay constant λ = 0.693
7.4  = 0.094 s–1

b	 i	 N = N0 e–λt = 5.0 × 103 × e(–0.094 × 14.8) = 1250
ii	 N = N0 e–λt = 5.0 × 103 × e(–0.094 × 20.0) = 760 

(approximately)

 21	 a	 We need to find an expression for the decay 
constant λ so that we can substitute it into 
the decay equation.
The quantity f is the ratio of atoms remaining 
to decay to the original number of atoms in 
the sample: f = N

N0

When t = t1/2, f = 12 = e–λt1/2

Taking logarithms of both sides, ln(1
2) = –λt1/2

Therefore λ = – 
ln(1

2)
t1/2

Then the equation f = e–λt becomes f = eln(1
2) t

t1/2

Remember that eln(1
2) = 12 

So f = 12
t

t1/2

b	 i	 0.50
ii	 0.25
iii	0.177 ≈ 0.18
iv	0.0032
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Chapter 32
1	 a	 Electrical energy from power supply is 

transferred to energy of electron beam (100%).
Energy of electron beam is transferred to 
internal energy of the anode (~99%) and 
energy of X-ray photons (~1%).

b	 Energy �= qV = 80 keV = 80 000 × 1.6 × 10–19  
= 1.28 × 10–14 J ≈ 1.3 × 10–14 J

Impact speed is given by rearranging kinetic 
energy Ek = 12 mv2 to give

v =     2Ek

m
 =     2 × 1.3 × 10–14

9.1 × 10–31  = 1.69 × 108 m s–1 

≈ 1.7 × 108 m s–1

2		  Photon energy E = hc
λ  = V × e 

Wavelength λ	= hc
Ve = 6.63 × 10–34 × 3.0 × 108

120 × 103 × 1.6 × 10–19

		  = 1.04 × 10–11 m ≈ 1.0 × 10–11 m

3		  When x = x1/2 the intensity has dropped to 
half its initial value. Hence I = I0 e–μx becomes 
I
2 = I0 e–μx1/2. Taking logs of both sides gives 
ln(½) = –μx1/2 or ln 2 = μx1/2. Rearranging gives 
x1/2 = ln(2/μ).

4		  Intensity = PA = 400
0.0005 = 8.0 × 105 W m–2

5		  Intensity I = I0 e–μx = 50 × e(–1.2 × 5.0) = 0.12 W m–2

6		  The grid absorbs scattered X-rays, which 
would otherwise cloud the image.

7		  Consider the ratio of attenuation coefficients 
bone : muscle. This is approximately 6 for 
50 keV X-rays, so bone is a much better 
absorber at this energy than is muscle. At 
4.0 MeV, the ratio is less than 2, so bone and 
muscle will not appear very different on the 
image. (You could also calculate the fraction 
of X-rays absorbed by, say, 1 cm of tissue. At 
4.0 MeV, only a small fraction is absorbed, 
so the X-ray image will be flooded with 
unabsorbed X-rays.)

8		  The ratio Zbone

Zsoft tissue
 ≈ 2. Since attenuation 

coefficient μ ∝ Z3, the ratio mbone

msoft tissue
 = 23 = 8.

9		  Breathing causes movement of the body so 
that organs or bones of interest may move in 
the X-ray beam as the image is processed.

 10		  The skull has bone all round. In a 
conventional X-ray, the beam must pass 
through both sides of the skull and this 
makes it difficult to see the inner tissue. In 
a CAT scan, the inner tissue shows up more 
clearly and any damage to the skull bones 
can be pinpointed accurately.

 11	 a	 Rearrange speed v = fλ to give wavelength
λ = v

f  = 5700
2.1 × 106 = 2.7 × 10–3 m (2.7 mm)

b	 1.35 × 10–3 m ≈ 1.4 mm

 12	 a	 Mechanical to electrical
b	 Electrical to mechanical
c	 Mechanical to electrical
d	 Electrical to mechanical

 13		  Z = ρc = 1075 × 1590 = 1.71 × 106 kg m2 s–1

 14		  Ir

I0
 = (Z2 – Z1)2

(Z2 + Z1)2  = (1.34 – 1.50)2

(1.34 + 1.50)2 = 3.2 × 10–3 (0.32%)

 15		  There is a big change in acoustic impedance 
when ultrasound passes from fluid into skin, 
and from tissue into bone. These surfaces 
therefore give strong reflections. Other 
soft tissues have similar values of acoustic 
impedance and so reflections are very weak.

 16		  The brain is surrounded by solid bone which 
reflects ultrasound. Little penetrates the 
brain and hence the signal is very weak. An 
alternative is a CT scan.

 17		  Distance	= cΔt
2  = 1540 × 0.034 × 10–3

2  
		  = 0.026 m (26 mm)

 18		  X-rays are ionising radiation and hence are 
damaging to the fetus. Ultrasound carries 
very little risk because it is not a form of 
ionising radiation. (The intensity used must 
not cause heating of the baby’s tissues.)
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 19	 a	 Rearrange f0 = γB0

2π  to give gyromagnetic ratio

γ = 2πf0

B0
 = 2 × π × 42.6 × 106

1.0  = 2.68 × 108 Hz T–1

For a field of 2.5 T, f0 = γB0

2π  

= 2.68 × 108 × 2.5
2 × π  = 106.5 MHz

b	 This is also their resonant frequency 
(106.5 MHz).

 20	  
 
 
 
 
 
 
 

Time
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 21	 a	 MRI uses non-ionising RF electromagnetic 
radiation, whereas CAT scanning uses X-rays, 
which are a form of ionising radiation.

b	 CAT scans show up bone, which is poorly 
imaged by MRI.

c	 The patient’s body does not have to be cut 
open, nor do any instruments have to be 
inserted into the body.
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Chapter 1
1	 a	 distance = speed × time� [1]

= 120 × 2
60 � [1]

= 4.0 km� [1]
b	 The car’s direction of motion keeps changing. 

Hence its velocity keeps changing. In the 
course of one lap, its displacement is zero, so 
its average velocity is zero.� [2]

c	 distance travelled in 1 minute 
= 0.5 × circumference� [1]
but displacement = diameter of track� [1]
= circumference

π � [1]

= 4000 m
π  = 1270 m� [1]

2	 a	 By Pythagoras’ theorem,  
distance2 = 6002 + 8002 m2� [1]
distance =    1 000 000 = 1000 m� [1]

b	 angle at B = tan–1(800
600)� [1]

displacement = 1000 m at an angle 53° E of N
� [1]

c	 velocity = 1000
60 � [1]

= 16.7 m s–1� [1]
at an angle 53° E of N� [1]

3	 a	 distance in car = 0.25 × 60 = 15 km� [1]
total distance = 2.2 + 15 = 17.2 km� [1]

b	 By Pythagoras’ theorem, displacement  
=     2.22 + 152� [1]
= 15 200 m� [1]
at an angle = tan–1(2.2

15 )� [1]
= 8° E of N� [1]

c	 time for 2.2 km at 2.0 m s–1 = 2200
2  = 1100 s� [1]

total time = 1100 + 900 = 2000 s� [1]
d	 average speed = distance

time � [1]
= 17 200

2000 � [1]
= 8.6 m s–1� [1]

e	 average velocity = displacement
time � [1]

= 15 200
2000  � [1]

= 7.6 m s–1� [1]

4		  resultant velocity =     1.02 + 2.402� [1]
= 2.6 m s–1� [1]
at an angle of tan–1(1.0

2.4)� [1]
= 23° E of N� [1]

5	 a	 distance in a (particular) direction� [1]
b	 when athlete returns to his original position 

or the start� [1]
(direct) distance from original position zero
� [1]

6		   
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a	 straight line from t = 0, s = 0 to t = 12, s = 36�[1]
b	 straight line from t = 0, s = 0 to t = 5, s = 10� [1]

straight line from t = 5, s = 10 to t = 12, s = 38
� [1]

c	 10 s where the graphs cross� [1]

7	 a	 Each second, it travels a constant distance.�[1]
At least two examples:  
108 – 84 = 24, 84 – 60 = 24, 60 – 36 = 24 cm� [1]

b	 s = d
t  = 24

0.1� [1]
240 cm s–1� [1]

c	 108 + 2 × 24� [1]
156 cm � [1]

8	 a	 Vector quantities have direction, and scalar 
quantities do not.� [1]
One example of a vector, e.g. velocity, 
acceleration, displacement, force� [1]
One example of a vector, e.g. speed, time, 
mass, pressure� [1]
 
 
 
 
 
 
 
 
 

100 km h–1

500 km h–1

resultant

N
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b	 Correct vectors drawn and labelled� [1]
Scale stated and diagram of sufficient size
� [1]
Resultant velocity 510 (±10) km h–1� [1]
11° W of N or a bearing of 349° (±3°)� [1]

c	 0.25 × 510 = 128 ≈ 130 km 11° W of N

9	 a	  
 
 
 
 
 

15 m s–1

A

7.5 m s–1

velocity of aircra� 
B

Correct vector diagram� [1]
Velocity of aircraft in still air in easterly 
direction or calculation� [1]

b	 t = 5000
15  = 333 s or 5000

13.5  = 370 s� [1]

total time = 703 or 704 s or 703.7 s� [1]

average speed = 10 000
703.7  = 14.2 m s–1� [1]
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Chapter 2
1		  Using v2 = u2 + 2as� [1]

distance s = (v2 – u2) 
2a � [1]

= (302 – 102) 
2 × 4.0 � [1]

= 100 m� [1]

2		  Using v = u + at� [1]
final velocity = 50 – 0.50 × 100� [1]
= 0� [1]
Using s = ut + 12 at2� [1]
distance travelled = 50 × 100 – 0.5 × 0.50 × 1002

� [1]
= 2500 m� [1]
Train slows to rest and covers a distance of 
2500 m� [1]

3	 a	 Using s = ut + 12 at2� [1]
s = 20t + 0.5 × 9.8t2 = 20t + 4.9t2� [1]

b	 Substituting values of t in the equation gives
� [1]
after 2.0 s, displacement = 20.4 m ≈ 20 m� [1]
after 6.0 s, displacement = –56.4 m ≈ –56 m� [1]

c	 Substituting s = 0 gives� [1]
0 = 20t – 4.9t2� [1]
t = 20

4.9� [1]
= 4.08 s ≈ 4.1 s� [1]

4	 a	 distance travelled at constant speed 
= speed × time� [1]
= 40 × 20 = 800 m� [1]

b	 acceleration = change in speed
time taken  � [1]

= (50 – 25)
20  = 2.5 m s–2� [1]

distance travelled  
= average speed × time taken� [1]
average speed = (25 + 50)

2  = 37.5 m s–1� [1]
distance travelled = 37.5 × 20 = 750 m� [1]

c	 B must travel an extra 50 m; its additional 
speed is 10 m s–1� [1]
so time required = 50

10 = 5 s� [1]
d 	Consider car A: it travels at 40 m s–1 for 25 s� [1]

total distance travelled 40 × 2.5 = 1000 m� [1]

5	 a	 vertical component of velocity = v sin 30°� [1]
= 5.6 sin 30° = 2.8 m s–1 � [1]
Using s = ut + 12 at2 with a = g� [1]

t = 2.8
4.9 = 0.57 s� [1]

b	 horizontal component of velocity = v cos 30°
� [1]
= 5.8 cos 30° = 4.85 m s–1 ≈ 4.9 m s–1� [1]
horizontal distance = speed × time� [1]
= 4.85 × 0.57 = 2.77 m ≈ 2.8 m� [1]

6	 a	 0.2 = 12 × 9.81 × t2� [1]
= 0.202 s ≈ 0.20 s� [1]

b	 i	 v2 = u2 + 2as; 2.912 = 1.922 + 2a × 0.25� [1]
a = 9.56 m s–2 ≈ 9.6 m s–2� [1]

ii	 Air resistance� [1]
Acts in the opposite direction to the 
velocity and so reduces the acceleration.�[1]

7	 a	 i	 Ball travels upwards (or reverses direction) 
on bouncing.� [1]

ii	 In both cases, the ball is accelerating due 
to gravity only.� [1]

iii	Initial height of the ball above the ground.
� [1]

iv	Ball does not bounce as high as initial 
position. or
(Kinetic) energy is lost (as heat / internal 
energy) during the bounce.� [1]

b	 i	 v2 = u2 + 2as leading to v2 = 2 × 9.81 × 1.2� [1]
v = 4.85 m s–1 ≈ 4.9 m s–1� [1]

ii	 v2 = 2 × 9.81 × 0.8� [1]
v = 3.96 m s–1 ≈ 4.0 m s–1� [1]

iii	v = u + at leading to 4.85 = –3.96 + a × 0.16�[1]
a = 55.1 ≈ 55 m s–2� [1]
upwards direction� [1]

8	 a	 Tangent drawn at t = 0.7 s and gradient of 
graph determined� [1]
a = 0.8 (±0.2) m s–2� [1]

b	 Acceleration is constant from t = 0  
to about t = 0.5 s� [1]
Acceleration decreases from t = 0.5 s� [1]
Gradient constant from t = 0 to t = 0.5 s 
and decreases from t = 0.5 s� [1]
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c	 Area under the graph used� [1]
Correct method, e.g. trapezium rule or 
squares counted� [1]
Distance = 0.20 ± 0.01 m� [1]

d	 Random errors – the points are either side 
of the line� [1]
Systematic errors – the whole line is shifted 
up or down� [1]

9	 a	 v2 = u2 + 2as; 0 = v2 – 2 × 2 × 140� [1]
23.7 ≈ 24 m s–1� [1]

b	 t = v
s  = 23.7

60  = 0.39 s� [1]
The reaction time is approximately 0.3 s, so 
the driver was alert.� [1]

c	 100 km h–1 = 100 000
60 × 60  = 27.8 m s–1 ≈ 28 m s–1� [1]

The driver was not speeding, as the speed of 
24 m s–1 is less than the speed limit.� [1]

 10	 a	 constant gradient� [1]
b	 i	 1.55 (±0.05) s� [1]

ii	 Area under graph calculated between t = 0 
and t = 1.55 s� [1]
= 15 × 1.55

2  = 11.6 ≈ 12 m� [1]
iii	Area between t = 1.55 s and t = 4.1 s� [1]

31.8 ≈ 32 m; accept error carried forward 
from time in i� [1]

c	 i	 The initial speed of the ball or the hot-air 
balloon is 15 m s–1� [1]

ii	 The acceleration is in the opposite 
direction to the initial speed of the ball. 
or The acceleration due to gravity is 
downwards and the ball initially rises.� [1]

 11	 a	 v2 = u2 + 2as; 202 = 0 + 2 × 9.81 × s� [1]
s = 20.4 ≈ 20 m� [1]

b	 v = u + at; 20 = 0 + 9.81 × t� [1]
t = 2.04 ≈ 2.0 s� [1]

c	 distance = 80 × 2.04 = 163 m ≈ 160 m� [1]
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Chapter 3
1	 a	 average acceleration = 

change in velocity
time � [1]

= 70
0.0005 = 140 × 103 m s–2� [1]

average force = mass × acceleration� [1]
= 14 000 × 0.046 = 6440 N  
or 6.4 kN to 2 sig. figs� [1]

b	 mass = 
weight

g � [1]

= 6440
9.8  ≈ 660 kg� [1]

2	 a	 weight = mass × g� [1]
= 70 × 1.6 = 112 N� [1]

b	 resultant force = force up – force down
= 500 – 112 = 388 N upwards� [1]

c	 acceleration = resultant force
mass � [1]

= 388
70  = 5.54 m s–2 upwards� [1]

3	 a	 At first the only force is the weight� [1]
but as its speed increases viscous drag 
increases.� [1]
When viscous drag equals weight, the 
acceleration is zero and the speed is 
constant.� [1]

b	 Put rubber bands around the cylinder the 
same vertical distance apart along the 
cylinder.� [1]
Time the ball between the bands.� [1]
When terminal velocity is reached, the time 
taken between successive bands will be 
constant.� [1]

4	 a	 speed = 3 × 10–6 m
0.005 s � [1]

= 6 × 10–4 m s–1� [1]
b	 speed = 6000 m

3 × 106 s� [1]

= 2 × 10–3 m s–1� [1]
c	 speed = 8 × 10–12 m

4 × 10–9 s � [1]

= 2 × 10–3 m s–1� [1]

5	 a	 the Earth� [1]
upwards� [1]
gravitational force� [1]

b	 the Earth or the ground under the man� [1]
downwards� [1]
contact force� [1]

6	 a	 i	 F = ma = 1100 × 1.5 = 1650 N� [1]
ii	 1650 + 600 = 2250 N (so that resultant force 

is still 1650 N)� [1]
b	 s = ut + 12 at2 = 12 × 1.5 × 102� [1]

s = 75 m� [1]

7	 a	 1.5 m s–1� [1]
b	 Constant velocity is reached when weight 

= upward force due to air resistance.� [1]
Air resistance increases with speed.� [1]
Air resistance is less than the weight of the 
metal ball even at 2.5 to 3.0 m  s–1.� [1]

c	 Initial acceleration is acceleration due to 
gravity or 9.81 m s–2� [1]
Initially neither ball has any air resistance.� [1]

8	 a	 F = ma = 1200 × 82 � [1]
F = 4800 N� [1]

b	 i	 kg m s–2� [1]
ii	 kg m–1� [1]
iii	4800 = b × 502� [1]

b = 1.92 (kg m–1 or N s2 m–2)� [1]
iv	Sketch graph showing increasing gradient 

and force values marked at speeds of 0 and 
50 m s–1� [1]
Resistive force increases with speed, so 
resultant force and acceleration decrease.
� [1]

9	 a	 Mass is the amount of matter in a body.� [1]
Weight is a force� [1]
due to gravity acting on the body.� [1]

b	 For example, body moves to the Moon or 
rises above the Earth.� [1]
Amount of matter is constant, but force due 
to gravity is less on the Moon or at altitude.
� [1]

c	 mass: kg� [1]
weight: kg m s–2� [1]

 10	 a	 For a body of constant mass, the acceleration 
is directly proportional to the resultant or net 
force applied to it.� [1]
Directions of the acceleration and the 
resultant force are the same.� [1]
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b	 i	 It increases the time.� [1]
ii	 If time increases then acceleration 

decreases.� [1]
Since F = ma, when acceleration is less, 
the net force is less, and there is less force 
between the ground and the legs.� [1]
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Chapter 4
1	 a	  

 
 
 
 

4000 N

4000 N

drag

� [2]
b	 correct diagram to scale� [1]

= 6130 N + 70 N� [1] 
(allow also calculation from components)

2	 a	  
 
 
 
 
 
 

friction

contact force

weight � [1]
b	 component of weight down slope 

= weight × cos 70° or weight × sin 20°� [1]
= 1.5 × 9.8 × cos 70° = 5.03 N  
= 5.0 N to 2 sig. figs� [1]

c	 Friction balances the component of weight 
down slope (as contact force is at 90° to 
slope),� [1]
so friction = 5.03 N up the slope  
= 5.0 N to 2 sig. figs� [1]

d	 The contact force balances the component of 
weight at 90° to slope,� [1]
so contact force = weight × cos 20°� [1]
= 1.5 × 9.8 cos 20° = 13.8 N  
= 14 N to 2 sig. figs� [1]

3	 a	 Horizontal component of tension in string 1 
= tension × cos 60°� [1]
= 1.0 × cos 60° = 0.50 N to the left� [1]
Horizontal component of tension in string 2 
= tension × cos 30°� [1]
= 0.58 × cos 30° = 0.50 N to the right� [1]
These components cancel, as there is no 
resultant horizontal force.� [1]

b	 Vertical component of tension in string 1 
= tension × cos 30°� [1]
= 1.0 × cos 30° = 0.87 N upwards� [1]

Vertical component of tension in string 2 
= tension × cos 60°� [1]
= 0.58 × cos 60° = 0.29 N upwards� [1]

c	 Weight is balanced by upward components of 
tensions� [1]
= 0.87 + 0.29 = 1.16 N = 1.2 N to 2 sig. figs� [1]

d	  
 
 
 
 

1.0 N

0.58 N

weight

� [1]
e	 By Pythagoras’ theorem,� [1]

weight = 1.16 N = 1.2 N to 2 sig. figs� [1]

4		  Component of F at 90° to lever = F sin 45°� [1]
Moment of F about pivot = force × distance�[1]
= 2.0 × F sin 45° = 40 N m (from the question)�[1]
so F = 40

2 sin 45° = 28.3 N = 28 N to 2 sig. figs� [1]

5		  Taking moments about the pivot:� [1]
3.3 × 0.100 + 7.6 × 0.060 = P × 0.080� [1]
P = 0.786

0.080 � [1]
= 9.83 N = 9.8 N to 2 sig. figs� [1]

6	 a	 i	 A couple is a pair of equal and opposite 
forces that act at different points.� [1]

ii	 The torque of a force about a point is the 
product of the force and distance.� [1]
The distance is the perpendicular distance 
of the line of action of the force to the 
point.� [1]

b	 i	 rotation shown clockwise� [1]
force drawn forwards� [1]
 
 
 

axle

ground  

force exerted
by road on wheels

ii	 zero� [1]
The car moves at constant speed. or 
The wheel turns at a constant rate.� [1]

iii	force = torque
radius  = 200

0.29  = 690 N� [1]

7	 a	 The centre of gravity of an object is the point 
where all the weight of the object� [1]
may be considered to act.� [1]
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b	 i	 Taking moments about the fixed end of the 
flagpole:
Sum of clockwise 

moments  = Sum of anticlockwise 
moments

 

(25 × 9.81) × 1.5	 = Tx� [1]
where x = perpendicular distance of the 
line of action of the tension from the fixed 
end of the flagpole, given by
x = 2.5 sin 30° = 1.25 m� [1]
(25 × 9.81) × 1.5 = T × 1.25� [1]
T = 25 × 9.81 × 1.5

1.25  = 294 ≈ 290 N� [1]
ii	 The net vertical force = 0

Vertical component of force at fixed end 
+ vertical component of T = weight
Vertical component of force at fixed end 
+ 294 sin 30° = 25 × 9.81� [1]
Vertical component of force ≈ 98 N� [1]

8	 a	 No net / resultant force� [1]
No net / resultant moment� [1]

b	 i	 Torque of the couple about the centre 
= 30 × 90 = 2700 N cm� [1]

ii	 Moment of force about the centre 
= (T × 24) N cm� [1]
For equilibrium: 24T = 2700� [1]
T = 113 ≈ 110 N� [1]

9	 a	 The torque of a force about a point is the 
product of the force and distance.� [1]
The distance is the perpendicular distance of 
the force to the point.� [1]

b	 Tension in string B  
= vertical component of A = 8.0 sin 50°� [1]
TB = 6.13 ≈ 6.1 N� [1]
Tension in string C  
= horizontal component of A = 8.0 cos 50°� [1]
TC = 5.14 ≈ 5.1 N� [1]

 10	 a	 No rotation� [1]
No movement in any direction� [1]

b	 Two tension forces in the cord� [1]
Closed triangle of forces or parallelogram of 
forces, including weight� [1]
 
 
 
 tension in cord

tension in cord

weight of
picture  

c	 i	 Vertical component = 45 sin 50°  
= 34.5 ≈ 35 N� [1]

ii	 Weight = sum of vertical components 
= 2 × 34.5 = 69 N� [1]
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Chapter 5
1	 a	 Loss of gravitational potential energy  

→ gain in kinetic energy� [1]
b	 Kinetic energy → heat (in the brakes)� [1]
c	 Loss of gravitational potential energy  

→ gain in kinetic energy� [1]

2	 a	 i	 Horizontal distance moved  
= 0.5 × 16 = 8.0 m� [1]
Horizontal component of force 
= 200 cos 30° = 173 N� [1]
Work done = 173 × 8.0 = 1.39 × 103 J ≈ 1.4 kJ
� [1]

ii	 Weight acts at 90° to displacement� [1]
so work done = 0 J� [1]

iii	Contact force acts at 90° to displacement
� [1]
so work done = 0 J� [1]

b	 86.6 ≈ 87 W

3		  Truck: k.e. = 12 mv2 = 9 MJ� [1]
Dust particle: k.e. = 12 mv2 = 14 MJ� [1]
The dust particle has greater kinetic energy 
than the truck.� [1]

4	 a	 Gain in g.p.e. = mgh� [1]
= 950 × 9.8 × 50 = 4.66 × 105 J ≈ 4.7 × 105 J� [1]

b	 time = work done
power � [1]

t = 4.66 × 105

4000  = 116.5 ≈ 120 s� [1]
c	 Wasted power = 2.9 kW� [1]

Wasted energy = power × time� [1]
= 2900 × 116.5 = 3.4 × 105 J� [1]

5	 a	 Rate at which work is done; W� [2]
b	 kinetic energy = 12 × mass × velocity2� [1]

c	 power = gain in k.e.
time taken � [1]

= 
1
2 × 1100 × 182

25  = 7130 ≈ 7.1 kW� [1]

6	 a	 i	 Vertical distance = 40 sin 5° = 3.49 m� [1]
p.e. lost	= mgh = 90 × 9.81 × 3.49� [1]
	 = 3078 ≈ 3100 J� [1]

ii	 k.e. increase	= 12 mv2 = 12 × 90 × 122� [1]
	 = 6480 J� [1]

b	 i	 Energy produced by cyclist  
= 6480 – 3078 = 3402 J� [1]
useful power output = energy

time  = 3402
67 � [1]

power = 50.8 ≈ 51 W� [1]
ii	 Energy is wasted� [1]

as work done against friction in the axle / 
chain or against air resistance.� [1]

7	 a	 Work is the product of force and distance 
moved.� [1]
The distance moved is in the direction of 
the force.� [1]

b	 i	 As he falls, his potential energy decreases, 
his kinetic energy increases and internal 
energy (thermal energy / heat) is produced 
as work is done against friction.� [1]
The decrease in p.e. = increase in k.e. 
+ internal energy produced.� [1]

ii	 Graph with axes labelled and Ep decreasing 
linearly from 1000 J to 0� [1]
Ek increasing from 0 when h = 0� [1]
Ek increases as a straight line to a value 
below 1000 J at h = 15 m� [1]
 
 
 
 
 
 
 

1000

En
er

gy
 / J

h / m15

Ep
Ek

8	 a	 k.e. = work done on body to increase speed 
from 0 to v = F × s� [1]
since F = ma and v2 = u2 + 2as and u = 0, s = v2

2a
k.e. = ma × v2

2a = 12 mv2� [1]

b	 i	 k.e. = 12 mv2 = 12 × 800 × 202 = 160 000 J� [1]

power = energy
time  = 160 000

6  = 2.67 × 104 

≈ 2.7 × 104 W� [1]
ii	 Air resistance increases (with speed).� [1]

Net driving force less or more energy 
(per second) wasted, so less available to 
increase k.e.� [1]
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9	 a	 i	 The potential energy of a body is the 
energy stored in the body by reason of its 
position or shape.� [1]

ii	 Gravitational p.e. is energy due to position 
in a gravitational field.� [1]
Elastic p.e. is energy contained in a 
stretched or squashed object.� [1]
or
When an object is raised above the Earth’s 
surface its gravitational p.e. increases.� [1]
When a positively charged object is 
brought near another positively charged 
object its electric p.e. increases.� [1]

(maximum [2])
b	 i	 mass �= density × volume 

= 1030 × 1.4 × 106 × 10.0 = 1.442 × 1010  
≈ 1.4 × 1010 J� [1]

ii	 Water falls an average distance of 5.0 m 
when released through turbines.
p.e. lost = mgh = 1.442 × 1010 × 9.81 × 5.0 
(accept also use of h = 10 m)� [1]
p.e. lost = 7.07 × 1011 ≈ 7.1 × 1011 J  
(or 1.4 × 1012 J if h = 10 used)� [1]

iii	Energy output = 0.5 × (value in ii) 
= 3.5 × 1011 J (or 7.1 × 1011 J if h = 10 used)� [1]

power = energy
time  = 3.5 × 1011 J

6 × 60 × 60

(or 7.1 × 1011 J
6 × 60 × 60 if h = 10 used)� [1]

power = 1.64 × 107 ≈ 1.6 × 107 W 
(or 3.3 × 107 W if h = 10 used)� [1]
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Chapter 6
1		  The law of conservation of momentum 

applies if the Earth is considered to rise as 
the ball falls. The momentum of the Earth 
upwards equals the momentum of the ball 
downwards.� [1]
The weight of the ball has an equal and 
upwards force on the Earth due to Newton’s 
third law.� [1]

2	 a	 Momentum of ball before striking wall  
= mass × velocity  
= 2 × 3.0 = 6.0 kg m s–1 towards the ball� [1]
Momentum after striking the wall 
= 6.0 kg m s–1 away from the wall� [1]
Change in momentum of ball = 12 kg m s–1 
away from the wall.� [1]

b	 There is no change in kinetic energy as the 
ball’s speed and mass are unchanged.� [1]

3	 a	 Linear momentum = mass × velocity� [1]
b	 [units of mass] × [units of velocity]  = kg m s–1

� [1]
c	 Using v2 = 2as,

v =    (2 × 3.5 × 40) =    280 = 16.7 m s–1� [1]
so momentum = mass × speed = 900 × 16.7  

= 1.5 × 104 kg m s–1� [1]
d	 Combined momentum to left 

= 3.0 × 4.0 – 2.0 × 4.0 = 4.0 kg m s–1� [1]
Combined mass = 8.0 kg� [1]
So velocity after collision 
= 4.0

8.0 = 0.50 m s–1 to the left� [1]

4	 a	 i	 In an elastic collision, both momentum 
and kinetic energy are conserved.� [1]

ii	 In an inelastic collision, momentum is 
conserved but not kinetic energy.� [1]

b	 Change in momentum  
= momentum after – momentum before� [1]
= 0.35 × 2.5 – 0.35 × (–2.8)  
= 1.855 kg m s–1 ≈ 1.9 kg m s–1� [1]

c	 When the table (plus the Earth) is also 
considered, then the initial momentum of the 
ball is equal to the final momentum of the 

ball added to the momentum of the snooker 
table, and so momentum is conserved.� [1]

5	 a	 Change in momentum  
= mass × change in velocity� [1]
= 1100 × (–24) = –26 400 N s ≈ –26 000 N s� [1]

b	 Force = change in momentum
time � [1]

= 26 400
20  = 1320 N ≈ 1300 N� [1]

c	 Average speed during braking = 12 m s–1� [1]
so distance travelled in 20 s = 12 × 20 = 240 m
� [1]

6	 a	 Momentum = mass × velocity� [1]
= 0.10 × 0.40 = 0.040 kg m s–1� [1]

b	 For each marble, component of momentum 
in x-direction = half of original momentum 
= 0.020 kg m s–1� [1]
so momentum of one marble = 0.020

sin 45° 
= 0.0283 kg m s–1� [1]
and velocity = momentum

mass  = 0.0283
0.10  = 0.283 m s–1 

≈ 0.28 m s–1� [1]
c	 k.e. before = 12 mv2 = 12  × 0.10 × 0.402 = 0.0080 J

� [1]
k.e. after = 2 × 12  × 0.10 × 0.2832 = 0.0080 J� [1]

7	 a	 Initial momentum of ball = 0.16 × 25 
= 4.0 kg m s–1� [1]
Change in momentum = 4.0 – (–4.0) 
= 8.0 kg m s–1� [1]

b	 force = change in momentum
time  = 8

0.003 � [1]
= 2667 N ≈ 2700 N� [1]

c	 The bat slows down.� [1]
The law of conservation of momentum 
requires that the change in momentum of the 
ball and of the bat are equal but in opposite 
directions.� [1]
Energy is neither created nor destroyed, 
but thermal energy (heat / internal energy) 
and sound are created from the drop in k.e. 
(of the bat).� [1]
The impact is non-elastic.� [1]

8	 a	 The total momentum before the collision 
is equal to the total momentum after the 
interaction.� [1]
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The system is closed.  
or There are no external forces acting.� [1]

b	 i	 final momentum = initial momentum
0.35v = 0.25 × 30� [1]
v = 21.4 ≈ 21  m s–1� [1]

ii	 Change in momentum 
= 0.25 × 30 – 0.25 × 21.4� [1]
change in momentum = 2.14 ≈ 2.1 kg m s–1 
or 2.15 ≈ 2.2 kg m s–1� [1]

iii	Change in total kinetic energy  
= 12 × 0.25 × 302 – 12 × 0.35 × 21.42� [1]
change in total k.e. = 32.4 ≈ 32 J� [1]

iv	The arrow stops and the ball moves off 
with a speed of 30 m s–1� [1]
Relative speed remains unaltered in an 
elastic collision, 30 m s–1� [1]

9	 a	 i	 The total kinetic energy before the collision 
is equal to the total kinetic energy after the 
collision.� [1]

ii	 In a completely inelastic collision, the 
maximum amount of kinetic energy is 
lost (subject to the law of conservation of 
momentum, which must be obeyed).� [1]

b	 i	 Momentum is conserved, as there are no 
external forces / the system is closed.� [1]
Momentum of alpha-particle in one 
direction must equal that of uranium 
nucleus in the exactly opposite direction 
for the change to be zero.� [1]

ii	 6.65 × 10–27 × vα + 3.89 × 10–25 × vx = 0� [1]
iii	vα

vx
 = –58.5 ≈ –58 or –59

� [1]

 10	 a	 Momentum and kinetic energy� [1]
b	 i	 Momentum = 0.014 × 640 = 8.96  

≈ 9.0 kg m s–1� [1]
ii	 Bullets leave with momentum forwards 

and gun has equal momentum backwards.
� [1]
To stop motion / momentum of the gun, 
the soldier must provide a force.� [1]

iii	F = 
Δp
Δt ; 140 = n × 8.96� [1]

Number of bullets per second = 15.6 or 
15 or 16.� [1]

 11	 a
Change in 
momentum / 
kg m s–1

Initial kinetic 
energy / J

Final kinetic 
energy / J

Truck X 6.0 × 104 2.5 × 105 4.0 × 104

Truck Y 6.0 × 104 1.5 × 104 1.35 × 105

One mark for each correct change in 
momentum.� [2]
One mark for correct kinetic energy values 
for X.� [2]
One mark for correct kinetic energy values 
for Y.� [2]

b	 Total initial k.e. = 2.65 × 105 J  
and total final k.e. = 1.75 × 105 J� [1]
Collision is not elastic, because the total k.e. 
has decreased in the collision.� [1]

c	 Force = 
Δp
Δt  = 6.0 × 104

1.6 � [1]

3.75 × 104 ≈ 3.7 or 3.8 × 104 N� [1]
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Chapter 7
1	 a	 i	 Density is the mass per unit volume of a 

substance.� [1]
ii	 Base units kg m–3.� [1]

b	 i	 Pressure is the normal force acting per unit 
cross-sectional area.� [1]

ii	 Base units given by N m–2 �= kg m s–2 m–2  
= kg m–1 s–2.� [1]

2		  The y-axis should be labelled F / N and the 
x-axis labelled extension / m.� [1]
Your graph should have a straight line from 
the origin to the point where force = 5 N and 
extension = 0.25 m.� [1]
After the straight line, the graph continues 
with a positive gradient but the gradient 
decreases.� [1]

3		  Your diagram should show the two springs 
connected one below the other.� [1]
Extension of one spring = load

spring constant  � [1]

= 2.0
20  = 0.10 m� [1]

Each spring has the same force, so the same 
extension.� [1]
So total extension = 0.20 m� [1]

4	 a	 Cross-sectional area = πr2 = 1.96 × 10−7 m2  
≈ 2.0 × 10−7 m2� [1]

b	 Weight = stress × area� [1]
= 2.0 × 108 × 1.96 × 10–7 = 39.3 N ≈ 39 N

� [1]
c	 Strain = extension

length  � [1]

= 0.050
1.0  = 0.050 or 5.0%� [1]

d	 Young modulus = stress
strain � [1]

= 2.0 × 108

0.050  = 4.0 × 109 Pa� [1]

5	 a	 For the point at the top of the straight line:
stress = force

area  = 10.0
1.5 × 10–7 = 6.67 × 10–7 Pa� [1]

strain = extension
original length  = 0.8 × 10–3

2.0  = 0.4 × 10–3� [1]

Young modulus = stress
strain  = 1.67 × 1011 Pa 

≈ 1.7 × 1011 Pa� [1]

b	 Energy stored = ½ × force × extension� [1]
= 0.5 × 10.0 × 0.8 × 10–3 = 4.0 × 10–3 J� [1]

c	 Work done = average force × extension� [1]
= 7.5 N × 0.4 × 10–3 m = 3.0 × 10–3 J� [1]

6	 a	 Use a liquid with a high density, e.g. mercury
� [1]
and have long tubes in the manometer.� [1]

b	 If the area of the tube increases, then the 
weight of liquid above any point increases 
in proportion. Because pressure = force

area , 
increasing both the force and the area by the 
same factor leaves pressure unchanged.� [2]

7	 a	 P has largest Young modulus.� [1]
P has steepest gradient or largest value of 
stress / strain (before breaking).� [1]

b	 Labelled diagram showing wire and weights 
used to stretch wire.� [1]
Method of viewing extension, e.g. travelling 
microscope and marker.� [1]
Series of weights and extensions noted.� [1]
Diameter of wire measured.� [1]
Initial length of wire measured to ‘marker’.�[1]
Graph of force (y-axis) against extension 
(x-axis) drawn.� [1]
Young modulus E = FL

Ax
= gradient of force–extension graph × length

area  
� [1]

8	 a	 Tensile stress is the ratio of the force to cross-
sectional area in a wire.� [1]
Tensile strain is the ratio of extension to 
initial length.� [1]

b	 i	 stress = 60
1.3 × 10–6� [1]

= 4.62 × 107 ≈ 4.6 × 107 Pa� [1]
ii	 strain = stress

E  = 4.62 × 107

2.1 × 1011 � [1]
= 2.2 × 10–4� [1]

iii	extension = strain × original length 
= 2.2 × 10–4 × 1.6� [1]

extension = 3.52 × 10–4 ≈ 3.5 × 10–4 m� [1]

9	 a	 Tensile� [1]
Railway line expands on heating, reducing 
stress.
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or Railway line becomes unstressed when 
line expands with temperature and stresses 
are less than for higher temperatures.� [1]

b	 i	 stress = F
A  = 2.6 × 105

5.0 × 10–3 = 5.2 × 107� [1]

strain = stress
E  = 5.2 × 107

2.1 × 1011� [1]

= 2.48 × 10–4 ≈ 2.5 × 10–4 m (0.025 %)� [1]

ii	 temperature rise = 2.48 × 10–4

1.4 × 10–5  � [1]
= 17.7 ≈ 18 °C� [1]

 10	 a	 E	= gradient of the graph� [1]

	 = 1.2 × 109

8.0 × 10–3� [1]

	 = 1.5 × 1011 Pa� [1]
b	 From the graph, strain = 4.0 × 10–3� [1]

strain = x
L

x = 4.0 × 10–3 × 3.5 = 1.4 × 10–2 m (1.4 cm)� [1]

c	 Breaking stress = breaking force
cross-sectional area � [1]

breaking force = 1.52 × 109 × [π × (0.42 × 10–3)2]
� [1]
= 842 ≈ 840 N� [1]

d	 At 0.6 GPa, force
= 0.6 × 109 × [π × (0.42 × 10−3)2] = 333 N� [1]
Energy stored = 12 Fx = 12 × 333 × 1.4 × 10−2� [1]

	 = 2.33 ≈ 2.3 J � [1]

 11	 a	 i	 The spring constant or the stiffness of the 
spring� [1]
ii	 The energy stored in the spring� [1]

b	 i	 energy stored = 12 kx2 = 12  × 80 × 0.062� [1]
	 = 0.144 ≈ 0.14 J� [1]

ii	 The law of conservation of momentum 
must be obeyed.� [1]
The momentum of each trolley must be 
equal (but opposite) and, as momentum = 
mv and the masses are equal, then speeds 
must be the same.� [1]

iii	2 × (1
2 mv2) = 0.144� [1]

v = 0.60 m s–1� [1]

 12	 a	 i	 mass = density × volume = ρAh� [1]

ii	 pressure = 
force or weight of liquid

area � [1]

pressure = 
ρAhg

A  = ρhg� [1]

b	 i	 height difference in manometer  
= 60 cm = 0.60 m� [1]
pressure difference = ρhg  
= 1000 × 0.6 × 9.81  
= 5886 ≈ 5.9 × 103 Pa� [1]

ii	 force or weight = pressure × area  
= 5886 × 0.05� [1]
= 294 ≈ 290 N� [1]

 13	 a	 P	 = ρhg = 1000 × 0.5 × 9.81� [1]
	 = 4905 ≈ 4900 Pa� [1]

b	 At the same depth in the same liquid. or If 
pressure is different, liquid would flow from X 
to Y (and there is no depth difference).� [1]

c	 Force down on base = pressure at X or Y 
multiplied by area of base� [1]
The weight of the liquid is the downwards 
force on the base minus the upwards force 
on the top horizontal surface in the liquid. or 
Force down on base assumes liquid is all of 
height 0.5 m above base but container has 
some parts with water of depth only 0.3 m.�[1]

 14	 a	 The weight of the air above 1 m2 of area 
is different between the bottom of the 
mountain and the top.� [1]

b	 i	 Liquid Y has a smaller height difference 
(50 cm) to the boundary than does liquid X 
(60 cm).� [1]
Pressure is the same at the 20 cm mark 
on both sides, so the smaller volume of Y 
has the same weight (and hence mass) as 
liquid X.� [1]

ii	 (ρhg)Y = (ρhg)X� [1]
800 × 0.5 × 9.81 = ρX × 0.6 × 9.81� [1]
ρX = 666 ≈ 670 kg m−3� [1]

iii	Weight due to Y and 10 cm of X = weight 
due to 70 cm of X.� [1]

iv	ρhg = 666 × 9.81 × 0.7� [1]
pressure = 4580 ≈ 4600 Pa� [1]
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Chapter 8
1	 a	 The foil is positively charged and experiences 

a force in the same direction as the electric 
field.� [1]

b	 The foil will become negatively charged� [1]
and will experience a force in the opposite 
direction to the field.� [1]

2		  Field strength E = F
Q � [1]

= 4.4 × 10–13 V
8.8 × 10–17 C

 = 5000 N C–1� [1]

3		  p.d. V = E × d� [1]
= 4000 × 0.04 = 160 V� [1]

4	 a	 Separation d = V
E  � [1]

= 2400
3.0 × 104 = 0.08 m = 8.0 cm� [1]

b	 Field strength E = V
d  � [1]

= 2400
0.02  = 1.2 × 105 V m–1� [1]

5		  The field is directly proportional to the p.d., so 
doubling the p.d. doubles the field strength.�[1]
The field strength is inversely proportional 
to the plate separation, so reducing the 
separation by a factor of 3 trebles the field 
strength.� [1]
Therefore the electric field strength is 
increased by a factor of 6.� [1]

6	 a	  
 
 
 
 
 
 
 
 
 

Five good lines, not touching, good shape� [2]
(three good, not touching and good shape�[1])
Arrows in correct direction� [1]

b	 The positive charge on the sphere induces 
negative charges on the plate.� [1]

The opposite charges attract.� [1]
c	 i	 The sphere would still be attracted to the 

plate.� [1]
The negative charge on the sphere now 
induces positive charges on the plate.� [1]

ii	 The field direction would reverse.� [1]
(but any indication that the shape changes 
� [0])

7	 a	 A series of parallel lines between the plates� [1]
Arrows vertically downwards� [1]

b	 Vertically downwards� [1]
c	 6.4 × 10–14 N� [1]
d	 E = F

q = 6.4 × 10–14

1.6 × 10–19� [1]
E = 400 000 V� [1]

e	 E = V
d  leading to

V = dE = 400 000 × 2.5 × 10–2� [1]
= 10 000 V� [1]

8	 a	 Electric field strength is  
force per unit charge� [1]
per unit positive charge� [1]

b	 E = V
d  = 5.0 × 106

8.0 × 10–2� [1]

F = EQ = ( 5.0 × 106

8.0 × 10–2) × 1.6 × 10–19� [1]

F = 1.0 × 10–11 N� [1]
c	 W = FΔx

= 1.0 × 10–11 × 8.0 × 10–2� [1]
work done = 8.0 × 10–13 J� [1]

d	 8.0 × 10–13 J� [1]
e	 Ek = 12 mv2 = 8.0 × 10–13� [1]

v2 = 2 × 8.0 × 10–13

1.7 × 10–27 � [1]

v = 3.1 × 107 m s–1� [1]

9	 a	 i	 Arrows from the inner electrode to the 
outer electrode.� [1]

ii	 Lines are closer together.� [1]
b	 ΔV = EΔx = 5.0 × 106 × 1.25 × 10–3� [1]

ΔV = 6250 V� [1]
c	 Given that E = 5.0 × 106 N C–1 (or 5.0 × 106 V m–1), 

in a distance of 4.0 µm the potential drops 
5.0 × 106 × 4.0 × 10–6 V� [1]
potential drop = 20 V� [1]
(Other routes are possible)
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Chapter 9
1		  Q	= It� [1]

	 = 0.150 × 40 × 60� [1]
	 = 360 C� [1]

2		  t	 = QI  � [1]

	 = 2000
40  = 50 s� [1]

3		  Q	= It� [1]
	 = 30 × 103 × 2000 × 10–6� [1]
	 = 60 C� [1]

4	 a	 I	 = VR = 4.5
15  � [1]

	 = 0.30 A� [1]
b	 R	= VI  = 230

6.5  � [1]
	 = 35 Ω� [1]

c	 V	 = IR = 2.4 × 3.5� [1]
	 = 8.4 V� [1]

5	 a	 Q	= It = 2.4 × 10 × 60� [1]
	 = 1440 C� [1]

b	 W	= QV = 1440 × 6.0� [1]
	 = 8640 J� [1]

6		  W	= QV = 1.6 × 10–19 × 50 × 10–3� [1]
	 = 8.0 × 10–15 J� [1]

7		  Current taken by the hairdryer = PV  = 450
120 � [1]

= 3.75 A� [1]
So fuse taken is 5 A, the nearest above the 
supplied current.� [1]

8	 a	 i	 Arrow from left to right� [1]
ii	 Arrow (and label) from left-hand electrode 

to positive terminal or from negative 
terminal to right-hand electrode� [1]

b	 i	 Charge �= charge per ion × number of ions 
= 1.6 × 10–19 × 3.6 × 1016� [1]

charge	= 5.76 × 10–3 ≈ 5.8 × 10–3 C� [1]

ii	 I = ΔQ
Δt  = 5.8 × 10–3

8.0 × 60 � [1]

I = 0.000 012 A = 12 µA� [1]

9	 a	 Recognition that current through 
milliammeter = current through tube� [1]
Q = It = 4.5 × 10–3 × 3 × 60� [1]
Q = 0.81 C� [1]

b	 n = total charge
charge per electron = 8.1 × 10–1

1.6 × 10–19� [1]

n = 5.06 × 1018 ≈ 5.1 × 1018� [1]
Correct powers of 10 throughout� [1]

c	 W = VQ = 75 × 1.6 × 10–19� [1]
W = 1.2 × 10–17 J� [1]

 10	 a	 Electron number density n = number of 
atoms in 1 m3 = number of atoms in 8900 kg
� [1]
= 8900 × 6.0 × 1026

54
 = 9.89 × 1028 m–3 ≈ 1029 m–3� [1]

b	 Drift velocity v = I
nAe � [1]

= 3.5 × 10–3 
(9.9 × 1028 × 5.0 × 10–8 × 1.6 × 10–19)

� [1]

= 4.4 mm s–1� [1]

 11	 a	 The potential difference across the terminals 
of a cell is the work done per coulomb of 
charge in the external circuit.� [1]
The e.m.f. of a cell is the work done per 
coulomb of charge in the complete circuit.� [1]

b	 i	 Q = It = 100 × 3600� [1]
Q = 360 000 C� [1]

ii	 W = VQ = 12 × 360 000� [1]
W = 4.3 × 106 J� [1]

c	 R = V2 
W � [1]

R = 122

27 � [1]
R = 5.33 ≈ 5.3 Ω� [1]

 12	 a	 W = VQ = 1000 × 3600� [1]
W = 3600 000 J = 3.6 MJ� [1]

b	 i	 I = PV =  9500
230 � [1]

I = 41.3 ≈ 41 A� [1]
ii	 Very large current could cause heating of 

wires or voltage drop on sockets.� [1]
iii	50 A (or any value up to 100 A)� [1]

c	 W = Pt = 9500 × 5 × 60� [1]
W = 2.85 ≈ 2.9 MJ� [1]
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Chapter 10
1	 a	 W = 3.6 A to the right� [1]

b	 X = 4.3 – 2.4 = 1.9 A downwards� [1]
c	 Y = 4.8 – 2.7 = 2.1 A to the left� [1]
d	 Z = 0� [1]

2		  X = 6.5 – 2.0 = 4.5 mA to the right� [1]
Y = 4.5 – 4.2 = 0.3 mA downwards� [1]

3	 a	 X = 2.2 – 1.4 = 0.8 V� [1]
b	 X = 6.3 + 2.4 – 5.0 = 3.7 V� [1]
c	 X = 6.0 – 2.4 – 1.4 = 2.2 V� [1]
d	 X = 4.3 + 4.7 = 9.0 V� [1]

Y = X = 9.0 V� [1]

4	 a	 Current in resistor I = 1.8
220  = 8.2 mA� [1]

b	 p.d. across lamp V = 6.0 – 1.8 = 4.2 V� [1]
c	 Resistance = VI  = 6.0

0.0082 = 730 Ω� [1]

d	 Charge	= It = 0.0082 × 60� [1]
	 = 0.492 C� [1]
Number of electrons	= Q

e  = 0.492
1.6 × 10–19� [1]

	 = 3.1 × 1018� [1]

5	 a	 Current in Y = 2.0 – 0.5 = 1.5 A� [1]
b	 p.d. across Y = 0.5 × 6.0 = 3.0 V� [1]

so resistance of Y = 3.0
1.5  = 2.0 Ω� [1]

c	 p.d across X = 12 – 3.0 = 9.0 V� [1]
so resistance of X = 9.0

2.0  = 4.5 Ω� [1]

6	 a	 The potential difference across the terminals 
of a battery is the work done per coulomb of 
charge in the external circuit.� [1]
The e.m.f. of a battery is the work done per 
coulomb of charge in the complete circuit.� [1]

b	 i	 0.75 A� [1]
ii	 V	= IR = 0.75 × 12� [1]

	 = 9.0 V� [1]
iii	Use the circuit loop including both 

batteries and the 3 Ω resistor:
9 = E2 + (1 × 3)� [1]
E2 = 6 V� [1]

iv	I	= VR = 6
12� [1]

	 = 0.5 A� [1]

7	 a	 The ammeter goes in the main circuit.� [1]
It must have low resistance so little energy is 
lost / small p.d. across it.� [1]

b	 i	 Resistance of combined voltmeter and 
400 Ω resistor = ( 1

1200 +  1
400)–1� [1]

resistance = 300 Ω� [1]
Current in the circuit = 9.0

300  = 0.030 A� [1]
Potential drop across 100 Ω resistor 
= 0.030 × 100 = 3.0 V, therefore  
e.m.f. = 9.0 + 3.0 = 12.0 V� [1]

ii	 New resistance of combination 
= ( 1

12 000 +  1
400)–1 = 387 Ω� [1]

New current = 12.0
487  = 0.0246 A� [1]

Potential drop across combination  
= 387 × 0.0246 = 9.53 ≈ 9.5 V� [1]

iii	The voltmeter is in parallel with the main 
circuit� [1]
so it reduces the resistance of any 
combination it is in, as shown in answers b 
i and b ii above.� [1]

8	 a	 Resistance is the potential difference across a 
component divided by the current through it.
� [1]

b	 Resistance of upper arm = (40 + 20) = 60 Ω� [1]
Resistance of lower arm = ( 1

60  +  1
40 )–1 + 96 

 = 24 + 96 = 120 Ω� [1]
Resistance of network = ( 1

60  +  1
120)–1 = 40 Ω� [1]

c	 Total potential difference across whole lower 
arm = 6.0 V� [1]
p.d. across parallel part = 24

120 × 6.0 = 1.2 V� [1]

Current through 60 Ω resistor = 1.2
60  = 0.02 A� [1]

Answers to EOC questions



Answers to end-of-chapter questionsCambridge International AS Level Physics

Cambridge International AS and A Level Physics © Cambridge University Press 2014

Chapter 11
1	 a	 i	 When p.d. = 2.0 V, current I = 0.25 A� [1]

so resistance R = 2.0
0.25 = 8 Ω� [1]

ii	 resistance = 5.0
0.5 = 10 Ω� [2]

b	 A filament lamp� [1]

2	 a	 Graph showing a current greater than zero at 
0 °C, with a positive gradient; it may or may 
not be linear.� [1]

b	 Use the graph as a calibration graph. Keeping 
the voltage across the thermistor constant, 
place the thermistor at the point where the 
temperature is to be measured.� [1]
Read the current and convert to a 
temperature using the calibration graph.� [1]

3	 a	 The number density of free electrons is very 
high in copper.� [1]
In silicon the number density of free 
electrons is very much less (a million times).
� [1]

b	 In a metallic conductor such as copper, the 
vibration of the ions increases their effective 
cross-section to the migrating electrons.� [1]
The higher the temperature, the more 
vibration, hence the greater the effective 
cross-section and the more collisions there 
are between the electrons and the ions. This 
reduces the mean drift velocity.� [1]
In semiconductors, thermal energy gives 
electrons sufficient energy to escape from 
their parent atoms.� [1]
The greater the temperature, the greater the 
number of electrons that can escape, so the 
more charge carriers there are and the lower 
the resistance.� [1]

4	 a	 Resistance = ρl
A  = 1.3 × 10–8 × 1.5

0.008 × 10–6  � [1]
= 2.4 Ω� [1]

b	 l = R A
ρ  = 30 × 8.0 × 10–9 

1.3 × 10–8  � [1]
= 18.5 ≈ 18 m� [1]

5	 a	 V	 = IR = 0.48 × 5� [1]
	 = 2.4 V� [1]

b	 i	 Current = 0.72 – 0.48 = 0.24 A� [1]
ii	 0.24 A� [1]

c	 Resistance of the thermistor decreases� [1]
so circuit resistance decreases� [1]
so ammeter reading increases.� [1]

6	 a	 The atoms vibrate more� [1]
so their effective cross-sectional area 
increases and there are more collisions.� [1]

b	 Cross-sectional area� [1]
Material of which the wire is made� [1]

c	 i	 R	= VI  = 1.5
0.24 � [1]

	 = 6.25 Ω� [1]

ii	 R = ρl
A  so A = 1.69 × 10–8 × 5 

6.25 � [1]

A = 1.35 × 10–8 m2� [1]
d =      4A

π  = 1.3 × 10–4 m� [1]
d	 Less area open to air� [1]

Less cooling, therefore temperature rises.� [1]
Current decreases.� [1]

7	 a	 R	= ρl
A  and A = thickness × width, so t =  ρl

Rw � [1]

t	 =  2.3 × 103 × 36 × 10–3

1.1 × 106 × 32 × 10–3  � [1]

	 = 0.0023 m (2.3 mm)� [1]
b	 I	 = VR = 12

1.1 × 106 � [1]

	 = 1.1 × 10–5 A� [1]
c	 Resistance would decrease.� [1]

Current would increase.� [1]
Silicon wafer would get even hotter, with 
avalanche effect creating more and more 
charge carriers.� [1]

8	 a	  
 
 
 
 

 i

ii

b	 Diode has very low resistance (in forward 
direction), so large current.� [1]
Heating would lead to damage to diode / 
supply.� [1]

c	 R	= VI   = 1.4
20 × 10–3 � [1]

	 = 70 Ω� [1]
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9	 a	 The current through the resistor is 
proportional to the p.d. across it� [1]
at constant temperature.� [1]

b	 i	 Straight horizontal line (assuming V is on 
x-axis)� [1]

ii	 As above, but at a higher resistance.� [1]
iii	Both at a (slightly) higher level.� [1]

c	 R ∝ length:
2 × length → 2 × resistance� [1]
R ∝ 1

cross-sectional area:
2 × diameter → 4 × area → 14 × resistance� [1]
new resistance = 2 × 14 = 12 × old resistance� [1]
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Chapter 12
1	 a	 Terminal p.d. = 2.5 × 0.30 = 0.75 V� [1]

There is work done inside the cell against 
the internal resistance or there is a voltage 
(lost volts) across the internal resistance.� [1]

b	 E = V + Ir� [1]
1.5 = 0.75 + (2.5 × r)� [1]
2.5r = 0.75, so r = 0.30 Ω� [1]

c	 i	 Power P = I2R = 2.52 × 0.30 = 1.875 ≈ 1.88 W
� [1]

ii	 Power for 0.5 Ω:
total resistance R + r = 0.80 Ω;
current = 1.5

0.80 = 1.875 A;
power = 1.8752 × 0.50 = 1.76 W� [2]
Power for 0.2 W:
total resistance R + r = 0.50 Ω;
current = 1.5

0.580 = 3.0 A;
power = 3.02 × 0.50 = 0.45 W
Both are less than 1.88 W.� [2]

2	 a	 i	 The test cell is the wrong way round� [1]
so he must reverse it.� [1]

ii	 At the balance point, the ammeter reading 
is zero.� [1]

b	 e.m.f.
1.434 = 22.5

33.6 so e.m.f.	= 1.434 × 22.5
33.6 � [1]

		  = 0.933 V� [1]

3	 a	 The resistance due to the work done in 
driving current through the cell� [1]
equals the ‘lost volts’ / current.� [1]

b	 i	 E	= I(R + r)� [1]
	 = 0.625(2 + r) = 0.341(4 + r)� [1]
r	 = 0.40 Ω� [1]

ii	 Substitution into E = I(R + r) so E = 1.50 V� [1]
c	 Internal resistance is too high.� [1]

Maximum current < 4 A� [1]

4	 a	 The e.m.f. of a cell is the work done per 
coulomb of charge� [1]
in the complete circuit.� [1]

b	 When there is no / negligible current through 
the cell, there is no potential drop across the 
internal resistance.� [1]

When there is a current, there is such a 
potential drop.� [1]

c	 i	 I	= VR = 8.40
12  � [1]

	 = 0.70 A� [1]
ii	 Lost volts = 0.54 V� [1]

R = VI  = 0.54
0.70 = 0.77 Ω� [1]

iii	The resistance of the voltmeter ≫ r or R.�[1]

5	 a	 In circuit 1, the p.d. across the bulb varies 
from 0 to 240 V.� [1]
In circuit 2, it never falls to zero.� [1]

b	 i	 P = V
2 

R  , leading to R = 2402

60 � [1]
R = 960 W� [1]

ii	 Resistance greater when switched on. or
Resistance is lower at room temperature.�[1]
Resistance of a metal increases with 
increasing temperature (or decreases with 
decreasing temperature).� [1]

6	 a	 Voltmeter reading will decrease� [1]
because current through R2 decreases.� [1]

b	 Vout = ( R2

R1 + R2
) Vin� [1]

R2 = 1645 Ω ≈ 1600 Ω� [1]
c	 Resistance of R2 and voltmeter in parallel 

= ( 1
470 +  1

2000)–1 = 380 Ω� [1]

Vout = ( 380
1645 + 380) × 9.0 = 1.69 ≈ 1.7 V� [1]

7	 a	 i	 Straight line through origin with positive 
gradient� [1]
Graph axes labelled V (x-axis) and l (y-axis)
� [1]

ii	 A 0 V, B 2.2 V� [1]
iii	General diagram (with one or two cells)� [1]

V

Two cells in correct polarity� [1]
Switches, or suitable comment indicating 
that only one cell is used at a time� [1]
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b	 E = I(R + r)� [1]
E = 0.60 × (8 + r) = 1.50 × (2 + r)� [1]
r = 2 Ω� [1]
Substitution into either equation gives  
E = 6.0 V� [1]
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Chapter 13
1		  Two waves occupy 4.8 divisions,  

so 1 wave = 2.4 div� [1]
Time for 2.4 div = 2.4 × 500 µs = 1200 µs� [1]
Frequency = 1

period
 = 1

1200 × 10–6  
= 833 Hz  
≈ 830 Hz� [1]

2	 a	 They travel through a vacuum.� [1]
Their speed in vacuum is 3 × 108 m s–1.� [1]

b	 Microwaves have a shorter wavelength (or 
higher frequency) than radio waves.� [1]

c	 i	 Between 10–8 and 10–13 m� [1]
ii	 Using c = fλ, frequency lies between 1016 

and 1021 Hz� [1]

3	 a	 Doppler effect – source moving  
towards / away from observer leads to 
decreased / increased wavelength.� [1]

b	 Maximum frequency when boat’s velocity is 
directed towards the observer.� [1]
Observed frequency = 420 × 330 

305  = 390 Hz� [1]
Minimum frequency when boat’s velocity is 
directed away from observer.� [1]
Observed frequency = 420 × 330 

355  = 390 Hz� [1]

c	 When boat’s velocity is directed at the 
student.� [1]

4	 a	  
CC RR

P

i	 Any C correctly marked.� [1]
ii	 Any R correctly marked.� [1]

b	 Vibrates� [1]
parallel to the direction of oscillation.� [1]

c	 Moves from the equilibrium position to 
maximum displacement, back to equilibrium, 
then to maximum displacement in opposite 
direction and back to equilibrium.� [1]
240 times per second.� [1]

d	 v = fλ leading to λ = 320 
240� [1]

λ = 1.3 m� [1]

5	 a	 Wave transmitted by vibration of electric and 
magnetic fields� [1]

at right angles to the direction of 
propagation.� [1]

b	 i	 Intensity of light from star A  
is 14 that from B� [1]
Intensity is proportional to 

1
r2  � [1]

ii	 Intensity ∝ amplitude2 so  
amplitude ∝    intensity� [1]
Amplitude of signal from A 
is    14 = 12 that of B.� [1]

c	 v = fλ leading to f = 3 × 108

7.5 × 10–8 � [1]
f = 4 × 1015 Hz� [1]

6	 a	 Particles vibrate parallel to direction of 
propagation.� [1]
Perpendicular displacement of beam on 
screen relates to� [1]
parallel displacement of the particle.� [1]

b	 5 waves in 6 × 5 × 10–3 s  
so period = 6 × 10–3 s� [1]
f = 1

T  = 167 ≈ 170 Hz� [1]
c	 v = fλ leading to v = 167 × 1.98� [1]

v = 330 m s–1� [1]

7	 a	 Equal� [1]
Same time for one wave and thus same 
frequency� [1]

b	 Waves where the peaks or troughs do 
not occur at the same time have a phase 
difference.� [1]
One wave occurs in about 2.2 horizontal 
divisions and the waves are separated by 
0.3 div.� [1]
Phase difference = 0.3

2.2 × 360 = 50° ± 20°� [1]
c	 Amplitude of upper wave is 23 of lower wave.

� [1]
Since intensity ∝ amplitude2, ratio of 
intensity of upper wave to lower wave = 49� [1]

8	 a	 Change in frequency� [1]
caused by a relative motion between source 
and observer.� [1]

b	 Observed frequency = fc
(v + c) 

= 6.5 × 1014 × 3.0 × 108

(3.0 × 108 + 6.4 × 105)
 � [1]

= 6.486 × 1014 (Hz) � [1]
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change in frequency = (6.500 – 6.486) × 1014  
= 1.4 × 1012 Hz� [1]

c	 i	 Away from Earth� [1]
Red colour means longer wavelength 
and smaller frequency so Doppler effect 
indicates star is moving away.� [1]

ii	 Further away the faster the stars are 
moving away� [1]

9	 a	 i	 Lower� [1]
ii	 In the time between emitting one wave 

and the next, the source moves away.� [1]
The wavelength is larger or waves appear 
further apart.� [1]
Since v = fλ a larger wavelength is a smaller 
frequency.� [1]

b	 Observed frequency = fc
(v + c) = 4.00 × 1500

(1500 + 30)  � [1]

= 3.9216 (MHz)� [1]
Shift in frequency = 0.078 MHz = 78 000 Hz� [1]

c	 The Doppler effect occurs when the observer 
(the particles) moves away from the source 
(the transmitter).� [1]
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Chapter 14
1	 a	  

 
 
 
 Di

sp
la

ce
m

en
t

Distance
0

The dashed line represents the resultant 
wave.� [2]
(Your diagram should show a good attempt 
to sum the two waves.)

b	 Wavelength is the same as that of the longer 
wave.� [1]

2	 a	 More rounded� [1]
b	 Even flatter� [1]

3		  Radio waves have a long enough wavelength, 
up to 1 km, that they can diffract round the 
hills.� [1]
TV waves have very short wavelength 
(centimetres or millimetres), so cannot 
diffract round the hills.� [1]

4		  Damita is correct; the sound from the 
speakers will have many different frequencies 
and cannot be coherent.� [2]

5		  Using ax = λd� [1]
wavelength λ = ax

d  = 1.5 × 1.2
8.0  = 0.225 m ≈ 0.23 m

� [1]

6		  When the waves are in phase, they add up to 
give loud sound.� [1]
They gradually go out of phase, and when 
they are in antiphase the sound is at its 
quietest.� [1]
The waves gradually come back into phase 
and become loud again.� [1]

7		  Separation of slits d = 1
5000 = 2.0 × 10–4 cm 

= 2.0 × 10–6 m� [1]
First maximum when n = 1:
sin q = λ

d  = 656 × 10–9

2.0 × 10–6  = 0.328� [1]

So t = sin–1 0.328 = 19.1°� [1]

Second maximum when n = 2:
sin q = 2λ

d  = 2 × 656 × 10–9

2.0 × 10–6  = 0.656� [1]

So t = sin–1 0.656 = 41.0°� [1]

8	 a	 Superposition is the algebraic summing of 
the displacements� [1]
of two (or more) waves.� [1]

b	 λ = ax
D  leading to

a = λD
x  = 590 × 10–9 × 1.8 × 12

16.8 × 10–3  � [1]

a = 6.3 × 10–4 m� [1]
c	 i	 More fringes seen on screen or fringe 

brightness decreases less from middle to 
edge of screen� [1]
less bright� [1]

ii	 Fringes wider / farther apart� [1]
same brightness� [1]

9	 a	 Coherent: constant phase difference� [1]
Monochromatic: very small or no range of 
wavelengths / frequencies� [1]

b	 i	 First order produced by waves with path 
difference of one wavelength� [1]
Second order produced by waves with path 
difference of two wavelengths� [1]

ii	 Any two from:
lines at end A are further apart or lines at 
end B are closer together� [1]
lines at end A are thinner or lines at end B 
are wider� [1]
lines at end A are brighter or lines at end B 
are dimmer� [1]

iii	nλ = d sin q� [1]
n = 1, leading to λ = sin 19.5°

5000 × 102 � [1]

λ = 6.68 × 10–7 ≈ 6.7 × 10–7 m� [1]
iv	sin q = nλ

D  leading to 
sin q = 2 × 6.68 × 10–7 × 5000 × 102� [1]
q = 41.8 ≈ 42°� [1]

 10	 a	 The superposition of two waves 180° out of 
phase� [1]
to give (nearly) zero resultant.� [1]

b	 λ	= ax
D  leading to x = Dλ

a  = 1.2 × 1.5 × 10–2

12.5 × 10–2  � [1]
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Number of fringes in 45 cm distance 
= 45 × 10–2

x  = 3.125� [1]
three maxima� [1]

c	 c = fλ leading to f = 3 × 108

1.5 × 10–2 � [1]
f = 2.0 × 1010 Hz� [1]

 11	 a	 Spreading out of a wave after passing 
through a gap in a barrier� [1]
or around an object.� [1]

b	 i, ii and iii	
 
 
 
 
 
 
 
 
 
 
 
 
 

0

min

1

One mark for each line (the min line and the 1 
line can be above the central line)� [3]

c	 λ	= ax
D   leading to = 18 × 10–2 × 12 × 10–2

60 × 10–2 � [1]

	 = 3.6 × 10–2 m� [1]
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Chapter 15
1	 a	 Node and antinode marked� [1]

b	 Wavelength marked� [1]

A

λ

AA N

c	 There would be double the number of 
loops (6).� [1]

2	 a	 Resonance is when the frequency of one 
source of vibration coincides with the natural 
frequency of vibration of a body, causing the 
body to vibrate with a large amplitude.� [1]

b	 λ
4 = 0.312 m� [1]
v = fλ = 256 × 4 × 0.312 = 319 ≈ 320 m s–1� [1]

3	 a	 Similarities:
Points in the waves vibrate.� [1]
The wave speed = fλ� [1]
Differences:
A progressive wave transfers energy; a 
standing waves does not transfer energy.� [1]
Points in a progressive wave have different 
amplitudes of vibration with respect to time; 
points of a standing wave have the same 
amplitude with respect to time.� [1]

b	 i	  
 
 
 

N

vibrator 75 cm
pulley

slotted masses

A A A A A A

N N N N

Any one node and any one antinode 
shown.� [2]

ii	 Wavelength = 75
3  cm� [1]

c = fλ = 120 × 0.75
3  (error in λ carry forward)

� [1]
c = 30 m s–1� [1]

c	 Speed of the waves down the string changes 
(with tension)� [1]
so wavelength changes.� [1]

4	 a	 i	 Vibrating� [1]
back and forth parallel to the tube.� [1]

ii	 Stationary� [1]
b	 i	 3

4 λ = 59 + e and 5
4λ = 99 + e� [1]

leading to λ = 80.8 cm� [1]
v = fλ = 400 × 80.8 × 10−2� [1]
v = 323 ≈ 320 m s−1� [1]
ii	 e = (3

4 × 80.8) – 59 = 1.6 cm� [1]

5	 a	 i	 The waves have a constant phase 
difference� [1]
over a period of time.� [1]

ii	 The amount by which one wave leads or 
lags another� [1]
Expressed using phase angle� [1]

b	 i	 Maxima occur when the reflected waves 
are exactly in phase with the incident 
wave.� [1]
Minima occur when the reflected waves are 
180° out of phase with the incident wave.
� [1]

ii	 Each time the wave amplitude falls to zero, 
the plate has moved through 12 λ� [1]
λ	= 42.0

2.5 � [1]
	 = 16.8 cm� [1]
c	= fλ leading to f = 3 × 108

16.8 × 10–2 � [1]

	 = 1.78 × 109 ≈ 1.8 × 109 Hz� [1]
c	 Phase shift of 180°� [1]

on reflection� [1]

6	 a	 7
4  × λ = 90 cm so λ = 51.4 cm� [1]
c	= fλ = 512 × 51.4 × 10–2� [1]
	 = 263 m s–1� [1]

b	 Q no movement� [1]
P, R, S and T vibrate from side to side parallel 
to the tube� [1]
P and S have largest amplitude� [1]

c	 Any two correct points� [1]
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Chapter 16
1		  The plum pudding model predicts that there 

will be no large-angle scattering events. An 
α-particle is more massive than an electron 
and will not be deviated by an electron.� [1]
The actual experiment shows a few 
α-particles scattered through more than 90°.
� [1]
These α-particles must have interacted with 
a charged object more massive than an 
electron. This object, containing most of the 
mass of the atom, was called the nucleus.� [1]

2		  The nucleus contains 38 protons and 52 
neutrons.� [1]

3		  When the nucleus ejects an α-particle, it 
emits two protons and two neutrons,� [1]
so the nucleon number decreases by 4 (A – 4) 
and the proton number (atomic number) 
decreases by 2 (Z – 2).� [1]
The nucleus then ejects two β– -particles, 
formed by decay of two neutrons to protons.
� [1]
The nucleon number (mass number) remains 
at A – 4, but the proton number now increases 
by 2, returning to Z.� [2]

4		  131
53

 
I → 131

54
 
X + 0

–1
 
e + ν� [3]

5	 a	 β–-particles are fast-moving electrons that 
come from the nucleus.� [1]

b	 14
6
 
C → 14

7
 
N + 0

–1
 
e + ν

Proton numbers correct� [1]
Nucleon numbers and all symbols correct� [1]

c	 i	 Graph and axes drawn correctly and 
labelled� [1]
Carbon-14 marked correctly� [1]
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6

N
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7

ii	 Nitrogen-14 marked correctly� [1]

6	 a	 An α-particle contains two protons and two 
neutrons.� [1]
A β–-particle is a fast-moving electron.� [1]
An α-particle is much heavier than a  
β–-particle (about 7400 or 8000 times larger).
� [1]
An α-particle is positively charged (+2e),  
whereas a β–-particle is negatively charged 
(–e).� [1]

b	 Isotopes have the same number of protons in 
the nucleus or the same proton number.� [1]
Isotopes have different numbers of neutrons 
in the nucleus or different nucleon numbers.
� [1]

c		  236
92

 
U → 236

90
 
X + 4

2
 
He

or	 236
Z
 
U → 236

Z–2
 
X + 4

2
 
He

	 All three nucleon numbers correct� [1]
	 All three proton numbers correct� [1]

7	 a	 Volume of a sphere = 43 πr3; 

ratio of volumes = (10–10)3

(10–15)3 � [1]
ratio = 1015� [1]
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b	 Assuming that most of the mass of the atom 
is concentrated in the nucleus,� [1]
then 19 000 kg of gold atoms has a volume of 
1 m3; from a the volume of the nucleus with 
this mass is 1 × 10–15 m3� [1]
Density of gold nucleus 
= 1.9 × 104

10–15 m3  = 1.9 × 1019 kg m–3� [1]

8	 a	 82 protons� [1]
128 neutrons� [1]

b	 Because the particles are charged, when they 
collide with or pass close to atoms,� [1]
they knock electrons from the atoms, leaving 
behind charged atoms or ions.� [1]

c	 Two solutions, each with two β–-decays and 
one α-decay.� [1]
Each β–-decay correct� [1]
Each α-decay correct� [1]

 
 
 
 
 
 
 
 
 
 
 
 

79 80 81 82 83

Pb206
82

Pb210
82

84 85 Z

21

20

19

A

β–

β–β–

β–

a
a

9	 a	 Most of the mass is concentrated in a small 
space.� [1]
This space / nucleus is positive and 
surrounded by negative charged electrons.�[1]

b	 Any three from:
Most α-particles pass undeviated through the 
gold, showing that most of an atom is empty 
space� [1]
Some α-particles are deflected though large 
angles / greater than 90°, showing that 
Part of the atom is much heavier than an 
α-particle (and positive)� [1]
Electrons (negative) were known to exist, so 
other particles in the nucleus must have been 
positive and heavier� [1]

The relative number of large deflections 
showed the size of the nucleus� [1]

 10	 a	 i	 → 0
–1

 
e + 46

21
 
Sc + ν� [1]

ii	 → 0
+1

 
e + 23

11
 
Na + ν� [1]

b	 i	 A down quark turns into an up quark, an 
electron and an antineutrino� [1]

ii	 An up quark turns into a down quark, a 
positron and a neutrino� [1]

c	 the weak nuclear force� [1]

 11	 a	 A neutron is made up of other particles but a 
quark is thought not to.� [1]

b	 i	 proton charge +1(e), made up of two up 
quarks and one down quark� [1]
neutron charge 0, made up of two down 
quarks and one up quark� [1]

ii	 The proton is positive, so either one or 
both up and down quarks are positive.� [1]
The neutron is neutral, so if one quark is 
positive, the other is negative.� [1]

c	 strong interaction or strong nuclear force� [1]
d	 1

0
 
n → 1

1
 
p + 0

–1
 
e + ν� [2]

e	 electron – lepton, neutrino (or antielectron, 
positron, antineutrino)� [1]
neutron – hadron or baryon, antineutron, 
antiproton or a variety of mesons� [1]
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Chapter P1
1	 a	 25.8 ± 3.3 cm or better 26 ± 3 cm� [1]

b	 2.80 ± 0.18 cm or better 2.8 ± 0.2 cm� [1]
c	 24.0 ± 0.1 g� [1]

2	 a	 1.1 ± 0.1 V; 0.7 ± 0.1 V� [1]
b	 If R = kl then the two values of k are 

0.0440 Ω cm–1 and 0.0467 Ω cm–1.� [1]
The criterion is that, if the resistance is 
proportional to length, then the percentage 
difference in the values of k is less than the 
percentage uncertainty in the value of V.� [1]
Percentage difference in k values 
= 0.27

0.044 = 0.6%� [1]
Percentage uncertainty in lowest value of 
V is 14%, so the data is consistent with R 
proportional to l.� [1]

3		  Apart from taking only two readings, which is 
not enough, it is difficult to:
■■ release the ball without giving it an initial 

velocity� [1]
■■ start the stopwatch as the ball is released

� [1]
■■ stop the stopwatch exactly as the ball 

crosses the line� [1]
■■ release the ball exactly on the line� [1]
■■ measure small times that are not much 

larger than reaction times� [1]
■■ avoid the balling rolling to the side of the 

track� [1]
■■ measure the distance without introducing 

parallax error� [1]

Suggested improvements
■■ take readings at about five values of s and 
■■ plot a graph of T2 against s� [1]
■■ take a video of the ball rolling down the 

ramp with a timer in the background and 
play it back frame by frame� [1]

■■ use a metal ball, held to an electromagnet 
at the same start position each time, 
turning off the magnet to start the ball� [1]

■■ use longer distances� [1]
■■ have a groove down the middle of the 

track� [1]

■■ always view from directly above the mark 
on the track when using a rule� [1]

(Maximum [8] marks: [4] for the problems, and 
the other [4] for solutions / improvements.)

4	 a	 Values for    m correct and to the same 
number of significant figures, or one more 
than data� [1]
Values for T correct and to the same number 
of significant figures, or one more than data
� [1]

Mass / g T20 / s    m / g0.5 T / s

20 12.2 4.5 0.610

50 15.0 7.1 0.750

100 18.7 10.0 0.935

150 21.8 12.2 1.090

200 24.5 14.1 1.225

190 24.0 13.8 1.200

0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

105 15

T  /  s

m  /  g 0.5

b	 Sensible axes used and labelled with 
quantity and unit� [1]
All points plotted to within half a small square
� [1]
All points close to line� [1]
Line of best fit correct� [1]

c	 Gradient drawn with more than half length of 
drawn line; value between 0.062 and 0.064�[1]
y-intercept between 0.30 and 0.32� [1]

d	 C = value given for y-intercept with unit s,  
e.g. 0.31 s� [1]
k = value given for gradient with unit, e.g. 
0.063 s g–0.5� [1]
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5	 a	 i	 127 cm� [1]
ii	 3 cm� [1]

2%� [1]
iii	4.7 s� [1]
iv	0.1 s� [1]

2%� [1]
b	 i	 When l = 40 cm, v = 27 cm s–1;  

when l = 60 cm, v = 38 cm s–1� [1]
ii	 Two significant figures, as this was the 

lower of the number of significant figures 
for s (3 sig. figs) and t (2 sig. figs)� [1]

c	 i, ii	 k = s
l  = 3.175 and 3.167. The percentage 

difference in k values is 0.26%.� [1]
This is less than the percentage uncertainty 
in s = 2%, so the data is consistent with s 
proportional to l.� [1]

d, e	 See comments for experiment 2, plus 
the difficulty of measuring to the middle of 
the trolley for l and s (measure from end of 
trolley and add on half the length of a trolley 
found separately), difficulties that may occur 
as the toy car hits the straight section (have 
a slightly curved join), and difficulties with 
the car not running straight (have wheels in 
grooves)� [8]
(Marks: [1] for each sensible source of 
uncertainty, to a maximum of [4];
and [1] for each sensible improvement, to a 
maximum of [4])

6	 a	 Average value of voltage was 5.9 and 
uncertainty is ±0.2 or possibly 0.3 V.
Percentage uncertainty is between 3% 
and 5%.� [1]

b	 i	 0.42 °C V–2� [1]
and 0.35 °C V–2� [1]

ii	 Two significant figures, as V was measured 
to 2 sig. figs and q was measured to 3 sig. 
figs. Choose the lower number.� [1]

iii	Percentage difference in values of k is 18%. 
This is larger than the 5% uncertainty in 
V (which is larger than the percentage 
uncertainty in the value of θ). Thus the 
data is not consistent with the suggested 
relationship.� [1]

c	 Only two voltage readings is not enough.� [1]
The voltmeter reading fluctuates because of 
contact resistance.� [1]
The voltmeter reading fluctuates because of 
a change in mains voltage.� [1]
The voltmeter reading falls because the 
resistance of the wire changes as it heats up.
� [1]
The temperature increases after the switch 
is turned off (while heat passes from the 
resistor to the water).� [1]
(Maximum of [4] marks)

d	 Clean the wires first.� [1]
Use a car battery.� [1]
Use a metal whose resistance changes little 
with temperature.� [1]
Use more than two voltages and plot a graph 
of θ against V 2 or calculate more than two 
values of k.� [1]
Stir well and take the highest reading on the 
thermometer after switching off.� [1]
(Maximum of [4] marks)
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Chapter 17
1	 a	 The angle subtended at the centre of a circle 

by an arc equal in length to the radius.� [1]
(accept: a radian = length of arc

radius )

b	 angular velocity = 2π
15 � [1]

= 0.42 rad s–1� [1]

2	 a	 At the position shown, the weight of the 
truck.� [1]

b	 acceleration of truck = g = v2 
r � [1]

v2 = rg = 4.0 × 9.8 = 39.2 m2 s–2� [1]
v = 6.3 m s–1� [1]

3	 a	 Centripetal force is the net force acting on 
an object describing a circle – it is directed 
towards the centre of the circle.� [1]

b	 i	 speed = distance
time  so speed = 2 × π × 0.15 

3.0 � [1]
distance

time = 0.314 m s–1� [1]

F = mv2 
r  = 0.060 × 0.3142

0.15 � [1]
= 0.0394 ≈ 0.039 N� [1]

ii	 The centripetal force on the toy increases 
with its speed.� [1]
The toy falls off because the frictional force 
between the turntable and the toy is not 
sufficient to provide the centripetal force.�[1]

4	 a	 change in potential energy = kinetic energy�[1]
mgh = 12 mv2 leading to v =     2gh

=     2 × 9.81× 0.70� [1]

b	 centripetal force = mv2 
r  = 0.050 × 3.7122

1.50 � [1]
= 0.458 N� [1]

T – mg = 0.458� [1]
T = 0.458 + (0.050 × 9.81) = 0.95 N� [1]

c	 The weight is only equal to the tension when 
the ball is at rest in the vertical position.� [1]
The ball is not in equilibrium in the 
vertical position because it has an upward 
(centripetal) acceleration.� [1]

5		  Friction between the tyres and the road 
provides the centripetal force.� [1]

Oil reduces the frictional force, so the car 
carries on in a wider arc. (The frictional force 
is not enough to push the car around the 
desired curve.)� [1]

6	 a	 Weight acting vertically downwards, lift force 
perpendicular to the aeroplane wings.� [2]

b	 (lift = L, angle with horizontal = θ) 
vertically: L sin θ = mg� [1]
horizontally: L cos θ = mv2 

r  � [1]

So tan θ = 
(80 × 9.8)

752  = 0.139� [1]
θ = 7.9°� [1]

7	 a	 Angle covered per unit time� [1]
Angle in radians� [1]

b	 i	 T cos θ = mg leading to T = 0.200 × 9.81
cos 56° � [1]

= 3.5 N� [1]
ii	 Centripetal force = T sin θ  

= 3.5 sin 56° = 2.9 N� [1]
Substituting in F = mω2r leads to 
ω2 = 2.9

0.200 × 0.40  = 36.25� [1]
ω = 6.02 ≈ 6.0 rad s–1� [1]

iii	Period = 2π
ω  = 1.04 ≈ 1.0 s� [1]

8	 a	 The force acting towards the centre of a circle
� [1]
on a body moving round that circle� [1]

b	 i	 mv2 
r  = mg leading to v2 = rg = 0.9 × 9.81� [1]

v2 = 8.829� [1]
v = 2.97 ≈ 3.0 m s–1� [1]

ii	 F = 2mg = 2 × 5.4 × 9.81� [1]
F = 105.9 ≈ 106 N� [1]

9	 a	 radian = length of arc
radius � [1]

b	 Pilot feels thrown out from the circle or pilot 
feels pressed outwards against seat.� [1]
Inertia means that with no force pilot would 
travel in a straight line.� [1]
Centripetal force pulls the pilot in towards 
the centre of the circle.� [1]

c	 i	 mv2 
r  = 6mg leading to 

v2 = 6rg = 6 × 5.0 × 9.81� [1]
v2 = 294� [1]
v = 17.15 ≈ 17.2 m s–1� [1]
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ii	 ω = v
r  = 17.15

5  � [1]
number of revs per second = ω

2π = 0.54 s–1�[1]
d	 Sharp turns in combat at high speed� [1]

mean the pilot will experience high g forces.
� [1]

 10	 a	 Angle in radians = length of arc
radius

For a complete circle,  
arc length = circumference = 2πr� [1]
angle in radians = 2πr

r  = 2π� [1]
b	 i	 ω = f × 2π leading to 540 rpm = 540

60  × 2π� [1]
ω = 56.5 rad s–1� [1]

ii	 F = mrω2 = 20 × 10–3 × 0.1 × 56.52� [1]
F = 6.4 N� [1]

c	 Gravitational force ≈ 20 × 10–3 × 10 = 0.2 N� [1]
Very much less than the required 
centripetal force� [1]
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Chapter 18
1		  F	= GMm

r2 � [1]

	 = 6.67 × 10–11 × 0.0202

0.0052  � [1]

	 = 1.1 × 10–9 N� [1]

2	 a	 Arrow vertically downwards labelled ‘weight’ 
or ‘Earth’s gravitational pull’� [1]
Arrow to right labelled ‘pull of mountain’� [1]

b	 F	= Gm1m2

r2  = 6.67 × 10–11 × 0.020 × 3.8 × 1012

12002  � [1]

	 = 3.5 × 10–6 N� [1]
c	 Earth’s force F = mg = 0.020 × 9.8 = 0.196 N� [1]

which is 5.6 × 104 times as large� [1]

3	 a	 Arrows towards the Earth� [1]
b	 For a rise of 10 000 m, the Earth’s field may be 

considered to be uniform,� [1]
but when something moves a significant 
distance away from the Earth we must 
recognise that there is a significant reduction 
in the field.� [1]

4	 a	 Mass of Mercury	= 43 πr3 × density� [1]
		  = 3.286 × 1023 kg� [1]
g at surface	= GM

r2 � [1]
		  = 3.68 ≈ 3.7 N kg–1� [1]

b	 weight	= mg = 900 × 3.68� [1]
		  = 338 ≈ 340 N� [1]

5		  Distance from centre of Mars 
= 3.4 × 106 + 20 × 106 = 23.4 × 106 km� [1]
Potential energy = – GMm

r � [1]

= – 6.67 × 10–11 × 6.4 × 1023 × 250
23.4 × 106  � [1]

= –4.6 × 108 J� [1]

6	 a	 r3 = GMT2

4π2  = 9.54 × 1022 m3� [1]

r = 4.6 × 107 m� [1]
b	 The proximity of the very large planet, 

Jupiter, would disrupt the orbit, through its 
gravitational pull.� [1]

7	 a	 Circumference of orbit = 2πr = 2π × 1.5 × 1011 
= 9.42 × 1011 m� [1]

Speed	= circumference
length of year  = 9.42 × 1011

365 × 24 × 3600 � [1]

		  = 2.99 × 104 ≈ 3.0 × 104 m s–1� [1]

b	 a	= v2 
r  = (2.99 × 104)2

1.5 × 1011  � [1]

	 = 5.96 ≈ 6.0 × 10–3 m s–2� [1]
c	 The Sun’s gravitational pull provides the 

centripetal acceleration
so g = 5.96 ≈ 6.0 × 10–3 N kg–1� [1]

8	 a	 i	 g = –GM
r2

� [1]
g = 3.70 ≈ 3.7 m s–2� [1]

ii	 φ = –GM
r � [1]

φ = –1.26 × 107 ≈ 1.3 × 107 J kg–1� [1]
b	 1.3 × 107 J� [1]
c	 Use v2 = 2φ = 2 × 1.26 × 107

� [1]
v = 5019 m s–1 linked to 5000 m s–1� [1]

d	 The work done in lifting the mass of a Mars 
probe from the Earth is very large� [1]
so requires very powerful rocket to do it all in 
one go.� [1]

9	 a	 Work done to bring unit mass� [1]
from infinity to that point� [1]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ϕ

r 

R 

R 

ii 

i

2R

b	 i	 Dashed line in diagram: same radius but 
depth 2 times original� [1]
outside original ‘well’� [1]

ii	 Bold line on diagram: goes along the 
present lines� [1]
but stops at twice the radius.� [1]
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c	 Curve ii� [1]
Smaller hill to get up� [1]

d	 Using φ = – GM
r  once� [1]

Using φ = – GM
r  a second time� [1]

(Using Δφ = – GM( 1
r2

 – 1
r1

) scores both marks)

Correct substitution� [1]
Energy required = 1.86 × 106 J� [1]

 10	 a	 Force per unit mass� [1]
at the point� [1]

b	 F = Gm1m2

r2  � [1]
Correct substitution� [1]
F = 3.30 × 1018 N� [1]

c	 Development of T = 2π    mr
F � [1]

Correct substitution� [1]
T = 5.60 × 105 s� [1]

d	 Otherwise they would lose stability in their 
orbits (or words to that effect).� [1]

11	 a	 0.8 N kg–1 (accept range ±0.1)� [1]
b	 0.8 m s–2 (must be numerically equal to a)� [1]
c	 a = v2 

r  leading to v2 = ar� [1]
v = 3920 ≈ 3900 m s–1� [1]

d	 i	 Path spiralling into the centre� [1]
ii	 Work done against friction in the 

atmosphere causes heating� [1]
causing satellite to ‘burn up’.� [1]
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Chapter 19
1	 a	 No, constant acceleration under gravity 

towards ground but not on hitting ground 
and when hit by player.� [2]

b	 Yes, the restoring force is directed towards a 
point and is proportional to the displacement 
from the point.� [2]

c	 No, it travels with constant acceleration 
towards each plate and then suddenly 
reverses its direction of velocity on hitting the 
plate.� [1]

d	 Yes, the restoring force is directed towards a 
point and is proportional to the displacement 
from the point.� [2]

2	 a	 x = 4 sin 2πt for x in cm or x = 4 × 10–2 sin 2πt for 
x in m� [2]

b	 i	 maximum velocity	= 2πAf = 2π × 4.0� [1]
	 = 25.1 cm s–1� [1]

ii	 v = 21.8 cm s–1� [1]

3	 a	 f = 1T = 1
0.84 = 1.19 Hz� [1]

b	 vmax = 2πAf = 120 mm s–1� [1]
c	 k.e.max = 12 m(vmax)

2 = 3.6 × 10–4 J� [1]
as it passes through the equilibrium position
� [1]

d	 g.p.e.max = 3.6 × 10–4 J (i.e. the same as 
maximum k.e.)� [1]

4	 a	 i	 1
2 cycle� [1]

ii	 180°� [1]
iii	π rad� [1]

b	 i	 1
4 cycle� [1]

ii	 90°� [1]
iii	π2 rad� [1]

c	 i	 3
8 cycle� [1]

ii	 135°� [1]
iii	3π

4  rad� [1]

5	 a	 period T = 8.0 ms� [1]
frequency = 1T = 125 Hz� [1]

b	  
 
 
 
 
 
 

Displacement  /  Velocity /  Acceleration   

0 2 4 6 8 10 12 Time / ms

� [3]

6	 a	 No, it is not moving with simple harmonic 
motion because the displacement does not 
show a sine or cosine relationship with time. 
or
Comment regarding gradient constant for 
time showing constant velocity, then a 
sudden change, not in keeping with a force 
proportional to displacement.� [1]

b	 i	 � [3]
ii	  

 
 
 
 
 
 
 
 
 
 
 
 

Time 

Displacement

Velocity

Acceleration

Time 

Time 

� [3]

7	 a	 Vibration / oscillation in which there is 
acceleration towards a fixed point.� [1]
The magnitude of the acceleration is 
proportional to the displacement from the 
point.� [1]

b	 f = 70 Hz� [1]
c	 i	 v	 = ωr� [1]

	 = 55 m s–1� [1]
ii	 a	= ω2r� [1]

	 =24 000 m s–2� [1]
iii	Use of F = ma = 5800 N� [1]
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8	 a	 Waves that are exactly in step with each 
other / each point on one wave moves in the 
same way as on the second wave.� [1]

b	 x = 15 sin(3πt)� [1]
c	 i	 Angular displacement from equilibrium 

position = ωt = 30° = π6 rad� [1]

x = 15 sin(π
6)� [1]

= 7.5 cm� [1]
ii	 v = v0 cos ωt = ωx0 cos ωt = 15 × 3π cos(π

6)� [1]
v = 120 cm s–1� [1]

iii	60° or π3 rad� [1]

9	 a	 Vibration / oscillation in which there is 
acceleration towards a fixed point.� [1]
The magnitude of the acceleration is 
proportional to the displacement from the 
point.� [1]

b	 a = ω2r� [1]
a = 400 m s–2� [1]

c	 F = ma = 190 N� [1]
d	 Graph showing sine-type wave, with 

amplitude getting smaller� [1]
frequency remaining the same.� [1]
 
 
 
 
 
 
 
 
 

Time

Di
sp

la
ce

m
en

t

 10	 a	 If driving frequency = natural frequency� [1]
resonance occurs� [1]
giving false reading for the shock wave 
strength.� [1]

b	 Shows that the acceleration is proportional 
to the displacement� [1]
and in the opposite direction to the 
displacement.� [1]

c	 ω2 = ar  � [1]
ω2 = 500� [1]
ω = 22.3� [1]
f = 22.3

2π  = 3.6 Hz� [1]
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Chapter 20
1	 a	  

 
 
 
 
 

The carrier wave has a higher frequency than 
the signal.� [1]
The amplitude of the signal is used to change 
or modulate the amplitude of the carrier 
wave.� [1]
The height of the carrier wave is made to fall 
and rise with the actual value of the signal.�[1]

b	  
 
 
 
 

The carrier wave has a higher frequency than 
the signal.� [1]
The amplitude of the signal is used to alter 
the frequency of the carrier wave.� [1]
Thus the frequency of the transmitted wave 
is the frequency of the carrier wave, but it 
varies at any time according to the amplitude 
of the signal at that time.� [1]

2	 a	 i	 An analogue signal is any continuous 
signal where the quantity, for example, a 
voltage, varies in time with the signal. In 
principle, any small change in the quantity 
causes a small change in the signal, i.e. the 
signal can have any value� [2]

ii	 The bandwidth of a signal is the range of 
frequencies present in a signal.� [1]

b	 The bandwidth of the microphone is less 
than the range of audible frequencies, which 
is approximately 20 Hz to 20 kHz. This means 
that the microphone will not reproduce high 
frequencies and, for example, music will not be 
of high quality, although the microphone may 
be suitable for speech or for a telephone.� [2]

3	 a	 Attenuation = 10 lg(P2

P1
) � [1]

= 10 × lg(1.26
1.12) = 0.51 dB� [1]

b	 Attenuation per unit length = 0.51
60 � [1]

= 8.53 × 10–3 ≈ 8.5 × 10–3 dB m–1� [1]

4	 a	 Number of decibels = 10 lg(P2

P1
)� [1]

100 = 10 × lg( P2

6.0 × 10–12)� [1]

P2 = 6.0 × 10–2 W (60 mW)� [1]
b	 Allowed attenuation of optic fibre  

= 100 – 30 = 70 dB� [1]
Length of fibre = 70

0.3 = 233 ≈ 230 km� [1]

5	 a	 A satellite in geostationary orbit around the 
Earth takes 24 hours to make an orbit. It travels 
above the equator, travelling in the same 
direction as the rotation of the Earth and, from 
the Earth, appears to be above the same point 
on the equator. The satellite is at a height of 
3.6 × 104 km above the Earth’s surface.� [2]

b	 Between 0.001 and 0.300 m� [1]
c	 Advantage:

Satellite dishes do not need to be moved to 
track the satellite.� [1]
Disadvantages:
Communication with some polar regions is 
not possible.� [1]
The satellite is always above the same point 
on the equator and cannot ‘see’ other parts 
of the Earth.� [1]
The satellite is higher above the equator 
and so the signal is delayed longer and is of 
lower intensity than a polar satellite, and the 
‘resolution’ when viewing the Earth is lower.� [1]

6	 a	 The braid in a coaxial cable is the return path 
for the signal and is usually connected to 
earth (ground).� [1]
By surrounding the central wire, it reduces 
the amount of external interference received 
by the inner conductor.� [1]

b	 Increased bandwidth has meant that many 
telephone calls can be carried on the same 
line.� [1]

c	 i	 Noise is the random variation in a received 
signal not present in the original signal.� [1]
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ii	 Examples of noise sources include: radio 
emissions from the spark plug of a nearby 
car, a nearby mobile phone and the 
random thermal motion of electrons in a 
wire.� [2]

7		  Surface waves, frequency below 3 MHz, range 
up to 1000 km� [2]
Space waves, frequency greater than 30 MHz, 
range is line-of-sight only, except when using 
satellite and then range is worldwide� [2]
Sky waves, frequency between 3 and 30 MHz, 
range is worldwide by reflection� [2]

8	 a	 Time for one oscillation of the carrier wave 
= 80

8  = 10 µs� [1]

Frequency = 1T = 1
(10 × 10–6) 

= 1.0 × 105 Hz (100 kHz)� [1]
b	 Time for one oscillation of the audio signal  

= 80 µs� [1]
Frequency = 1T = 1

(80 × 10–6) 

= 12.5 × 104 Hz ≈ 12 or 13 kHz� [1]
c	  

 
 
 

Frequency / kHz100 112.587.5

Frequency spectrum showing central line and 
two symmetrically placed sidebands� [1]
central line at 100 kHz� [1]
sidebands at 87.5 and 112.5 kHz� [1]

9	 a	 Analogue� [1]
b	  

 
 
 
 
 

Time / hours V / V decimal V / V binary

0 5.4 1100

2 4.0 0101

4 3.8 0100

All values of V decimal correct� [1]
At least two values of V binary correct� [1]
All values of V binary correct� [1]

c	 i	 Variations in the signal that occur between 
successive samples are not reproduced.� [1]
The sample is only accurate at any instant 
to the nearest 0.2 V, so any variation 

between, for example, 3.1 and 3.3, will be 
taken as 3.2 V.� [1]

ii	 The signal should have more bits, for 
example use an 8-bit binary number, so 
that the sample is accurate to a smaller 
value than 0.2 V.� [1]
The samples should be taken as often 
as possible (for example, at twice the 
frequency of the highest signal present), 
so that all variations are detected.� [1]

 10	 a	 i	 Attenuation from cable �= 20 × 10  
= 200 dB� [1]

ii	 4 × 40 = 160 dB� [1]
b	 Total attenuation = 200 – 160 = 40 dB� [1]

40 = 10 lg( 200
Pout

)
Pout = 2.0 × 10–2 mW or 2.0 × 10–5 W� [1]

c	 200 = 10 lg( 200
Pout

)
Pout = 2.0 × 10 – 18 mW or 2.0 × 10–21 W� [1]

11	 a	 Any two from:
Takes 24 hours to make an orbit of the Earth.
� [1]
It travels above the equator in the same 
direction as the rotation of the Earth. or It 
appears to be above the same point on the 
equator.� [1]
It orbits at a height of 3.6 × 104 km above the 
Earth’s surface.� [1]

b	 Some of the signal sent from Earth is 
picked up by the receiver that is near to 
the transmitter. Since the signal received 
back from the satellite is weaker, it will 
be swamped by the direct signal from 
the transmitter nearby unless different 
frequencies are used.� [1]
(Using a different frequency, the tuning 
circuit only passes the weaker signal received 
from the satellite.)

c	 Less / little power is available in the satellite 
to generate radio waves.� [1]
(The downlink signal is generated by the 
satellite and much less power is available to 
the satellite than is available on the ground.)
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Chapter 21
1	 a	 Kinetic energy remains constant, potential 

energy increases, internal energy increases.
� [3]

b	 Kinetic energy increases, potential energy 
remains constant, internal energy increases.
� [3]

2		  Just before the stone hits the ground, it has 
kinetic energy. All the molecules are moving 
together in the same direction.� [1]
When it hits the ground, this unidirectional 
movement of the molecules is converted into 
movement of individual molecules in random 
directions.� [1]
The kinetic energy for movement in random 
directions is internal energy, and hence the 
temperature rises.� [1]

3		  The air is being compressed, so work is being 
done on it. � [1]
From the first law of thermodynamics, the 
change in internal energy of a body is equal 
to the energy supplied by heating plus the 
energy supplied by doing work. � [1]
In this case there is no energy supplied by 
heating but work is done in compressing the 
air.� [1]

4		  If two bodies are at the same temperature, 
no energy flows from one body to another. 
Therefore, if no energy flows from A to B and 
none flows from B to C, but energy flowed 
from C to B, it would mean that A and B were 
at the same temperature, and A and C are at 
the same temperature, but C is hotter than B.  
This is clearly a nonsense!  We can see how 
fundamental this law is, and why it is called 
the zeroth law.� [2]

5		   
 
 
 
 
 
 
 

Substance Melting point Boiling point

°C K °C K

oxygen –223 50 –183 90

hydrogen –259 14 –253 20

lead 327 600 1750 2023

mercury –39 234 357 630

6	 a	 no temperature difference, so 0 V� [1]
b	 temperature	= 100 × 49

63 � [1]
		  = 77.8 ≈ 78 °C� [1]

c	 i	 voltage	= 63 × 327
100  µV� [1]

	 = 206 µV� [1]
ii	 That the variation between temperature 

difference and induced e.m.f. in the 
thermocouple remains linear beyond 
100 °C� [1]

7	 a	 Liquid in glass – easy to use, quick, and great 
precision is not required.� [2]

b	 Thermocouple – the smallness of the 
thermocouple means that the temperature 
can be measured at specific points on the 
cylinder head.� [2]

c	 Thermocouple or thermistor – the operator 
can be remote from the device; she does not 
have to be inside the reactor vessel itself.� [2]

8	 a	 energy supplied = mcΔθ = 4180 × 0.300 × 80� [1]
= 100 320 J� [1]

time	= energy
power  = 100 320

500 � [1]

		  = 201 s� [1]
No energy is needed to heat the element or 
the kettle.� [1]

b	 energy supplied = power × time  
= 500 × 120 = 60 000 J� [1]

mass of water boiled away = energy
s.l.h.  

= 60 000 
2.26 × 106  = 0.027 kg� [1]

mass remaining = 300 – 27 = 273 ≈ 270 g� [1]
No energy is lost to the surroundings; all the 
vapour escapes from the kettle.� [1]
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9	 a	 The energy required to raise the temperature 
of unit mass of a substance� [1]
by one degree Celsius.� [1]

b	 i	 Small heat capacity� [1]
Quick acting� [1]

ii	 To allow for energy losses to the 
surroundings� [1]
Comment about the  same temperature 
rise therefore same energy losses or 
similar comment� [1]

iii	Energy input = 40 × 190 = 7600 J  
(or 60 × 114 = 6840 J)� [1]
Experiment 1:
energy input	= mcΔθ + energy losses
	 = 0.85 × c × 18 + Q1

7600 = 15.3c + Q1     (1)
Experiment 2:
energy input	= mcΔθ + energy losses
	 = 0.85 × c × 18 + Q2

6840 = 15.3c + Q2     (2)
Attempted use of either equation� [1]
Energy loss in experiment 2 (Q2) 
= (114

190) × energy loss in experiment 1 (Q1)
Q2 = 0.6Q1     (3)� [1]
Subtracting equations (1) and (2):
7600 – 6840 = Q1 – Q2

Substituting equation (3) into this:
7600 – 6840 = Q1 – 0.6Q1

Q1 = 1900 J� [1]
Substituting for Q1 in equation (1):
7600 = 15.3c + 1900
c = 372 J kg–1 °C–1� [1]

 10	 a	 The carbon dioxide expands, doing work 
against the atmosphere.� [1]
It gives up internal energy to do this work.� [1]
Link to supplying latent heat� [1]

b	 Energy required to change state of unit mass 
(from solid to vapour)� [1]
without change in temperature� [1]

c	 i	 So allowance for energy gains from the 
atmosphere can be made� [1]

ii	 Use of E = ml� [1]
m = mass decrease with heater on minus 
mass decrease with heater off� [1]
m = 20.9 g

l = 12 000
20.9  = 574 J g–1� [1]

d	 Total work done / energy required  
= work done in separating molecules / 
breaking bonds from solid state (to liquid 
state)� [1]
plus work done in further separating the 
molecules to gaseous state.� [1]

 11	 a	 Energy goes to potential energy of the 
molecules� [1]
as they are moved further apart (accept 
bonds broken)� [1]

b	 To reduce the energy gained from the 
surroundings� [1]

c	 Energy input = 40 × 2 × 60 (= 4800 J)� [1]
Use of E = ml� [1]
m = mass decrease with heater on minus half 
mass decrease with heater off� [1]
m = 23.8 g

l = 4800
23.8  = 202 J g–1� [1]

 12	 a	 i	 Sum of the kinetic energy� [1]
and potential energy of the molecules.� [1]

ii	 Temperature at which energy cannot be 
removed from molecules� [1]
Answer makes clear that the molecules still 
have (potential) energy.� [1]
(Give [1] maximum for: all energy removed 
from molecules.)

b	 i	 Mass per second = ρAv
= 1000 × 4.8 × 10–5 × 1.2� [1]
= 0.058 kg� [1]

ii	 E = mcΔθ leading to Δθ = 9000
0.058 × 4200  � [1]

= 37 °C� [1]
Final temperature of the water  
= 37 + 15 = 52 °C� [1]

iii	The heater is 100% efficient.� [1]
iv	Decrease the rate of flow of water� [1]
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Chapter 22
1	 a	 i	 6.02 × 1023� [1]

ii	 Chlorine is diatomic, so 12.0 × 1023� [1]
iii	1000 × NA = 6.02 × 1026� [1]

b	 i	 4 × NA = 24.1 × 1023� [1]
ii	 One C atom per molecule, so 24.1 × 1023� [1]
iii	Two O atoms per molecule, so 48.2 × 1023�[1]

2	 a	 1 mol = 197 g� [1]

so 1000 g = 1000
197 mol = 5.08 mol ≈ 5.1 mol� [1]

b	 number of atoms = 5.08 × NA  
= 3.06 × 1024 ≈ 3.1 × 1024� [1]

c	 mass of atom = mass of bar
number of atoms in bar  

 = 3.27 × 10–22 g ≈ 3.3 × 10–22 g� [1]

3	 a	 Pressure p2 = 
p1V1

V2
� [1]

 = 105 × 140 
42  = 3.4 × 105 Pa� [1]

b	 The temperature of the gas would increase, 
causing pressure to be higher than in a.� [1]

4		  V2	= 
p1V1

p2
� [1]

	 = 35 × 0.42 
10 � [1]

	 = 1.47 ≈ 1.5 cm3� [1]
assumes that the temperature at 25 m depth 
is equal to the temperature at the surface of 
the water� [1]

5	 a	 Using pV = nRT, we have

n	= 
pV
RT  = 4.8 × 105 × 0.040

8.31 × 293 � [1]
	 = 7.89 mol ≈ 7.9 mol� [1]

b	 Using pV = nRT, we have

n	= 
pV
RT  = 4.8 × 105 × 0.040

8.31 × 293 � [1]
	 = 347 g ≈ 350 g� [1]

6		  Using pV = nRT, we have� [1]

V = 
nRT

p  = 1 × 8.31 × 273
1.01 × 105  = 22.4 dm3� [1]

7		  Using pV = NkT, we have p = 
NkT

V  so� [1]

p	= 3.0 × 1026 × 1.38 × 10–23 × 400 
0.200  � [1]

	 = 8.31 × 106 Pa� [1]

8	 a	 Using p = 13 ρ<c2>, we have <c2> = 
3p
ρ � [1]

= 3 × 1.01 × 105

0.179  = 1.69 × 106 m2 s–2� [1]
so average speed =     1.69 × 106 = 1350 m s–1� [1]

b	 This is considerably faster than air molecules 
at the same pressure because the He atoms 
have a much smaller mass, so greater speed 
needed for same energy.� [1]

9	 a	 i	 Average KE per molecule at 27 °C = 
3

2kT � [1]
= 1.5 × 1.38 × 10–23 × 300� [1]
= 6.2 × 10–21 J� [1]

ii	 Average KE at 243 °C = 1.07 × 10–20 J� [1]
b	 Ratio of energies = 1.07

0.62 = 1.72� [1]
Ratio of speeds �=    (ratio of energies)  

= 1.31 : 1� [1]
 or    (ratio of temperatures) = 1.31 : 1

 10	 a	 The molecules hit the wall / rebound from 
the wall.� [1]
Each impact causes a small force / impulse 
on the wall.� [1]
Molecules are in random motion / many 
impacts smear force over whole wall.� [1]

b	 pV = nRT� [1]
n	= 3.42 × 105 × 1.50

8.31 × 276  � [1]
	 = 224 mol� [1]

c	 i	 Using pV = nRT
p	= 224 × 8.31 × 315

1.50 � [1]
	 = 3.91 × 105 Pa� [1]

ii	 ΔE = 3
2kΔT = 32 × 1.38 × 10–23 × (315 – 276)� [1]

ΔE = 8.01 × 10–22 J� [1]

 11	 a	 Random zigzag movement of large particle 
(e.g. smoke, pollen, dust)� [1]
Air / water molecules collide with bigger 
particles.� [1]
Each collision gives the larger particle an 
impulse in a different direction.� [1]

b	 p = 13 ρ<c2>� [1]
<c2>	= 3 × 1.03 × 105

1.21 � [1]
	 = 2.55 × 105 (m2 s–2)� [1]
r.m.s. speed = 505 m s–1� [1]

c	 i	 Speed will increase.� [1]
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Temperature is a measure of the average 
kinetic energy of the molecules.� [1]

ii	 Speed will be unchanged.� [1]

 12	 a	 An ideal gas is a gas that obeys the ideal gas 
law  
at all temperatures� [1]
and pressures.� [1]

b	 i	 125 (mol)� [1]
ii	 125 × 6.02 × 1023 = 7.53 × 1025 (molecules)� [1]

c	 pV = nRT� [1]

V	= 125 × 8.31 × 300
5 × 105 � [1]

	 = 0.62 m3� [1]
d	 i	 The helium does work on the atmosphere.

� [1]
Energy is taken from the helium.� [1]

ii	 The average speed drops.� [1]

 13	 a	 4410 N� [1]
b	 i	 Mass = 3690 kg� [1]

ii	 1.27 × 105 mol� [1]
c	 To achieve lift, a minimum of 450 kg of air 

must leave the balloon.� [1]
Maximum mass of remaining air  
= 3690 – 450 = 3240 kg� [1]

d	 Remaining air = 3240
29 × 10–3  = 1.12 × 105 mol� [1]

pV = nRT� [1]

T	= 1.03 × 105 × 3000
1.12 × 105 × 8.31  � [1]

	 = 332 K (59 °C)� [1]
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Chapter 23
1	 a	  
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� [1]
b	  
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� [1]
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d	  
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e	  
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� [1]

2	 a	 E	= Vd = 2500
0.040� [1]

	 = 6.25 × 104 V m–1� [1]
b	 i	 F	= EQ = 6.25 × 104 × 2.4 × 10–9� [1]

	 = 1.5 × 10–4 N� [1]
ii	 a	= F

m = 1.5 × 10–4

4.2 × 10–6 � [1]

	 = 3.6 × 104 m s–2� [1]

3	 a	 E	= Q
4πε0r2 = 9 × 109 × 2.4 × 10–9

0.022  � [1]

	 = 5.4 × 104 V m–1� [1]
b	 E	= Q

4πε0r2 = 9 × 109 × 2.4 × 10–9

0.042  � [1]

	 = 1.35 × 104 V m–1� [1]
(or one-quarter of the answer to part a since 
distance has doubled)

4	 a	 potential V = Q
4πε0r so

Q	= 4πε0r × V� [1]
	 = 0.030 × 20 000

9 × 109  � [1]

	 = 6.7 × 10–8 C� [1]
b	 E	= Vr  = 20 000

0.030  � [1]
	 = 6.7 × 105 V m–1 or N C–1� [1]

5		  V	= Q
4πε0r = 9 × 109 × 1.6 × 10–19

1.05 × 10–10  � [1]

	 = 13.7 V� [1]

6	 a	 The force at a point� [1]
per unit positive charge at the point.� [1]

b	 i	 E = 1
4πε0

 × Qr2 = 9 × 109 × 2 × 10–9

(5.0 × 10–2)2  � [1]

E = 7200 V m–1� [1]
ii	 Field due to B = 7200 – 1800 = 5400 V m–1� [1]

E = 1
4πε0

 × Qr2 leading to

Q	= E × 4πε0 × r2� [1]
	 = 1.5 × 10–9 C� [1]

c	 i	 V = 1
4πε0

 × Qr  = 9 × 109 × 2 × 10–19

1.0 × 10–2  � [1]

V = 1800 V� [1]
ii	 Greater before removing sphere B� [1]

Potential is a scalar, thus two potentials 
tend to add.� [1]

7	 a	 i	 W = VQ leading to
8.0 × 10–13 = V × 2 × 1.6 × 10–19� [1]
V = 2.5 × 106 V� [1]

ii	 Ek = 12 mv2 leading to

8.0 × 10–13 = 12  × 6.65 × 10–27 × v2� [1]
v2 = 2.4 × 1014� [1]
v = 1.6 × 107 m s–1� [1]

b	 i	 Zero� [1]
ii	 Zero� [1]
iii	8.0 × 10–13 J� [1]

c	 W = 1
4πε0

 ×  Q1Q2

r  leading to

r = 9.0 × 109 × 79 × 1.6 × 10–19 × 3.2 × 10–19

8.0 × 10–13  � [1]
r = 4.5 × 10–14 m� [1]

d	 Radius of nucleus is 4.5 × 10–14 m� [1]
This is the maximum radius of the nucleus; 
the inverse square law is still valid.� [1]

8	 a	 Potential at a point is the work done in 
bringing unit charge� [1]
from infinity to the point.� [1]

b	 i	 V	= –1
4πε0

 × Qr  

	 = –9.0 × 109 × 1.6 × 10–19

1.04 × 10–10  � [1]
	 = –13.8 V� [1]
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ii	 E	= qV = 1.6 × 10–19 × 13.8� [1]
	 = 2.2 × 10–19 J� [1]

c	 Use of gradient� [1]
leading to E = 1.4 × 1011 V m–1� [1]

9	 a	 E	= 1
4πε0

 × Qr2 

	 = 9 × 109 × 6.0 × 10–8

(0.8 × 10–2)2  � [1]

	 = 8.4 × 106 V m–1� [1]
b	 i	 F	 = 1

4πε0
 × Q1Q2

r2  

	 = 9 × 109 × 6.0 × 10–8 × (–4.5 × 10–8)
(5.0 × 10–2)2  � [1]

	 = 9.72 × 10–3 N� [1]
ii	 Reading = 0.0482 – 0.0097 = 0.0384 N� [1]

c	 W	= 1
4πε0

 ×  Q1Q2

(1/r2 – 1/r1) 

	 = 9 × 109 × 6.0 × 10–8 × (–4.5 × 10–8)
(1/0.035 – 1/0.050)

 � [1]

	 = –2.1 × 10–4 J� [2]
(Lose one mark if the minus sign is missing.)
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Chapter 24
1		  Q = CV = 470 × 10–6 × 9.0 = 4.2 × 10–3 C� [1]

2		  V = Q
C  = 0.033

2200 × 10–6 = 15 V� [1]

3		  C = Q
V  = 2.0

5000 = 4.0 × 10–4 = 400 µF� [1]

4		  W = 12 CV 2 = 0.5 × 470 × 10–6 × 122 = 0.034 J� [1]

5		  W = 12 QV = 0.5 × 1.5 × 10–3 × 50 = 0.0375 J� [1]

6	 a	 W = 12 CV 2 = 0.5 × 5000 × 10–6 × 242 = 1.44 J� [1]
b	 When charge is halved, p.d. is halved� [1]

so energy stored = 0.5 × 5000 × 10–6 × 122 
= 0.36 J� [1]
Energy dissipated in lamp = 1.44 J – 0.36 J 
= 1.08 J� [1]

7	 a	 W = 12 CV 2 = 0.5 × 4700 × 10–6 × 122 = 0.34 J� [1]
b	 Charge stored �= CV  

= 4700 × 10–6 × 12 = 0.056 C� [1]
c	 Average current = Q

t  = 0.056
2.5  = 0.023 A� [1]

d	 average p.d. = 6.0 V� [1]
R = V

I  = 6.0
0.023 = 260 W� [1]

e	 Current is dependent on p.d., which 
decreases at a non-uniform rate.� [1]

8		   
 
 
 

� [1]

9		   
 
 
 
 
 
 
 
 
� [4]

 10	 a	 1
total capacitance  = 1

100 +  1
200 +  1

600 =  10
600� [1]

so combined capacitance = 600
10  = 60 µF� [1]

Charge stored = 1.5 × 60 × 10–6 = 90 µC� [1]
Q1 = +90 µC, Q2 = –90 µC, Q3 = +90 µC,  
Q4 = –90 µC, Q5 = +90 µC, Q6 = –90 µC� [2]

b	 Using V = Q
C  � [1]

p.d. = 0.90 V across the 100 µF capacitor, 
0.45 V across the 200 µF capacitor,� [1]
0.15 V across the 600 µF capacitor� [1]

 11	 a	 Time delay, anti-surge, anti-spark, etc.� [1]

b	 i	 R = V
I  = 9.0

15 × 10–3 � [1]

R = 600 Ω� [1]
ii	 p.d. decreases across capacitor� [1]

as charge flows off, so less p.d. to drive 
current through the resistor� [1]

iii	Evidence of using the area� [1]
45 ± 5 mC� [1]

iv	C	= Q
V  = 45 × 10–3

9.0  � [1]

	 = 5.0 × 10–3 µF� [1]

 12	 a	 i	 V = 1
4πε0

 × Qr  leading to Q = V × r × 4πε0� [1]

Q =1.2 × 10–6 C� [1]

ii	 C = Q
V  = 1.2 × 106

54 000  � [1]

= 2.2 × 10–11 F� [1]
b	 E	= 12 QV or 12 CV2 

	 = 12 × 1.2 × 10–6 × 54 000 (or equivalent)� [1]
initial energy = 0.0324 J� [1]
p.d. after discharge = 13.5 kV� [1]
therefore energy remaining = 12 CV 2  
= 12 × 2.2 × 10–11 × 13 5002 = 0.0020 J� [1]
energy released = 0.0324 – 0.0020 ≈ 0.03 J� [1]

c	 Not sufficient p.d. between sphere and plate
� [1]
to continue ionising the air.� [1]

 13	 a	 V = 1
4πε0

 × Qr  so Q = 4πε0 × V × r� [1]

C = Q
V  = 4πε0 × V × r

V  = 4πε0 × r� [1]

b	 i	 V 1
4πε0

 × Qr 	=  9 × 109 × 5.0 × 10–8

0.1
 � [1]

	 = 4500 V� [1]

33 µF 300 µF 

150 µF 67 µF 
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ii	 W = 12 QV (or otherwise) 

= 12 × 5.0 ×10–8 × 4500� [1]
= 1.1 × 10–4 J� [1]

c	 i	 New charge on each sphere = 2.5 × 10–8 C� [1]
new potential = 2250 V� [1]
new energy (on each) = ½ × 2.5 × 10–8 × 250 

= 2.8× 10–5 J� [1]
ii	 Energy is lost to heating the spheres, as 

charge moves from one to the other.� [1]

 14	 a	 Capacitance is the charge stored� [1]
per unit potential difference across the 
capacitor plates.� [1]

b	 i	 Q = CV = 67 × 10–6 × 12� [1]
Q = 804 ≈ 800 µC� [1]

ii	 I = Qt  = 804 × 10–6

1/50
 � [1]

= 0.04 A� [1]
iii	P = VI where V is average p.d. � [1]

= 12 × 12 × 0.04� [1]
P = 0.24 W� [1]

c	 Capacitance is halved� [1]
Charge stored is halved� [1]
Current is halved but (average) V is 
unchanged� [1]
Power is halved� [1]
(Maximum [2] if qualitative, i.e. capacitance 
reduced, etc.)
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Chapter 25
1		  Exchange T and the 10 kΩ resistor.� [1]

 
 
 
 
 
 T

10 kΩ

+9 V

–9 V

–
+

0 V

15 kΩ

15 kΩ

2		   
 
 
 
 
 

+9 V

–9 V

–
+

0 V

15 kΩ

15 kΩ10 kΩ

� [3]

3	 a	 The process in which a part of the output of a 
device is passed back to the input.� [1]

b	 Unless an op-amp is saturated, the p.d. 
between the two input terminals of an 
op-amp is almost zero. Since one of the 
terminals, usually the (+) terminal, is 
connected to 0 V (earth), the other terminal 
(–) is almost at earth potential.� [2]

4	 a	 Gain	= –Rf

Rin
� [1]

		  = –200
10  = –20� [1]

b	 Input voltage	= output voltage
gain � [1]

		  = –8.0
20  = –0.40 V� [1]

c	 Maximum input voltage for the op-amp to 
still have the gain calculated in a is equal to

Vs

20  = 12
20 = 0.60 V� [1]

5	 a	 The feedback resistor Rf is half the resistance 
of the input resistor Rin. This then means the 
output voltage is half of the input voltage and 
of opposite sign.� [2]

b	 The gain of a non-inverting amplifier 

= 1 + R1

R2
. The smallest value of R1

R2
 is zero, 

so the smallest value of the gain is 1.� [1]

When R1 is zero, all of the output voltage is 
fed back to the negative input (–). As long 
as the op-amp is not saturated, the (+) and 
(–) terminals are at the same potential and 
the gain is 1.0. If R1 is any bigger, a smaller 
fraction of the output voltage is fed back. 
Since this smaller fraction is the input 
voltage, then the output voltage must be 
larger in value than the input.� [1]

6		   
 
 
 
 
 
 
 
 
 
 

0.8

0.2

Voltage / V

Time / s

output

input

� [3]

7		  Non-inverting amplifier� [1]

of gain (9 + 1)
1  = 10� [2]

8	 a	 Power supply, resistor and LDR in series� [1]
Output marked across the series resistor� [1]
 
 
 
 
 
 
 

R V

LDR

V0

output voltage

b	 As light intensity increases, the resistance of 
the LDR decreases.� [1]
The p.d. across the series resistor R is given 

by: output voltage = 
V0 × R

(R + resistance of LDR)
As the resistance of the LDR decreases, the 
output voltage increases.� [1]

c	 The whole circuit is the sensor (the LDR is 
the sensing device) and the voltmeter is the 
output device.� [1]
The processor is the potential divider (two 
resistors and voltage supply).� [1]
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9	 a	 The wire becomes longer (and thinner).� [1]
Resistance R = ρL

A  where ρ is the resistivity,  
L is the length and A is the cross-sectional 
area.� [1]
If all quantities apart from L are constant, 
then, if the length increases to L + ΔL,
R + ΔR = ρ(L + ΔL)

A  
Subtracting gives
ΔR = ρ∆L

A  so ΔR is proportional to ΔL� [1]

b	 Voltmeter reading	= V0 ×  R1

 (R1 + R2) = 5 × 150
450 � [1]

		  = 1.67 ≈ 1.7 V� [1]
c	 The voltmeter reading increases.� [1]

The resistance of the strain gauge is a larger 
fraction of the total resistance, and thus 
there is a larger fraction of the supply voltage 
across the strain gauge.� [1]

 10	 a	 i	 Microphone connected to (+) input and 0 V.
� [1]
Resistors connected to op-amp making a 
non-inverting amplifier.� [1]
 
 
 
 
 

+15 V

–15 V

–

+ R1

R2

ii	 LED connected to output and zero volt 
(earth) line� [1]
Series resistor included� [1]

b	 Any two from: less distortion, increased 
bandwidth, more stable gain, reduced gain 
(from very large value to a sensible value)� [2]

c	 i	 Maximum gain = 15
0.020� [1]

= 750� [1]
ii	 1 + R1

R2
 = 750� [1]

Any value where R1 = 749R2  
(e.g. R2 = 1 kΩ and R2 = 749 kΩ)  
with 300 W ≤ R1 + R2 < 10 MW� [1]

d	 As the potential at the (+) terminal of the 
op-amp changes / rises, the output voltage 
changes / increases.
Some (1/750th) of the increased output 
voltage is fed back to the (–) terminal of the 
op-amp.� [1]

Output rises until the potential at the (+) and 
(–) terminals of the op-amp are (very nearly) 
equal.� [1]

 11	 a	 i	 +9 V� [1]
ii	 –9 V� [1]

b	 VA	= 9 × 300
500  � [1]

	 = 5.4 V� [1]
c	 i	 Potential at A is greater than at B or 

potential at B is 3.4 V so Vout is +9 V.� [1]
ii	 Potential at B is greater than at A and Vout is 

–9 V or motor runs in reverse.� [1]
d	 The difference in level of light will fluctuate. 

Sometimes P will have more light than 
Q and, since the op-amp has such a high 
gain, its output will switch from +9 V to –9 V 
as the relative amount of light on P and Q 
fluctuates.� [1]

 12	 a	 (Unless the op-amp is saturated) the p.d. 
between the two input terminals of an 
op‑amp is almost nothing.� [1]
Since the (+) terminal of the op-amp is 
connected to 0 V (earth), the other terminal 
(–) is almost at earth potential and called a 
virtual earth.� [1]
The input resistance (or impedance) of the 
op-amp is very large or negligible current 
enters the input terminals of the op-amp.� [1]
current in R1	= – current in R2� [1]

		  Vout

R1
 = –  Vin

R2
 so

gain = Vout

Vin
 = –  R1

R2
 � [1]

b	 i	 Gain = – 20
4  = –5� [1]

Vout = –5 × 0.5 = –2.5 V� [1]
ii	 Total resistance of two parallel resistors  

= 2 kΩ� [1]
Gain becomes – 20

2  = –10 so Vout = –5.0 V� [1]

13	 a	  
 
 
 
 

switching
circuit 

� [2]
b	 Increase the resistance in the potential 

divider circuit.� [1]
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14	 a	 Light-dependent resistor (LDR).� [1]
When the light level increases the resistance 
of the LDR decreases� [1]
The current through the variable resistor 
increases, so the potential difference across it 
increases and the potential difference across 
the LDR falls� [1]
or When the light level decreases the 
resistance of the LDR increases� [1]
The current through the variable resistor 
decreases, so the potential difference across 
it decreases and the potential difference 
across the LDR rises.� [1]
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Chapter 26
1	 a	 (The force F is given by F = BIl sin θ.)

The force is a maximum when the angle θ 
between the wire and the magnetic field is 
90° (i.e. when sin θ = 1).� [1]

b	 The force is zero when the angle θ between 
the wire and the magnetic field is 0°. (The 
wire is parallel to the magnetic field.)� [1]

2	 a	 F = BIl ∝ I (force ∝ current)� [1]
Hence, the force increases by a factor of 3.0 
to a value of 1.41 × 10–2 N.� [1]

b	 F = BIl ∝ ∆B  
(force ∝ change in magnetic flux density)� [1]
Hence, the force is halved to a value of 
2.35 × 10–3 N.� [1]

c	 F = BIl ∝ ∆l  
(force ∝ change in length of wire in the field)
� [1]
Hence, the force is reduced to 40% of its 
initial value to 1.88 × 10–3 N.� [1]

3	 a	 F = BIl sin θ� [1]
B = F

Il sin θ = 3.8 × 10–3

1.2 × 0.03 × sin 50° � [1]
B = 0.138 T ≈ 0.14 T� [1]

b	 The direction is given by Fleming’s left-hand 
rule. The wire experiences a force into the 
plane of the paper.� [1]

4	 a	  
 
 
 
 
 
 

Clockwise magnetic field lines around and 
close to each strip.� [1]
Elliptical lines further away from the strips, 
eventually becoming elliptical around both 
strips (even farther away, the shape becomes 
circular, not shown in the diagram).� [1]

b	 The force on strip A is towards strip B and 
the force on strip B is towards strip A, i.e. the 
strips attract each other.� [1]
This is because strip A, on its own, produces 
a magnetic field vertically down the paper at 
strip B by the right-hand rule. The left-hand 
rule can then be applied to strip B, which has 
a current into the plane of the paper and a 
field down the paper, and so the force is to 
the left, towards strip A.� [1]

5	 a	 The current is from Y to X. This is because Q 
shows that the magnetic field above the wire, 
produced by the current, is from west to east. 
The right-hand rule then shows the current is 
upwards.� [1]

b	 P points towards the north-west.� [1]
c	 Q then points towards the north-west.� [1]

6	 a	 F	= BIl� [1]
	 = 4.5 × 10–3 × 2.5 × 0.07� [1]
	 = 7.88 × 10–4 ≈ 7.9 × 10–4 N� [1]

b	 The magnetic field is parallel to the current 
(or the wire).� [1]

c	 From Fleming’s left-hand rule, PQ 
experiences a force out of the plane of the 
paper and RS experiences a force into the 
plane of the paper.� [1]
Hence, the frame starts to rotate in a 
clockwise direction (when viewed from the 
end PS).� [1]

d	 Torque	= F × d = 7.88 × 10–4 × 0.04� [1]
		�  = 3.15 × 10–5 N m  

≈ 3.1 or 3.2 × 10–5 N m� [1]

7	 a	 Left to right� [1]
b	 Force = weight of paper tape

F	 = mg = 60 × 10–3 × 10–3 × 9.81� [1]
	 = 5.89 × 10–4 N ≈ 5.9 × 10–4 N� [1]

c	 B	= F
Il � [1]

	 = 5.89 × 10–4

8.5 × 0.052  � [1]
	 = 1.33 × 10–3 T ≈ 1.3 mT� [1]

d	 Moves up and down slowly� [1]
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8	 a	 Diagram showing wire and magnetic field 
and a method of measuring the force, e.g. 
diagrams similar to either Figure 26.14 or 
26.15 in the coursebook� [1]
Measure I, the current, and F, the force.� [1]
Method of measuring the force, e.g. mass 
of paper tape (in kg) × 9.81 or difference in 
readings on top-pan balance (in kg) × 9.81� [1]
Measure length of wire at right angles to 
magnetic field. � [1]
B = F

Il � [1]
b	 i	 Using the left-hand rule, the field is 

horizontally towards the north, the force is 
upwards and thus the current is from west 
to east.� [1]

ii	 I	= F
Bl � [1]

	 = 0.02
1.6 × 10–5 × 3.0

 � [1]

	 = 417 ≈ 420 A� [1]

9	 a	 The wire is carrying a current in a magnetic 
field and experiences a force.� [1]
There is an upwards force on the top-pan 
balance, reducing the reading.� [1]

b	 By Newton’s third law, the force is 
downwards on the wire to produce an 
upwards force on the top-pan balance.� [1]
By the left-hand rule, the current in the wire 
is from left to right.� [1]

c	 Force on wire = (102.45 – 101.06) × 10–3 × 9.81 
= 0.0136 N� [1]

B = F
Il  = 0.0136

4.0 × 5.0 × 10–2  = 0.068 T� [1]

d	 Axes labelled and balance reading when 
current is zero marked� [1]
Balance reading decreases linearly with 
current� [1]
 
 
 
 
 
 

Current / A

Ba
la

nc
e 

re
ad

in
g /

 g 102.45

101.06

40

10	 a	 Magnetic flux density is the force per unit 
length on a wire carrying a current of 1 A� [1]
when placed at right angles to the magnetic 
field.� [1]

Both electric field strength and magnetic 
field strength are defined in terms of 
the force on an object. For the electric 
field strength, the object is a charge of 
one coulomb (1 C); for the magnetic field 
strength, the object is a wire of length 1 m 
carrying a current of 1 A.� [1]

b	 i	 The two wires attract one another or 
there is a force upwards on the wire on the 
bench.� [1]
The wire above the bench produces a 
horizontal magnetic field on the wire lying 
on the bench.� [1]
This magnetic field interacts with the 
current in the wire lying on the bench to 
produce a force upwards.� [1]
The currents flow in the same direction 
causing the wires to attract each other.� [1]

ii	 B	= 2.0 × 10–7 × 4.0
0.03  = 2.67 × 10–5 T� [1]

F	= BIl = 2.67 × 10–5 × 4.0 × 1� [1]
	 = 1.07 × 10–4 ≈ 1.1 × 10–4 N� [1]
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Chapter 27
1		  The force is at right angles to the velocity v�[1]

and does no work on the electron, since 
work = force × distance moved in the 
direction of the force.� [1]
As no work is done on the electron, the 
kinetic energy of the electron is constant, as 
is its speed.� [1]

2		  1
2 mv2 = eV = e × 1600� [1]
r = mv

Be � [1]
e
m	= 2V

B2r2 = 3200
0.0172 × (8 × 10–3)2  � [1]

	 = 1.73 × 1011 ≈ 1.7 × 1011 C kg–1� [1]

3	 a	 Ratio mass of α-particle
mass of β-particle� [1]

= 4 × 1.67 × 10–27

9.11 × 10–31  = 7333 ≈ 7300� [1]

b	 Ratio charge of α-particle
charge of β-particle � [1]

= 3.2 × 10–19

1.6 × 10–19 = 2.0� [1]

c	 Ratio force on α-particle
force on β-particle � [1]

= ratio of charges = 2.0� [1]

d	 ra

rb
 = maQb

mbQa
 = 7333

2  = 3666 ≈ 3700� [1]

4		  The force is always at right angles to the 
direction of the magnetic field and is in the 
same direction (or the reverse) in an electric 
field.� [1]
The force is proportional to the velocity of 
the electron in a magnetic field but does not 
depend on the velocity of the electron in an 
electric field.� [1]

5	 a	 i	 The electron is charged. or A moving 
charge is the equivalent of a current.� [1]
The magnetic field of the moving charge 
interacts with the uniform magnetic field.
� [1]

ii	 The electron ionises atoms as it moves and 
loses (kinetic) energy.� [1]
The speed of the electron decreases and 
the radius decreases as r = mv

B .� [1]

b	 i	 F	= Bev = 0.25 × 1.6 × 10–19 × 1.0 × 107� [1]
	 = 4.0 × 10–13 N� [1]

ii	 r	= mv2 
F  = 9.11 × 10–31 × (1.0 × 107)2

4.0 × 10–13  � [1]

	 = 2.278 × 10–4 ≈ 2.3 × 10–4 m� [1]

6	 a	 i	 Quarter of a circle linking exit and entry 
points� [1]
Force at right angles to the circle marked 
at two points� [1]
Both forces towards the centre of the circle 
(top right-hand corner of square)� [1]
 
 
 
 
 
 
 
 

proton

source

region of
magnetic field

proton
detector

ii	 Into the plane of the paper.� [1]
b	 i	 F	= BQv = 0.25 × 1.6 × 10–19 × 4.0 × 106  

	 = 1.6 × 10–13 N� [1]

ii	 r	= mv2 
F  = 1.67 × 10–27 × (4.0 × 106)2

1.6 × 10–13 � [1]

	 = 0.167 ≈ 0.17 m� [1]
c	 The direction of the magnetic field is 

reversed.� [1]
The magnetic field is reduced in strength.� [1]

7	 a	 i	 Diagram showing – on right side and + on 
left side� [1]
Force on moving charges in magnetic field
� [1]
Left-hand rule explained� [1]

ii	 Force due to electric field or charges on 
sides cancels magnetic force.� [1]

b	 Larger number density� [1]
More electrons have enough energy to go 
from the valence band to the conduction 
band� [1]
Smaller drift velocity� [1]
Same charge flow per second but larger 
number of charge carriers� [1]
Smaller Hall voltage� [1]
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Smaller force on each charge carrier due to 
lower drift velocity needs a smaller electric 
field to cancel force due to magnetic field� [1]

8	 a	 i	 The electron is charged and is in an electric 
field.� [1]
The electric field from the plates is 
downwards and the electron is negative, so 
there is a constant force upwards.� [1]

ii	 A (small) spot is formed on the screen.� [1]
Higher-speed electrons are deflected less 
and the spot would become larger.� [1]

b	 1
2 mv2 = e × Vac� [1]

c	 i	 Into the plane of the paper / page� [1]
ii	 Bev = eE� [1]

v = E
B� [1]

iii	12 mv2 = e × Vac 
so  v =    (2 × 1000 × 1.76 × 1011)

= 1.88 × 107 ≈ 1.9 × 107 m s–1� [1]

E = V
d = 500

5.0 × 10–2 = 1.0 × 104 V m–1

B = E
v  = 1.0 × 104

1.88 × 107 = 5.3 × 10–4 T� [1]

9	 a	 mv2 
r  = BQv� [1]

r = mv
BQ  = 1.67 × 10–27 × 1.0 × 106

6.0 × 10–5 × 1.6 × 10–19 � [1]

r = 174 ≈ 170 m� [1]
b	 Two paths shown, both circles or parts of 

circles of different radius� [1]
Radius of helium nucleus twice as large as 
radius of proton (350 m)� [1]

170 m 350 m 

radius of path of helium nucleus radius of path of proton 

 10	 a	  
 
 
 
 
 

– – – –

V

i	 The opposite face to the one marked X.� [1]
ii	 Between X and the opposite face� [1]

b	 Electrons move until the magnetic force (Bev) 
is equal to the electric force (eVH/d).� [1]
Bev = eVH

d
 so VH = Bvd� [1]

I = nAve or v = I
nAe� [1]

VH = Bvd = BdI
nAe = BI 

nte (working shown)� [1]

c	 i	 v = I
nAe 

=  0.04
8.5 × 1028 × 3.0 × 10–5 × 9 × 10–3 × 1.6 × 10–19� [1]

= 1.1 × 10–5 m s–1� [1]
ii	 VH	= BI 

nte = 0.60 × 0.04
8.5 × 1028 × 3.0 × 10–5 × 1.6 × 10–19 � [1]

	 = 5.9 × 10–8 V� [1]
d	 i	 Electrons move faster� [1]

Larger magnetic force so larger voltage (or 
electric field) is needed to repel them or 
obtain equilibrium.� [1]

ii	 Hall voltage VH or value calculated is very 
small with metal� [1]
Semiconductor has smaller value of n so 
larger Hall voltage VH� [1]

e	 Electrons are forced in opposite direction 
when strip is rotated through 180°.� [1]
either VH is maximum when plane and B-field 
are normal to each other.
or VH is zero / minimum when plane and 
B-field are parallel to each other.
or Voltmeter reading or VH depends on sine of 
angle between plane and B-field.� [1]
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Chapter 28
1		  The most obvious demonstration is to show 

that the secondary coil is made of insulated 
wire, so no current can flow from the core 
to the secondary coil. (Alternatively, if you 
arrange for a small gap in the core, perhaps a 
piece of paper, then there is still an induced 
e.m.f. even though paper is an insulator. The 
e.m.f. will be reduced because the amount 
of flux in the core is reduced if there is not a 
complete circuit of iron.)� [1]
An electrical current is induced because there 
is a change in the magnetic flux linking the 
secondary coil. This changing flux is caused 
by the changing current in the primary coil.
� [1]

2	 a	 Φ	= BA� [1]
	 = 20 × 10–3 × (5.0 × 10–2)2 = 5.0 × 10–5 Wb� [1]

b	 e.m.f.  E = ∆(NΦ)
∆t � [1]

= 100 × 5.0 × 10–5

0.1 � [1]
= 5.0 × 10–2 V� [1]

3		  = ∆(NΦ)
∆t  = Blv� [1]

= 5.0 × 10–5 × 40 × 300� [1]
= 0.60 V� [1]

4		  An induced current flowing in a mass of 
metal, such as the core of a transformer.� [1]
Eddy currents are used in electromagnetic 
braking, for example in trains, where energy 
for the eddy currents comes from the kinetic 
energy of the train and the eddy currents 
themselves provide a braking force.� [1]
Eddy currents are a disadvantage in the cores 
of transformers, where energy is wasted in 
raising the internal energy of the core.� [1]

5		  When there is no flux linkage, the flux is 
changing at the greatest rate and so the 
induced e.m.f. is a maximum.� [2]
When the flux linkage is a maximum, it is, 
instantaneously, not changing and thus there 
is no induced e.m.f.� [2]

6	 a	 A magnetic flux linkage of 1 Wb exists  
if a coil of 1 turn and area 1 m2� [1]
has a field of 1 T passing at right angles 
through it.� [1]
(Other areas and numbers of turns are  
possible.)

b	 i	 ∆Φ
∆t  = 0.6 × 1.2 × 10–4

0.2 � [1]
	 3.6 × 10−4 Wb s−1� [1]

ii	 E = ∆(NΦ)
∆t  = 240 × 3.6 × 10−4� [1]

E = 0.0864 ≈ 8.6 × 10−2 V� [1]
iii	�E.m.f. correct and constant between  

0 and 0.2 s and zero between 0.2  
and 0.4 s� [1]
Negative e.m.f. of half the value in  
ii between 0.4 and 0.8 s� [1]
e.m.f. / V 

0.086

0 0
0.4 0.8

Time / s 

–0.043

7	 a	 i	 Time taken = distance
speed  = 0.02

0.05 = 4.0 × 10–2 s� [1]
ii	 Flux linkage �= NBA  

= 150 × 0.30 × (0.02 × 0.02)� [1]
flux linkage = 1.8 × 10–2 Wb� [1]

b	 The rate of change of magnetic flux is 
constant.� [1]

c	 Initial flux linkage = 0 and  
final flux linkage = 1.8 × 10–2 Wb� [1]
Magnitude of induced e.m.f.  
= rate of change of magnetic flux linkage� [1]

E = 1.8 × 10–2 – 0
4.0 × 10–2  � [1]

E = 0.45 V (magnitude only)� [1]
d	 When the coil is completely within the field, 

the induced e.m.f. is zero.� [1]
The reason for this is that there is no change 
in the magnetic flux linkage.� [1]
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e	  
 
 
 
 
 
 

e.m.f.  /  V

0.45

0
0 0.04 0.08 Time / s 

Correct axes and labels with e.m.f. constant 
between 0 and 0.04 s� [1]
Zero e.m.f. between 0.04 and 0.08 s� [1]

8	 a	 The e.m.f. induced is proportional to the rate 
of change� [1]
of magnetic flux linkage.� [1]

b	 i	 Φ = BA = 50 × 10–3 × π × (0.1)2� [1]
Φ = 1.57 × 10–3 ≈ 1.6 × 10–3 Wb� [1]

ii	 Change in flux linkage = ∆(NΦ)  
= 600 × 1.57 × 10–3 – 0� [1]
∆(NΦ) = 0.942 ≈ 0.94 Wb (magnitude only)
� [1]

iii	e.m.f.  E = ∆(NΦ)
∆t  = 0.942

0.12  � [1]
E = 7.85 ≈ 7.9 V� [1]

9	 a	 Lenz’s law states that the direction of 
induced e.m.f. / current opposes the change 
that is producing it.� [1]
Plunge magnet into coil / magnet on spring 
oscillates in and out of coil� [1]
either Ends of coil connected together� [1]
experience force resisting movement of 
magnet / magnet oscillates slower when coil 
ends are connected together and induced 
current flows
or Use an ammeter / galvanometer in series 
with coil.� [1]
Prove that, if north pole of magnet enters 
coil, then that end of coil is north� [1]

b	 i	 An induced e.m.f. in the aluminium disc 
causes an induced current to flow.� [1]
either Current in the disc causes heating 
of the disc / increase in internal energy 
of disc.� [1]
By conservation of energy, the kinetic 
energy of the car is reduced.� [1]
or Currents in the disc are flowing 
in the magnetic field created by the 
electromagnets.� [1]

These currents experience a force 
backwards, opposing the rotation of 
the disc.� [1]
(maximum of [3])

ii	 There is a greater rate of change of flux (in 
any area on the disc).� [1]
A larger e.m.f. is induced by Faraday’s law, 
thus larger induced currents flow.� [1]

 10	 a	 i	 A change in magnetic flux causes an 
induced e.m.f.� [1]
either The spokes are cutting magnetic 
lines of flux.
or The circuit (containing a spoke and the 
connections) is sweeping out an area of 
magnetic flux.� [1]

ii	 Increase the strength of the magnetic 
field. This causes a greater magnetic flux 
linking the circuit and thus a greater rate of 
change of the magnetic flux.� [1]
Rotate the coil faster. Each change in 
magnetic flux occurs in a smaller time, and 
thus a greater rate of change of flux occurs.
� [1]

b	 i	 Area per second = πR2f = π × (0.15)2 × 5� [1]
Area per second = 0.353 ≈ 0.35 m2 s–1� [1]

ii	 E = ∆(NΦ)
∆t  = ∆(BA)

∆t  = 0.353 × 5 × 10–3� [1]

E =1.77 × 10–3 ≈ 1.8 × 10–3 V� [1]



Answers to end-of-chapter questionsCambridge International A Level Physics

Cambridge International AS and A Level Physics © Cambridge University Press 2014

Chapter 29
1	 a	 V = V0 sin ωt, where ω = 2πf� [1]

b	 I = I0 sin ωt� [1]
c	 P = I0V0 sin2 ωt = (I0)2R sin2 ωt = (V0)2 sin2 ωt

R � [1]

2	 a	 2 A� [1]
b	 2πf = 50π� [1]

so f = 25 Hz� [1]
c	  

 
 
 
 
 
 

1

2

I / A

0

–1

–2

0.04 0.08

Irms (1.4 A)

t / s

� [2]
d	 Irms = I0

 2 = 1.41 ≈ 1.4 A� [1]

e	 0.005 and 0.015 s in the first cycle, and  
0.045 and 0.055 s in the second cycle� [2]
Irms marked on graph� [1]

3	 a	 N = 1200 × 6.0
240  = 30� [1]

b	 i	 P = (Vrms)
2

R  = 6.02

6  = 6.0 W� [1]

ii	 Assuming the transformer is 100% 
efficient, for primary coil IrmsVrms = 6.0 W� [1]
Irms = 6.0

240 = 0.025 A� [1]
I0 = Irms ×   2 = 0.025   2 = 0.0353 ≈ 0.035 A� [1]

4	 a	 i	 Magnetic flux is in phase with the current.
� [1]

ii	 The induced e.m.f. and current are out of 
phase by 90°.� [1]
 
 
 
 
 
 
 

B A

t

I

I

b	 The two graphs differ in phase by 90° since 
the induced e.m.f. is the rate of change of 
magnetic flux linkage.� [1]

5	 a	 Period = 8 × 5 = 40 ms = 0.040 s� [1]
Frequency = 1T = 25 Hz� [1]

b	 V0 = 3 × 0.5 = 1.5 V� [1]
Vrms = 1.5

 2  = 1.06 ≈ 1.1 V� [1]

c	 Irms = Vrms
R  = 1.06

200  = 5.3 × 10–3 A� [1]

d	 <P> = IrmsVrms = 1.06 × 5.3 × 10–3� [1]
= 5.6 × 10–3 W� [1]

6	 a	 I0 =   2 × Irms� [1]
b	 i	 The current using the a.c. supply is not 

steady and is mostly below 2.0 A.� [1]
The heating effect is greater using the d.c. 
supply.� [1]

ii	 Pdc

Pac
 = (Idc)

2

(Irms)
2� [1]

Pdc

Pac
 = 2� [1]

c	 Transformers only work with alternating 
current. The use of transformers allows the 
mains voltage to be altered without much 
power loss to suit various devices that do not 
need such large voltages.� [1]

7	 a	 Correct dotted line showing a.c.� [1]
Peak voltage V0 =   2 × 6.0 = 8.49 ≈ 8.5 V marked 
as peak on graph.� [1]
Time for one cycle 1

50 = 0.02 s marked on 
graph.� [1]
Correct half-wave rectified shape shown.� [1]
 
 
 
 
 
 

8.5

–8.5

0
0.02 0.04 Time / s

p.d. / V

b	 i	 3
4 × 0.02 = 0.015 s� [1]

ii	 Imean = Vmean
R  = 5.7

400� [1]
= 0.014 25 ≈ 1.4 × 10–2 A� [1]

iii	Q = Imeant = 0.014 25 × 0.015� [1]
= 2.14 × 10–4 ≈ 2.1 × 10–4 C� [1]

iv	p.d. across capacitor falls  
from 8.49 to 4.24 V
C = Q

Vfinal – Vinitial
 = 2.14 × 10–4

8.49 – 4.24 � [1]

= 5.04 × 10–5 ≈ 5.0 × 10–4 F� [1]
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c	 Diode has very large / infinite resistance� [1]
when the p.d. across the diode is negative 
(i.e. it is reverse biased) or when top contact 
of supply is at a smaller potential than top 
plate of the capacitor.� [1]

8	 a	 Full-wave rectification occurs.� [1]
Four diodes are used.� [1]
Circuit showing correct bridge rectifier with 
four diodes, input and output (Figure 29.15 in 
the coursebook).� [1]
Circuit with all diodes connected in correct 
direction.� [1]
Correct explanation describing the two 
diodes that conduct when the supply voltage 
has positive potential at top and negative 
potential at bottom.� [1]
Correct explanation describing the other two 
diodes that conduct when the supply voltage 
has negative potential at top and positive 
potential at bottom.� [1]

b	 Capacitor charges up to 1.0 V� [1]
When the p.d. across capacitor exceeds the 
supply p.d., the diode stops conducting.� [1]
Capacitor provides current in resistor and 
discharges (exponentially).� [1]

c	 i	 t = 0.013 to 0.015 s or 0.002 s� [1]
ii	 Vmean = 0.90 to 0.92 V� [1]

iii	<P> = (Vmean)2

R  = 0.912

1000 � [1]
= 8.28 × 10–4 ≈ 8.3 × 10–4 W� [1]

9	 a	 Peak value of mains supply = 230   2 = 325 V

or r.m.s value of output = 12
 2  = 8.49 V� [1]

Ns = Np × Vs

Vp
 = 2000 × 12

325� [1]
Ns = 73.8 ≈ 74� [1]

b	 i	 Sine wave with correct peak value 12 V, at 
least 1.5 waves drawn� [1]

ii	 Correct charging portion of p.d. across R�[1]

Correct discharging portion of p.d. across 
R, approximately exponential� [1]
 
 
 
 
 
 
 

p.d. / V
p.d. across R

output p.d. of secondary

Time

12 V

c	 Smoothing capacitor now has twice the 
capacitance.� [1]
Capacitor holds more charge and can supply 
the current / charge with less p.d. drop.� [1]
Less ‘ripple’, i.e. the p.d. falls less during the 
discharge from the capacitor.� [1]

 10	 a	 i	 The steady direct voltage that delivers the 
same energy / power� [1]
to a resistance / resistive load as the 
alternating voltage.� [1]

ii	 V0 =    2 × Vrms =    2 × 400 000� [1]
= 566 000 ≈ 5.7 × 105 V� [1]
or the p.d. between two conductors is 
twice this value

b	 i	 Irms = P
Vrms

 = 500 × 106

400 × 103 � [1]

= 1250 ≈ 1.2 × 103 or 1.3 × 103 A� [1]
ii	 P = (Irms)

2R = 12502 × 4.0� [1]
P = 6.25 × 106 ≈ 6.2 × 106 or 6.3 × 106 W� [1]

iii	When the voltage is stepped up, the 
current is reduced (for the same input 
power).� [1]
Smaller currents produced less energy / 
power loss in the line’s resistance.� [1]

c	 A changing current in the primary coil causes 
a changing magnetic flux in the iron core.� [1]
This changing magnetic flux passes to the 
secondary coil where there are fewer turns 
and a smaller e.m.f. is induced.� [1]
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Chapter 30
1		  E	= hf� [1]

	 = 6.63 × 10–34 × 4.0 × 1018 = 2.7 × 10–15 J� [1]

2		  For shortest wavelength:
E	= hc

λ � [1]

	 = 6.63 × 10–34 × 3 × 108

0.005  = 4 × 10–23 J� [1]
so range is from 4 × 10–23 J to 4 × 10–25 J� [1]

3	 a	 E = 1.02 × 10–5 × 1.60 × 10–19 = 1.63 × 10–24 J� [1]

b	 f = Eh = 1.63 × 10–24

6.63 × 10–34 = 2.46 × 109 Hz� [1]

c	 λ = c
f  = 3.0 × 108

2.46 × 109  = 0.12 m� [1]

4	 a	 E = 5 × 106 × 1.6 × 10–19 = 8.0 × 10–13 J� [1]
b	 i	 10 000 eV� [1]

ii	 E = 10 000 × 1.6 × 10–19 = 1.6 × 10–15 J� [1]
c	 E = 6 × 10–21

1.6 × 10–19 = 3.8 × 10–2 eV� [1]

5	 a	 Charge = 2e� [1]
so energy in eV = 2 × 7500 = 15 000 eV� [1]

b	 E = 15 000 × 1.6 × 10–19 = 2.4 × 10–15 J� [1]

c	 v2 = 2E
m  = 4.8 × 10–16

6.8 × 10–27 = 7.06 × 1010 m2 s–2� [1]

v = 8.4 × 105 m s–1� [1]

6	 a	 photon energy in eV = 2.5 × 10–18

1.6 × 10–19 = 15.625 eV� [1]
Maximum energy  
= photon energy – work function� [1]
= 15.625 – 4.3 = 11.3 eV� [1]

b	 Converting this to joules:
maximum energy  
= 11.3 × 1.6 × 10–19 = 1.8 × 10–18 J� [1]

7		  Minimum frequency = work function
h � [1]

= 4.9 × 1.6 × 10–19

6.63 × 10–34  = 1.2 × 1015 Hz� [1]

8	 a	 Energy required = 54.4 eV� [1]
= 54.4 × 1.6 × 10–19 = 8.7 × 10–18 J� [1]

b	 Energy change = 13.6 – 6.1 = 7.5 eV� [1]

f = Eh = 7.5 × 1.6 × 10–19

6.63 × 10–34  = 1.8 × 1015 Hz� [1]

This lies in the ultraviolet region.� [1]
c	 The drop in energy from n = 2 to n = 1 is much 

more than that from n = 3 to n = 2,� [1]

so the frequency of the light emitted is much 
higher.� [1]

9	 a	 E = hc
λ  = 6.63 × 10–34 × 3 × 108

590 × 10–9 � [1]

E = 3.4 × 10–19 J� [1]
b	 i	 Electrons have zero potential energy at 

infinity, and less than this near the nucleus.
� [1]

ii	 Electron is excited from the –5.8 × 10–19 J 
level to the –2.4 × 10–19 J level,� [1]
absorbing all the energy of the incident 
photon.� [1]

iii	Incident light is directional; light is 
re‑emitted in all directions.� [1]

 10	 a	 Electron is totally removed from the nucleus.
� [1]
(accept atom is ionised)

b	 i	 The potential energy of the electron is less 
in level 2 than in level 3,� [1]
so energy is given out (as a photon).� [1]

ii	 Change in energy = –2.4 – (–5.4) = 3.0 eV or 
4.8 × 10–19 J� [1]
E = hc

λ  leads to λ = hc
E   = 6.63 × 10–34 × 3 × 108

4.8 × 10–19 � [1]

= 4.1 × 10–7 m� [1]
iii	If E is inversely proportional to n2, then En2 

is a constant.
n = 1: En2 = –21.9 × 1 = –21.9
n = 2: En2 = –5.4 × 4 = –21.6
n = 3: En2 = –2.4 × 9 = –21.6� [1]
All products are approximately the same.
� [1]
Alternative route is to compare ratios of 
E1 : En and 1

(n1)2 :  1
(nn)2 � [1]

with linking comment.� [1]

 11	 a	 i	 Electromagnetic radiation displays 
properties associated both with particles
� [1]
and with waves.� [1]

ii	 Radiation below certain frequency will 
not produce photoelectrons / maximum 
energy of photoelectrons increases linearly 
with frequency.� [1]
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Energy of a packet (particle) depends on 
frequency (wave).� [1]

b	 Energy of the photon is less than the work 
function,� [1]
which is the minimum energy required to 
remove an electron from the metal surface.
� [1]

c	 Read off frequency = 5.6 × 1014 Hz� [1]
E	= hf = 6.63 × 10–34 × 5.6 × 1014� [1]
	 = 3.7 × 10–19 J� [1]

d	 Gradient, e.g.

gradient =  (1.82 – 0) × 1.6 × 10–19

4.4 × 1014  � [1]

h = 6.62 × 10–34 ≈ 6.6 × 10–34 J s� [1]

 12	 a	 Electrons show wave–particle duality.� [1]
The de Broglie wavelength is the wavelength 
of an electron (of a definite energy).� [1]

b	 i	 5.0 keV or 8.0 × 10–19 J� [1]
ii	 E = 12 mv2 → Em = 12 m2v2 → mv = p =    2Em� [1]

p	=    2 × 8.0 × 10–19 × 9.1 × 10–31� [1]
	 = 3.8 × 10–23 N s� [1]

iii	λ = hp = 6.63 × 10–34

3.8 × 10–23 � [1]

λ = 1.7 × 10–11 m� [1]
c	 Neutrons have a greater mass than electrons, 

so greater momentum� [1]
for same energy,� [1]
so shorter wavelength� [1]

 13	 a	 Valence band electrons are not free to move / 
are bound to atoms� [1]
conduction band above valence band� [1]
valence band full and conduction band 
empty or only a few electrons.� [1]

b	 E	= hc
λ  = 6.63 × 10–34 × 3 × 108

450 × 10–9  = 4.42 × 10–19� [1]

	 = 4.42 × 10–19

1.60 × 10–19  = 2.76 eV� [1]

c	 i	 Photons have enough energy� [1]
to promote electrons from the valence 
band to the conduction band.� [1]

ii	 Greater intensity of light causes more 
photons (per second) to hit the LDR.� [1]
More electrons are promoted, the current 
is larger and resistance is smaller.� [1]

d	 λ	= hc
E  = 6.63 × 10–34 × 3 × 108

2.4 × 1.6 × 10–19  � [1]

	 = 5.18 × 10–7 m or 520 nm� [1]

 14	 a	 Metal: any 3 from:
Conduction and valence bands overlap.� [1]
There are always electrons in conduction 
band.� [1]
Number of electrons in conduction band 
does not change with temperature.� [1]
Higher temperature increases lattice / atomic 
vibration, slowing movement of electrons / 
Reducing drift velocity.� [1]

b	 Semiconductor: any 3 from:
At low temperatures, conduction band has 
few electrons.� [1]
Band gap in energy exists between valence 
and conduction bands.� [1]
Electrons need energy to go from valence 
band to conduction band.� [1]
Higher temperature gives energy to electrons 
to cross band gap.� [1]
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Chapter 31
1	 a	 Using E = mc2� [1]

energy released = 2 × 1.67 × 10–27 × (3.0 × 108)2

� [1]
		  = 3.0 × 10–10 J� [1]

b	 1 mole contains NA particles� [1]
so energy released = 3.0 × 10–10 × NA� [1]
= 3.0 × 10–10 × 6.023 × 1023 = 1.8 × 1014 J� [1]

2		  Using E = mc2, m = E
c2 � [1]

= 1.0
(3.0 × 108)2 = 1.1 × 10–17 kg� [1]

3		  Using E = mc2, energy released per second 
= 70 × 10–6 × (3.0 × 108)2� [1]
= 6.3 × 109 J� [1]
But energy per second = power,  
so power = 6.3 GW� [1]

4		  Mass deficit = 221.970 – 217.963 – 4.002  
= 0.005 u� [1]
= 0.005 × 1.660 × 10–27 kg 
= 8.30 × 10–30 kg� [1]

energy released = 8.30 × 10–30 × (3 × 108)2� [1]
= 7.47 × 10–13 J� [1]

kinetic energy of the a-particle� [1]
electromagnetic radiation (the g-ray)� [1]

5	 a	 Mass defect in u  
= 6 × (1.007 276 + 1.008 665 + 0.000 548) – 12.000 
= 0.098 934 u� [1]
Mass defect in kg = 0.098 934 × 1.660 × 10–27 

= 1.64 × 10–28 kg� [1]
b	 Binding energy = mass defect × c2� [1]

= 1.64 × 10–29 × (3.0 × 108)2 = 1.48 × 10–11 J� [1]
c	 number of nucleons = 12� [1]

so BE per nucleon = 1.48 × 10–1

12
 = 1.23 × 10–12 J�[1]

6	 a	 Decrease in mass = 
3.015 500 + 2.013 553 – 4.001 506 – 1.007 276�[1]
= 0.020 271 u� [1]
= 0.020 271 × 1.660 × 10–27 = 3.365 × 10–29 kg� [1]

b	 Energy released = mc2� [1]
= 3.365 × 10–29 × (3.0 × 108)2 = 3.028 × 10–12 J� [1]

c	 energy released per mole  
= energy per atom × NA� [1]

= 3.028 × 10–12 × 6.023 × 1023 = 1.823 × 1012 J� [1]

7	 a	 1 mole contains NA atoms.� [1]
Using A = λN,
λ	 = A

N
 � [1]

	 = 8.02 × 1021

6.023 × 1023 = 1.33 × 10–2 s–1� [1]

b	 λt1/2 = 0.693, so
t1/2	= 0.693

λ
 � [1]

		  = 0.693
1.33 × 10–2 = 52.0 s� [1]

8	 a	 From the graph, 2 × t1/2 = 28 s� [1]
so t1/2 = 28

2  = 14 s� [1]
(or use the point (14, 80))

b	 λt1/2 = 0.693, so

λ	 = 0.693
t1/2

 � [1]

	 = 0.693
14

 = 4.95 × 10–2 s–1� [1]

9	 a	 t1/2	= 0.693
λ

 = 0.693
4.9 × 109 � [1]

	 = 1.4 × 10–10 y–1� [1]

b	 Using ln( N
N0

) = –λt,� [1]
ln 0.992 = –1.4 × 10–10t� [1]
t = 5.7 × 107 y� [1]

 10	 a	 i	 Graph drawn using these figures, single 
smooth line, points plotted as crosses, 
suggested scales:  
activity (y-axis)  
50 Bq per cm 
time (x-axis) 2 minutes per cm� [1]

ii	 There is a random element of radioactive 
decay, which becomes more apparent at 
lower levels of activity.� [1]

b	 from the graph, t1/2 ~ 3.8 minutes� [1]
c	 All count rates would be greater� [1]

but the time for the rate to halve would 
remain the same.� [1]

 11		  No change in count rate� [1]
because temperature does not affect rate of 
radioactive decay.� [1]

 12	 a	 92 protons, 143 neutrons� [1]
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b	 V = 43 πr3 = 4π(1.41 × 10–15)3 × 235
3  = 2.76 × 10–42 m3

� [1]
r	 = 3.89 × 10–25

2.76 × 10–42 m
3� [1]

	 = 1.41 × 1017 ≈ 1.4 × 1017 kg m–3� [1]
c	 When the nucleons are combined in the 

nucleus they have less energy  
(= binding energy) than when separated.� [1]
Less energy means less mass (or energy has 
mass)� [1]

d	 Sum the total mass of the separate protons 
and neutrons.� [1]
Subtract from that the mass of the uranium 
nuclide.� [1]
Apply ΔE = Δmc2� [1]
ΔE is the binding energy.� [1]

 13	 a	 Nuclear fusion is the joining together of 
two (or more) light nuclei to form a heavier 
nucleus.� [1]
The repulsive electrostatic forces between 
nuclei must be overcome.� [1]
High temperatures mean particles moving 
very fast / high energy.� [1]

b	 i	 Electrostatic forces larger as the charge on 
each nucleus is twice that on hydrogen (H).
� [1]

ii	 Δm = 12 – (3 × 4.001 506) = 0.004 518 u� [1]
Δm �= 0.004 518 × 1.660 × 10–27  

= 7.500 × 10–27 kg� [1]
ΔE = 7.500 × 10–27 × (3.0 × 108)2

ΔE = 6.75 × 10–13 J� [1]

 14	 a	 Alpha-particles have a very low penetration 
and those from outside the body are stopped 
by the layer of dead skin cells.� [1]
Dust can be inhaled, bringing the α-particles 
inside the body, where they are very 
dangerous.� [1]

b	 N = 2.4
218 × 6.02 × 1023 particles (= 6.63 × 1021)� [1]

λ = ln  2
183 = 3.78 × 10–3 s–1� [1]

A = λN = 3.78 × 10–3 × 6.63 × 1021� [1]
A = 2.50 × 1019 Bq� [1]

c	 λt = ln(A0

A ) = ln(2.50 × 1019 
10 ) (= ln(2.50 × 1018))� [1]

t	= ln(2.50 × 1018

3.78 × 10–3) (= 11 200 s)� [1]

	 = 3 hours� [1]

 15	 a	 Kinetic energy� [1]
of the fission fragments� [1]

b	 i	 Mass defect  
= 3.90 × 10–25 – (1.44 × 10–25 + 2.42 × 10–25  
� + 1.67 × 10–27 × 2) 
≈ 0.01 × 10–25 kg� [1]
(accept a mass defect of 6.6 × 10–28 kg)
Energy released = 0.01 × 10–25 × (3 × 108)2

= 9 × 10–11 J� [1]
ii	 Fissions per second = 200 × 106

9 × 10–11  = 2.2 × 1018�[1]

iii	Fissions per year �= 2.2 × 1018 × 3.15 × 107 
= 6.93 × 1025� [1]

moles per year = 6.93 × 1025

6.02 × 1023 = 115� [1]
mass per year �= 115 × 235  

= 2.7 × 104 g = 27 kg� [1]
(accept a final answer of 41 kg if a mass 
defect of 6.6 × 10–28 kg is used)

 16	 a	 Emission of α-particles, β-particles and 
γ-particles� [1]
from unstable nuclei� [1]

b	 It is impossible to predict when a particular 
nucleus will decay.� [1]
The rate of decay of many nuclei varies above 
and below an average value.� [1]

c	 The decay of a nucleus is not affected by 
other nuclei around it.� [1]
The decay of a nucleus is not affected by 
external conditions such as temperature.� [1]
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Chapter 32
1	 a	 Radiation that can cause ionisation of the air 

(or of any other material it passes through).
� [1]
It is likely to have sufficient energy to cause 
damage to DNA and hence cell mutation.� [1]

b	 X-ray shadow imaging, CAT scan� [1]

2		  Minimum wavelength = hc
E � [1]

= 6.63 × 10–34 × 3 × 108

20 000 × 1.6 × 10–19  = 6.2 × 10–11 m� [1]

3		  There is a large difference between the 
acoustic impedance of air and skin. 
Consequently, a very large percentage of the 
ultrasound is reflected.� [1]
The gel is used to match the impedances.� [1]

4		  Ir

I0
	= (Z2 – Z1)2

(Z2 + Z1)2 � [1]

	 = (1.78 – 1.63)2

(1.78 + 1.63)2� [1]

	 = 0.0019 = 0.19%� [1]

5		  Wavelength = speed
frequency = 5200

800 000 = 0.0065 m
� [1]
Optimum thickness is half this, i.e. 
3.25 × 10–3 m ≈ 3.3 × 10–3 m� [1]

6		  The angular frequency (or velocity) of the 
precession of a proton’s magnetic axis 
around the direction of the applied field.� [1]

7		  Large (relatively) exposure of patient to the 
ionising radiation with consequent risks� [1]
Expensive, because sophisticated equipment 
is required� [1]

8	 a	 Diagram showing basic tube with cathode, 
anode (target)� [1]
Cathode, anode, vacuum labelled / referred 
to elsewhere� [1]
High potential (50 kV or more) between 
anode and cathode� [1]
Reference to material for anode / reference to 
cooling of anode� [1]
Reference to acceleration of electrons across 
the tube� [1]

b	 Electric potential energy  
→ kinetic energy of electrons� [1]
→ internal energy on collision with anode� [1]
plus X-radiation� [1]

9	 a	 i	 Peaks are formed by excitation of an inner 
electron in an atom to a higher level.� [1]
Energy is given out when it drops back to 
ground state.� [1]

ii	 Band is produced by many interactions,� [1]
each absorbing different energies.� [1]

b	 i	 Low-energy X-rays are absorbed by flesh�[1]
so do not contribute to the overall picture.
� [1]
Filtering these rays reduces the patient’s 
overall exposure to radiation.� [1]

ii	 Aluminium absorbs these low-energy 
X-rays.� [1]

c	 Use of 115 keV� [1]
E = hf leading to
f	 = 115 × 103 × 1.6 × 10–19

6.63 × 10–34
� [1]

	 = 2.78 × 1018 ≈ 2.8 × 1018 Hz� [1]

 10	 a	 Any 5 points for [5] marks:
The patient lies in a vertical ring of X-ray 
detectors and the X-ray tube rotates around 
the ring.� [1]
The body part is split up into tiny cubes 
called voxels.� [1]
A voxel is a unit of graphic information that 
defines a point in three-dimensional space.
� [1]
Slices through the body are viewed.� [1]
The computer combines slices to build up a 
three-dimensional image of the patient.� [1]
Images of ‘slices’ through the patient are 
shown on the computer screen.� [1]
A traditional X-ray picture is formed by 
absorption.� [1]
Denser materials absorb more than less 
dense materials, producing a shadow image.
� [1]

b	 CAT gives a better contrast of soft tissues.� [1]
MRI gives better image of dense tissue such 
as bone.� [1]

Answers to EOC questions
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 11	 a	 i	 I = I0 e–μx� [1]
= 4.0 × 105 × exp (–250 × 5 × 10–2)� [1]
= 1.5 W� [1]

ii	 The long-wavelength / low-energy X-rays 
are absorbed,� [1]
which do not contribute to the overall 
picture / are absorbed by soft tissue,� [1]
reducing the overall exposure to radiation.
� [1]

b	 Any 5 points for [5] marks:
X-rays are scattered as they pass through 
the body.� [1]
This scattering reduces the sharpness of 
the image.� [1]
An anti-scatter grid consists of plates that are 
opaque to X-rays,� [1]
which alternate with transparent material.�[1]
The grid is placed between the patient and 
the screen.� [1]
Grid absorbs scattered X-rays.� [1]

 12	 a	 Acoustic impedance of a material  
= density × speed of sound in the material� [1]
When ultrasound goes from one material to 
another, some reflects.� [1]
The proportion of the signal reflected is 
determined by the acoustic impedance of the 
two materials.� [1]

b	 Z = rc = 1.04 × 103 × 1.58 × 103 J� [1]
Z = 1.64 × 106 m2 s–1� [1]

c	 i	 Some energy is reflected at the first 
surface, so incident energy is lower at the 
second surface.� [1]

ii	 Time between pulses = 3.5 × 10 × 10–6 s� [1]
Distance of travel of pulse = vt 
= 1.58 × 103 × 3.5 × 10 × 10–6 s� [1]
Diameter of head = 12 × distance  
= 2.76 × 10–2 ≈ 28 mm� [1]

 13	 a	 The ratio of the Larmor frequency to the 
applied magnetic field� [1]

b	 i	 ω0 = 2π × 48 × 106 = 3.01 × 108 rad s–1� [1]

γ = ω0

B0
 = 3.01 × 108 

1.8 � [1]

= 1.67 × 108 rad s–1 T–1� [1]
ii	 The frequency of the RF signal is equal 

to the natural frequency of the proton 
precession,� [1]
so the proton absorbs the energy.� [1]

iii	Protons fall back to a lower energy state,�[1]
emitting (RF) radiation as they do so.� [1]
The different relaxation times (or words to 
that effect) from different tissues enable a 
picture to be built up.� [1]
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Chapter P2
1	 a	 Dependent variable is frequency; 

independent variable is volume� [1]
b	 Temperature (or air pressure)� [1]
c	 Loudspeaker connected to signal generator 

or tuning forks of different frequencies� [1]
d	 Connect to a microphone and oscilloscope. 

Measure T, the time for one wave on x-axis 
and f = 1T � [1]

e	 Fill with water and tip water into measuring 
cylinder� [1]

f	 Add water� [1]
g	 Not too loud or use ear plugs� [1]

2	 a	 Dependent variable is terminal velocity; 
independent variable is bubble volume or 
radius� [1]

b	 Temperature / mass of air in bubble / 
atmospheric pressure� [1]

c	 Place marks on side of glass tube in which 
bubble rises and time bubble between the 
marks� [1]

d	 Squirt air from a small glass tube under water 
and change the radius of the tube� [1]

3	 a	 Dependent variable is count rate; 
independent variable is distance� [1]

b	 Amount of radioactive material / 
atmospheric pressure / long half-life� [1]

c	 Wrap source in a few millimetres of 
aluminium and subtract background count
� [2]

d	 Diagram of source and GM tube, with GM 
tube connected to counter� [1]
Record change in reading on counter and 
divide count by time� [1]

e	 Record for as long as possible (but much less 
than half-life)� [1]

f	 The source is quite large and it is difficult to 
know which part to measure to / difficult to 
put a ruler over the distance� [1]
Put a fiducial mark on the bench on the 
outside of the source to mark its middle� [1]

g	 Use lead absorbers / stand far away / stay 
close for a short time� [1]

4	 a	 Dependent variable is volume / radius /  
diameter; independent variable is 
atmospheric pressure� [1]

b	 Temperature / type of balloon� [1]
c	 Bell jar or container to hold balloon� [1]

Means to change pressure – e.g. vacuum 
pump� [1]

d	 Turn on vacuum pump� [1]
Pressure gauge shown or manometer 
(pressure may be measured in cm of liquid)
� [1]

e	 Wear goggles / stand behind safety screen (as 
bell jar may implode)� [1]

5	 a	 6.0 ± 0.7� [1]
b	 1.5 ± 0.2� [1]
c	 9.0 ± 1.2 or 9 ± 1� [1]
d	 1.0 ± 0.3� [1]
e	 5.0 ± 1.6 or 5 ± 2� [1]
f	 1.73 ± 0.06� [1]

6		  Best-fit line – an even balance of points about 
the line along its whole length� [1]
Worst-fit line – line with most different 
gradient to best-fit line but that still passes 
through as many error bars as possible� [1]

In questions 7–11 only brief descriptions are given.

7	 a	 dependent variable R� [1]
independent variable d� [1]
constant – intensity of bulb� [1]

b	 circuit diagram� [1]
current and voltage measured� [1]
distance d between source and LDR changed
� [1]
d measured and shown� [1]
method of measuring d� [1]

c	 R = VI � [1]

graph of ln R against ln d should be a straight 
line (not through origin)� [1]

Answers to EOC questions
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d	 avoid touching hot lamp / do not stare at 
bright light� [1]

e	 any [4] points from
calculation of currents and choice of sensible 
meter ranges� [1]
lamp is a line filament� [1]
detail of how to measure distance to filament 
inside bulb� [1]
repeat measurement and average� [1]
trial experiment to find sensible distances� [1]
avoidance of outside light / reflections� [1]

8	 a	 dependent variable T� [1]
independent variable l� [1]
constant – mass� [1]

b	 displace mass downwards and release� [1]
method of measuring l using rule� [1]
method to measure to centre of mass� [1]
time 10 oscillations and divide by 10� [1]
use stopwatch� [1]

c	 graph of ln T against ln l� [1]
gradient of graph n� [1]

d	 avoid masses falling on foot / mass flying off / 
avoid breaking ruler with large amplitudes�[1]

e	 any [4] points from
use small amplitudes� [1]
trial experiment to find sensible value of mass
� [1]
use of electronic timer� [1]
fiducial aid� [1]
measure time from centre of oscillation� [1]

9	 a	 dependent variable B� [1]
independent variable I� [1]
constant – coil turns and area� [1]

b	 diagram showing coil and Hall probe with 
voltmeter� [1]
coil connected to d.c. power supply� [1]
ammeter to measure I� [1]
probe at right angles to direction of magnetic 
field� [1]
method to locate centre of coil� [1]

c	 graph of B against I or graph of ln B against 
ln I� [1]
straight line through origin or graph of ln B 
against ln I has slope 1� [1]

d	 large current causes heating, so switch off 
when not in use� [1]

e	 any [4] points from:
method to create a large magnetic field� [1]
reasoned method to keep probe in same 
orientation (e.g. set square, fix to rule)� [1]
calibrate Hall probe� [1]
repeat experiment with probe reversed� [1]
avoid external magnetic fields� [1]

 10	 a	 dependent variable E� [1]
independent variable v� [1]
constant – current in coil� [1]

b	 labelled diagram with magnet falling 
vertically through coil� [1]
voltmeter or c.r.o. connected to coil� [1]
method to change speed of magnet� [1]
measurements to find v, distance or time 
measurements� [1]
determining v, e.g. v =     2gh or v = 2h

t � [1]
c	 plot graph of E against v or graph of ln E 

against ln v� [1]
valid if straight line through origin or gradient 
of log graph = +1� [1]

d	 keep away from falling magnet / use sand 
tray to catch magnet� [1]

e	 any [4] points from:
detailed measurement of maximum E, use of 
datalogger / storage oscilloscope� [1]
use video including playback frame by frame
� [1]
use short magnet or thin coil so v is constant
� [1]
cardboard tube for magnet to fall down� [1]
how to support coil or tube vertically� [1]
repeat for each v and average� [1]

 11	 a	 dependent variable VS� [1]
independent variable f� [1]
constant – number of turns / input current / 
voltage to coil� [1]

b	 labelled diagram with a.c. generator� [1]
voltmeter connected to output� [1]
c.r.o. or frequency meter connected� [1]
measurement of time for one or more wave 
on c.r.o. screen used to find f� [1]
method of measuring VS; method of changing 
frequency� [1]

c	 plot graph of VS against f or graph of ln VS 
against ln f� [1]
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valid if straight line through origin or gradient 
of log graph = +1� [1]

d	 heating of coil, e.g. switch off when not in use 
to avoid overheating coil / do not touch� [1]

e	 any [4] points from:
choice of number of turns to give reasonable 
output� [1]
f = 1

period� [1]
VS found using y-gain� [1]
changing r.m.s. to peak from voltmeter� [1]
check that input voltage or current is 
constant� [1]
repeat and average� [1]

 12	 a	 gradient = 4π2

g � [1]

b	 i	  
 
 
 
 
 
 
 
 
 

T / s T2 / s2

1.11 1.23 ± 0.02

1.28 1.64 ± 0.03

1.42 2.02 ± 0.03

1.59 2.53 ± 0.03

1.69 2.86 ± 0.04

1.81 3.28 ± 0.04 � [2]

ii	 all points plotted correctly � [1]
all error bars correct� [1]

iii	line of best fit� [1]
worst acceptable straight line� [1]

iv	4.1 s2 m–1 uncertainty between  
±0.1 and ±0.3� [2]

v	 9.6 m s–2 uncertainty between ±0.2 and ±0.6
� [2]

vi	using g = 9.6 ± 0.2 m s–2 gives t = 19.2 ± 0.2 s
� [2]

 13	 a	 gradient n; y-intercept lg k � [2]
b	  

 
 
 
 
 
 
 

lg(T / K) lg(R / W)

2.436 2.740 ± 0.008

2.452 2.681 ± 0.009

2.467 2.625 ± 0.010

2.481 2.568 ± 0.012

2.496 2.519 ± 0.014 � [2]

c	 i	 all points plotted correctly � [1]
all error bars correct� [1]

ii	 line of best fit� [1]
worst acceptable straight line� [1]

iii	–3.7 ± 0.2� [2]
iv	Use of a point on the graph and y = mx + c 

to find c about 12 � [1]
Use of point on worst line graph to find 
value of c about 12 ± 1 � [1]

v	 n = –3.7 ± 0.2� [1]
k = 10intercept� [1]
Use of worst value of intercept to give 
worst value of k� [1]
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Chapter 1
<H3>Further reading
Lang, H. (2008) Head First Physics. O’Reilly Media.
Contains explanations, examples and further reading about kinematics and displacement–time and 
velocity–time graphs in particular. 

Kirkpatrick, L.D. and Francis, G.E. (2006) Physics: A World View, 6th edn. Cengage Learning.
Provides many different examples of vector addition as well as other topics you will encounter.

<H3>Online and interactive resources
www.physicsclassroom.com/class/vectors/Lesson-1/Relative-Velocity-and-Riverboat-Problems
Examples showing how to calculate relative velocity in a variety of problem situations.

www.launc.tased.edu.au/online/sciences/PhysSci/done/kinetics/grap_eqn/Grmotion.htm
Interactive resources for examining distance–time graphs and velocity–time graphs.

Recommended resources

http://www.physicsclassroom.com/class/vectors/Lesson-1/Relative-Velocity-and-Riverboat-Problems
http://www.launc.tased.edu.au/online/sciences/PhysSci/done/kinetics/grap_eqn/Grmotion.htm
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Chapter 2
Further reading
Collier, P. (2013) A Most Incomprehensible Thing. O’Reilly Media.
Explains equations of motion for constant acceleration in detail and also has some general reading 
around physics linking into relativity.

Lambourne, R. and Durrant, A. (2000) Describing Motion: The Physical World. Taylor & Francis.
Deals with many aspects of motion in physics. There is a detailed analysis of projectile motion. The 
book also demonstrates some useful mathematical tools.

Johnson, K., Hewett, S., Holt, S. and Miller, J. (2000) Advanced Physics for You. Nelson Thornes.
Aimed at A level students, this book explains equations of motion, velocity–time graphs and 
projectile motion using examples.

Online and interactive resources
phet.colorado.edu/sims/projectile-motion/projectile-motion_en.html 
Projectile motion simulation that allows you to investigate varying angle and initial velocity to see 
how the motion of the projectile varies.

planetcalc.com/981/
This has a tool for entering three of the five parameters used in the equations of motion 
(displacement s, initial velocity u, final velocity v, acceleration a and time t) and it will calculate the 
others. You can use this to check your calculations using the equations of motion.

Recommended resources

http://phet.colorado.edu/sims/projectile-motion/projectile-motion_en.html
http://planetcalc.com/981/
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Chapter 3
Further reading
Zimba, J. (2009) Force and Motion – An Illustrated Guide to Newton’s Laws. Johns Hopkins University 
Press.
An illustrated explanation of Newton’s laws. The book looks in detail at concepts that students can 
find difficult, and irons out misconceptions and misinterpretations of the laws.

Jefferson, B. and Beadsworth, T. (2000) Introducing Mechanics. Oxford University Press.
Thorough explanation of Newton’s laws of motion with a mathematical focus. Ideal for physics 
students who are also studying further maths to deepen their understanding of mechanics and 
Newton’s laws.

Online and interactive resources
www.sciencechannel.com/games-and-interactives/newtons-laws-of-motion-interactive.htm
Interactive introduction to Newton’s laws of motion with a quiz to test understanding.

teachertech.rice.edu/Participants/louviere/Newton/law1.html
Online lesson with simple animations showing each of Newton’s laws of motion. 

Video
www.space.com/23274-astronaut-uses-single-hair-to-show-newton-s-laws-video.html
An astronaut uses a single hair to demonstrate Newton’s laws of motion.

Recommended resources

http://www.sciencechannel.com/games-and-interactives/newtons-laws-of-motion-interactive.htm
http://www.space.com/23274-astronaut-uses-single-hair-to-show-newton-s-laws-video.html
http://teachertech.rice.edu/Participants/louviere/Newton/law1.html
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Chapter 4
Further reading
Kirkpatrick, L.D. and Francis, G.E. (2006) Physics: A World View, 6th edn. Cengage Learning.
Detailed explanations of resolving vectors, calculating moments and the torque of a couple.

Johnson, K., Hewett, S., Holt, S. and Miller, J. (2000) Advanced Physics for You. Nelson Thornes. 
Explains resolving forces, calculating moments and torques. States the conditions for a body to be in 
equilibrium.

Bird, J. and Ross, C. (2012) Mechanical Engineering Principles, 2nd edn. Routledge.
Extends the topic beyond A level; provides further reading and an in-depth study of the topic 
through examples.

Online and interactive resources
www.animatedscience.co.uk/as-chapter-07-forces-in-equilibrium
Summary of the principle of moments and notes on how to apply it to questions about balancing 
objects.

www.walter-fendt.de/ph14e/forceresol.htm
Animation showing how forces can be resolved into vectors.

Video
www.youtube.com/watch?v=cDly6AtOfMM&feature=youtu.be
Simple introduction to the idea of the principle of moments.

Recommended resources

http://www.animatedscience.co.uk/as-chapter-07-forces-in-equilibrium
http://www.walter-fendt.de/ph14e/forceresol.htm
http://www.youtube.com/watch?v=cDly6AtOfMM&feature=youtu.be
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Chapter 5
Further reading
Pople, S. (2001) Advanced Physics Through Diagrams. Oxford University Press.
An explanation of conservation of energy and kinetic and potential energy using diagrams.

Johnson, K., Hewett, S., Holt, S. and Miller, J. (2000) Advanced Physics for You. Nelson Thornes.
Explanation and further reading about the topics in this chapter, including defining the different 
types of energy and power.

Online and interactive resources
phet.colorado.edu/en/simulation/energy-skate-park
Applies the conservation of energy to a simulation of a skater in a skateboard park. The skateboard 
park can be on Earth, on different planets or in space.

Recommended resources

http://phet.colorado.edu/en/simulation/energy-skate-park
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Chapter 6
Further reading
Lambourne, D. and Durrant, A. (2000) Describing Motion: The Physical World. Taylor & Francis.
Explains conservation of momentum in one and two dimensions.

Johnson, K., Hewett, S., Holt, S. and Miller, J. (2000) Advanced Physics for You. Nelson Thornes. 
Defines momentum and provides explanations and examples of the conservation of momentum in 
one and two dimensions.

Online and interactive resources
zebu.uoregon.edu/nsf/mo.html  
Interactive resource on using and applying the conservation of linear momentum.

phet.colorado.edu/en/simulation/collision-lab
Interactive investigation of conservation of momentum in one and two dimensions.

Recommended resources

http://zebu.uoregon.edu/nsf/mo.html
http://phet.colorado.edu/en/simulation/collision-lab
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Chapter 7
Further reading
Ohring, M. (1995) Engineering Materials Science. Academic Press.
Analysis of materials in terms of force constant and the Young modulus. Takes the reader beyond A 
level, providing further reading and a chance to delve deeper into the subject.

Carter, C. (2001) Facts and Practice for A-level Physics. Oxford University Press. 
Notes on all the key topics from this chapter in concise form. This book contains many practice 
questions, which will reinforce key ideas.

Online and interactive resources
www.4physics.com/phy_demo/HookesLaw/HookesLaw.html
Virtual interactive Hooke’s law experiment.

www.walter-fendt.de/ph14e/hydrostpr.htm
Interactive investigation of pressure in liquids, leading to the equation p = ρgh.

www.matter.org.uk/schools/content/youngmodulus/experiment_3.html
Virtual experiment to find the Young modulus of a metal.

Recommended resources

http://www.4physics.com/phy_demo/HookesLaw/HookesLaw.html
http://www.walter-fendt.de/ph14e/hydrostpr.htm
http://www.matter.org.uk/schools/content/youngmodulus/experiment_3.html
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Chapter 8
Further reading
Kirkpatrick, L.D. and Francis, G.E. (2006) Physics: A World View, 6th edn. Cengage Learning.
Examines the uniform electric field between two parallel plates and explains the force on a charge.

Carter, C. (2001) Facts and Practice for A-level Physics. Oxford University Press.
Notes on all the key topics from this chapter in concise form. This book also contains many practice 
questions, which will reinforce key ideas.

Lang, H. (2008) Head First Physics. O’Reilly Media.
Contains explanations, examples and further reading about electric fields, forces on charges and the 
strength of electric fields.

Online and interactive resources
www.falstad.com/emstatic/
Choose the option ‘charged planes’ to investigate the electric field between two charged plates. 
Shows field lines and equipotential lines.

Recommended resources

http://www.falstad.com/emstatic/
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Chapter 9
Further reading
Bird, J. (2001) Electrical Circuit Theory and Technology. Routledge.
Further reading for students who want to find out more about electric circuits. Material from the 
chapter is covered, as well as more advanced circuit theory.

Carter, C. (2001) Facts and Practice for A-level Physics. Oxford University Press. 
Notes on all the key topics from this chapter in concise form. This book also contains many practice 
questions, which will reinforce key ideas.

Online and interactive resources
phet.colorado.edu/en/simulation/circuit-construction-kit-dc
Interactive electric circuit. Use the circuit to check your understanding of current, voltage and 
resistance.

Video
www.youtube.com/watch?v=KgbqPKZU5IA
Explanation of drift velocity of electrons in circuits.

Recommended resources

http://www.youtube.com/watch?v=KgbqPKZU5IA
http://phet.colorado.edu/en/simulation/circuit-construction-kit-dc
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Chapter 10
Further reading
Bond, T. and Hughes, C. (2013) GCE A Level Physics Oh-My-God Drill Questions and Solutions. 
Yellowreef Ltd.
Questions with solutions on d.c. circuits, including Kirchhoff’s laws, provide practice in solving d.c. 
circuit problems.

Carter, C. (2001) Facts and Practice for A-level Physics. Oxford University Press.
Notes on all the key topics from this chapter in concise form. This book also contains many practice 
questions, which will reinforce key ideas.

Online and interactive resources
www.flashscience.com/electricity/kirchhoff.htm
Kirchhoff’s laws presented in a slightly different way to further your understanding.

labs.physics.dur.ac.uk/skills/skills/kirchhoff.php
Short notes on Kirchhoff’s laws, with a link to animated examples of both laws in circuits.

Video 
www.youtube.com/watch?v=Z2QDXjG2ynU
Walkthrough solution to a circuit problem using Kirchhoff’s laws.

Recommended resources

http://www.flashscience.com/electricity/kirchhoff.htm
http://www.youtube.com/watch?v=Z2QDXjG2ynU
http://labs.physics.dur.ac.uk/skills/skills/kirchhoff.php
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Chapter 11
Further reading
Johnson, K., Hewett, S., Holt, S. and Miller, J. (2000) Advanced Physics for You. Nelson Thornes. 
Practice using the equations V = IR and R = ρL

A . Also provides information about thermistors and 
other semiconductors, including their I–V characteristics.

Carter, C. (2001) Facts and Practice for A-level Physics. Oxford University Press. 
Practice using Ohm’s law and resistivity equations.

Online and interactive resources
micro.magnet.fsu.edu/electromag/java/filamentresistance/
Animation explaining resistance in an ohmic conductor.

phet.colorado.edu/sims/ohms-law/ohms-law_en.html
Animation demonstrating Ohm’s law.

Recommended resources

http://micro.magnet.fsu.edu/electromag/java/filamentresistance/
http://phet.colorado.edu/sims/ohms-law/ohms-law_en.html
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Chapter 12
Further reading
Breithaupt, J. (2000) New Understanding Physics for A Level. Nelson Thornes. 
Detailed explanation of e.m.f., internal resistance  and potential dividers.

Carter, C. (2001) Facts and Practice for A-level Physics. Oxford University Press. 
Provides practice using equations for e.m.f., internal resistance and potential dividers.

Online and interactive resources
people.clarkson.edu/~jsvoboda/eta/designLab/VoltageDividerDesign.html
Interactive resource which allows you to change the input resistors of a potential divider and predict 
the output voltage. The resource then displays the output voltage.

Video 
www.youtube.com/watch?v=rcYqC2C9CeE
Clip explaining e.m.f. and internal resistance and how the behaviour of a circuit relates to the 
equation for e.m.f.

Recommended resources

http://www.youtube.com/watch?v=rcYqC2C9CeE
http://people.clarkson.edu/~jsvoboda/eta/designLab/VoltageDividerDesign.html
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Chapter 13
Further reading
Ellse, M. and Honeywill, C. (2003) Waves and Our Universe. Nelson Thornes.
Explanation of transverse and longitudinal waves, relating them to ‘real’ waves.

Staelin, D.H. (1994) Electromagnetic Waves. Prentice Hall PTR.
Provides all the information needed at A level, but then takes the topic further for students who 
want to delve deeper.

Online and interactive resources
earthguide.ucsd.edu/eoc/special_topics/teach/sp_climate_change/p_emspectrum_interactive.html
An interactive electromagnetic spectrum that allows you to investigate energies and wavelengths of 
the different types of wave.

Recommended resources

http://earthguide.ucsd.edu/eoc/special_topics/teach/sp_climate_change/p_emspectrum_interactive.html
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Chapter 14
Further reading
King, G.C. (2013) Vibrations and Waves. John Wiley & Sons.
Detailed explanations of the topics in this chapter including interference and diffraction.

Johnson, K., Hewett, S., Holt, S. and Miller, J. (2000) Advanced Physics for You. Nelson Thornes.
Detailed explanation of interference and diffraction and the superposition of waves.

Online and interactive resources
phet.colorado.edu/en/simulation/wave-interference
Simulation of waves passing through a single slit and a double slit, showing interference. 

micro.magnet.fsu.edu/primer/java/diffraction/diffractionorders/index.html
Simulation showing the effect of wavelength (colour) on diffraction of light through a grating and 
linking to the diffraction grating equation in this chapter.

Recommended resources

http://phet.colorado.edu/en/simulation/wave-interference
http://micro.magnet.fsu.edu/primer/java/diffraction/diffractionorders/index.html
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Chapter 15
Further reading
Johnson, K., Hewett, S., Holt, S. and Miller, J. (2000) Advanced Physics for You. Nelson Thornes. 
Explanations of the formation of stationary waves on strings.

Carter, C. (2001) Facts and Practice for A-level Physics. Oxford University Press. 
Notes on all the key topics from this chapter in concise form. This book also contains many practice 
questions, which will reinforce key ideas.

Online and interactive resources
phet.colorado.edu/sims/wave-on-a-string/wave-on-a-string_en.html
Animation showing how standing waves can be formed on a string. 

www.walter-fendt.de/ph14e/stlwaves.htm
Animation showing how standing waves are formed in air columns such as in wind instruments.

Recommended resources

http://www.walter-fendt.de/ph14e/stlwaves.htm
http://phet.colorado.edu/sims/wave-on-a-string/wave-on-a-string_en.html
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Chapter 16
Further reading
Johnson, K., Hewett, S., Holt, S. and Miller, J. (2000) Advanced Physics for You. Nelson Thornes.
Thoroughly covers the topic of radioactivity.

Kirkpatrick, L.D. and Francis, G.E. (2006) Physics: A World View, 6th edn. Cengage Learning.
Explains radioactivity in a different way to a standard textbook.

Online and interactive resources
hps.org/students/interactivesimulations.html
A wide range of animations on the theme of radioactivity. Includes simulations of alpha, beta and 
gamma decay and information about isotopes. 

Video
www.youtube.com/watch?v=Z1IqewSDDcc
Very concise summary of particle physics covering all the points needed at A level. 

Recommended resources

http://www.youtube.com/watch?v=Z1IqewSDDcc
http://hps.org/students/interactivesimulations.html


Cambridge International A Level Physics

Cambridge International AS and A Level Physics © Cambridge University Press 2014

Chapter 17
Further reading
Meyers, R. (2006) The Basics of Physics. Greenwood Publishing Group. 
Very detailed analysis of circular motion. Further reading for those who want to delve deeper.

Lowe, T.L. and Rounce, J.F. (2002) Calculations for A-Level Physics. Nelson Thornes.
Practice using the many equations associated with this topic of physics.

Online and interactive resources
www.mhhe.com/physsci/physical/giambattista/circular/circular.html
Applet that shows the direction of centripetal force, acceleration and velocity of an object moving in 
a circle. 

www.walter-fendt.de/ph14e/circmotion.htm
Animation showing the direction of velocity, force and acceleration for an object moving in a circle 
but also has calculations which can be confirmed by students. 

Recommended resources

http://www.mhhe.com/physsci/physical/giambattista/circular/circular.html
http://www.walter-fendt.de/ph14e/circmotion.htm


Cambridge International A Level Physics

Cambridge International AS and A Level Physics © Cambridge University Press 2014

Chapter 18
Further reading
Johnson, K., Hewett, S., Holt, S. and Miller, J. (2000) Advanced Physics for You. Nelson Thornes.
Thorough explanation of gravitational fields and gravitational potential.

Pople, S. (2001) Advanced Physics Through Diagrams. Oxford University Press.
Uses diagrams, which lend themselves very well to explaining this topic.

Video
www.youtube.com/watch?v=Y50HeIUS4tk
Newton’s law of gravitation explained with a simulation. 

www.youtube.com/watch?v=zdQ54siEfvc
Gravitational fields revision clip. 

Recommended resources

http://www.youtube.com/watch?v=Y50HeIUS4tk
http://www.youtube.com/watch?v=zdQ54siEfvc
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Chapter 19 
Further reading
Young, C.Y. (2010) Precalculus. John Wiley & Sons. 
Analysis of SHM and damping from a maths perspective for keen mathematicians.

Kirkpatrick, L.D. and Francis, G.E (2006) Physics: A World View, 6th edn. Cengage Learning.
SHM and damping explained thoroughly.

Online and interactive resources
phet.colorado.edu/sims/pendulum-lab/pendulum-lab_en.html
SHM covered using a pendulum as the oscillating object. Friction can be varied and the velocity and 
acceleration analysed as well as the displacement.

phet.colorado.edu/sims/mass-spring-lab/mass-spring-lab_en.html 
Mass on a spring simulation. Vary the mass and the spring constant to investigate oscillations.

phet.colorado.edu/sims/resonance/resonance_en.html
Resonance and damping simulation with masses on springs.

Recommended resources

http://phet.colorado.edu/sims/pendulum-lab/pendulum-lab_en.html
http://phet.colorado.edu/sims/mass-spring-lab/mass-spring-lab_en.html
http://phet.colorado.edu/sims/resonance/resonance_en.html
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Chapter 20
Further reading
Bissell, C.C. and Chapman, D.A. (1992) Digital Signal Transmission. Cambridge University Press. 
Explains digital transmission from the original analogue waveform, through sampling, all the way to 
transmission.

Syngress (2001) Designing a Wireless Network. Syngress.
Covers this topic in detail. Applies the theory to setting up a real network. Considers the advantages 
and disadvantages of different methods of setting up networks.

Video
www.youtube.com/watch?v=W2-FP7twy8s
Introduces the basics of ADC and DAC using music sampling. 

Recommended resources

http://www.youtube.com/watch?v=W2-FP7twy8s


Cambridge International A Level Physics

Cambridge International AS and A Level Physics © Cambridge University Press 2014

Chapter 21
Further reading
Leach, J.A. (2007) Engineering Thermodynamics. Juta and Company Ltd.
University level text giving the definition of the first law of thermodynamics and examples of this law 
in practice.

Ellse, M. and Honeywill, C. (2004) Electricity and Thermal Physics. Nelson Thornes.
Notes and examples on the whole topic at A level standard.

Online and interactive resources
phet.colorado.edu/en/simulation/states-of-matter
Interactive applet on states of matter and kinetic theory.

eo.ucar.edu/skymath/tmp2.html
Web page summarising temperature and its measurement and linking temperature to kinetic theory.

Recommended resources

http://phet.colorado.edu/en/simulation/states-of-matter
http://eo.ucar.edu/skymath/tmp2.html
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Chapter 22
Further reading
Kirkpatrick, L.D. and Francis, G.E. (2006) Physics: A World View, 6th edn. Cengage Learning. 
Provides explanations of ideal gas behaviour and practice using the ideal gas equations.

Carter, C. (2001) Facts and Practice for A-level Physics. Oxford University Press.
Brief notes on ideal gases and practice using the ideal gas equations. Also offers further explanations 
of the relationships between the quantities volume, pressure and temperature.

Online and interactive resources
phet.colorado.edu/en/simulation/gas-properties
Simulation for investigating the properties of ideal gases.

www.phy.davidson.edu/brownian.html
Brownian motion applet comparing Brown’s observations and Einstein’s explanation.

Recommended resources

http://www.phy.davidson.edu/brownian.html
http://phet.colorado.edu/en/simulation/gas-properties
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Chapter 23
Further reading
Mansfield, M. and O’Sullivan, C. (2012) Understanding Physics, 2nd edn. John Wiley & Sons.
Concise yet thorough explanation of the key terms in this chapter and practice using the Coulomb’s 
law and electric field equations.

Carter, C. (2001) Facts and Practice for A-level Physics. Oxford University Press.
Notes on all the key topics from this chapter in concise form. This book contains many practice 
questions, which will reinforce key ideas on the topic of electric fields.

Online and interactive resources
webphysics.davidson.edu/physlet_resources/bu_semester2/menu_semester2.html
Lots of mini-applets demonstrating the concepts in this chapter. A menu on the left allows you to 
select any that are of use.

phet.colorado.edu/en/simulation/charges-and-fields
Simulation showing the electric field between point charges and equipotential lines.

Recommended resources

http://webphysics.davidson.edu/physlet_resources/bu_semester2/menu_semester2.html
http://phet.colorado.edu/en/simulation/charges-and-fields


Cambridge International A Level Physics

Cambridge International AS and A Level Physics © Cambridge University Press 2014

Chapter 24
Further reading
Breithaupt, J. (2000) New Understanding Physics for A Level. Nelson Thornes. 
Explanation of capacitance and capacitors with the detail needed at this level.

Johnson, K., Hewett, S., Holt, S. and Miller, J. (2000) Advanced Physics for You. Nelson Thornes.
Explanation and further reading about the topics in this chapter, including explanations of how 
capacitors work, how charge is related to voltage and also the energy stored in a capacitor.

Online and interactive resources
phet.colorado.edu/en/simulation/capacitor-lab
Introduction to capacitors: how they work, what factors affect the amount of charge being stored, 
energy stored and direction of field.

Video 
www.youtube.com/watch?v=CfloCOQ2_1U
Example calculation of a complex arrangement of series and parallel capacitors. Also includes 
revision of the capacitor equation, Q = CV.

Recommended resources

http://www.youtube.com/watch?v=CfloCOQ2_1U
http://phet.colorado.edu/en/simulation/capacitor-lab
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Chapter 25
Further reading
Scherz, P. and Monk, S. (2013) Practical Electronics for Inventors, 3rd edn. Tab Electronics.
A book for students who want to know how to use and incorporate sensors into circuits in a variety of 
practical applications.

Mancini, R. (2012) Op Amps for Everyone. Newnes.
Further reading for students who want to find out more about op-amps and their uses in circuits. 
Contains A level theory and takes it much further.

Online and interactive resources
www.antonine-education.co.uk/Pages/ELectronics_1/Electronic_Components/Op-amp/intro_8.htm
Op-amps explained in more detail, and an example calculation using an op-amp as a voltage 
comparator.

www.electronics-micros.com/simulation/op-amp-comparator
Simple applet explaining how op-amps work.

Recommended resources

http://www.antonine-education.co.uk/Pages/ELectronics_1/Electronic_Components/Op-amp/intro_8.htm
http://www.electronics-micros.com/simulation/op-amp-comparator
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Chapter 26
Further reading
Muncaster, R. (1993) A Level Physics. Nelson Thornes. 
Classic textbook explaining magnetic fields in detail.

Westbrook, C., Roth, C.K. and Talbot, J. (2011) MRI in Practice, 4th edn.  Wiley-Blackwell. 
This book is for professionals, including radiographers, radiologists and sales staff in the industry. 
Further reading for those who are interested in this area of physics.

Online and interactive resources
phet.colorado.edu/en/simulation/mri
This is a simulator in a java applet of an MRI scan. All the theory required at A level is included here.

Video 
www.youtube.com/watch?v=HTTA30sEv6o
This clip explains the force on  a current-carrying conductor in a magnetic field. 

Recommended resources

http://www.youtube.com/watch?v=HTTA30sEv6o
http://phet.colorado.edu/en/simulation/mri
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Chapter 27
Further reading
Johnson, K., Hewett, S., Holt, S. and Miller, J. (2000) Advanced Physics for You. Nelson Thornes.
Classic explanations of how charged particles move in electric fields and in magnetic fields.

Carter, C. (2001) Facts and Practice for A Level Physics. Oxford University Press.
Covers all aspects of A level physics including a detailed analysis of the motion of charged particles 
in both electric and magnetic fields.

Online and interactive resources
www.magnet.fsu.edu/education/tutorials/java/halleffect
Interactive Java tutorial demonstrating the Hall effect.

Video
www.youtube.com/watch?v=XWkhUwX4D5s
This YouTube clip explains how to work out the force on a charge moving through a magnetic field.

Recommended resources

http://www.magnet.fsu.edu/education/tutorials/java/halleffect
http://www.youtube.com/watch?v=XWkhUwX4D5s
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Chapter 28
Further reading
Pople, S. (2001) Advanced Physics Through Diagrams. Oxford University Press. 
Explains this topic with diagrams. Faraday’s law and Lenz’s law are both analysed in detail.

Bond, T. and Hughes, C. (2013) GCE A-Level Physics Demanding Learn-By-Example. Yellowreef.
Explanations of the topics in this chapter and example questions to test understanding.

Online and interactive resources
phet.colorado.edu/en/simulation/faraday
Move a magnet around near a coil to light a bulb. Learn more about Faraday’s law with this applet.

phet.colorado.edu/en/simulation/generator
Investigate generators using this Java applet.

micro.magnet.fsu.edu/electromag/java/lenzlaw/
Applet demonstrating Lenz’s law. Includes a written explanation and an animation showing how the 
direction of the induced current causes effects which oppose the change that is producing it.

Recommended resources

http://phet.colorado.edu/en/simulation/faraday
http://phet.colorado.edu/en/simulation/generator
http://micro.magnet.fsu.edu/electromag/java/lenzlaw/
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Chapter 29 
Online and interactive resources
www.britannica.com/EBchecked/topic/182915/electricity/71572/Alternating-current-circuits
Short but clear description of alternating circuits and the voltages and currents produced, as well as 
root-mean-square voltage and current.

www.school-for-champions.com/science/ac.htm#.UytsiNxcIds
Introduction to alternating current and the differences compared with direct current.

science.howstuffworks.com/environmental/energy/power.htm
Further explanation of how electrical power is distributed across a country; the focus is on the 
United States so references are to 120 V supply. Also explains three-phase alternating current, 
which goes into more detail than needed for A level but helps to explain practical aspects of 
power distribution.

Video
www.youtube.com/watch?v=2s6SvCJ-HOU
Further explanation of transformers and how they work. 

Recommended resources

http://www.britannica.com/EBchecked/topic/182915/electricity/71572/Alternating-current-circuits
http://www.school-for-champions.com/science/ac.htm#.UytsiNxcIds
http://www.youtube.com/watch?v=2s6SvCJ-HOU
http://science.howstuffworks.com/environmental/energy/power.htm
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Chapter 30
Further reading
There are many accessible books available that tackle the fundamentals of quantum physics in a 
non-mathematical way. Here is a short selection.

Hey, T. and Walters, P. (2003) The New Quantum Universe, 2nd edn. Cambridge University Press.
The first part deals with wave–particle duality and the evidence from experiments; the book goes on 
to explore de Broglie’s matter waves and energy levels. Much of the book goes well beyond A level 
concepts, but is an informative and accessible primer for studies beyond A level.

Al-Khalili, J. (2012) Quantum: A Guide for the Perplexed. Phoenix.
A very wordy but friendly introduction to some of the key historical theories and experiments that 
led to the development of quantum theory. Particularly useful explanations of the double‑slit 
experiment and Einstein’s explanation of the photoelectric effect. Takes in several more 
advanced concepts.

Flynn, S. (2013) The Science Magpie. Icon Books.
An entertaining read comprising numerous short science stories; pages 142–145, ‘The birth of the 
quantum’, explains a little of the history behind Planck’s equation.

Online and interactive resources
www.cyberphysics.co.uk/topics/atomic/Photoelectric%20effect/Photoelectric%20effect.htm
Detailed but accessible explanation of the photoelectric effect, with a number of videos included.

www.osram.co.uk/osram_uk/news-and-knowledge/led-home/professional-knowledge/led-basics/
index.jsp
Information about LEDs, including how they work, the colours of light they produce, how they were 
developed and some of their uses.

Video
www.youtube.com/watch?v=TbFehcC4MHc
Clear explanation of the origins of line emission and absorption spectra. Uses as its starting point the 
concept of a black body emitting radiation, but quickly moves on to spectral lines observed in the 
light of the Sun, and spectra more generally.

www.nationalstemcentre.org.uk/elibrary/resource/2015/electron-diffraction-tube
Very clear description of the electron diffraction tube and a demonstration of it in use. 

Recommended resources

http://www.cyberphysics.co.uk/topics/atomic/Photoelectric%20effect/Photoelectric%20effect.htm
http://www.osram.co.uk/osram_uk/news-and-knowledge/led-home/professional-knowledge/led-basics/index.jsp
http://www.youtube.com/watch?v=TbFehcC4MHc
http://www.nationalstemcentre.org.uk/elibrary/resource/2015/electron-diffraction-tube
http://www.osram.co.uk/osram_uk/news-and-knowledge/led-home/professional-knowledge/led-basics/index.jsp
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Chapter 31
Further reading
Muncaster, R. (1995) Nuclear Physics and Fundamental Particles. Nelson Thornes. 
An older textbook but with detailed explanations and further exploration of nuclear physics.

Online and interactive resources
hps.org/students/interactivesimulations.html
Interactive simulations of alpha and beta decay, as well as illustrations of half-life.

www.miniphysics.com/2010/11/nuclear-physics.html
Comprehensive set of explanatory resources aimed at A level students, covering the main topics of 
nuclear physics including radioactive decay, half-life, binding energy and the relationship between 
mass and energy.

hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html
Explanation and examples of binding energy calculations.

Video
www.youtube.com/watch?v=yTkojROg-t8
Explanation of binding energy and the stability curve, fission and fusion.

Recommended resources

http://www.miniphysics.com/2010/11/nuclear-physics.html
http://www.youtube.com/watch?v=yTkojROg-t8
http://hps.org/students/interactivesimulations.html
http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html
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Chapter 32
Further reading
Whitehouse, M. and Mould, R.F. (1995) Beyond the Visible: One Hundred Years of X-rays. Association for 
Science Education.
Explanations of the discovery of X-rays, their use in diagnostic imaging and other applications. 
Includes a number of activities for data analysis and comprehension.

Online and interactive resources
science.howstuffworks.com/cat-scan.htm
Simplified explanation of computerised axial tomography.

Video 
www.nationalstemcentre.org.uk/elibrary/resource/7518/x-ray-imaging
Lecture explaining Roentgen’s discovery of X-rays and the process of medical imaging using X-rays.

www.youtube.com/watch?v=AEel1PY_HoU
and
www.youtube.com/watch?v=FT2qygn4XjQ
Explanation of ultrasound scanning; the second video covers A- and B-scans.

www.youtube.com/watch?v=1CGzk-nV06g
Sixty-second explanation of magnetic resonance imaging.

Recommended resources

http://www.nationalstemcentre.org.uk/elibrary/resource/7518/x-ray-imaging
http://www.youtube.com/watch?v=AEel1PY_HoU
http://www.youtube.com/watch?v=FT2qygn4XjQ
http://www.youtube.com/watch?v=1CGzk-nV06g
http://science.howstuffworks.com/cat-scan.htm
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