

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

0580 MATHEMATICS

0580/42

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012	0580	42

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
WWW	without wrong working
art	anything rounding to

soi seen or implied

Qu	•	Answers	Mark	Part Marks
1	(a) (i)	6 correct plots	2	P1 for 4 or 5 correct plots.
	(ii)	Positive	1	
	(iii)	Line of best fit	1	Ruled line at least from $x = 5$ to $x = 48$, with at least 3 points on each side and cuts axes between (5, 0) and (0, 20)
	(iv)	English (integer) value on line at $M = 22$	1ft	Strict ft from their single ruled line $5 \varnothing x \varnothing 48$.
	(b)	(26 + 39 + 35 + 28 + 9 + 37 + 45 + 33 + 16 + 12) ÷ 10	M2	M1 for $26 + 39 + 35 + 28 + 9 + 37 + 45 + 33 + 16$ + 12, condone one slip or SC1, for at least 2 values eg $(26 + 39 +) \div 10$
	(c)	46 cao www.3	3	M2 for $(31 \times 12 - 28 \times 10) \div 2$ soi by $92 \div 2$ or M1 for 31×12 soi by 372 or 92
2	(a)	445 final answer www 3	3	M2 for $351.55 \div (1 - 0.21)$ oe or M1 for $351.55 = (100 - 21)$ (%)
	(b)	640 or 4640 4622.5 or 622.5	2 2	M1 for $4000 \times 0.08 \times 2$ oe M1 for $4000 \times (1.075)^2$ oe or 4000×0.075 (= 300) and $(4000 + \text{their } 300) \times 0.075$ and total interest = the sum of their 2 interests.
		Alex by 17.5(0) cao final answer www 6	2	M1 for S I amount – C I amount or reverse or simple interest – compound interest or reverse

Pag	e 3 Mark Scheme: Tea	achers' ve	rsion	Syllabus	Paper
	IGCSE – May/Ju		2	0580	42
3 (a) (i)	<i>x</i> > 4	1			
(ii)	<i>y</i> > 9	1			
(iii)	<i>x</i> + <i>y</i> < 20	1			
(b)	5x + 10y < 170 seen	1			
(c) (i)	x = 4 ruled y = 9 ruled	1 1	Each line long enough to enclose their region Condone good freehand or dotted y = 9 must be between 8.8 and 9.2		
	x + y = 20 ruled	2	U	nt = -1 or y interce 20. Exclude lines p	
	x + 2y = 34 ruled	2		ept = 17 or x inter parallel to either a	
	Correct region indicated cao	1	Dependent o	n all 6 marks for th	e 4 lines.
(ii)	145 cao (from 11, 9) www 2	2	•	5x + 10y when $x = (x, y)$ is in their regi	

Pag	e 4	Mark Scheme: Teach	ners' ve	rsion	Syllabus	Paper
		IGCSE – May/Ju	ine 2012	12 0580		42
4	12			marked in dia more complic Reasons depe	ated as long as it i ndent on correct a	ear even if reason is s full.
(a) (i)	42 Alterna	te oe	1 1	Not alternate	e segment	
(ii)	90 semiciro	ele oe	1 1	Allow diame	ter	
(iii)		gment oe	1 1	same arc		
(iv)	138 cyclic q	uad oe	1 1	key words m	ust not be spoiled	I
(b)	10.9 (10	.90 to 10.91) www 3	3	or M1 for 12 ² Allow full ma	$\overline{-5^2}$ oe i.e explice $2^2 = 5^2 + PQ^2$ oe i urks for $\sqrt{119}$ as find ethod must be common r possible M2	e implicit nal answer
(c) (i)	(Angle)	D and $DE = DGCDG = (angle)ADEf) square or 90° + angle ADG$	1 1 R1	Extra pair of a As in (a), for diagram if con	sides loses this ma angles loses this m all 3 marks allow mpletely clear. n at least one pair stated	nark references to
(ii)	Congrue	ent	1			

	Pag		Mark Scheme: Teachers' version		Syllabus 0580	Paper
		IGCSE – May/Ju	IGCSE – May/June 2012			42
5	(a)	(£) 2.37 or 2.371 to 2.372 www 2	2		÷ 1.17 implied b 77 or 2.78 or 2.77	y 29.87or 29.9 75
	(b)	154 days 4 hours cao	3	M1 for $4.07 \times 10^{12} \div (1.1 \times 10^9)$ implied by figs 3 or 154. () A1 for 3700 seen or 3.7×10^3 seen or $154\frac{1}{6}$ or or 154 rem 4		
	(c) (i)	9.25	1			
	(ii)	Lower = 51.3375 final answer Upper = 52.8275 final answer	1 1			.35 and 5.65 seen
6	(a)	(x =) 64 www 3	3		x + x = 360 - 114 + 2x + 114 + x - 1	
	(b) (i)	-1 $n^{2} \text{ oe}$ $5n \text{ oe}$ $n^{2} + 5n \text{ oe}$	1 1 1 1			
	(ii)	20	2	M1 for their	$n^2 + 5n = 500 \text{ or } 2$	20 and 25 seen
	(c)	Final answer $\frac{x-4}{2x-1}$ cao www 4	4	B1 for $(x-4)(x+4)$ B2 for $(2x-1)(x+4)$ or SC1 for $(2x+a)(x+b)$ where either a+2b=7 or $ab=-4$		
7	(a)	(5, 3)	1			
	(b) (i)	$3\mathbf{a} + \mathbf{c}$	1			
	(ii)	$3\mathbf{a} + \frac{1}{2}\mathbf{c} \text{ or } \frac{1}{2}(6\mathbf{a} + \mathbf{c})$	2	M1 for \overrightarrow{OM} or e.g $OA + AM$ or correct unsimplified answer		
	(iii)	a + c	1			
	(iv)	$\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{c} \text{ or } \frac{1}{2}(3\mathbf{a} + \mathbf{c})$	2	M1 for $-\mathbf{c} + \frac{3}{2} \times$ their (iii) or $\mathbf{a} + \frac{1}{2} \times$ their (iii) or		
				correct unsimplified answer or any correct route e.g. $CE + ED$		
	(c)	(CD) parallel (to OB) oe cao	1dep	Part (c) dependent on simplified (i) and (iv) Dep on (i) = $k \times (iv)$		
		$CD = \frac{1}{2} OB$ oe cao	1dep	Dep on $(i) = i$	$2 \times (iv)$ must be s	calars

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012		42

8			Throughout question, penalise non-reduced fraction only once; isw any conversion and allow decimals in working and on branches but not final answers if fractions not seen.
(a) (i)	$\frac{2}{3}$	1	
(ii)	$\frac{1}{3}, \frac{2}{3}, \frac{2}{5}, \frac{3}{5}, \frac{1}{6}, \frac{5}{6}$ correctly placed	2	B1 for $\frac{1}{3}$ and $\frac{2}{3}$ and $\frac{3}{5}$ or $\frac{5}{6}$ correctly placed
			For method marks in (b) and (c), ft tree with each probability $0 \le p \le 1$
(b)	$\frac{4}{9}$ cao www 3	3	M2 for $1 - \frac{2}{3} \times \frac{5}{6}$ or $\frac{1}{3} + \frac{2}{3} \times \frac{1}{6}$ or $\frac{1}{3} \times \frac{2}{5} + \frac{1}{3} \times \frac{3}{5} + \frac{2}{3} \times \frac{1}{6}$ M1 for $\frac{1}{3} + \frac{2}{3} \times \frac{5}{6}$ or two of $\frac{1}{3} \times \frac{2}{5}, \frac{1}{3} \times \frac{3}{5}, \frac{2}{3} \times \frac{1}{6}$ added
(c)	$\frac{14}{45}$ cao www 3	3	M2 for $\frac{1}{3} \times \frac{3}{5} + \frac{2}{3} \times \frac{1}{6}$ or their $\frac{4}{9} - \frac{1}{3} \times \frac{2}{5}$ M1 for one of $\frac{1}{3} \times \frac{3}{5}$ or $\frac{2}{3} \times \frac{1}{6}$ from a maximum of two products added.
9	Accurate ruled perp. bisector with correct intersecting arcs	2	B1 for accurate with no/wrong arcs or M1 for correct intersecting arcs Ignore one extra perp. bisector
	Accurate ruled angle bisector with correct intersecting arcs	2	B1 for accurate with no/wrong arcs or M1 for correct intersecting arcs Ignore one extra angle bisector
	Compass drawn arc centre <i>F</i> radius 5.5 cm long enough to enclose region	2	M1 for compass drawn arc centre F
	Correct region indicated cao	1	Accept dotty lines but not freehand for all three

Pag	e 7	Mark Scheme: Teach			Syllabus	Paper
IGCSE – May/J			ne 2012		0580	42
10 (a) (i)	$8x^6y^9$ fi	nal answer	2	B1 for any two of 8, x^6 , y^9 in a single term in answer		
(ii)	$\frac{x^2}{3}$ of the set of the se	but not $\frac{1}{3x^{-2}}$ oe final answer	3	B2 for $\frac{3}{x^2}$ or $3x^{-2}$ or $\frac{1}{3x^{-2}}$ as answer or B1 for $\frac{x^6}{27}$ oe as answer or $\frac{1}{\sqrt[3]{\frac{27}{6}}}$ seen		
(b)	$6x^2 + 11$	$xy - 10y^2$ final answer	3	$\sqrt[4]{x^6}$ or SC1 for 3 or x^2 or x^{-2} seen in answer B2 for 3 of $6x^2 - 4xy + 15xy - 10y^2$ (11xy implie 2 terms) or B1 for 2 of $6x^2 - 4xy + 15xy - 10y^2$		
(c) (i)		or $\frac{V}{2\pi r^2} - \frac{r}{2}$ oe but not triple 5 final answer	2	M1 for correct subtraction or correct division by $2\pi r^2$ seen		
(ii)	$\frac{V^2}{3}$ final	al answer	2	B1 for $V^2 = 3h$ or $\frac{V}{\sqrt{3}} = \sqrt{h}$ or $h = \left(\frac{V}{\sqrt{3}}\right)^2$		
(d)	$\frac{5x}{12}$ fina	ll answer	2	B1 for 2 of $\frac{6x}{12}$, $\frac{20x}{12}$, $\frac{-21x}{12}$ oe implied by $\frac{10x}{24}$ is 2 with common denominator = at least 6		
11 (a)	452 or 4	52.1 to 452.4	2	M1 for $\pi \times 1$ final answer	2^2 Allow full mat	rks for 144π as
(b)	59.9 or 5	59.86 to 59.91 cao www 5	5	$\frac{22}{360} \times \pi \times 24$ and M1 dep 32.3) and M1 for 27.6 to 27.7) and M1 dep	$4 \times 7 \text{ (soi by 527 to}$ oe (soi by 4.60 to 4 for $\frac{22}{360} \times \pi \times 24 \times 24 \times 22$ $\frac{22}{360} \times \text{their (a) oe m}$ on M3 for adding to	4.61) × 7 (soi by 32.2 to hay restart (soi by two areas
(c)	(their A 2 × their	50 soi by 17.(11) oe $C(C)^{2} + 31^{2} - \frac{1}{2} + 1$	M2 M2 A2	M1 for cos 5 M1 for impli A1 for 1433		plicit

Pag	e 8	Mark Scheme: Teach	ners' ve				
		IGCSE – May/Ju	May/June 2012		0580	42	
12 (a)	(a) $10x + 4y = 10.7$ oe $8x + 6y = 10.1$ oe						
	Multiplying or dividing equation(s) by number(s) suitable for elimination				arithmetic error. If substitution, aking one variable the subject of one		
	Elimina	tion of one variable	M1		ithmetic error. If su the actual substitut		
	x = 0.85 $y = 0.55$		A1 A1	SC1 for corre After M0, SC	ect fractions C 2 for both correct	answers	
(b)	<u>5±</u>	$\frac{\sqrt{(-5)^2 - 4.2 8}}{2.2}$	B2	B1 for $\frac{p+\sqrt{r}}{r}$ or $\frac{p-\sqrt{r}}{r}$ with $p =5$ or 5 and $r = 2 \times 2$ or 4 Completing the square B1 for $\left(x - \frac{5}{4}\right)^2$ and B1 for $\sqrt{4 + \frac{25}{16}}$		onverted to $\overline{39}$)	
						$\left(x-\frac{5}{4}\right)^2$ and	
	3.61 or	-1.11 final answer	B1B1				