CANDIDATE

 NAME

CENTRE NUMBER

CANDIDATE NUMBER

PHYSICAL SCIENCE

0652/03
Paper 3 (Extended)
October/November 2009
1 hour 15 minutes
Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs, tables or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 16 printed pages.

1 (a) A fisherman is steering his boat using a single oar as shown in Fig. 1.1a.
Fig. 1.1b shows the same boat viewed from above.
To keep the oar stationary the fisherman applies a force of 250 N to the end of the oar.

Fig. 1a

Fig. 1b

Calculate the force the oar produces on the water.
Show your working.
force =
(b) The boat moves through the water at a steady speed of $2.5 \mathrm{~m} / \mathrm{s}$ for 12 s . It then decelerates to rest at a uniform rate in a further 8.0 s .
(i) On Fig. 1.2 draw a speed-time graph to show this motion.
speed
in m / s

Fig. 1.2
(ii) Calculate the deceleration of the boat.

Show your working.
deceleration $=$
(iii) Calculate the total distance travelled by the boat.

Show your working.
distance travelled =

2 The elements in each group of the Periodic Table show trends in chemical and physical properties.
(a) Lithium, sodium and potassium are the first three elements in Group I.
(i) Describe the reaction of each element with water to show the trend in the chemical properties of these three elements.
\qquad
\qquad
\qquad
\qquad
(ii) Lithium reacts with water to produce lithium hydroxide and hydrogen.

Write a balanced symbol equation for the reaction of lithium with water.
\qquad
(b) Table 2.1 shows information about three elements in Group II.

Table 2.1

element	atomic number	relative atomic mass	electron arrangement	density in $\mathbf{g} / \mathbf{c m}^{\mathbf{3}}$	melting point in ${ }^{\circ} \mathbf{C}$
beryllium	4	9	2,2	1.85	1278
magnesium	12	24	$2,8,2$	1.74	649
calcium	20	40	$2,8,8,2$	1.54	839

(i) Explain how information in Table 2.1 shows that these three elements are in the same group of the Periodic Table.
\qquad
\qquad
\qquad
\qquad
(ii) The elements in Group II show a trend in physical properties.

Use information from Table 2.1 to describe this trend.
\qquad
\qquad
\qquad
(iii) Magnesium reacts with chlorine to form magnesium chloride. This compound contains the ions Mg^{2+} and Cl^{-}.

What is the formula of magnesium chloride?
..
(iv) All of the metals in Group II conduct electricity.

Use ideas about metallic bonding to explain this fact.
\qquad
\qquad
\qquad
\qquad
\qquad

3 A solar power station is designed for use in desert countries.
Fig. 3.1 shows the steps involved in the production of electricity.

Fig. 3.1
(a) A solar furnace consists of many mirrors. These mirrors are arranged so that sunlight is reflected onto a large container of water, as shown in Fig. 3.2.

Fig. 3.2
(i) Name the process by which the Sun's energy is transmitted to Earth.
\qquad
(ii) State why the water container is painted black.
\qquad
\qquad
(iii) Fig. 3.3 shows a ray of sunlight incident on a mirror. Complete the diagram to show the ray after it is reflected from the mirror.

Fig. 3.3
(b) (i) Name the process by which the energy passes through the wall of the water container.
\qquad
(ii) Explain why the water at the top of the water container is hotter than the water at the bottom of the container.
\qquad
\qquad
\qquad
(c) Fig. 3.4 shows the generator.

Fig. 3.4
(i) Name part A
(ii) Name part B
(iii) Name the material part C is made from, and explain why this material is used. material explanation \qquad
(d) (i) At the desalination plant thermal energy from the turbine is used to recover pure water from sea water.

Name the process by which pure water is recovered from sea water in this desalination plant.
\qquad
(ii) Explain the advantage of combining the desalination plant with the power station.
\qquad

4 Petroleum contains hydrocarbon molecules with different chain lengths.
Long-chain hydrocarbons can be broken down into smaller more useful hydrocarbons.
(a) (i) Name the process used to break long-chain hydrocarbons into smaller hydrocarbons.
\qquad
(ii) State an essential condition used in this process and explain why this is used. condition explanation \qquad
(b) In this process an alkane, $\mathrm{C}_{15} \mathrm{H}_{32}$, is broken down.

Octane, $\mathrm{C}_{8} \mathrm{H}_{18}$, and the alkenes propene, $\mathrm{C}_{3} \mathrm{H}_{6}$, and ethene, $\mathrm{C}_{2} \mathrm{H}_{4}$, are formed.
(i) Write a balanced symbol equation for this reaction.
\qquad
(ii) Describe a chemical test you could use to distinguish between octane and propene.
test
result for octane
result for propene
(iii) Ethene can be used to make poly(ethene).

State the name of this process.
\qquad
(iv) Propene can be used to make poly(propene).

Complete this equation for the formation of poly(propene).

5 Fig. 5.1 shows a circuit diagram, with a battery of e.m.f. of 6.0 V and a resistance wire of length 0.5 m connected across $\mathbf{A B}$. There is a current of 2.4 A in the circuit.

Fig. 5.1
(a) Calculate the resistance of the resistance wire.
resistance =
(b) Calculate the power output from the battery.
power =
\qquad
(c) (i) The wire is replaced with a wire of the same material and the same diameter but of length 1.5 m . Calculate the resistance of this longer wire.
resistance =
(ii) By making suitable calculations, compare the power output from the battery in (c)(i) with that in (b).

6 Green plants make glucose by the process of photosynthesis.

$$
6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}
$$

(a) From where does the plant obtain the energy needed for this process?
(b) For each 20 g of glucose made by the plant, calculate
(i) the mass of water used,

$$
\text { mass of water = } 9
$$

(ii) the volume, at room temperature and pressure, of oxygen made.
(The volume of 1 mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure.)
volume of oxygen made $=$ \qquad unit

7 Fig. 7.1 shows the results of an experiment to measure the half-life of the isotope phosphorus-34.

Fig. 7.1
(a) (i) Complete the graph by drawing the best-fit curve.
(ii) Use the graph to find the half-life of the isotope.

Show your working.
(b) Phosphorus-34 decays emitting a β-particle. The equation for this decay is:

(i) Calculate the value of \mathbf{x}. [1]
(ii) Calculate the value of \mathbf{y}. [1]

8 Fig. 8.1 shows the arrangement of carbon atoms in diamond and graphite.

Fig. 8.1
(a) For each of the following properties, compare the two forms of carbon and relate the differences to their structures.
(i) melting point
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) electrical conductivity
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Graphite burns in oxygen to produce carbon dioxide.
(i) Name the type of bonding in carbon dioxide.
\qquad
(ii) Draw a dot and cross diagram to show the arrangement of electrons in carbon dioxide.

9 The Sun and other stars produce energy by nuclear fusion.
(a) Explain what is meant by the term nuclear fusion.
\qquad
\qquad
(b) In a fusion reaction $3.84 \times 10^{-29} \mathrm{~kg}$ of mass is released as energy. Calculate the energy released in the reaction. ($\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)

Show your working.
energy =
DATA SHEET
The Periodic Table of the Elements

	141 Pr Praseodymium 59		$\underset{\substack{\text { Promethium } \\ 61}}{\text { Pm }}$	$\begin{aligned} & \begin{array}{l} 150 \\ \text { Sm } \end{array} \end{aligned}$ Samarium			65 159 Tb Terbium						
$\begin{gathered} \text { 232 } \\ \text { Th } \\ 90^{\text {Thorium }} \end{gathered}$	$\underset{\substack{\text { Protactinium } \\ 91}}{\mathrm{~Pa}}$		$\begin{gathered} \mathbf{N p} \\ \text { Neptunium } \\ 93 \end{gathered}$	$\underset{\substack{\text { Plutonium } \\ 94}}{\mathrm{Pu}}$		$\underbrace{\text { Curium }}_{96}$		$\begin{gathered} \text { Cf } \\ { }_{98}^{\text {Californium }} \end{gathered}$	$\underset{\substack{\text { Einsteinium }}}{\text { Es }}$	$\underset{\substack{\text { Fermium } \\ 100}}{\text { Fm }}$	$\begin{gathered} \text { Md } \\ \text { Mendelevium } \\ 101 \end{gathered}$	$\begin{gathered} \text { No } \\ \text { Nobelium } \\ 102 \end{gathered}$	$\begin{gathered} \mathbf{L r} \\ \text { Lawrencium } \\ 103 \end{gathered}$

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

Key | | $\begin{array}{l}\text { a } \\ \\ \text { b } \\ \text { b }\end{array}$ | |
| :--- | :--- | :--- |
| | $\begin{array}{l}\text { a relative atomic mass } \\ \mathbf{X}=\text { atomic symbol } \\ b=\text { proton (atomic) number }\end{array}$ | |

