MARK SCHEME for the May/June 2013 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/41

Paper 4 (Extended), maximum raw mark 120

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page					Syllabus Paper]
			IGCSE – May/June 2013		0607	41	
1 (a	1 (a) (i) \$18		\$18 000 3 M2 for 15840 or M1 for 158			$0 \div 0.88$ o.e. 840 = 88% seen	
	(ii)	0.88 ⁴ or M1 for 1.		0.88^{4}	40 × 0.88 ³ or <i>their</i> (i) × 5840 (or 18000) × 1		
	(iii) 2020			2	M1 for multiplying by 0.88, 3 more times or $15840 \times 0.88^n = 5000$ o.e. soi by 9.02 or 5010 to 5014 or 4410 to 4413 or SC1 for 2021.		
(b))	18.2 or	(18.15 to 18.16)	4	M3 for (20000 ÷ 15 × 0.68 + 9 1020) ÷ 15840 soi by figs 18159 to 18161 M2 for 20000 ÷ 15 × 0.68 + 95 1020 (2876 to 2877) M1 for 20000 ÷ 15 × 0.68 (906 907)		50 +
2 (a	l)	Reflection			Second transformation loses all marks		
		y = -x	D.e.	1	Independent		
(b	(b) (i) Tr		e vertices (3, -1), (5, -1), (5, -2)	2	B1 for 2 vertices correct or rota 180° about other centre		tation
	(ii)	Triangl	e vertices (0, -2), (4, -2), (4, -4)	2FT	B1 FT for 2 vertices correct or enlargement s.f. 2 correct orientation		r
	(iii)	Enlarge s.f.–2 centre (1Second transformation los1marks1All independent			11

Page		Syllabus	Paper		
	IGCSE – May/June 2013		0607	41	
3 (a)		2	2 B1 for correct cubic shape B1 for max on $x = 0$ and $2 + x$ - intercepts		
(b)	-0.732 or -0.7321 to -0.7320, 1, 2.73 or 2.732	2	B1 for any one solution		
(c) (i)	(0, 2), (2, -2)	2	B1 for each		
(ii)	-2 < k < 2	2FT	FT (c)(i) Allow $-2 < k$ and $k > 2$ full marks SC1 for $-2 \le k \le 2$ or better or in words		
(d)	Sketch of line Indication that it only cuts curve once	1 1			
4 (a)	30/cos65 = 70.986 (Answer Given)	2	M1 for $\cos 6$ Pythagoras m 30^2	5 = 30/QC o.e. If using must reach <i>their</i> PC^2 +	
(b)	$\sqrt{(70.99^2 + 20^2 - 2 \times 70.99 \times 20 \times \cos 115)}$	M2	other triangle	t use of cosine rule in es for M2 or M1 $9^2 + 20^2 - 2 \times 70.99 \times$	
	81.5 or 81.48 to 81.50	A1		C1 for answer in range	
(c)	457 or 457.3 to 457.5	1FT	FT 212.97 +	$3 \times their$ (b).	
(d)	64.3 or 64.4 or 64.33 to 64.36		M1 for tan $65 = x/30$ o.e. (M mark may be seen earlier)		
(e)	1790 or 1800 or 1790 to 1796 www2	2FT	0.e.	$[their (d)(i)]^2 \times \sin 120$ $= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$	

Page				Syllabus	Paper	
		IGCSE – May/June 2013		0607	41	
x = 4 Line f		from $(0, 15)$ to $(6, 0)$ (if extended) frawn from $(0, 12)$ to $(12, 0)$ (if extended) in R clearly identified cao	2 1 1 1	Lines must be long enough to define region B1 for line through either point with negative gradient.		
(b) (i)	7 cao		1			
(ii)	9 cao		1			
6 (a)	89.7 or	r 89.657 to 89.66	3	or 10 × 2.5 ×	$\frac{1}{2}\pi \times 3^{2} \times 2.5$ $5 - \frac{1}{2}\pi \times 3^{2} \times 2.5$ $\pi \times 3^{2} \text{ or } 10 \times 2.5 \times 5$	
(b)	71.7 or	r 71.8 or 71.72 to 71.76	1FT	FT for <i>their</i>	(b) × 0.8	
(c)	155 or	155.2 to 155.3	5	(horizontal r M1 for 2×2 rectangles) (2 M1 for $10 \times$ or better (fro	$4 \times 2.5 + 10 \times 2.5$ o.e. ectangles) (35) 4.5×5 (vertical 25) $5 - \frac{1}{2} \times \pi \times 3^2$ o.e. nt face) (35.86 or 71.7) $\times 6 \times 2.5$ o.e. (arch)	

Page	5 Mark Scheme S			Syllabus	Syllabus Paper		
		IGCSE – May/June 2013			41		
		ž	•	1			
7 (a) (i) (ii)	38 32		1 2	M1 for clear	reading off at 35 a	ind	
				105			
(b) (i)	33, 53, 85, 115			B1 FT for any 2			
(ii)	8 points plotted Joined by smooth curve		2FT 1FT	B1 FT for 5 or more correct All marks depend on frequencies increasing			
(iii)	Comparison of speeds or spreads (ranges)			SC2 for comparison of speeds and spreads without reasons Mark the best provided there is no contradiction			
	Justification referring to median or inter-quartile range						
(iv)	59.1 or 59.05			M1 for at least two midpoints (25, 35, 42.5, 47.5, 55, 70, 90) soi at least 2 correct products (150, 420, 637.5, 950, 1760, 2100, 2250) or total 8267.5			
(v)	Bars of correct width Bars correct heights 3, 4, 3.2, 1.5 and 1.25			Allow freehand B2 for 4 correct or B1 for 2 correct SC3 for "correct" but interval 40 to 45 and 45 to 50 combined with height of 3.5			
8 (a)	$\frac{42}{992}$ c	or 0.0423 or 0.04233 to 0.04234 o.e.	2		ccept decimal / % t atios or words etc. $< \frac{6}{31}$ o.e.		
(b)	$\frac{112}{306}$ or	0.366 or 0.3660o.e.	3		$\times \frac{14}{17} + \frac{14}{18} \times \frac{4}{17}$ e of above product		
(c)	$\frac{490}{600}$ o	r 0.817 or 0.8166 to 0.8167 o.e.	3	$\frac{11}{25} \times \frac{14}{24} +$	itted product in $\frac{14}{25} \times \frac{11}{24} + \frac{14}{25}$	×	
				$\frac{13}{24} \text{ or for } \frac{1}{2}$	$\frac{1}{5} \times \frac{10}{24}$ alone		

Page			Syllabus Paper			
	IGCSE – May/June 2013		0607	41		
9 (a) (i)	$R = \frac{0.2}{d^2} \text{ o.e.}$	M1 for $R = \frac{1}{d}$ M1 for substi $R = \frac{k}{d^2}$ or R		ituting 0.8, 0.5 int $k = kd^2$ or $R = \frac{k}{d}$	to	
(ii)	0.05	1FT	only	FT $R = \frac{k}{d^2}$ o.e. with incorrect k only		
(iii)	0.224 or 0.2236 cao	2	M1 for substituting $R = 4$ into $R = \frac{k}{d^2}$ or $R = kd^2$ or $R = \frac{k}{d}$ with k numerical			
(b)	0.5	2	M1 for <i>R</i> ÷ 4	o.e.		
10 (a)		3	asymptotes a asymptotes. I intercept. B1 for left ha x = -3 and a B1 for right l	with no overlaps nd no departing fi Must have positiv and branch to left bove $y = 1$ (appro- nand branch to rig elow $y = 1$ (appro-	rom e x of x.) ht of	
(b)	(1, 0)	1				
(c)	$\begin{array}{l} x = -3 \\ y = 1 \end{array}$	1 1				
(d)	$-\frac{1}{3} \leq f(x) < 1$	2	Accept <i>y</i> , <i>x</i> e B1 for either $-\frac{1}{3} < f(x) \le$		3	
(e)	Sketch of $-5 - 2x$ or formula after $2x^2 + 12x + 14$ o.e. -4.14 or -4.414 -1.59 or -1.586 to -1.585	M1 B1 B1	Allow other correct sketch for o.e B2 max if no sketch or method shown			
(f)	Correct sketch	2	B1 for transla B1 for asymp	ation in x direction ptote at $x = 0$	n	

Page 7				Syllabus	Paper
		IGCSE – May/June 2013		0607	41
11 (a)	BAO =	of $ABO = CDO$ (alt angles) DCO (alt angles) COD (vert opp angles)	1+1	B1 for any 2 identified wit	pairs of angles hout a reason
(b)	10		2	M1 for <i>CD</i> /6	= 5/3 o.e.
(c) (i)	$\frac{3}{5}$ o.e.		1		
(ii)	$\frac{9}{25}$ o.e.		1		
(iii)	$\frac{9}{64}$ o.e.		1	0.141 or 0.14	06
12 (a)	$\frac{5500}{x}$		1		
(b)	5500		B 1		
	$\frac{x+60}{5500}$	- their $\frac{5500}{x+60} = \frac{1}{2}$ o.e.	M1FT	FT their expr	ressions
	5500(x	$(+60) - 5500x = \frac{1}{2}x(x + 60)$ o.e. or better	M1FT	LHS resolved	$r \frac{5500}{x+60} - \frac{5500}{x} = \frac{1}{2}$ on denominator or 1 to a single fraction o $\frac{1}{2}$ (allow 1 sign
	$x^2 + 60.$	$x - 660\ 000 = 0$	E1	error) Established w omissions	vithout any errors or
(c)	$-60\pm$	$\frac{\sqrt{60^2 - 4(1)(-660000)}}{2}$			
	Or para 783	bola sketched with one +ve and one –ve root	M1 B1		C1 for correct but both o nearest whole
	-843		B 1		96, -842.9 to -842.96
(d)	12 41 o	r 1242	3	M1 for 5500	, ,
					or $0940 + \left(\frac{5500}{their x}\right)$
				[in hrs mins]	- 4