UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

PHYSICAL SCIENCE

0652/02
Paper 2 (Core)
October/November 2010
1 hour 15 minutes
Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs, tables or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
A copy of the Periodic Table is printed on page 20.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
Total	

This document consists of $\mathbf{1 7}$ printed pages and $\mathbf{3}$ blank pages.

1 Copper is extracted from malachite, an ore containing copper carbonate, CuCO_{3}.
(a) Calculate the relative formula mass of copper carbonate.
relative formula mass
(b) Heating copper carbonate produces copper(II) oxide, CuO , and carbon dioxide.

Write a balanced equation for this reaction.
\qquad
(c) Heating copper carbonate with carbon (charcoal) produces copper. The equation for this reaction is:

$$
2 \mathrm{CuCO}_{3}+\mathrm{C} \rightarrow 2 \mathrm{Cu}+3 \mathrm{CO}_{2}
$$

(i) Describe how you could show that carbon dioxide has been given off.
\qquad
\qquad
(ii) The copper is formed as a pinkish brown solid.

State how you could show that it is a metal.

2 Fig. 2.1 shows two conducting spheres. Sphere \mathbf{B} is connected to earth through a sensitive ammeter. Sphere A has a very large positive charge on it. When sphere B is brought near to sphere A, a spark jumps between the two spheres and the ammeter needle moves rapidly up the scale and then back to zero.

Fig. 2.1
(a) (i) Explain why the ammeter needle moves.
\qquad
\qquad
\qquad
(b) The current through the ammeter is 0.0012 mA .

Calculate the potential difference across the safety resistor.

3 Fig. 3.1 shows a side view of a shallow pool.

Fig. 3.1
Some waves move across the surface of the water.
(a) (i) Mark on the diagram, between \mathbf{A} and \mathbf{B}, one wavelength of the waves.
(ii) Explain why the wavelength of the waves changes as the waves go across the pool from \mathbf{B} to \mathbf{C}.
\qquad
\qquad
\qquad
(b) In 4.0 s a boy counts 18 waves hitting the side of the pool.

Calculate the frequency of the waves.
frequency =
(c) When the pool is perfectly calm, a boy observes that an image of a lamp is formed as shown in Fig 3.2.

Fig. 3.2
(i) On Fig. 3.2, draw a ray from the lamp to the boy's eye to show how the image is formed.
(ii) The image formed is virtual.

Explain what is meant by a virtual image.
\qquad
\qquad

4 (a) (i) Name the acid which is reacted with zinc to make zinc chloride.
\qquad
(ii) Name the gas formed during the reaction.
\qquad
(iii) Complete and label Fig. 4.1 to show how a sample of the gas, produced in this reaction, could be collected.

Fig. 4.1
(b) Calculate the mass of zinc in 272 g of zinc chloride, ZnCl_{2}.
[relative atomic masses, $A_{\mathrm{r}}: \mathrm{Zn}, 65 ; \mathrm{Cl}, 35.5$]

5 A student measures the density of sea water.
(a) (i) Name two pieces of apparatus he might use.

1. \qquad
2.

(ii) State the measurements he makes.
\qquad
\qquad
\qquad
(iii) Explain how he uses his results to find the density of sea water.
\qquad
\qquad
\qquad
(b) A beaker contains 280 g of sea water which has a density of $1.12 \mathrm{~g} / \mathrm{cm}^{3}$.

Calculate the volume of sea water in the beaker.
volume =
\qquad cm^{3}

6 Cora has a test-tube containing molten naphthalene. She allows the naphthalene to cool recording the temperature every 10 s . Fig. 6.1 shows the graph she plotted from her readings.

Fig. 6.1
(a) Explain why the results produce a graph with a flat section between 30 s and 100 s .
\qquad
\qquad
\qquad
(b) It is a very hot day so Cora and her brother decide to go to the beach. Cora takes a bottle of frozen water whose temperature is $0^{\circ} \mathrm{C}$. Paul takes a bottle of liquid water at the same temperature. After a couple of hours Paul's water is warm and not nice to drink, but Cora's is still very cold.

Using information from the experiment in (a), explain the difference in temperature of the two bottles of water.
\qquad
\qquad
\qquad
\qquad

7 (a) Give the name and formula of the gas formed when sulfur burns in air. name
formula
(b) Explain the consequences of releasing this gas into the atmosphere.
\qquad
\qquad
\qquad

8 Complete Table 8.1 which is about three elements in the second period of the Periodic Table.

Table 8.1

element	number of electrons in an atom	charge on an ion
sodium
	13	
......	-1

9 Fig. 9.1 shows a magnetic table football game. The players are moved by placing controllers under the pitch and moving them around. The dark coloured controller attracts only the dark coloured players and the light coloured controller attracts only the light coloured players.

Fig. 9.1
Fig. 9.2 shows further detail of the dark coloured controller.

Fig. 9.2
(a) (i) State what must be placed in the base of the dark players in order for them to be attracted by the dark coloured controller and repelled by the light coloured controller.
\qquad
(ii) Fill in the spaces to label Fig. 9.3 to show the polarity of the magnet in the light coloured controller.

Fig. 9.3
(b) lan decides to play a trick on his brother and demagnetises the light coloured controller. Fig. 9.4 shows some of the apparatus he uses.

solenoid

controller

Fig. 9.4
(i) Name the other piece of apparatus that lan requires.
\qquad
(ii) Describe the procedure that lan uses to demagnetise the light coloured controller. You should include a circuit diagram in your answer.
\qquad circuit diagram
\qquad
\qquad
\qquad
\qquad
(iii) Describe how the players will now behave when the light coloured controller is brought up to them.
dark player \qquad
light player

10 Hydrogen, H_{2}, and ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, can be used instead of some fossil fuels.
(a) Complete Table 10.1 to give an advantage and a disadvantage of using hydrogen and ethanol as fuels.

Table 10.1

fuel	advantage	disadvantage
hydrogen		
ethanol		

(b) (i) Name a substance formed from the burning of both hydrogen and ethanol in air.
\qquad
(ii) Name the process used to make ethanol from sugar.
\qquad

11 (a) Explain the difference in structure between an alkane and an alkene.
\qquad
\qquad
(b) Name the alkane and the alkene each of which have two carbon atoms in a molecule. alkane
alkene
(c) Describe a test, with results, to distinguish between an alkane and an alkene.
\qquad
\qquad
\qquad
\qquad
(d) Name a type of product made from alkenes.

12 Jane is given a radioactive source. She finds out what type or types of radiation it emits.
(a) Describe one safety precaution she must take when using the source.
\qquad
\qquad
(b) She sets up a GM-tube and finds there is a count of 12 in one minute with no source present. State why there is a count with no source present.
\qquad
\qquad
(c) She places the source a few centimetres from the GM-tube. Table 12.1 shows the results she obtains using different absorbers between the GM-tube and the source.

Table 12.1

absorber	reading 1 / counts per minute	reading 2 / counts per minute	reading 3 / counts per minute
none	4352	4429	4388
thin card	1265	1321	1272
2 mm aluminium	1269	1247	1285
4 cm lead	33	45	37

(i) Explain why, when there is no absorber present, the readings vary.
\qquad
\qquad
(ii) Complete Table 12.2 and indicate whether beta and gamma radiation are present or absent. Use the evidence from Table 12.1 to explain the presence or absence of beta and gamma radiation.

Table 12.2

type of radiation	present (\checkmark) absent (\times)	reason
alpha	\checkmark	There is a considerable drop between the reading for no absorber and with the thin card.
beta		
gamma		

13 The graph shows how the volume of carbon dioxide given off changes with time when marble chips (calcium carbonate) are reacted with hydrochloric acid.

Fig. 13.1
(a) Sketch a curve on Fig. 13.1 to show how the volume of carbon dioxide varies if the experiment is repeated at a higher temperature. (All other conditions and quantities remain unchanged.)

Label this curve \mathbf{X}.
(b) Sketch a curve on Fig. 13.1 to show how the volume of carbon dioxide varies if the experiment is repeated using larger marble chips. (All other conditions and quantities remain unchanged.)

Label this curve \mathbf{Y}.

BLANK PAGE

BLANK PAGE

BLANK PAGE
DATA SHEET
The Periodic Table of the Elements

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

