www. tremepaders.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2007 question paper

0652 PHYSICAL SCIENCE

0652/03

Paper 3 (Extended), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme Syllabus		Paper	
			IGCSE – October/November 2007 0652		03	
1	(a) zer	o acc	ept good comment re sideways force only		1	[1]
	11.	0 m/s	radient OR $(v_2 - v_1)/(t_2 - t_1)$ OR $(3.5 - 20)/(3.0 - 1.5)$ ² (do not penalise sig. figs) tion of deceleration either by statement or minus sign		1 1 1	
		e of <i>F</i> 200 N	= ma = 1200 x 11 N		1 1	[5]
						al: 6]
2	(a) (i)	wave	elength correctly marked (within 1 mm, by eye)		1	
	(ii)	f = 1 = 2	2/5 2.4 Hz (or per s)		1	
	(iii)	Spe	ed = $f \times \lambda$ or 2.4 x 0.4 (ecf) = 0.96 m/s		1	[5]
	(b) (i)	gets	shorter/smaller (accept wavelengths get closer)		1	
	(ii)	rema	ains the same/no change		1	[2]
					[Tota	al: 7]
3	(a) (i)	(incr	ease in rate with increase in temperature or vice versa rease/decrease in rate without clear reference to temperat rrect linking – 0)	ure 1,	2	[2]
	(ii)	cond parti	two of: centration; icle size (accept surface area); lyst (not accept a named catalyst)	ANY	2	[2]
	(b) (i)		er; carbon dioxide; gen (accept correct formulae)		2	[3]
	(ii)	chlo	rophyll (ignore spelling errors)		1	[1]
	(iii)		rganic compound/protein; catalyses a reaction/is a catalyst		2	[2]
	(c) red	uction	n/gains electrons/endothermic		1	[1]
			[Total:	11]		

Page 3			Mark Scheme Syllab		
		IGCSE – October/November 2007 0652		2 03	
(a)	ray	continues	and emergent ray parallel to incident ray	1	[1]
(b)	$n = \sin i/\sin r$ or variation 1.54 = $\sin 53.1/\sin r$ $\sin r = 0.519$ $r = 31.3^{\circ}$ ignore sig. figs., accept 31 (Each stage in the calculation need not be shown, full credit can be scored, the bare answer.)				[4]
		[То	tal: 5]		
(a)	(i)		oined with another element/not in a compound/ ee element/found (in the ground) as a metal	1	
	(ii)	gold/plat	num	1	
	(iii)	cooking ornamen roofing; r	wiring; good conductor of electricity; utensils; good conductor of heat ts, jewellery, coins; can be polished/ malleable, low reactionalleable	-	[6]
		ANY TW ANY TW	O USES O RELEVANT PROPERTIES	1 +1 1 +1	[4]
(b)	(i)	bauxite		1	
	(ii)	aluminiu	m is covered by a layer of oxide;	1	
	(iii)	window f bicycles; ANY US	aft parts; low density rames/malleable low density E LEVANT PROPERTY	1 1 [Tota	[4] al: 10]
(a)	(i)	diode (no	ot rectifier)	1	
	(ii)	produces from a.c.	s d.c. (output) (input)	1 +1	[3]
(b)	field curr indu	links (thi ent contir ices emf/	induces a magnetic field in the core rough core) to secondary coil nuously changing so field also changing voltage/pd in secondary coil ber of turns on primary and secondary step up/step down		NY 4]
(c)	$N_2 =$	$V_2 = V_1/V_2$: 1800 x 1 : 90	or variation 2 /240	1 1 1	[3]
(d)		= 2	f OR = 0.2 x 3 x 60 x 60 1160 C for 216000C)	1 1	[2]
	,,,		,	[To	otal: 1

	Pa	Page 4		Mark Scheme Syll			Paper	
				IGCSE – October/November 2007	0652	0	3	
7	(a)	(i)		ing point; eases with increase in atomic number/down the grou	p	1 +1		
		(ii)	mag	nesium		+1	[3]	
	(b)		_	(with water); s with increase in atomic number/down the group		1 +1	[2]	
	(c)	(i)	all fo	$+2H_2O \rightarrow Ca(OH)_2 + H_2$ ormlae correct nced		1 +1		
		(ii)	(it fo	rms an) alkaline (solution)		1		
		(iii)	give	oles of gas/hydrogen; n off very/more quickly e precipitate/ goes cloudy	ANY T	WO 2	[5]	
						[To	tal: 10]	
8	(a)	 K is the cathode/is negative K/cathode hot emits electrons A is anode/ positive 				1 1 1 1		
				tes/atracts electrons (not accept accelerates cathode	rays)	1 [ANY 4]	
	(b)	(i)	25 m	ns 0.025 s		1		
		(ii)	v = =	$8.0/2.5 \times 10^{-3} \text{ ecf}$ 320 m/s		1 1	[3]	
						[T	otal: 7]	
9	(a)	(i)		rwise sulphuric acid would be left unreacted contaminate the crystals)/ no sulphuric acid left		1	[1]	
		(ii)		ar mass of <i>CuO</i> 64 + 16 = 80 (g) 0 (=0.125) moles of <i>Cu</i>) used		1 1		
				moles of acid used more <i>CuO</i> than acid		1 1	[4]	
	(b)	filte eva leav filte	r off e porat ve to er off c	per(II) oxide to sulphuric acid (warm and stir); excess copper(II) oxide; te filtrate to small volume; crystallise; crystals; h a little cold water and leave to dry		1 1 1 1 1	ANY 4]	
		(if 'filter off excess copper(II) oxide' step is omitted, maximum 3 marks)					, u v i -tj	
							-4-l- 07	
						[10	otal: 9]	

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2007	0652	03

10 (a) alpha and gamma 1 alphas stopped by paper 1 gammas go through aluminium but stopped by lead 1 [3] (If α , β and γ are given lose first mark, but score last two marks on merit, so long as they refer to the experiment.)

[Total: 3]