

MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

MMM. Hiremepapers.com

0607/31 Paper 3 (Core), maximum raw mark 96

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Schem	Syllabus	Paper		
		IGCSE	IGCSE – May/June 2012		31	
1	(a)	A, B, C, D, K, L, M	1			
	(b)	6	1			
	(c)	10%	2	M1 for 2/20 seen		
	(d)	$\frac{5}{20}$ oe isw any cancelling o	r converting 1			
	(e)	$\frac{6}{13}$ o.e isw any cancelling of $(0.462 \text{ cm} 0.4615)$	r converting 1			10
		(0.462 or 0.4615)				[6]
2	(a) (i) (ii)	7000 ÷ 100 × 33 Mr Ray \$2450, Dr Surd \$22		or M1 for 2310 and 70 (allow 231 and 700 ÷ 7 33 : 100		
	(b)	105	1			
	(c)	920 ft	1ft	<i>their</i> 2240 – 1320, ft p	ositive answers onl	ly
	(d)	1715 ft	2ft	M1 for 70/100 × <i>their</i>	2450 oe	[8]
3	(a)	x = -1, y = 2 with working	3	M1 for attempt to get 2 elimination. Condone of OR M1 for equations in the Condone one numerica OR M1 for sketch. A1 each answer Trial and improvement correct scores 3, otherw SC1 for correct answer	one numerical slip. e form $y = \text{ or } x = .$ al slip. c with both answer vise 0.	rs
	(b) (i)	$2\pi r(r+h)$ final answer		M1 for any correct par $2\pi r($)	tial factorisation of	r
	(ii)	$h = \frac{s - 2\pi r^2}{2\pi r}$ or final answer	er 2	M1 for correct re-arrar M1 for correct division	-	
	(c)	$6x^3$	2	B1 for kx^3 or $6x^k$		[9]

	Page 3				Syllabus	Paper			
		IGCSE – May/June 2012		0607	31				
				1					
4	(a)	Points plotted correctly	B1B1						
	(b)	(3, 5)	1						
	(c)	$\begin{pmatrix} 2\\4 \end{pmatrix}$	1	condone poor notation					
	(d)	2 oe	2		M1 for change in <i>y</i> over change in <i>x</i> . Allow $4/2$				
	(e)	2 ft	1ft	ft (d	ft (d) only				
	(f)	y = 2x - 7 oe	2ft	M1 for $y = their 2x + c$ or for substituting (5, 3) into formula					
5	(a) (i)	24	1						
	(ii)	56 – 57 kg	1						
	(iii)	9 (allow +/- 0.5) www	2	M1	for 59 (+/- 0.5) or	50 to 51 seen			
	(b)	$\frac{8}{24}$ or $\frac{9}{24}$ oe ft	2ft	M1	for 8 or 9 seen ft fr	rom (a)	[6]		
6	(a) (i)	trapezium	1						
	(ii)	51	1						
	(iii)	82	1						
	(iv)	129	1						
	(b)	108	3		for 540/5 seen or 1 for $(5-2) \times 180$ or		[7]		

	Page 4		1	Mark Scheme: Teachers' version		Syllabus	Paper			
				IGCSE – May/June 2012			0607	31		
7	(a)	(i)	90		1					
		(ii)	90		1					
		(11)	90		1					
		(iii)	110		1					
	(b)		10.2	(accept 10.17 – 10.18)	2	All	ow 2 for other arc =	r arc = 23.1		
	()						23.11 – 23 13			
							for $110/360 \times 2\pi \times$	5.3		
						or 2	$250/360 \times 2\pi \times 5.3$			
	(c)		6.08	(accept 6.079 – 6.080)	2		for $\sin 35 = CB/10$.	6 oe (i.e. all stej	-	
						apa	rt from final one)		[7]	
8	(a)	(i)	6		1					
			100				0.011			
		(ii)	108		2ft	M1	for full perimeter s	een		
	(b)		571 c	or 571.2	2	M1	for 30×18		[5]	
9	(a)		46(.0) (accept 45.95 – 46.0)	2	M1	for $\frac{2}{3} \times \pi \times 2.8^3$ or	$\frac{4}{2}$ × π × 2.8 ³		
	()) (F)			3 2.0 01	3 7 2.0		
	(b)		49.2	49.2 or 49.3 (accept 49.23 - 49.27)2M1 for using $2\pi 2.8^2$ or 44			$4\pi 2.8^{2}$			
	(c)		10.2	(accept 10.19)	2 M1 for $9.8^2 + 2.8^2$		for $9.8^2 + 2.8^2$			
				· · ·						
	(d)		80.6	or 89.7 (accept 89.59 – 89.74)	2 ft	M1	for $\pi \times 2.8 \times$ their	10.2 ft their (a)		
	(u)		89.0	01 89.7 (accept 89.59 - 89.74)	2 11	1711	$101 \ \pi \times 2.8 \ \times \ \text{them}$	10.2 it then (c)		
	(e)		7		2	M1	for $\frac{2}{2.8}$ or $\frac{2.8}{2}$ or $\frac{9.8}{2.8}$	-	[10]	
10	(-)		D:		D1D1	1	and for			
10	(a)		Diag	ram	B1B1		hark for roughly the Idep mark for the in		east 3	
							of 4 correct)	in the second se	- 400 0	
			(a) = :					0.0 ·		
	(b)	(b) (0)51.8 accept (0)52 but only with working			4	M1 for recognizing the 90 angle – may be marked on diagram.				
			accep	(0,52 out only with working			for $\tan = \frac{80}{200}$ or bet	tter (first M1 is		
							blied) 21.8 seen imp			
							for adding 30.	nes mist 2 ivi s	[6]	
						1,11			1.41	

Page 5		5 Mark Scheme: Teachers' ve IGCSE – May/June 201	Syllabus Paper 0607 31		
11	(a)		/		
			1		
			3	B1 for cubic shape with a max and a min B1 for turning points in the correct	
				B1 for turning points in the correct quadrants.B1 for <i>x</i>-axis intercepts: one negative, one positive and one at origin.	2
	(b)	(-2, 1) and (1, -0.35)	B1 B1	SC1 for correct points in wrong order	
	(c)	<i>x</i> = 0, 1.81 (1.811 to 1.812)	B1 B1		
	(d)	their graph moved up 3	1	their graph with vertical translation of 3	[8]
12	(a)	3820 (accept 3817)	1		
	(b)	3800	1		
	(c)	$\frac{3}{7}$	2	M1 for 15/35	
	(d) (i)	Positive	1		
	(ii)	Ruled line drawn through (180, their 3820)	2 ft	B1 for passing through mean, B1 for positive gradient.	
	(iii)	3300 - 3500	1		[8]

Page				ous	Paper	
	IGCSE – May/June 201	2	060	7	31	
13 (a)		2	graph in appro	ximately to ove and o t touching to cutting y	-axis	e.
(b)	x = 2, y = 0	B1 B1 ft	ft $\frac{3}{x} - 2$ only 2	x=0, y=0	- 2	
(c)	Line on graph	1	Ruled line must negative y-inter		sitive gradient a	ind
(d)	(0.697, -2.3(0)) (0.6972, -2.303 to -2.302), (4.3(0), 1.3(0)) (4.302 to 4.303, 1.302 to 1.303)	B1 B1	ft $\frac{3}{x}$ - 2 only (-1.3(0), -4.3((-1.303 to -1), (2.3(0), -0.697) (2.302 to 2.302)	302, -4.30 7)		[7]