

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the November 2005 question paper

0652 PHYSICAL SCIENCE

0652/02

Paper 2

maximum raw mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 1		Mark Scheme Syllabus			Paper	
			IGCSE – November 2005	0652	2	
1	(a)	(i)	Convection		1	
		(ii)	Air expands becomes less dense		1 1	3
	(b)	Cond	densation		1	1
	(c)	(i)	Acceleration constant		1 1	
		(ii)	Constant speed/velocity		1	3
					Tota	17
2	(a)	diffus	sion		1	1
	(b)	With	cules of the (coloured) gas collide molecules of air/nitrogen,/oxygen answer based on densities can score 1 mark)		1 1	2
					Tota	13
3	(a)		<i>steel:</i> car bodies, machinery etc. <i>less:</i> cutlery, chemical plant etc.		1 1	2
	(b)		steel rusts (in damp air) less does not rust		1 1	2
					Tota	14
4	(a)	chemical (potential) thermal electrical (potential)				3
	(b)	(i)	geothermal		1	
		(ii)	non polluting/renewable etc.		1	2
	(c)		tion of gravitational or strain potential energy I without spurious energies such as kinetic energy	y	1 +1	2
			Tota	17		
5	(a)	(i)	chromatography		1	
		(ii)	to make colourless components visible		1	2

© University of Cambridge International Examinations 2005

Page 2			Mark Scheme		Paper	
			IGCSE – November 2005	0652		2
	(b)	Bitum	onal distillation (both words) nen is the fraction with the highest ng point		1	
		resid	ue left after all others have boiled off		1	2
						Total 4
6	(a)	Ultra	violet		1	1
	(b)	Rem	ains the same		1	1
	(c)	X-ray	,		1	1
	(d)	20 00	00 – 30 000 (Hz)		1	1
						Total 4
7	(a)	(i)	ethane			1
		(ii)	correct structure shown			1 2
	(b)	(i)	ethanol			1
		(ii)	correct structure shown			1 2
	(c)	(i)	poly(e)thene			1
		(ii)	correct structure shown			1 2
						Total 6

Page 3		Mark Scheme Syllabus			Paper		
			IGCSE – Novem	1ber 2005	0652	2	
8 ((a)	Eithe	er iron filings method OR	plotting compass			
		sprink finely tap pa		place magnet <u>or</u> place compass r mark tip and mo repeat and join repeat for more l	near one pole ve tail to mark		
			,	Any four points 1+1+1+	1		1
((b)	Good shape and minimum of three good lines from each end					
		Minimum of five good lines from each end <u>none</u> touching Correct field direction				1 1	
						Tota	17
) ((a)	17 18 2,8,7	& 2,8,7 (both correct)			1 1 1	;
((b)		shared pair of electrons act outer shells of electron	ns		1 1	
((c)	(i)	transfer of one electror to form Na [⁺] and <i>Cl ⁻</i> (accept labelled diagra			1 1	
		(ii)	opposite charged ions	attract		1	
((d)		contains ions that are frees contains ions that are h			1 1	:
((e)	TEST: add (dilute nitric acid then) aqueous silver nitrate					
		RESI	ULT: white precipitate (b	oth words)		1	
						Tota	11

Page 4				Syllabus	Paper	
			IGCSE – November 2005	0652	2	
10	(a)	(i)	Atom has 8 electrons in outer shell (accept full outer shell)		1	
		(ii)	Any two of: He nucleus 2 protons and 2 neutrons			
			fast moving/coming from nucleus		1 +1	3
	(b)	Top li Botto	1 1	2		
	(c)	Evidence of halving in equal time periods Clearly 3 events 1 (minute)				3
		,			Total	
11	CARE	BON M	ONOXIDE: incomplete combustion (of fuels) that contain carbon (compounds)		1 1	
	NITRO	OGEN	OXIDES: Combustion processes in car engines emmitted through exhausts		1 1	4
					Total	4
12	(a)	(i)	heat or roast (in a kiln)		1	
		(ii)	CaO CO₂ (either order)		1 1	
		(iii)	endothermic or energy is required		1	
		(iv)	TEST: bubble gas through lime water RESULT: goes cloudy or milky		1 1	6
	(b)	neutr	alisation		1	1
					Total	7
13	(a)	Mention of water/ damp Water is a conductor Clear that a large current could pass through consumer			1 1 1	3
	(b)	(i)	R = V/I or 240/0.25 = 960 ohm		1 1 1	
		(ii)	0.5		1	4
					Total	7

© University of Cambridge International Examinations 2005