

	UNIVERSITY OF CAMBRIDGE INT International General Certificate of S	ERNATIONAL EXAMINATIONS Secondary Education	MMM. HIERREP BBEIS. COM
CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
PHYSICAL SO	CIENCE		0652/03

Paper 3 (Extended)

October/November 2007 1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions. A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
Total				

This document consists of 14 printed pages and 2 blank pages.

1 Fig. 1.1 shows the speed of a car as it moves along a straight, level track.

Fig. 2.1 shows a view from above as a set of ripples move out from a point when a stone is

For Examiner's Use

3

- (ii) A boy counts 12 waves hitting the bank in 5.0 s. Calculate the frequency of the waves.
 - frequency =
- (iii) The wavelength of the waves is 0.40 m. Calculate the speed at which the waves move.
- speed = [5] (b) The water is shallower near the bank and the waves slow down. Suggest what effect that this will have on (i) the wavelength of the waves, (ii) the frequency of the waves. [2]

2

thrown into a pond.

3 A student reacts the same mass of calcium carbonate with excess of the same hydrochloric acid solution at different temperatures.

At each temperature he measures the time taken for all of the calcium carbonate to react.

His results are shown in Fig. 3.1.

(a) (i) Describe the effect of change in temperature on the rate of this reaction.

(ii) State two other factors that may affect the rate of a reaction.

1.	
2.	 [2]

(b) At a higher temperature the particles have more energy to react. For Examiner's Use Energy may also be supplied by light. This happens in the process called photosynthesis. (i) Plants use photosynthesis to make glucose. Name the reactants and the other product of photosynthesis. reactants and other product [3] (ii) What enables the energy from sunlight to be absorbed in this process? [1] (iii) The process is speeded up by the presence of an enzyme. What is an enzyme? [2] (c) Energy from light is also used in photography. Photographic film contains the compound silver bromide. When light falls on the film a photochemical reaction takes place. Silver metal is formed, creating a black area on the film. What type of reaction have the silver ions undergone? [1]

4 Fig. 4.1 shows a ray of light entering a parallel sided glass block.

Fig. 4.1

(b) Calculate the value of the angle of refraction if the glass has a refractive index of 1.54

(a) Complete the path of the light through and as it leaves the block.

and the angle of incidence is 53.1°.

Show your working.	
	angle of refraction = [4

For Examiner's Use

[1]

5 Copper and aluminium are two commonly used meta	ıls.
---	------

- (a) Copper is a metal that can be found 'native'.
 - (i) Explain this meaning of the term *native*.

.....

- [1]
- (ii) Name **one** other metal that is commonly found native.
 -[1]
- (iii) Complete Table. 5.1 to show two uses of copper and the properties on which these uses are based.

use of copper	property of copper	

[4]

- (b) Aluminium is not found native. It is found as a compound.
 - (i) The main ore of aluminium contains the compound aluminium oxide.

Name this ore.

		[1]
(ii)	Aluminium foil is used for food containers.	
	Aluminium is a fairly reactive metal, but aluminium foil does not react with food.	
	Explain why.	
		[1]
(iii)	State another use of aluminium, and explain why it is a good metal for this use.	
	use	
	explanation	
		[2]

6 Fig. 6.1 shows a design for a battery charger, which is made up from a transformer and component **P**.

7 Table 7.1 gives information about some of the elements in Group II of the Periodic Table.

		Table 7.1		
element	atomic number	formula of oxide	melting point in °C	reaction with cold water
magnesium	12	MgO	649	slow
calcium	20	CaO	839	steady
strontium	38	SrO	769	rapid
barium	56	BaO	725	

- (a) Three of these elements show a trend in a **physical** property.
 - (i) Describe this physical trend.

			•
]
	(ii)	Which element does not fit in with this trend?	
		[1]
(b)	The	elements in Table 7.1 show a trend in a chemical property.	
	Des	scribe this chemical trend.	
			•
		[2]
(c)	Wh give	en a small piece of calcium is added to cold water, a steady stream of bubbles is en off. This is hydrogen gas.	;
	Wh hav	en the reaction is completed, a test with Universal Indicator shows the water to e a pH of 12. Calcium hydroxide has been formed.)
	(i)	Write a balanced symbol equation for the reaction of calcium with cold water.	
		[2]
	(ii)	What does the test with Universal Indicator show about the properties of calcium hydroxide?	1
		[1]
	(iii)	What would you see when a small piece of barium is added to cold water?	
			•
		[2]

8 Fig. 8.1 shows the structure of a cathode ray tube.

(a) Explain how parts K and A produce cathode rays.

[4]

(b) Fig. 8.2 shows an experiment to measure the speed of sound. Two microphones are placed 8.0 m apart and connected to a cathode ray oscilloscope. A loudspeaker is placed in front of them.

Fig. 8.2

The loudspeaker produces a sharp pulse of sound which is detected by the microphones and displayed on the cathode ray oscilloscope screen.

Fig. 8.3 shows the screen in more detail. The time base is set to 5 ms/square.

(i) What is the time interval between the pulses received from the two microphones?

time =

(ii) Calculate the speed of the sound.

speed = [3]

9 Copper(II) oxide reacts with dilute sulphuric acid according to the following equation.

 $CuO + H_2SO_4 \longrightarrow CuSO_4 + H_2O$

A student uses this reaction to prepare crystals of copper(II) sulphate.

- (a) To make sure that the crystals are pure, an excess of copper(II) oxide must be used.
 - (i) Explain why an excess of copper(II) oxide must be used to ensure purity of the crystals.

[1]

(ii) The student uses 10.0 g of copper(II) oxide and 100 cm³ of 1.0 mol/dm³ sulphuric acid.

Show by calculation that the copper(II) oxide is in excess.

[A_r: Cu, 64; O,16.]

[4]

(b) Describe how the student should carry out the preparation to obtain pure, dry crystals of copper(II) sulphate.

[4]

10 Fig. 10.1 shows the apparatus used to identify the radioactive emissions from different isotopes

Та	h	ρ	1	n	1
ıа	N	С.		v.	

count with no absorber	count with paper absorber	count with aluminium absorber	count with lead absorber
5854	1649	1644	103

State, with reasons, the type or types of radiation emitted by the source.

[3]

For Examiner's

Use

BLANK PAGE

BLANK PAGE

			F		-				- -			c.		<i>c</i> :	_		_					_	Ę			mi
	0	⁴ H	2 Hellur	20	Ne	Neon 10	40	Ar	Argor 18	84	Ъ	Krypto 36	131	Xe	Xenoi 54		Rn	Radoi 86			175	Ξ	Lutetiu 71		ב	Lawrenc
	١١٨			19	ш	Fluorine 9	35.5	CI	Chlorine 17	80	Ŗ	Bromine 35	127	Ι	lodine 53		At	Astatine 85			173	٩۲	Ytterbium 70		No No	Nobelium
	١٨			16	0	Oxygen 8	32	S	Sulphur 16	62	Se	Selenium 34	128	Te	Tellurium 52		Ро	Polonium 84			169	Tm	Thulium 69		Md	Mendelevium
	>			14	z	Nitrogen 7	31	٩	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	ï	Bismuth 83			167	ц	Erbium 68		Fm	Fermium
	2			12	ပ	Carbon 6	28	Si	Silicon 14	73	Ge	Germanium 32	119	Sn	Tin 50	207	Pb	Lead 82			165	Ч	Holmium 67		Es	Einsteinium
	≡			1	8	Boron 5	27	٩ı	Aluminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	Τl	Thallium 81			162	D	Dysprosium 66		ບັ	Californium
										65	Zn	Zinc 30	112	Sd	Cadmium 48	201	Hg	Mercury 80			159	Tb	Terbium 65		Ŗ	Berkelium
										64	Cu	Copper 29	108	Ag	Silver 47	197	Au	Gold 79			157	Gd	Gadolinium 64		CB	Curium
dno										59	Ï	Nickel 28	106	Pd	Palladium 46	195	Pt	Platinum 78			152	Eu	Europium 63		Am	Americium
Gro										59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77			150	Sm	Samarium 62		Pu	Plutonium
		- T	hyarogen 1							56	Fe	lron 26	101	Ru	Ruthenium 44	190	os	Osmium 76				Pm	Promethium 61		dN	Neptunium
										55	Mn	Manganese 25		Ч	Technetium 43	186	Re	Rhenium 75			144	Nd	Neodymium 60	238	∍	Uranium
										52	ບັ	Chromium 24	96	Mo	Molybdenum 42	184	×	Tungsten 74			141	Pr	Praseodymium 59		Ра	Protactinium
										51	>	Vanadium 23	93	ЧN	Niobium 41	181	Та	Tantalum 73			140	ce	Cerium 58	232	Th	Thorium
										48	F	Titanium 22	91	Zr	Zirconium 40	178	Ŧ	Hafnium 72			_			nic mass	loc	iic) number
										45	Sc	Scandium 21	88	≻	Yttrium 39	139	La	Lanthanum 57 *	227 A C	Actinium 89	ceries	arias	2010	= relative ator	= atomic syml	= proton (atom
	=			6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	Sr	Strontium 38	137	Ba	Barium 56	226 Ra	Radium 88	bionedtrue	Artinoid si		a a:	×	=
	_			7	:	Lithium	23	Na	Sodium 1	39	¥	Potassium 9	85	Rb	Rubidium 17	133	Cs	Caesium 5	ů	Francium 7	8-711	0-103 1			ey	q

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.