Cambridge IGCSE ${ }^{\circledR}$

CANDIDATE NAME

CENTRE

CANDIDATE NUMBER

You must answer on the question paper.
You will need:
Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- Calculators must not be used in this paper.
- You must show all necessary working clearly and you will be given marks for correct methods even if your answer is incorrect.
- All answers should be given in their simplest form.

INFORMATION

- The total mark for this paper is 40 .
- The number of marks for each question or part question is shown in brackets [].

Formula List

For the equation $\quad a x^{2}+b x+c=0 \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Curved surface area, A, of cylinder of radius r, height h.
$A=2 \pi r h$

Curved surface area, A, of cone of radius r, sloping edge l.
$A=\pi r l$

Curved surface area, A, of sphere of radius r.

Volume, V, of pyramid, base area A, height h.
$A=4 \pi r^{2}$

Volume, V, of cylinder of radius r, height h.

Volume, V, of cone of radius r, height h.
$V=\frac{1}{3} A h$
$V=\pi r^{2} h$
, V, of sphere of radius r.
$V=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& \text { Area }=\frac{1}{2} b c \sin A
\end{aligned}
$$

Answer all the questions.

1 Find the highest common factor (HCF) of 60 and 90.

2 Insert one pair of brackets to make the statement correct.

$$
\begin{equation*}
5-2+3 \times 2=-5 \tag{1}
\end{equation*}
$$

$3 \quad \mathbf{p}=\binom{2}{3} \quad \mathbf{q}=\binom{1}{6}$
Find $2 \mathbf{p}-3 \mathbf{q}$.
$4 \quad$ Write 0.72 as a fraction in its lowest terms.

5 The mean of a list of 9 numbers is 6 .
When a 10th number is included in the list the mean is 5.5 .

Find the value of this 10th number.

6

Find the length of the hypotenuse of the triangle.
cm [2]

7 Solve the simultaneous equations.

$$
\begin{aligned}
u-w & =9 \\
3 u+w & =19
\end{aligned}
$$

\qquad
$u=$
$w=$

8 The scale of a map is $1: 250000$.
Find the actual distance, in kilometres, between two cities which are 42 cm apart on the map.
$9|x|<4$ and x is an integer.
Find the smallest possible value of x.

10 The first 4 terms of a sequence are $20,13,6$ and -1 .
Find
(a) the next term,
(b) the nth term.

11 Make u the subject of the formula.

$$
v^{2}=u^{2}+2 a s
$$

$$
u=
$$

12 Factorise completely.

$$
2 a-b+2 a x-b x
$$

13 Find the exact value of
(a) 3^{-3},
(b) $16^{\frac{3}{4}}$,
(c) $\cos 30^{\circ}$.

14 Simplify $\left(64 x^{12}\right)^{\frac{1}{6}}$.

15 On each Venn diagram, shade the region indicated.

16 Find the equation of the straight line passing through $(-2,-4)$ and $(2,0)$

17 Rationalise the denominator.

$$
\frac{3}{\sqrt{5}+2}
$$

18 (a) Factorise $3 y-y^{2}$.
(b) Simplify $\frac{3 y-y^{2}}{9-y^{2}}$.

19 Find the value of
(a) $\frac{\log 4}{\log 8}$,
(b) $\log _{4} 8$.
$20 \mathrm{~g}(x)=\frac{2 x+1}{x-1}, x \neq 1$
Solve the equation $\mathrm{g}^{-1}(x)=2$.

$$
x=
$$

