

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the NOVEMBER 2004 question paper

0652 PHYSICAL SCIENCE

0652/02

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0652 (Physical Science) in the November 2004 examination.

	maximum	minimum mark required for grade:			
	mark available	А	С	Е	F
Component 2	80	n/a	47	34	25

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

November 2004

INTERNATIONAL GCSE

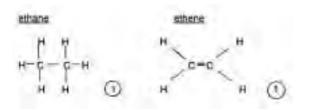
MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0652/02

PHYSICAL SCIENCE Paper 2

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE – NOVEMBER 2004	0652	2
1 (a)(i)	Moment = 5 ×8		[1]
	= 40 Ncm		[2]
	(-1 for incorrect/no unit)		
(ii)	40 Ncm (ecf)		[1]
(iii)	80 Ncm (ecf)		[1]
(b)(i)	Increases the moment		[1]
(ii)	Decreases the moment		[1]
(c)	(Electric) motor/ammeter etc. NOT generator/dynamo etc.		[1]
			Total [8]
2 (a)	Brownian (motion)		[1]
(b)	molecules		[1]
	collide		[1]
	larger molecules		[1] [1]
			Total [5]
3 (a)(i)	Convection		[1]
(ii)	Water expands on heating Becomes less dense ANY TWO		[2]
	Rises		
(b)(i)	Conduction		[1]
(ii)	Chemical		[1]
	Heat/Thermal Internal		[1]
	Exothermic (accept irreversible)		[1]
(c)	Insulating/lagging the tank – DO NOT accept vacuum or pair	nt silver	[1]
			Total [8]
4 (a)	Z because this contains P and Q from X <u>and</u> R from Y		[1] [1]
(b)	R because this has travelled furthest with the (moving) solvent	or	[1] [1]
	equivalent idea	_	
			Total [4]


Graphite √3 (covalent) b √ two dimensior √ layers √ strong bonds between layer Diamond √4 (covalent) b √ three dimensio	in layer and weak bonds	0652	2 [2]
√ two dimensior √ layers √ strong bonds between layer Diamond √ 4 (covalent) b √ three dimensio	in layer and weak bonds	ANY TWO	[2]
1000000000000000000000000000000000000	ands for each stom		
tetrahedral $$ all strong bon	onal structure	ANY TWO	[2]
For both: NOT properties, N	IOT uses		Total [4]
oss of one (outer) electron			[1]
Gain of one (outer) electron			[1]
			[1] [1]
Can be answered mainly by	/ diagram		Total [4]
).75 A			[1]
R = 6			[1] [1] [1]
3 (ohm) (ecf)			[1]
3.0 A			[1]
	bulb (necf)		[1] [1]
			Total [8]
CH₄			[1]
12 + 4) 16 (ignore any unit)		[1]
	all correct formulae correct balancing		[1] [1]
			Total [4]
		$\sqrt{\text{tetrahedral}}$ $\sqrt{\text{all strong bonds}}$ For both: NOT properties, NOT uses Loss of one (outer) electron Gain of one (outer) electron Transfer of (one) electron from K to I To form ions that attract each other (K ⁺ and I ⁻) Can be answered mainly by diagram 0.75 A Use of R = V/ I R = 6 ohm 3 (ohm) (ecf) 3.0 A Fig 7.2 arger current through each bulb (necf) CH ₄ (12 + 4) 16 (ignore any unit) CH ₄ + 2O ₂ → CO ₂ + 2H ₂ O)	$\sqrt{\text{tetrahedral}}$ $\sqrt{\text{all strong bonds}}$ For both: NOT properties, NOT uses Loss of one (outer) electron Gain of one (outer) electron Transfer of (one) electron from K to I To form ions that attract each other (K ⁺ and I ⁻) Can be answered mainly by diagram 0.75 A Use of R = V/ I R = 6 ohm 3 (ohm) (ecf) 3.0 A Fig 7.2 arger current through each bulb (necf) CH ₄ (12 + 4) 16 (ignore any unit) CH ₄ + 2O ₂ → CO ₂ + 2H ₂ O) (error carried forward) all correct formulae

Page 3		Mark Scheme IGCSE – NOVEMBER 2004	Syllabus 0652	Paper 2
		ICCCE - NOVEMBER 2004	0032	2
9 (a)	from the	n is removed e copper oxide erms of electron exchange)		[1] [1]
(b)	√ high r	density red compounds nelting point e used as a catalyst (element or in compound)	ANY TWO	[2]
				Total [4]
10 (a)	•	o remove excess magnesium) Itrate to crystallise <u>or</u> equivalent		[1] [1]
(b)	Use ligł "pops" (nted splint NOT 'glowing' splint (necf)		[1] [1]
				Total [4]
11 (a)(i		y correctly deflected towards the normal I ray correct and consistent (not parallel to first not co	onverging)	[1] [1]
(ii)	Normal	drawn and <i>i</i> correctly marked		[1]
(iii)	Refract	ion		[1]
(b)		explanation that the writing will be seen in a mirror the term lateral inversion		[1] [1]
				Total [6]
12 (a)(i) lodine			[1]
(ii)	Bromine	e is more reactive than iodine <u>or</u> equivalent		[1]
(b)	Bromine	e is less reactive than chlorine <u>or</u> equivalent		[1]
				Total [3]
13	Step 1	Filtration to remove mud etc.		[1] +[1]
	Step 2	Chlorination (do not accept boiling) to kill bacteria etc.		[1] + [1]
		rong order, mark as though in correct order but ignor mark scored)	e	
				Total [4]

Total [4]

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – NOVEMBER 2004	0652	2

14 (a)

(b)	Alkenes have a double (carbon) bond but alkanes have only single bonds (accept but alkanes do not),	[1] [1]
	(Must have the double statement for both marks)	Total [4]
15 (a)(i) Nuclides with same number of protons but different number of neutrons	[1] + [1]
(ii)	Electron very fast moving/emitted in radioactive decay	[1] + [1]
(b)(i)	38 52 38	[1] [1] [1]
(ii)	Electron	[1]
(c)	39 0	[1] [1]

Total [10]

[2]