1 Vreni took part in a charity walk. She walked a distance of 20 kilometres.

(a) She raised money at a rate of $12.50 for each kilometre.

(i) How much money did she raise by walking the 20 kilometres? [1]

(ii) The money she raised in part (a)(i) was \(\frac{5}{52} \) of the total money raised. Work out the total money raised. [2]

(iii) In the previous year the total money raised was $2450. Calculate the percentage increase on the previous year’s total. [2]

(b) Part of the 20 kilometres was on a road and the rest was on a footpath. The ratio road distance : footpath distance was 3:2.

(i) Work out the road distance. [2]

(ii) Vreni walked along the road at 3 km/h and along the footpath at 2.5 km/h. How long, in hours and minutes, did Vreni take to walk the 20 kilometres? [2]

(iii) Work out Vreni’s average speed. [1]

(iv) Vreni started at 08.55. At what time did she finish? [1]

(c) On a map, the distance of 20 kilometres was represented by a length of 80 centimetres. The scale of the map was 1 : n. Calculate the value of n. [2]

2 (a) (i) Factorise \(x^2 - x - 20 \). [2]

(ii) Solve the equation \(x^2 - x - 20 = 0 \). [1]

(b) Solve the equation \(3x^2 - 2x - 2 = 0 \). Show all your working and give your answers correct to 2 decimal places. [4]

(c) \(y = m^2 - 4n^2 \).

(i) Factorise \(m^2 - 4n^2 \). [1]

(ii) Find the value of \(y \) when \(m = 4.4 \) and \(n = 2.8 \). [1]

(iii) \(m = 2x + 3 \) and \(n = x - 1 \). Find \(y \) in terms of \(x \), in its simplest form. [2]

(iv) Make \(n \) the subject of the formula \(y = m^2 - 4n^2 \). [3]
(d) (i) \(m^4 - 16n^4 \) can be written as \((m^2 - kn^2)(m^2 + kn^2)\).
Write down the value of \(k\). \[1\]

(ii) Factorise completely \(m^4n - 16n^5 \). \[2\]

3 (a)

Nadia must choose a ball from Bag A or from Bag B.
The probability that she chooses Bag A is \(\frac{2}{3} \).
Bag A contains 5 white and 3 black balls.
Bag B contains 6 white and 2 black balls.

The tree diagram below shows some of this information.

(i) Find the values of \(p\), \(q\), \(r\) and \(s\). \[3\]

(ii) Find the probability that Nadia chooses Bag A and then a white ball. \[2\]

(iii) Find the probability that Nadia chooses a white ball. \[2\]

(b) Another bag contains 7 green balls and 3 yellow balls.
Sani takes three balls out of the bag, without replacement.

(i) Find the probability that all three balls he chooses are yellow. \[2\]

(ii) Find the probability that at least one of the three balls he chooses is green. \[1\]
200 people record the number of hours they work in a week. The cumulative frequency graph shows this information.
(a) Use the graph to find

(i) the median, [1]

(ii) the upper quartile, [1]

(iii) the inter-quartile range, [1]

(iv) the number of people who work more than 60 hours in a week. [2]

(b) Omar uses the graph to make the following frequency table.

<table>
<thead>
<tr>
<th>Hours worked (h)</th>
<th>0<h≤10</th>
<th>10<h≤20</th>
<th>20<h≤30</th>
<th>30<h≤40</th>
<th>40<h≤50</th>
<th>50<h≤60</th>
<th>60<h≤70</th>
<th>70<h≤80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>12</td>
<td>34</td>
<td>36</td>
<td>30</td>
<td>38</td>
<td>30</td>
<td>p</td>
<td>q</td>
</tr>
</tbody>
</table>

(i) Use the graph to find the values of p and q. [2]

(ii) Calculate an estimate of the mean number of hours worked in a week. [4]

(c) Shalini uses the graph to make a different frequency table.

<table>
<thead>
<tr>
<th>Hours worked (h)</th>
<th>0<h≤30</th>
<th>30<h≤40</th>
<th>40<h≤50</th>
<th>50<h≤80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>82</td>
<td>30</td>
<td>38</td>
<td>50</td>
</tr>
</tbody>
</table>

When she draws a histogram, the height of the column for the interval 30<h≤40 is 9 cm.

Calculate the height of each of the other three columns. [4]
A circle, centre O, touches all the sides of the regular octagon $ABCDEFGH$ shaded in the diagram.

The sides of the octagon are of length 12 cm.

BA and GH are extended to meet at P. HG and EF are extended to meet at Q.

(a)
(i) Show that angle BAH is 135°. \[2\]
(ii) Show that angle APH is 90°. \[1\]

(b) Calculate

(i) the length of PH, \[2\]
(ii) the length of PQ, \[2\]
(iii) the area of triangle APH, \[2\]
(iv) the area of the octagon. \[3\]

(c) Calculate

(i) the radius of the circle, \[2\]
(ii) the area of the circle as a percentage of the area of the octagon. \[3\]
The pentagon $OABCD$ is shown on the grid above.

(a) Write as column vectors

(i) \overrightarrow{OD}, [1]

(ii) \overrightarrow{BC}. [1]

(b) Describe fully the single transformation which maps the side BC onto the side OD. [2]

(c) The shaded area inside the pentagon is defined by 5 inequalities.

One of these inequalities is $y \leq \frac{1}{2} x + 4$.

Find the other 4 inequalities. [5]
A, B, C and D lie on a circle, centre O.
SCT is the tangent at C and is parallel to OB.
Angle AOB = 130°, and angle BCT = 40°.
Angle OBC = x°, angle OBA = y° and angle ADC = z°.

(i) Write down the geometrical word which completes the following statement.

"ABCD is a __________________ quadrilateral." [1]

(ii) Find the values of x, y and z. [3]

(iii) Write down the value of angle OCT. [1]

(iv) Find the value of the reflex angle AOC. [1]
(b)

P, Q, R and S lie on a circle.

$PQ = 7\text{ cm}$ and $SR = 10\text{ cm}$.

PR and QS intersect at X.

The area of triangle $SRX = 20\text{ cm}^2$.

(i) Write down the geometrical word which completes the following statement.

“Triangle PQX is _________ to triangle SRX.”

(ii) Calculate the area of triangle PQX.

(iii) Calculate the length of the perpendicular height from X to RS.
8 Answer the whole of this question on a sheet of graph paper. Use one side for your working and one side for your graphs.

Alaric invests $100 at 4% per year compound interest.

(a) How many dollars will Alaric have after 2 years? [2]

(b) After x years, Alaric will have y dollars. He knows a formula to calculate y. The formula is $y = 100 \times 1.04^x$

<table>
<thead>
<tr>
<th>x (Years)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>y (Dollars)</td>
<td>100</td>
<td>p</td>
<td>219</td>
<td>q</td>
<td>480</td>
</tr>
</tbody>
</table>

Use this formula to calculate the values of p and q in the table. [2]

(c) Using a scale of 2 cm to represent 5 years on the x-axis and 2 cm to represent 50 on the y-axis, draw an x-axis for $0 \leq x \leq 40$ and a y-axis for $0 \leq y \leq 500$.

Plot the five points in the table and draw a smooth curve through them. [5]

(d) Use your graph to estimate
 (i) how many dollars Alaric will have after 25 years, [1]
 (ii) how many years, to the nearest year, it takes for Alaric to have 200. [1]

(e) Beatrice invests $100 at 7% per year simple interest.
 (i) Show that after 20 years Beatrice has $240. [2]
 (ii) How many dollars will Beatrice have after 40 years? [1]
 (iii) On the same grid, draw a graph to show how the 100 which Beatrice invests will increase during the 40 years. [2]

(f) Alaric first has more than Beatrice after n years. Use your graphs to find the value of n. [1]
OPQR is a parallelogram.
O is the origin.
\(\overrightarrow{OP} = p \) and \(\overrightarrow{OR} = r \).
M is the mid-point of PQ and L is on OR such that \(OL:LR = 2:1 \).
The line PL is extended to the point S.

(a) Find, in terms of \(p \) and \(r \), in their simplest forms,

(i) \(\overrightarrow{OQ} \),

(ii) \(\overrightarrow{PR} \),

(iii) \(\overrightarrow{PL} \),

(iv) the position vector of \(M \).

(b) PLS is a straight line and \(PS = \frac{3}{2} PL \).
Find, in terms of \(p \) and/or \(r \), in their simplest forms,

(i) \(\overrightarrow{PS} \),

(ii) \(\overrightarrow{QS} \).

(c) What can you say about the points \(Q \), \(R \) and \(S \)?
A 3 by 3 square can be chosen from the 6 by 6 grid above.

\[
\begin{array}{|c|c|c|}
\hline
x & b & c \\
\hline
d & e & f \\
\hline
g & h & i \\
\hline
\end{array}
\]

(a) One of these squares is

\[
\begin{array}{|c|c|c|}
\hline
8 & 9 & 10 \\
\hline
14 & 15 & 16 \\
\hline
20 & 21 & 22 \\
\hline
\end{array}
\]

In this square, \(x = 8, c = 10, g = 20 \) and \(i = 22 \).

For this square, calculate the value of

(i) \((i - x) - (g - c)\), \[1\]

(ii) \(cg - xi\). \[1\]

(b)

(i) \(c = x + 2\). Write down \(g\) and \(i\) in terms of \(x\). \[2\]

(ii) Use your answers to part(b)(i) to show that \((i - x) - (g - c)\) is constant. \[1\]

(iii) Use your answers to part(b)(i) to show that \(cg - xi\) is constant. \[2\]
(c) The 6 by 6 grid is replaced by a 5 by 5 grid as shown.

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
6 & 7 & 8 & 9 \\
11 & 12 & 13 & 14 \\
16 & 17 & 18 & 19 \\
21 & 22 & 23 & 24 & 25 \\
\end{array}
\]

A 3 by 3 square can be chosen from the 5 by 5 grid.

\[
\begin{array}{ccc}
x & b & c \\
d & e & f \\
g & h & i \\
\end{array}
\]

For any 3 by 3 square chosen from this 5 by 5 grid, calculate the value of

(i) \((i - x) - (g - c)\), \[1\]

(ii) \(cg - xi\). \[1\]

(d) A 3 by 3 square is chosen from an \(n\) by \(n\) grid.

(i) Write down the value of \((i - x) - (g - c)\). \[1\]

(ii) Find \(g\) and \(i\) in terms of \(x\) and \(n\). \[2\]

(iii) Find \(cg - xi\) in its simplest form. \[1\]