

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

PHYSICAL SCIENCE

Paper 1 Multiple Choice

0652/01 October/November 2009 45 minutes

MMM. Hiremepapers com

Additional Materials:

Multiple Choice Answer Sheet Soft clean eraser Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

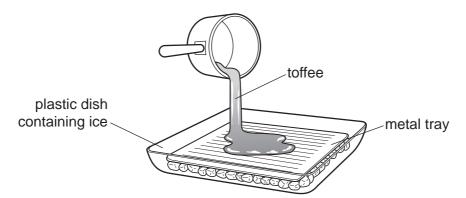
Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

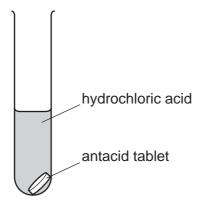
Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.


Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 20.

This document consists of 17 printed pages and 3 blank pages.

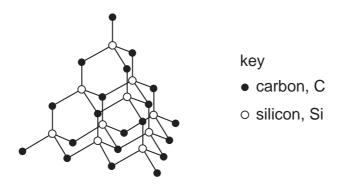

1 Which statement explains why toffee can move and change its shape while it is a liquid but **not** when it is cooled and solid?

- **A** The particles in a liquid are much further apart than those in a solid.
- **B** The particles in a liquid are separate but a solid is one large particle.
- **C** The particles in a liquid can move past each other but are fixed in place in a solid.
- **D** The particles in a liquid change shape when it becomes a solid.
- 2 Antacid tablets react with hydrochloric acid in the stomach to form carbon dioxide gas.

A series of experiments is carried out to find the rates at which tablets react with samples of hydrochloric acid at different temperatures.

In each experiment, one tablet is added to 100 cm³ of 1 mol / dm³ hydrochloric acid. The time taken for the tablet to disappear completely is noted.

Which pieces of apparatus, other than the test-tube, are needed for these experiments?


- A balance, measuring cylinder and stopwatch
- **B** balance, measuring cylinder and thermometer
- **C** balance, stopwatch and thermometer
- **D** measuring cylinder, stopwatch and thermometer

3 The table shows the nucleon numbers and proton numbers of some atoms.

nucleon number	35	37	40	39	40
proton number	17	17	18	19	19

How many are atoms of non-metallic elements?

4 The compound silicon carbide, SiC, has the structure shown.

It can be predicted from this structure that silicon carbide might be used1..... because its structure is similar to that of2......

Which words complete gaps 1 and 2?

	1	2
Α	as a lubricant	diamond
в	as a lubricant	graphite
С	in cutting	diamond
D	in cutting	graphite

5 A molecule of compound X contains the following.

2 atoms of carbon, C

2 atoms of oxygen, O

4 atoms of hydrogen, H

What is the formula of X?

A $(CH_2)_2O$ **B** $(CH_2)_2O_2$ **C** $C_2(OH)_4$ **D** C_4H_2O

6 Hydrogen is used as a fuel. This is because its1..... is an2..... reaction.

Which words correctly complete gaps 1 and 2?

	1	2
Α	oxidation	endothermic
В	oxidation	exothermic
С	reduction	endothermic
D	reduction	exothermic

- 7 How can the speed of reaction between lumps of zinc and dilute hydrochloric acid be slowed down?
 - **A** Add water to the acid.
 - **B** Increase the temperature.
 - **C** Make the acid more concentrated.
 - **D** Powder the lumps of zinc.
- 8 Which reaction results in the formation of a salt?
 - A acid + metal carbonate
 - B acid + non-metal oxide
 - C base + metal carbonate
 - D base + metal oxide
- **9** An alkaline gas is given off when a compound is heated with aqueous sodium hydroxide.

Which ion is present in the compound?

- **A** aluminium
- **B** ammonium
- C calcium
- D zinc
- **10** A solution is made by adding sodium oxide to water.

Which pH change will occur?

	Α	1 to 7	В	7 to 1	С	7 to 12	D	12 to 7
--	---	--------	---	--------	---	---------	---	---------

11 The table shows some properties of elements P and Q.

	Р	Q
has a coloured oxide	1	\checkmark
oxide can be reduced by carbon	\checkmark	\checkmark
reacts with dilute sulfuric acid	x	\checkmark

What are elements P and Q?

	Р	Q
Α	Cu	Fe
В	Cu	Zn
С	Fe	Cu
D	Fe	Zn

12 The table gives the arrangement of electrons in the atoms of four elements.

Which element does not form an ionic compound?

element	arrangement of electrons
Α	2, 7
В	2, 8
С	2, 8, 1
D	2, 8, 2

13 Astatine is the element below iodine in Group VII of the Periodic Table.

What can be predicted about the properties of astatine at room temperature?

- **A** It is a liquid.
- B It is a metal.
- **C** It is a solid.
- D It is white.

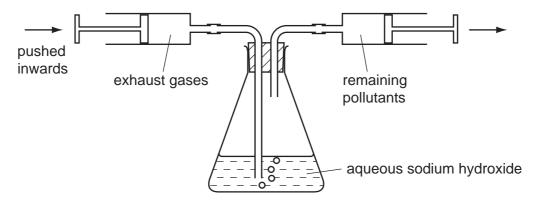
14 Metal X is below hydrogen in the reactivity series.

Which row in the table is correct?

	reaction of X with hydrochloric acid	reaction of the heated oxide of X with carbon
Α	hydrogen formed	metal formed
в	hydrogen formed	no reaction
С	no reaction	metal formed
D	no reaction	no reaction

- 15 What is the main reason why stainless steel is used for cutlery?
 - **A** It has a high electrical conductivity.
 - **B** It has a low melting point.
 - **C** It is of low density.
 - **D** It is resistant to corrosion.
- **16** The equation describes a reaction which occurs in a blast furnace.

 $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$


Which substance is reduced?

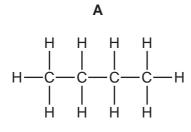
- A carbon dioxide
- B carbon monoxide
- **C** iron
- **D** iron(III) oxide

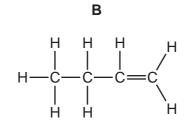
17 Exhaust gases contain the pollutants CO, NO_2 and SO_2 .

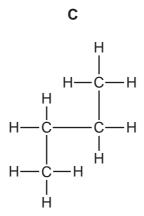
To remove any acidic gas, the gases are passed through the apparatus shown.

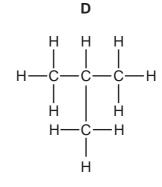
The remaining gas is collected in the right-hand syringe.

What happens to the pH of the aqueous sodium hydroxide and what could the remaining gas contain?

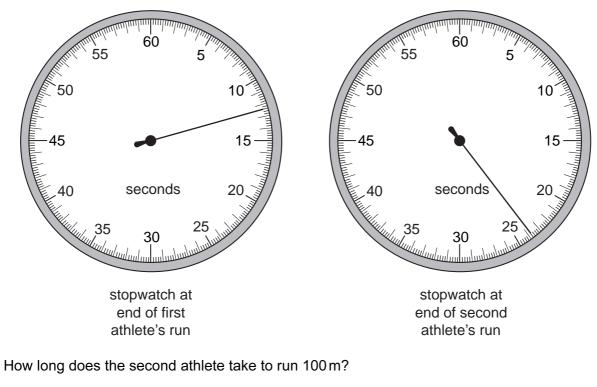

	pH of aqueous sodium hydroxide	gas in right-hand syringe contains
Α	decreases	CO only
в	decreases	CO and NO ₂ only
С	increases	CO only
D	increases	CO and SO ₂ only

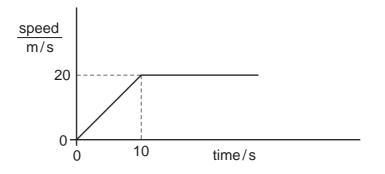

18 Lime is used to treat industrial waste products.


Which pH change occurs in this treatment?


A 2 to 7 B 7 to 2 C 9 to 7 D 9 t
--

19 Which of the compounds shown is **not** an alkane?

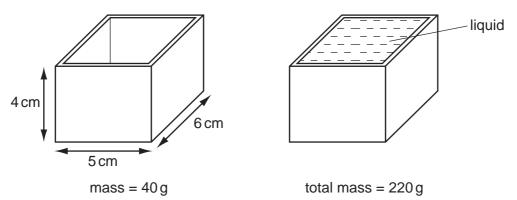



20 Which row in the table is correct for decane?

	burns	is saturated
Α	\checkmark	✓
в	\checkmark	x
С	X	\checkmark
D	X	X

Α	11.2s	В	11.4s	С	12.4 s	D	23.8s
---	-------	---	-------	---	--------	---	-------

22 A car accelerates from traffic lights. The graph shows the car's speed plotted against time.



How far does the car travel before it reaches a constant speed?

A 10 m **B** 20 m **C** 100 m **D** 200 m

- 23 Which property of a body can be measured in newtons?
 - A density
 - B mass
 - **C** volume
 - D weight

24 The diagrams show a rectangular box with inside measurements of $5 \text{ cm} \times 6 \text{ cm} \times 4 \text{ cm}$.

The box has a mass of 40 g when empty. When filled with a liquid it has a total mass of 220 g.

What is the density of the liquid?

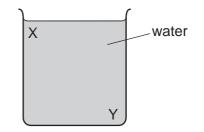
$$\mathbf{A} \quad \frac{220}{(5 \times 6 \times 4)} \, \mathrm{g/cm^3}$$

B
$$\frac{(220-40)}{(5\times6\times4)}$$
g/cm³

$$\mathbf{C} \quad \frac{(5 \times 6 \times 4)}{220} \, g/cm^3$$

D
$$\frac{(5 \times 6 \times 4)}{(220 - 40)}$$
 g/cm³

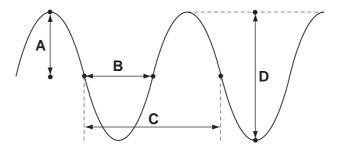
25 The object in the diagram is acted upon by the two forces shown.


What is the effect of these forces?

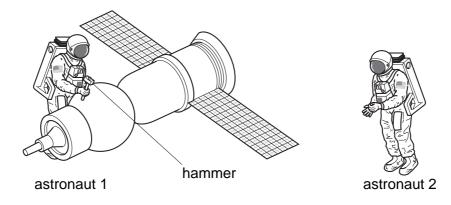
- **A** The object moves to the left with constant speed.
- **B** The object moves to the left with constant acceleration.
- **C** The object moves to the right with constant speed.
- **D** The object moves to the right with constant acceleration.

26 To mark a temperature scale on a thermometer, standard temperatures known as fixed points are needed.

Which of these is a fixed point?


- A room temperature
- **B** the temperature inside a freezer
- **C** the temperature of pure melting ice
- **D** the temperature of pure warm water
- 27 A beaker contains water at room temperature.

How could a convection current be set up in the water?

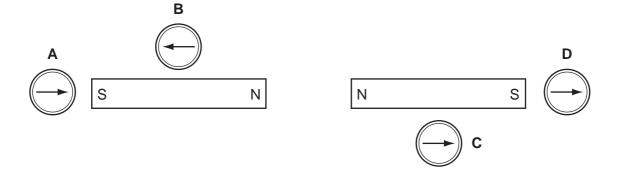

- A cool the water at X
- B cool the water at Y
- **C** stir the water at X
- D stir the water at Y
- 28 The diagram shows a wave.

Which labelled distance is the wavelength?

- 29 Which diagram shows the effect of a thin converging lens on a beam of light?

30 Astronaut 1 uses a hammer to mend a satellite in space. Astronaut 2 is nearby. There is no air in space.

Compared with the sound heard if they were working on Earth, what does astronaut 2 hear?

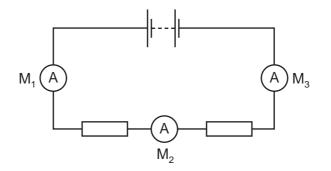

- A a louder sound
- B a quieter sound
- C a sound of the same loudness
- D no sound at all

31 A permanent magnet is brought near to a piece of copper. The copper is not attracted by the magnet.

Why is there no attraction?

- A Copper is ferrous but is only attracted by an electromagnet.
- **B** Copper is ferrous but is not attracted by any type of magnet.
- **C** Copper is not ferrous and is only attracted by an electromagnet.
- **D** Copper is not ferrous and is not attracted by any type of magnet.
- **32** Four plotting compasses are placed in the magnetic field of two identical bar magnets as shown in the diagram.

Which compass is shown pointing in the wrong direction?

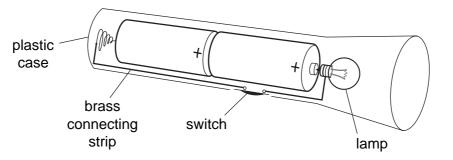


33 A student uses a length of wire as a resistor. He discovers that the resistance of the wire is too small.

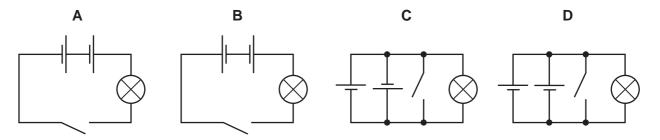
To be certain of making a resistor of higher value, he should use a piece of wire that is

- A longer and thicker.
- **B** longer and thinner.
- C shorter and thicker.
- **D** shorter and thinner.

34 The diagram shows a battery connected to two identical resistors. Three ammeters M_1 , M_2 and M_3 are connected in the circuit.



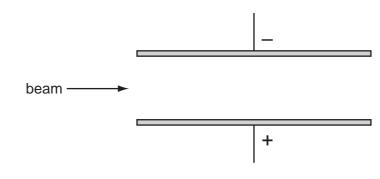
Meter M_1 reads 1.0 A.


What are the readings on M₂ and M₃?

	reading on M_2/A	reading on M_3/A
Α	0.5	0.0
В	0.5	0.5
С	0.5	1.0
D	1.0	1.0

35 The diagram shows a torch containing two cells, a switch and a lamp.

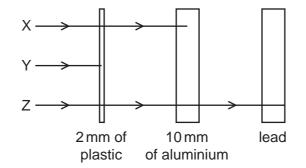
What is the circuit diagram for the torch?



36 On a building site, the metal scaffolding is firmly embedded in the damp ground. A builder holds a mains-operated electric drill in one hand, and with his other hand holds on to the scaffolding.

The power cable of the drill is damaged where it enters the metal casing of the drill.

What danger does this present to the builder?


- **A** A current could flow through the builder and electrocute him.
- **B** A current in the scaffolding could heat it up and burn him.
- **C** The large current could blow the fuse and damage the drill.
- **D** The large current could make the motor spin too quickly.
- **37** The diagram shows a beam of cathode rays entering an electric field.

In which direction is the beam deflected by the field?

- A downwards
- B upwards
- **C** into the page
- D out of the page
- 38 Which statement explains the meaning of the half-life of a radioactive substance?
 - A half the time taken for half the substance to decay
 - **B** half the time taken for the substance to decay completely
 - C the time taken for half the substance to decay
 - **D** the time taken for the substance to decay completely

39 The diagram shows the paths of three different types of radiation, X, Y and Z.

Which row in the table correctly identifies X, Y and Z?

	Х	Y	Z
Α	alpha-particles	beta-particles	gamma-rays
В	beta-particles	alpha-particles	gamma-rays
С	beta-particles	gamma-rays	alpha-particles
D	gamma-rays	alpha-particles	beta-particles

40 How many neutrons and how many protons are contained in the nuclide $\frac{^{238}}{_{92}}$ U?

	neutrons	protons			
Α	92	146			
в	146	92			
С	146	238			
D	238	92			

BLANK PAGE

BLANK PAGE

BLANK PAGE

	0	4 Helium 2	20 Neon A	Argon 18	84 Kr	Krypton 36	131 Xe	Xenon 54	Rn ^{Radon}		175 Lu Lutetium 71	Lawrencium
	١١		9 35.5 35.5	Chlorine 17	⁸⁰	Bromine 35	127 I	lodine 53	At Astatine 85		173 Yb vtterbium 70	Nobelium
	N		A O 32 O 32		⁶²	Selenium 34	128 Te	Tellurium 52	Polonium 84		169 Thulium 69	Mendelevium
	>		7 Nitrogen 31 31	Phosphorus 15	75 A c	Arsenic 33	122 Sb	Antimony 51	209 Bi Bismuth		167 Er Erbium 68	Fermium 60
	2		X 5 C 12 C 12	Silicon 14	⁷³	Germanium 32	5 n	50 Tin	207 Pb Lead		165 HOM Holmium 67	Einsteinium
	≡		11 5 Boron 27	Aluminium 13	07 R	Gallium 31	115 In	Indium 49	204 T 1 Thallium 81		162 Dy Dysprosium 66	Californium
					65 7 n	Zinc 30	Cd 112	Cadmium 48	201 Hg ^{Mercury} 80		159 Tb Terbium 65	Berkelium
					⁵⁰	Copper 29	108 Ag	Silver 47	197 Au Gold 79	_	157 Gd Gadolinium 64	Curium Curium
Group					28 N	Nickel 28	106 Pd	Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am
Gr			_		²⁰	Cobalt 27	103 Rh	Rhodium 45	192 Ir Iridium 77		150 Samarium 62	
		L T J			56 F	lron 26	101 Ru	Ruthenium 44	190 OS Osmium 76		Promethium 61	Neptunium
					55 Mn	Manganese 25	ц	Technetium 43	186 Re Rhenium 75		144 Neodymium 60	238 Uranium
					تع 2	Chromium 24	96 Mo	Molybdenum 42	184 V Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium
					51	Vanadium 23	⁰⁰	Niobium 41	181 Ta Tantalum 73	_	140 Ce ^{Cerium}	232 Thorium
					48	Titanium 22	91 Zr	Zirconium 40	178 Hafnium 72			hic mass bol hic) number
					42 V	Scandium 21	⁶⁸ ≻	Yttrium 39	139 La Lanthanum 57 *	227 Actinium 89	l series eries	 a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		9 Berylium 24 MC	Magnesium 12	⁶ C	Calcium 20	88 Sr	Strontium 38	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	<i>∝</i> × <i>[∞]</i>
			Z Lithium 23	_	ee 🖌	Potassium	⁸⁵ Rb	Rubidium	133 CS Caesium	Francium	71 Lá 103 /	٩

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

0652/01/O/N/09

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.