MARK SCHEME for the October/November 2013 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/04

Paper 4 (Extended), maximum raw mark 120

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2			Mark Scheme		Syllabus	Paper
			IGCSE – October/November 2	0607	04	
1	(a) (i)	5272	2.65 (allow 5270, 5272 to 5273)	2	M1 for 8000×0.92^5	oe
	(ii)	4 (a)	llow 3.31, 3.312 to 3.313) nfww	2	M1 for $8000 \times 0.92^n = 4000$ oe or SC1 for 9 or 8.31 or 8.312 to 8.313	
	(b) (i)	72.3	8 (72.30 to 72.31)	2	M1 for 235 ÷ 3.25 oe	
	(ii)	8.38	8 (8.382 to 8.383)	1		
2	(a) (i)	Tria	ngle at (1, -1), (4, -1), (4, -2)	2	SC1 for reflection in <i>y</i> -axis	
	(ii)	Tria	ngle at (-1, -1), (-1, -4), (-2, -4)	2 FT	FT SC case only SC1 for anti-clockwise about (0, 0)	e rotation of 90°
	(iii)	Refl y =	ection $-x$ oe	B1FT B1FT	FT the transformation FT full description B's independent but be more than one transfor	oth marks lost if rmation stated
	(b)	Enlargement (or reduction) B1 (0, 2) B1 [factor] 0.5 B1		B1 B1 B1	B's independent but al more than one transfor No ratios	ll 3 marks lost if rmation stated
3	(a) (b)	147 4.52	nfww 2 (4.519 to 4.520)	4 3	B3 for $[A =]$ 31.9 to 32 or M2 for [cos angle A $\frac{346^2 + 493^2 - 271^2}{2 \times 346 \times 493}$ or M1 for correct imp with angle A B1 FT 179 – <i>their</i> ang M2 for $0.5 \times 4.93 \times 33$. oe e.g. $0.5 \times 493 \times 346 \times 346$	2.1 nfww A =] oe blicit expression gle A $46 \times \sin(their A)$ $\sin(their A) \div$
					e.g. $0.3 \times 493 \times 546 \times 100^2$ or use of Hero's or M1 for scale correc correct use of $0.5ab$ s use of Hero's formula figs 4519 to 4520 imp	formula tly applied or in C or correct ly M1

	Page 3	e 3 Mark Scheme		Syllabus	Paper		
			IGCSE – October/November 2013		0607	04	
r							
4	(a) (i)	7.21	(7.211) or $2\sqrt{13}$	3	M2 for $\sqrt{14^2 - 12^2}$ $r^2 + 12^2 = 14^2$ oe	or M1 for	
	(ii)	653	(653.2 to 653.5) or 208π	2FT	FT their (a)(i) M1 for $\frac{1}{3}\pi$ (their(a)(i))) ² (12)	
	(b) (i)	317	1 to 317.2	2	M1 for $\pi(their(a)(i))$	(14)	
	(ii)	185	(185.3 to 185.5)	3	M2 for $\frac{their(b)(i)}{\pi(14)^2} \times 3$	60 oe	
					or M1 for $\frac{their(b)(i)}{\pi(14)^2}$	oe or correct	
					implicit statement e.g.		
					$\frac{x}{360} \times \pi \times 14^2 = 317 \mathrm{or}$	317.1 to 317.2	
5	(a) (i)	20		1			
	(ii)	16		1			
	(iii)	9		1			
	(iv)	29		1			
	(v)	180		2	M1 for 20 indicated e or SC1 for answer of 2	.g. on y-axis 20	
	(b) (i)	60,	50	1,1			
	(ii)	20.1	25 (or 20.1 or 20.12 to 20.13)	2FT	FT <i>their</i> (<i>b</i>)(<i>i</i>) only if 110 M1 for at least 3 mid- implied	answers add to values seen or	
	(iii)	2.67 12 5	(2.666 to 2.667) oe	1 1FT 1FT	FT <i>their</i> (<i>b</i>)(<i>i</i>) FT <i>their</i> (<i>b</i>)(<i>i</i>)		
6	(a)		/ 	3	M1 for reasonable rec hyperbola shape A1 for asymptotes ap x = -2 and $y = 2$ (soi A1 for x-intersection p y-intersection negative	tangular proximately) positive and e	
	(b)	- 1.	5 oe	1	Do not allow co-ordin	ates	
	(c)	1.5	oe	1	Do not allow co-ordin	ates	
	(d)	<i>x</i> = -	-2, y = 2	1,1			

	Page 4	e 4 Mark Scheme		Syllabus Paper				
			IGCSE – October/November 2013		0607 04			
	(e) –]		$f \leq f(x) \leq 1.3$ oe	2	Strict inequality at either end or bo ends scores only 1 Allow in words but "between -1.5 1.3" scores only 1 B1 for -1.5 and 1.3 seen or for $f(x) \ge -1.5$ or for $f(x) \le 1.3$	th 5 and		
	(f) (i)	Rea	sonable $y = 3 - x$ added to sketch	1				
	(ii)	-3.5	4 (-3.541), 2.54 (2.541)	1, 1				
	(iii)	2 <i>x</i> -	-3 = (x+2)(3-x)	M1	Allow $2x - 3 = 3(x - 2) - x(x - 2)$ or $2x - 3 = x(3 - x) + 2(3 - x)$			
		$[(x - x^2 - x^2)]$	$(x + 2)(3 - x)] = 3x - x^{2} + 6 - 2x$ + x - 9 = 0	B1 E1	Allow $x + 6 - x^2$ No errors or omissions			
	(iv)	37		2	M1 for $b^2 - 4ac = 1^2 - 4(1)(-9)$ s or $(x + \frac{1}{2})^2 - \frac{1}{4} = 9$ or better	seen		
7	(a)	5.66	5 (5.656 to 5.657) or $4\sqrt{2}$	3	M2 for $\sqrt{(5-1)^2 + (6-2)^2}$ oe or b or M1 for 5 - 1 and 6 - 2 (or 2 - 6)	oetter) soi		
	(b)	<i>x</i> +	<i>y</i> = 7 oe	3	M1 for gradient = $\frac{2-6}{5-1}$ oe M1 for using (1, 6) or (5, 2) in y = mx + c oe			
	(c) (i)	y = x	x	2 FT	M1 for gradient = $\frac{-1}{their gradient in}$	$\overline{n(b)}$		
	(ii)	(3.5	, 3.5) oe cao	1				
8	(a)	25 -	- 4 <i>n</i> oe	2	M1 for answer of $-4n + c$			
	(b)	3×2	2^{n-1} oe	2	M1 for 3×2^q seen and with no c terms	other		
	(c)	$\frac{n^2}{n+1}$	$\overline{3}$ oe	2	B1 for fraction with either numerat denominator correct	tor or		
	(d)	<i>n</i> ³ -	- <i>n</i> oe	4	M3 for comparing sequence with values of n^3 or $an^3 + bn^2 + cn + d$ with 4 value substituted correctly oe or M2 for attempting cubic express oe or listing values of n^3 or M1 for reaching equal third differences	es of <i>n</i> sion		

Page 5			Mark Scheme		Syllabus	Paper
			IGCSE – October/November 2013		0607	04
9	9 (a) $\frac{5}{6}$,		$\frac{1}{6}, \frac{9}{10}, \frac{1}{10}, \frac{3}{10}, \frac{7}{10}$ oe all correctly	3	B1 for each pair corre	ctly placed
	(b)	placed $\frac{48}{60}$ oe $(\frac{16}{20}, 0.8 \text{ etc.})$		3	isw any cancelling or converting M2 for $\frac{5}{6} \times \frac{9}{10} + \frac{1}{6} \times \frac{3}{10}$ or M1 for one of the products by itself	
	(c)	Fine bead	e weather but Alex does not go to the ch	1		
10	(a)	x + x = angl	3x + 6x = 180 or $10x = 18018les in the same segment oe$	B1 B1 B1	Allow angles subtende	ed by the same arc
	(b) (i)	simi	lar	1	No alternatives	
	(ii)	3[.0	0] or 2.990 to 3.002	2	M1 for $\frac{8.55}{9.23} = \frac{2.78}{BX}$ s.f = 1.08 or 1.079 to	oe allow 1.080
	(iii)	0.86	5	2	M1 for $\left(\frac{8.55}{9.23}\right)^2$ or (i) to 0.859 or 1.16 to 1.1 or $\frac{0.5 \times 2.78 \times 8.558}{0.5 \times their BX \times 9.22}$ $\left(\frac{9.61476}{11.2008}\right)$	mplied by 0.857 7) in 54 3sin 54
11	(a)	•		2	M1 for shape A1 for through (1, 0) a y-values approx. doub graph	and positive le those on $\log x$

Page 6			Mark Scheme	Syllabus	Paper	
			IGCSE – October/November 2013		0607	04
	(b)	log log	$(x^5) = \log(16) \text{ or } x^5 = 16 \text{ or}$ $x^3 = \log\left(\frac{16}{x^2}\right) \text{ or } x^3 = \frac{16}{x^2} \text{ or}$	M2	M1 for using a rule of logarithms once correctly	
	(c)	appr 1.74 ylog	ropriate sketch (1.741) or $\sqrt[5]{16}$ or $2^{0.8}$ oe $5 = \log 100$ or $y = \log_5 100$ or $\frac{\log 100}{\log 5}$ ketch	B1 M1	e.g. for sketch $y = 5^x$	with $y = 100$
		2.86	51	B2	B1 for 2.86 or 2.8613	to 2.8614
12	(a)	10 <i>x</i>	$x^{2} + \frac{1}{2}\pi x^{2}$ oe final answer	2	B1 for $10x^2$ or $\frac{1}{2}\pi x^2$	seen
	(b)	<i>A</i> =	$x^{2}(10 + \frac{1}{2}\pi)$ or $2A = x^{2}(20 + \pi)$	3	M1 for correctly taking x^2 as a factor from two terms, one containing π	
		<i>x</i> ² :	$=\frac{A}{10+\frac{1}{2}\pi}$ or $\frac{2A}{20+\pi}$		M1 for correct divisio which has two terms a	n by other factor and no x in it
		$\sqrt{10}$	$\frac{\overline{A}}{1+\frac{1}{2}\pi}$ or $\sqrt{\frac{2A}{20+\pi}}$ final answer		M1 for correct square	root to give <i>x</i>
	(c)	4.16	6 (4.157 to 4.158) cao	B1		
13	(a) (i)	(2 <i>x</i>	(x-1)	2	SC1 for $(ax+1)(bx-1)(bx-1)$ or $b-a = -1$ or for answer $x = -\frac{1}{2}$, from factors	1) where $ab = 2$ x = 1 but only
	(ii)	$\overline{(2x)}$ fina	$\frac{8x+5}{(x-1)} \text{oe}$ I answer	3	B2 for $8x + 5$ seen or M1 for $x - 1 + 4(2x)$ seen e.g. $1 + 4(2x + 1)$	$x^2 - x - 1$) or better
		<i>p</i> –	59		in final answer	(2x + 1)(x - 1) Of
	(b)	fina	<u></u> oe ntww - <i>t</i> l answer	4	B1 for $(p+5q)(p-5)$ B2 for $(p+5q)(1-t)$ or B1 for $p+5q-t(p-t)$ p(1-t)+5q(1-t)	(q) (<i>p</i> + 5 <i>q</i>) or