

INTERNATIONAL GCSE

CAMBRIDGE

MARKING SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0652/01

PHYSICAL SCIENCE Paper 1 (Multiple Choice)



| Page 1 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 1     |

| Question<br>Number | Key | Question<br>Number | Key |
|--------------------|-----|--------------------|-----|
| 1                  | С   | 21                 | Α   |
| 2                  | В   | 22                 | С   |
| 3                  | В   | 23                 | D   |
| 4                  | С   | 24                 | С   |
| 5                  | С   | 25                 | D   |
|                    |     |                    |     |
| 6                  | Α   | 26                 | В   |
| 7                  | D   | 27                 | Α   |
| 8                  | В   | 28                 | Α   |
| 9                  | В   | 29                 | D   |
| 10                 | С   | 30                 | D   |
|                    |     |                    |     |
| 11                 | D   | 31                 | В   |
| 12                 | Α   | 32                 | Α   |
| 13                 | D   | 33                 | Α   |
| 14                 | D   | 34                 | В   |
| 15                 | В   | 35                 | D   |
|                    |     |                    |     |
| 16                 | D   | 36                 | D   |
| 17                 | В   | 37                 | Α   |
| 18                 | В   | 38                 | В   |
| 19                 | С   | 39                 | Α   |
| 20                 | Α   | 40                 | D   |

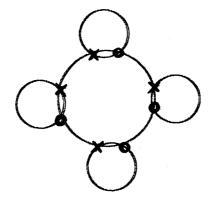
**TOTAL 40** 



**INTERNATIONAL GCSE** 

MARKING SCHEME

MAXIMUM MARK: 60


SYLLABUS/COMPONENT: 0652/02

**PHYSICAL SCIENCE** Paper 2 (Core)



| Pa     | ge 1                                                                             | Mark Scheme                                                                | Syllabus    | Paper   |
|--------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------|---------|
|        |                                                                                  | IGCSE EXAMINATIONS – JUNE 2003                                             | 0652        | 2       |
|        |                                                                                  |                                                                            |             |         |
| 1.     | 15                                                                               |                                                                            | 1           |         |
|        | 14                                                                               |                                                                            | 1           |         |
|        | 2, 8                                                                             | 3, 4                                                                       | 1           | (3)     |
|        |                                                                                  |                                                                            |             | Total 3 |
| 2. (a) | (i)                                                                              | Any three of:<br>circuit complete<br>current in coil<br>core magnetised    |             |         |
|        |                                                                                  | armature attracted to the core                                             | 1 +1 +1 (3  | max)    |
|        | (ii)                                                                             | soft iron loses its magnetism easily<br>EITHER steel retains its magnetism | 1           |         |
|        |                                                                                  | OR so that contacts re-open when S is opened                               | 1           | (2)     |
| (b)    | EITHER use of R = V/I (in any form)<br>OR R = 12/4 (in any form)<br>R = 3<br>Ohm |                                                                            | 1<br>1<br>1 | (3)     |

3. (a) (i)



|     | ()   |                                             | • | Total 6 |
|-----|------|---------------------------------------------|---|---------|
|     | (ii) | 12 + 4 + 16 = 32 (ignore units)             | 1 | (3)     |
| (b) | (i)  | CH₃OH<br>(CH₄O or similar = 1 compensation) | 2 |         |
|     | (ii) | covalent                                    | 1 | (3)     |
|     |      |                                             | 2 |         |

| Pa     | ge 2  | Mark Scheme                                                                                                               | Syllabus                  | Paper                        |         |
|--------|-------|---------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------|---------|
|        |       | IGCSE EXAMINATIONS – JUNE 2                                                                                               | 003                       | 0652                         | 2       |
| 4. (a) | (i)   | Evidence of both outer rays converging after<br>and central ray straight<br>all three rays pass through a single point or | -                         | 1                            |         |
|        | (ii)  | focal length correctly marked                                                                                             |                           | +1                           | (3)     |
| (b)    | (i)   | <i>i</i> correctly marked                                                                                                 |                           | 1                            |         |
|        | (ii)  | ray reflected so that $i = r$                                                                                             |                           | 1                            | (2)     |
|        |       |                                                                                                                           |                           |                              | Total 5 |
| 5. (a) |       | mine atom takes electron from iodide ion<br>HER to become bromide ion                                                     |                           | 1                            |         |
|        |       | and replaces iodide/forms potassium bromi                                                                                 | de                        | 1                            | (2)     |
| (b)    |       | Ethane                                                                                                                    | Ethene                    | 9                            |         |
|        | H-    | Н Н<br>   <br>С С С Н<br>   <br>Н Н<br>1                                                                                  | c                         | H<br>  <br>C<br>  <br>H<br>1 |         |
|        | No    | change in colour 1                                                                                                        | goes colou<br>(or correct |                              | (4)     |
|        |       |                                                                                                                           |                           |                              | Total 6 |
| 6. (a) | (i)   | mercury or alcohol                                                                                                        |                           | 1                            |         |
|        | (ii)  | 35 ± 1                                                                                                                    |                           | 1                            |         |
|        | (iii) | Make Hg move further/increase sensitivity                                                                                 |                           | 1                            | (3)     |
| (b)    | (i)   | cools<br>liquid contracts                                                                                                 |                           | 1<br>1                       |         |
|        | (ii)  | correct position at 0                                                                                                     |                           | 1                            | (3)     |
|        |       |                                                                                                                           |                           |                              |         |

| Paç     | ge 3         | A Mark Scheme<br>IGCSE EXAMINATIONS – JUNE 2003                                                                        |             | Paper<br>2 |
|---------|--------------|------------------------------------------------------------------------------------------------------------------------|-------------|------------|
|         |              |                                                                                                                        |             |            |
| 7. (a)  | OR           | rease the potential energy of the molecules<br>do work in separating the molecules<br>inst intermolecular forces/bonds | 1<br>1      | (2)        |
| (b)     |              | ecules are moving around randomly<br>ead in all directions                                                             | 1<br>1      | (2)        |
|         |              |                                                                                                                        |             | Total 4    |
| 8. (a)  | (i)          | refraction                                                                                                             | 1           |            |
|         | (ii)         | arrow drawn at right angles to the refracted waves                                                                     | 1           | (2)        |
| (b)     | (i)          | less                                                                                                                   | 1           |            |
|         | (ii)         | the same                                                                                                               | 1           |            |
|         | (iii)        | less                                                                                                                   | 1           | (3)        |
|         |              |                                                                                                                        |             | Total 5    |
| 9. (a)  | Hyd          | drochloric                                                                                                             | 1           | (1)        |
| (b)     | (i)          | Carbon dioxide                                                                                                         | 1           | (1)        |
|         | (ii)         | Bubble through limewater goes cloudy/milky                                                                             | +1<br>+1    | (2)        |
| (c)     | Filte<br>Eva | er<br>aporate (to dryness)                                                                                             | 1<br>+1     | (2)        |
|         |              |                                                                                                                        |             | Total 6    |
| 10. (a) | (ma          | imple 2 because force moves<br>ax 1 if box/boy moves)<br>ereas in 1 the force is stationary                            | 1<br>1      | (2)        |
|         | (No          | te: there is no credit for correct answer without some for                                                             | m of explar | nation)    |
| (b)     | 18<br>N      |                                                                                                                        | 1<br>1      | (2)        |
| (c)     |              | elerates<br>formly/constantly/(steadily?)                                                                              | 1<br>+1     | (2)        |
|         |              |                                                                                                                        |             | Total 6    |

| Page     | e 4   | 4 Mark Scheme                                                                               |         | Syllabus | Paper |
|----------|-------|---------------------------------------------------------------------------------------------|---------|----------|-------|
|          |       | IGCSE EXAMINATIONS – JUN                                                                    | NE 2003 | 0652     | 2     |
|          |       |                                                                                             |         |          |       |
| 11 (a) ł | hvdro | gen loses electron                                                                          |         | 1        |       |
| • • •    |       | formation of H <sub>2</sub> O molecule                                                      |         | 1        | (2)   |
| (b) E    | Energ | y given out on combustion                                                                   |         | 1        | (1)   |
| (        | (OR n | mbustion the <u>only</u> product is water<br>o products of combustion/pollutants<br>t water | 1<br>1) | 2        | (2)   |
|          |       |                                                                                             | Total 5 |          |       |



**INTERNATIONAL GCSE** 

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0652/03

**PHYSICAL SCIENCE** Paper 3 (Extended)



| Pa  | ige 1 | Mark Scheme                                                                                                                                                              | Syllabus    | Paper  | •         |
|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-----------|
|     |       | IGCSE EXAMINATIONS – JUNE 2003                                                                                                                                           | 0652        | 3      |           |
| (a) |       | Covalent molecules (N <sub>2</sub> ); weak forces between (non-point $\therefore$ low B. Pt. $\rightarrow$ gas at room temperature<br>Marks can be in either (i) or (ii) | oolar) mole | cules; | [3]       |
| (b) |       | Amphoteric; mid-way between basic and acidic oxide                                                                                                                       | 6           |        | [2]       |
| (c) |       | lons have same charge in same Group; but smaller ic electrons more strongly                                                                                              | ons attract |        | [2]       |
| (d) |       | PCl <sub>3</sub> OR PCl <sub>5</sub>                                                                                                                                     |             |        | [1]       |
|     |       |                                                                                                                                                                          | Qu          | estion | Total [8] |
| (a) |       | equation                                                                                                                                                                 |             |        | [1]       |
|     |       | correct substitution                                                                                                                                                     |             |        | [1]       |
|     |       | 36.7 m/s <sup>2</sup>                                                                                                                                                    |             |        | [1]       |
| (b) |       | k.e. equation                                                                                                                                                            |             |        | [1        |
|     |       | working                                                                                                                                                                  |             |        | [1]       |
|     |       | 4.5(4) J                                                                                                                                                                 |             |        | [1        |
| (c) |       | g.p.e. equation                                                                                                                                                          |             |        | [1        |
|     |       | working                                                                                                                                                                  |             |        | [1]       |
|     |       | 2.0(3) J                                                                                                                                                                 |             |        | [1]       |
| (d) | (i)   | loose but correct idea of how well something is done                                                                                                                     |             |        | [C1       |
|     |       | clear statement of idea of ratio of input to effective our work/energy/power                                                                                             | tput        |        | [2]       |

|   | Page 2 | Mark Scheme                                                         | Syllabus      | Paper     | ]          |
|---|--------|---------------------------------------------------------------------|---------------|-----------|------------|
| [ |        | IGCSE EXAMINATIONS – JUNE 2003                                      | 0652          | 3         | ]          |
|   | (ii)   | not efficient                                                       |               |           | [1]        |
|   |        | clear statement of reason why not                                   |               |           | [1]        |
|   |        | first incorrect or missing unit only incurs penalty of -1           |               |           |            |
|   |        |                                                                     | Qu            | estion To | tal [13]   |
| 3 | (a)    | Light can cause $Ag^+$ ions $\rightarrow Ag$ atoms; bottle keeps    | out light ray | S         | [2]        |
|   | (b)    | Na reacts violently with air and water; paraffin is iner<br>surface | t and covers  | 3         | [2]        |
|   | (c)    | Easily picks up water vapour → blue hydrate; desico                 | ator keeps    | air dry   | [2]        |
|   | (d)    | Volatile so kept cold; poisonous vapour so in fume cu               | upboard       |           | [2]        |
|   |        |                                                                     | Qu            | estion T  | otal [8]   |
| 4 | (a)    | correct order: image, object, lens, focus (or reversed              | )             |           | [1]        |
|   |        | either ray refracted correctly                                      |               |           | [1]        |
|   |        | correct construction                                                |               |           | [1]        |
|   | (b)    | virtual                                                             | -             | )         | [1]        |
|   |        | magnified or correctly measured height                              |               | Any 3     | [1]<br>[1] |
|   |        | correct measurement of candidate's distance from le                 | ns, upright_  | J         | [1]        |
|   | (c)    | magnifying glass/lens to correct long sight etc.                    |               |           | [1]        |
|   |        |                                                                     | Qu            | estion T  | otal [7]   |

| Pag | je 3 | Mark Scheme                                                                                              | Syllabus                           | Paper       |
|-----|------|----------------------------------------------------------------------------------------------------------|------------------------------------|-------------|
|     |      | IGCSE EXAMINATIONS – JUNE 2003                                                                           | 0652                               | 3           |
| (a) |      | Mobile electrons (sea of electrons) <u>NOT</u> free elec                                                 | ctrons                             |             |
| (b) |      | Unequal sizes of ions in alloy; give uneven (lump<br>cannot slide past each other easily; hence alloy is | ., .                               |             |
| (c) | (i)  | Ca, Sr, Ba <u>OR</u> Ra                                                                                  |                                    |             |
|     | (ii) | Fizzing                                                                                                  |                                    |             |
|     |      | Gradually dissolve                                                                                       |                                    |             |
|     |      | Allow: Alkaline solution                                                                                 |                                    |             |
|     |      |                                                                                                          | Que                                | stion Total |
|     |      |                                                                                                          |                                    |             |
| (a) |      | max voltage = 0.4 V                                                                                      |                                    |             |
|     |      | min voltage = 0.5 V                                                                                      |                                    |             |
| (b) |      | mention of electromagnetic induction                                                                     |                                    |             |
|     |      | idea of flux cutting or similar                                                                          |                                    |             |
| (c) |      | positive and negative peak                                                                               |                                    |             |
|     |      | flux cuts coil in opposite directions                                                                    |                                    |             |
|     |      | a st                                                                                                     |                                    |             |
|     |      | 1 <sup>st</sup> peak lower                                                                               |                                    |             |
|     |      | rate of flux cutting less                                                                                | Any two <b>paiı</b><br>of answers, | S           |
|     |      | 1 <sup>st</sup> peak wider                                                                               | i.e. statemer<br>and consiste      |             |
|     |      | magnet moving slower – time longer                                                                       | explanation                        |             |
|     |      | 1                                                                                                        |                                    |             |
|     |      | flat middle section                                                                                      |                                    |             |

Question Total [8]

|     | e 4           | Mark Scheme                                                    | Syllabus  | Paper  | '   |
|-----|---------------|----------------------------------------------------------------|-----------|--------|-----|
|     |               | IGCSE EXAMINATIONS – JUNE 2003                                 | 0652      | 3      |     |
| (a) | (i)           | Charge on ion is +2 (oxidation number +2)                      |           |        |     |
|     |               | Allow: - Valency is 2                                          |           |        |     |
|     | (ii)          | Calcium has only one possible oxidation number (va             | lency)    |        |     |
| (b) | (i)           | 1000 cm <sup>3</sup> contains 1 mole                           |           |        |     |
|     |               | ∴ 50 cm <sup>3</sup> contains 0.050 moles                      |           |        |     |
|     | (ii)          | 1 mole $CuCO_3 \rightarrow 2$ moles acid                       |           |        |     |
|     |               | ∴ 0.025 moles CuCO <sub>3</sub> $\rightarrow$ 0.050 moles acid |           |        |     |
|     | (iii)         | 64 + 12 + 3 x (16) [1] = 124 [1]                               |           |        |     |
|     | (iv)          | Mass = Moles x $M_r$ <u>OR</u> Mass = 0.025 x 124 [1] = 3      | 3.1 g [1] |        |     |
|     |               |                                                                | Qu        | estion | Tot |
| (a) |               | idea of voltage                                                |           |        |     |
|     |               | max terminal p.d./open circuit p.d. or other definition        |           |        |     |
| (b) |               | idea of high resistance implies low current                    |           |        |     |
|     |               | idea that voltmeter must drop vast majority of voltage         | 9         |        |     |
| (c) | (i)           | equation                                                       |           |        |     |
|     |               | 102 $\Omega$ used                                              |           |        |     |
|     |               | 1.47 x 10 <sup>-2</sup> A                                      |           |        |     |
|     |               |                                                                |           |        |     |
|     | (ii)          | use of current in (i) and 100 $\boldsymbol{\Omega}$            |           |        |     |
|     | (ii)          | use of current in (i) and 100 Ω<br>1.47 V (e.c.f.)             |           |        |     |
|     | (ii)<br>(iii) |                                                                |           |        |     |
|     |               | 1.47 V (e.c.f.)                                                |           |        |     |
|     |               | 1.47 V (e.c.f.)<br>larger resistance voltmeter                 |           |        |     |

Question Total 12

|   | Page | e 5  | Mark Scheme                                             | Syllabus       | Paper   |           |
|---|------|------|---------------------------------------------------------|----------------|---------|-----------|
|   |      |      | IGCSE EXAMINATIONS – JUNE 2003                          | 0652           | 3       |           |
| 9 | (a)  |      | ([1] for C=C,                                           | [1] for filled | shells) | [2]       |
|   |      |      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$   |                |         |           |
|   | (b)  |      | Alkenes have C=C bond; needs at least 2 carbon atoms    |                |         | [2]       |
|   | (c)  | (i)  | $C_4H_{10} \rightarrow 2C_2H_4 + H_2$ ([1] for formulae | e, [1] for bal | ance)   | [2]       |
|   |      | (ii) | High temp; high Pressure OR catalyst                    |                |         | [2]       |
|   |      |      |                                                         | Qu             | estion  | Total [8] |



**INTERNATIONAL GCSE** 

MARKING SCHEME

MAXIMUM MARK: 30

SYLLABUS/COMPONENT: 0652/05

**PHYSICAL SCIENCE Practical** 



| Page 1 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 5     |

| 1 (a) (iii)  | a reading for h <sub>o</sub><br>5 readings taken (-1 if not in g)<br>force calculated correctly<br>extension calculated (deduct 1 if not in mm)                                                                   | 4                       |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| (b)          | axes labelled correctly<br>sensible scale<br>plotting correctly<br>best line drawn goes through or would go through origin                                                                                        | 4                       |
| (c)          | extension read correctly or calculated                                                                                                                                                                            | 1                       |
| (d)          | proportional (2) allow one if says extension increases by fixed amount for fixed force                                                                                                                            | 2                       |
| (e)          | line correctly drawn and labelled                                                                                                                                                                                 | 1                       |
| (f)          | read extension<br>use graph<br>calculate in g or kg using correct number,<br>i.e. /10 to kg or x 100 to g                                                                                                         | 3                       |
|              |                                                                                                                                                                                                                   |                         |
|              | Tota                                                                                                                                                                                                              | al 15                   |
|              |                                                                                                                                                                                                                   | _                       |
| 2 (a)        | Tota<br>each metal correct as -ve<br>three values of p.d. to be within 0.2V of SV                                                                                                                                 | a <b>l 15</b><br>1<br>3 |
| 2 (a)<br>(c) | each metal correct as -ve                                                                                                                                                                                         | 1                       |
|              | each metal correct as –ve<br>three values of p.d. to be within 0.2V of SV                                                                                                                                         | 1<br>3                  |
| (c)          | each metal correct as -ve<br>three values of p.d. to be within 0.2V of SV<br>magnesium with a suitable explanation                                                                                                | 1<br>3<br>2<br>1        |
| (c)<br>(d)   | each metal correct as -ve<br>three values of p.d. to be within 0.2V of SV<br>magnesium with a suitable explanation<br>correct order Mg, Zn, Cu<br>bubbling, colour fades, black/brown deposit, magnesium disappea | 1<br>3<br>2<br>1<br>rs  |



**INTERNATIONAL GCSE** 

MARKING SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0652/06

**PHYSICAL SCIENCE Alternative to Practical** 



| Page 1 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 6     |

1 (a) Masses: object A – 41.4g object B – 64.2 g → No tolerance 3 (do not allow 28g) object C – 28.0g (b) Volumes: object A – 27cm<sup>3</sup> object B –  $12cm^3$  No tolerance object C –  $56cm^3$ 3 (c) Density of object C = 28/56 = 0.5 (allow 1 mark for correct substitution but incorrect answer) (allow ecf from (a) and (b)) 2 unit g/cm<sup>3</sup> (mark is independent of answer to calculation) 1 (d) object C would float [1] because it is less dense than water (OWTTE) [1] (explanation must relate to relative densities of object C and water) 2 do NOT allow independent answers, i.e. correct explanation MUST be given to score first mark. (allow converse answer if candidate's value for part (c) is >1) (e) some water would be left in the beaker when transferring to the measuring cylinder 1 do NOT allow 'the experiment/results is/are not accurate'

| Page 2 | Mark Scheme Syllabus                                              |                  |                            |               |   |  |
|--------|-------------------------------------------------------------------|------------------|----------------------------|---------------|---|--|
|        | IGCSE EXAMINATIONS – JUNE 2003 0652                               |                  |                            |               | 6 |  |
|        |                                                                   |                  |                            |               |   |  |
| 2 (a)  | Magnesium                                                         | copper [1]       | pd = 2.0 [1] (do NOT all   | ow <b>2</b> ) | 2 |  |
|        | Zinc                                                              | copper [1]       | pd = 1.1 [1]               |               | 2 |  |
|        |                                                                   |                  |                            |               |   |  |
| (b)    | most negativ                                                      | e = magnesiu     | m                          |               | 1 |  |
|        | most positive = copper                                            |                  |                            |               | 1 |  |
|        |                                                                   |                  |                            |               |   |  |
| (c)    | magnesium,                                                        | zinc, copper     |                            |               | 1 |  |
|        |                                                                   |                  |                            |               |   |  |
| (d)    | find the p.d.                                                     | with each of th  | e other metals [1]         |               |   |  |
|        | note which metal is positive/negative[1]                          |                  |                            |               |   |  |
|        | metal X is positive with a more reactive metal and vice versa [1] |                  |                            |               | 3 |  |
|        | Answers mu                                                        | st relate to the | experiment used in the que | estion.       |   |  |

| Page 3   | Mark Scheme                                                                                                            | Syllabus | Paper |
|----------|------------------------------------------------------------------------------------------------------------------------|----------|-------|
|          | IGCSE EXAMINATIONS – JUNE 2003                                                                                         | 0652     | 6     |
|          |                                                                                                                        |          |       |
| 3 (a)    | $h_3$ = 160 (mm) $h_4$ = 122 (mm) $h_5$ = 85 (m (tolerance $\pm$ 1mm)                                                  | ım)      | 2     |
|          | (2 marks if all three values correct, reduce by one marl each error to minimum 0)                                      | k for    |       |
| (b)      | Forces 1.5 2.0 2.5(N)<br>(1 only if 2 or more incorrect)<br>Extensions 110 148 185 (mm)<br>(e.c.f. – 1 for each error) |          | 2     |
| (c)      | Plotting points [2] $-$ 5/6 points plotted correctly $-$ 2 m                                                           | narks    |       |
|          | 3/4 points plotted correctly – 1 m                                                                                     | nark     |       |
|          | 1/2 points plotted correctly – 0 m                                                                                     | narks    | 2     |
|          | Straight line passing through the origin [1]                                                                           |          | 1     |
| <i>.</i> |                                                                                                                        |          |       |
| (d)      | (Directly) proportional                                                                                                |          | 1     |
|          | (do NOT allow 'as mass increases, extension increase                                                                   | s')      |       |
| (e)      | place mass on hanger and record extension [1]                                                                          |          |       |
|          | use graph to find force (or plot new graph if extension gath than values already plotted) [1]                          | greater  |       |
|          | multiply Force by 100 to find mass of object [1] (2                                                                    | of 3)    | 2     |
|          |                                                                                                                        |          |       |

| Page 4    | Mark Scheme                                                                                  | Syllabus | Paper |
|-----------|----------------------------------------------------------------------------------------------|----------|-------|
|           | IGCSE EXAMINATIONS – JUNE 2003                                                               | 0652     | 6     |
|           |                                                                                              |          |       |
| 4 (a) (i) | Blue/Dark green (must be <u><b>COLOUR</b></u> i.e. <i>NOT pH nur</i> (do NOT allow 'purple') | ıber)    | 1     |
|           | Ammonia/gas is alkali(ne) (allow 'basic/base')                                               |          | 1     |
| (a) (ii)  | Red                                                                                          |          | 1     |
| (b)       | (Light) Green                                                                                |          | 1     |
|           | Gases <b>neutralise</b> each other ( <b>NOT</b> one gas is acidic a other is alkaline)       | and the  | 1     |
| (c) (i)   | Ammonia moves faster                                                                         |          | 1     |
| (c) (ii)  | Because it has smaller particles (allow converse)                                            |          | 1     |
| (d)       | Spreading out of particles (OWTTE)                                                           |          | 1     |

| Page 5    | Mark Scheme                                                 | Syllabus | Paper |
|-----------|-------------------------------------------------------------|----------|-------|
|           | IGCSE EXAMINATIONS – JUNE 2003                              | 0652     | 6     |
|           |                                                             |          |       |
|           |                                                             |          |       |
| 5 (a) (i) | Crystal dissolved [1] (do NOT allow 'melted')               |          |       |
|           | Particles spread out/diffused into the liquid [1]           |          | 2     |
|           |                                                             |          |       |
| (a) (ii)  | Any TWO from:                                               |          |       |
|           | Stir [1]                                                    |          |       |
|           | e[.]                                                        |          |       |
|           | Heat/warm [1]                                               |          |       |
|           | Shake [1]                                                   |          | 2     |
|           |                                                             |          |       |
| (b)       | Alkali(ne)/has pH greater than 7                            |          | 1     |
|           |                                                             |          |       |
| (c) (i)   | Mixed with water/water has been added                       |          | 1     |
|           |                                                             |          | -     |
| (c) (ii)  | Alkali and acid have reacted [1] so the solution is neut    | ral/pH 7 | 2     |
| .,.,      | [1]                                                         | ·        |       |
|           |                                                             |          |       |
| (c) (iii) | Alkali is in excess (OWTTE) (do NOT allow 'the acid h       | as not   | 1     |
|           | reached the alkali')                                        |          |       |
|           |                                                             | -        | 4     |
| (c) (iv)  | Calcium Hydroxide + Ethanoic Acid Calcium Ethanoate + Water | I        | 1     |
|           |                                                             |          |       |

| Page 6 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – JUNE 2003 | 0652     | 6     |

| Mass of beaker = 43.4g                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mass of beaker + water = 93.6g                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mass of beaker + sodium chloride solution = 108.6g                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mass of sodium chloride solution = $108.6 - 43.4 = 65.2g$ (allow ecf from (a))                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mass of sodium chloride crystals = 108.6 – 93.6 = 15. <b>0</b> g<br>(allow ecf from (a)) (do NOT allow 15g)                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Volume = 55 cm <sup>3</sup>                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (b) (i) and (c) (both required for mark)                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (accept values quoted (allow ecf)) (allow calculated value of density e.g. 65.2/55 or 1.19g/cm <sup>3</sup> (allow ecf from candidate's values)) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Place hexane in measuring cylinder to a known volume [1]                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Add 15g of sodium chloride to the hexane [1]                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Note new volume in measuring cylinder and subtract original volume of hexane [1]                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                  | <ul> <li>Mass of beaker + water = 93.6g</li> <li>Mass of beaker + sodium chloride solution = 108.6g</li> <li>Mass of sodium chloride solution = 108.6 - 43.4 = 65.2g<br/>(allow ecf from (a))</li> <li>Mass of sodium chloride crystals = 108.6 - 93.6 = 15.0g<br/>(allow ecf from (a)) (do NOT allow 15g)</li> <li>Volume = 55 cm<sup>3</sup></li> <li>(b) (i) and (c) (both required for mark)</li> <li>(accept values quoted (allow ecf)) (allow calculated value of<br/>density e.g. 65.2/55 or 1.19g/cm<sup>3</sup> (allow ecf from candidate's<br/>values))</li> <li>Place hexane in measuring cylinder to a known volume [1]</li> <li>Add 15g of sodium chloride to the hexane [1]</li> <li>Note new volume in measuring cylinder and subtract original</li> </ul> |

|             | maximum           | mir | nimum mark re | equired for gra | de: |
|-------------|-------------------|-----|---------------|-----------------|-----|
|             | mark<br>available | А   | С             | Е               | F   |
| Component 1 | 40                | -   | 27            | 21              | 17  |
| Component 2 | 60                | -   | 32            | 21              | 18  |
| Component 3 | 80                | 47  | 29            | -               | -   |
| Component 5 | 30                | 21  | 17            | 13              | 11  |
| Component 6 | 60                | 54  | 43            | 27              | 24  |

Grade thresholds taken for Syllabus 0652 (Physical Science) in the June 2003 examination.

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A\* does not exist at the level of an individual component.