www. tremepapers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0580 MATHEMATICS

0580/22

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0580	22

Abbreviations

cao correct answer only cso correct solution only

dep dependent

ft follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

www without wrong working

Qu.	Answers	Mark	Part Marks
1	35	2	M1 for $4 \times 8 + 3$ or $4 \times 8 + \frac{3}{4}$
			or $4 \times 8\frac{1}{2} + 1$ or $\frac{525}{15}$ or $\frac{510}{15} + 1$
			SC1 for answer 34
2	(a+b)(x+y)	2	M1 $x(a + b) + y(a + b)$ or M1 $a(x + y) + b(x + y)$
3	(a) 6.25 cao	1	
	(b) 0.16 cao	1	
4	12375 cao 12825 cao	2	B1, B1 If no marks scored give M1 for 27.5 and 28.5 seen
5	$2\frac{1}{12}$ cao with correct working	3	M1 $(1+)\frac{6}{12} + \frac{4}{12} + \frac{3}{12}$ oe A1 $(1)\frac{13}{12}$ or $\frac{25}{12}$ oe
6	37.5	3	M1 $F = k/d^2$ A1 $k = 600$
7	a = -3 $b = 4$	3	M1 $-3a + 4b = 25$ B1 one correct
8	11.3	3	M2 22 × 1.852 × 1000/3600 oe or M1 22 × figs 1852 or 22 × 1000/3600
9	(a) $\sqrt{(2n-1)}$	2	M1 $\sqrt{(2n+k)}$ or $2n-1$
	(b) $\sqrt{57}$ or 7.55	1ft	From their (a)
10	$\frac{2x+2}{(x+10)(x+4)}$ oe	3	B1 common denominator $(x + 10)(x + 4)$ oe seen B1 $3(x + 4) - (x + 10)$ seen oe
11	(a) -3	2	M1 $1/2^3$ or 2^{-3}
	(b) 1.5	2	M1 2^{6n} or $6n = 9$
12	80 www	4	M1 attempting area under the graph M1 large or small car area found correctly Dep M1 correct final area statement
13	(a) 52	2	M1 OAB or $OBA = 38$ or $OCT = 90$
	(b) 322	2	M1 $BCT = 38$ or $BCO = 52$

Page 3	Page 3 Mark Scheme: Teachers' version		Paper
	IGCSE – October/November 2011		22

14	$y \le 5$ $x \ge 2$ $y \ge x$	4	B1 each inequality but accept any of the four inequality symbols Final B1 all 3 symbols correct
15	(a) (3, 3½)	1	
	(b) $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$	1	
	(c) Correct perpendicular bisector with arcs	2	B1 line through (3, 3½) perp to AB B1 two sets of correct arcs
16	(a) Petrol cao	1	
	(b) 72	2	M1 for $360 \times 12 \div 60$
	(c) $\frac{1}{10}$	2	B1 $\frac{6}{60}$ or $\frac{3}{30}$ or $\frac{2}{20}$ or 0.1 or 10%
17	(a) (i) $3a + c$	2	$\mathbf{B1} \mathbf{AO} + \mathbf{OC} + \mathbf{CB} \text{or} -\mathbf{a} + \mathbf{c} + 4\mathbf{a}$
	(ii) $2\frac{1}{2}a + \frac{1}{2}c$ oe	2	M1 $\mathbf{a} + \frac{1}{2}$ their (a)(i)
	(b) D marked $\frac{3}{4}$ way along CB	2	B1 <i>D</i> on <i>CB</i>
18	(a) 2.5×10^5	3	B2 250000 oe or M1 correct part value seen
	(b) $C = 1/(Lw^2)$	3	M1 each correct move
19	(a) correct bisector (through 3½, 3½)	2	B1 correct line B1 correct arcs
	(b) $y = 1\frac{1}{2}x - 5$ oe	3	B2 $y = 1\frac{1}{2}x + k \text{ or } y = kx - 5$ k any number
			or B1 $1\frac{1}{2}x + k$ or $kx - 5$
			If O scored allow one each for $m = 1\frac{1}{2}$ or $c = -5$
			clearly identified in working
	(c) 3.61	2	M1 $\frac{1}{2} \times L \times L = 6.5 \text{ or } \mathbf{M1} \sqrt{3^2 + 2^2}$