

	UNIVERSITY OF CAMBRIDGE INTERNA International General Certificate of Second		Ders.com
CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
PHYSICAL SC Paper 3 (Exte	CIENCE	0652/31	
Paper 3 (Exte	nded)	October/November 2013	
		1 hour 15 minutes	

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

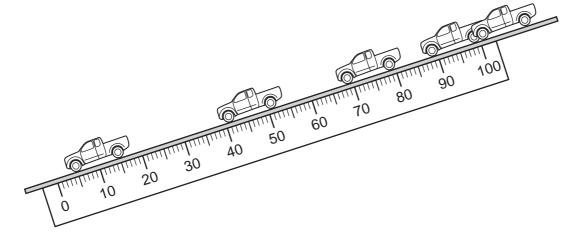
Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units. A copy of the Periodic Table is printed on page 20.


At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 20 printed pages.

1 A metre rule is clamped to a ramp. Fig. 1.1 shows the experimental set up.

For Examiner's Use

Fig. 1.1

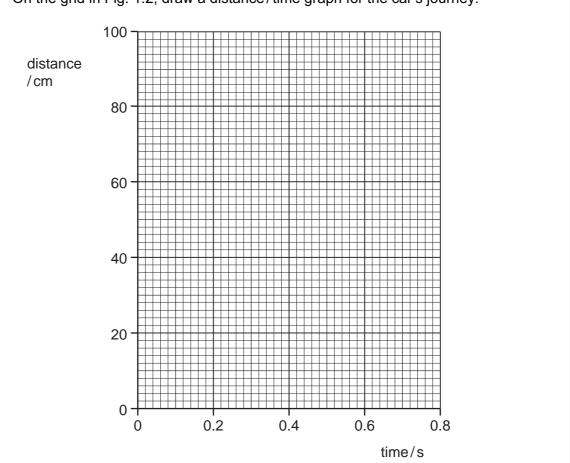
- The ramp is tilted and a toy car is held at the top of the ramp.
- The car is given a gentle push and it moves down the ramp.
- The positions of the car after successive time intervals of 0.20 s are shown.
- (a) (i) Read off the positions of the front of the car after each time interval.

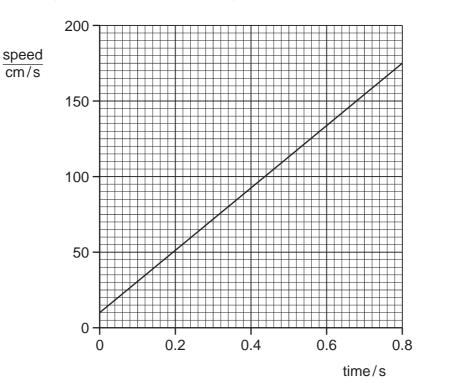
Record the values, to the nearest centimetre, in Table 1.1.

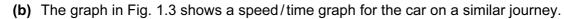
Calculate the total distance travelled after each time interval and complete the table.

Table 1	1.1
---------	-----

time/s	0.0	0.20	0.40	0.60	0.80
position / cm	99				
total distance travelled/cm	0				




Fig. 1.2


[2]

For Examiner's Use

(ii) On the grid in Fig. 1.2, draw a distance / time graph for the car's journey.

3

4

For Examiner's Use

Fig. 1.3

Use the graph to determine the acceleration of the car.

Do your working in the box.

acceleration = _____ unit ____ [3]

2 (a) Table 2.1 shows the number of sub-atomic particles in several different atoms and ions.

5

For Examiner's Use

Complete Table 2.1 by writing in the symbol of each atom or ion. Include the charge on each ion. The first one has been completed for you.

number of protons	number of electrons	number of neutrons	symbol
3	3	4	Li
9	10	10	
11	10	12	
15	15	16	

Table 2.1

(b) The symbol for an iron(III) ion is Fe^{3+} .

The symbol for an oxide ion is O^{2-} .

Deduce the formula for the compound iron(III) oxide.

......[1]

Table 3.1 gives information about four elements in Group 0 (noble gases) of the Periodic

Table 3.1elementelectron
arrangementdensity of gas
in kg/m³melting point/°Cboiling point/°Chelium20.17-272-269

0.84

1.67

3.50

(a) Describe the trend in boiling point down Table 3.1, from helium to krypton.

-248

-157

-246

-186

-152

- (b) Predict the melting point of argon. °C [1]
- (c) A balloon is filled with one of the noble gases.

2.8

2.8.8

2.8.18.8

The material of the balloon increases the average density of the filled balloon by 0.45 kg/m^3 .

The density of air at 25 °C is 1.18 kg/m^3 .

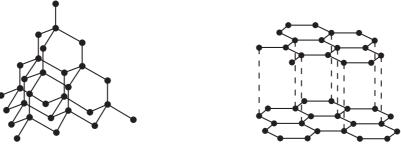
In order for the balloon to rise in air, its average density must be less than that of air.

State which of the noble gases could be used to fill this balloon so that it will rise in air at 25 °C and explain your answer.

noble gas	
explanation	

3

Table.


neon

argon

krypton

Fig. 4.1 shows the structure of a thermocouple thermometer. 4 For Examiner's Use wire 1 junction 1 junction 2 wire 3 wire 2 meter Fig. 4.1 (a) Wires 2 and 3 are made from the same material. Suggest suitable materials from which the three wires could be made. wire 1 wires 2 and 3 [2] (b) Junction 1 is placed in a cup of warm water and junction 2 is placed in melting ice. Describe and explain what is observed. [3] (c) An engineer uses a thermocouple to investigate the temperature at one point in a jet engine. He takes measurements from the time that the engine is first switched on until it reaches a steady temperature. Give **two** reasons why a thermocouple is a suitable thermometer to use. Give an explanation for one of your reasons. reason 1 reason 2 explanation [3]

5 Fig. 5.1 shows the arrangement of atoms in two forms of carbon, diamond and graphite.

diamond

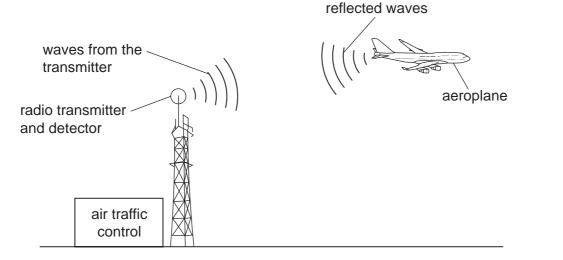
(i) difference in hardness,

graphite

Table 5.1 gives information about some of the properties of diamond and graphite.

	diamond	graphite
hardness	10	2
melting point/°C	4227	3927
electrical conductivity	low	high

Table 5.1


(a) Use ideas about the structure of diamond and graphite to explain the

(ii)	difference in electrical conductivity,
	[2]
(iii)	high melting points.

ind For Examiner's Use
[2]
and
[2]
[2]

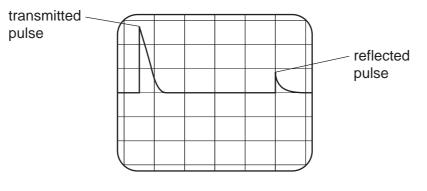

6 Air traffic control uses radar ranging to track an aircraft. A radar transmitter sends out a pulse of microwaves. The waves reflect back from an aeroplane and are detected by the radar station.

Fig. 6.1 shows how the system works.

(a) Fig. 6.2 shows the screen of a cathode ray oscilloscope (c.r.o.) at air traffic control.

The time-base of the c.r.o. is set at 0.05 ms/division.

(i) Suggest why the reflected pulse has a smaller amplitude than the transmitted pulse.

- [1]
- (ii) Calculate the time between the emission and detection of the pulse.

time = _____s [1]

(ii	i)	Calculate the distance of the aeroplane from the transmitter. (speed of microwaves = $3 \times 10^8 \text{ m/s}$)		For Examiner's Use
		distance = unit	[2]	
(b) (i)	The microwaves used have a wavelength of 7.5 mm. Calculate the frequency of the microwaves.		
(i	i)	frequency = unit State one other use of microwaves.	[2]	
			[1]	

11

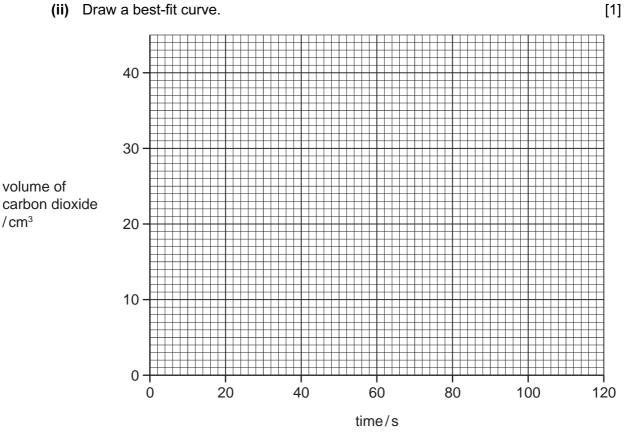
© UCLES 2013

[Turn over

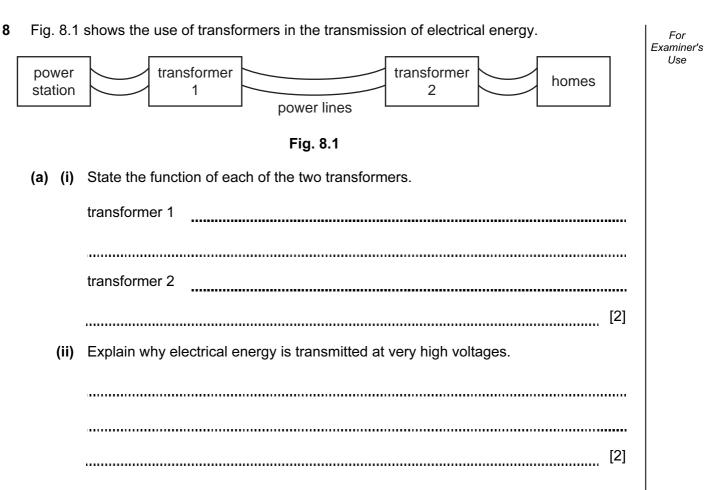
7 Marble chips are made of calcium carbonate. They react with hydrochloric acid.

 $CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$

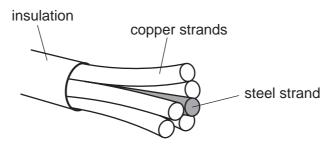
A student uses the apparatus in Fig. 7.1 to measure the carbon dioxide given off in this reaction.



The results of this investigation are shown in Table 7.1.


Table 7.1

time/s	0	20	40	60	80	100	120
volume of carbon dioxide/cm ³	0	15	27	35	39	40	40


- (a) (i) Plot the results on the grid.
 - (ii) Draw a best-fit curve.

For Examiner's Use

(b) Power lines can be made from several strands of copper, with a strand of steel, as shown in Fig. 8.2.

(i) Describe the metallic structure of copper and explain how it makes copper a suitable material for the transmission of electricity.

(ii) Suggest why a steel strand is included in the power-line.
[1]

- **9** Ethene is a hydrocarbon with the formula C_2H_4 .
 - (a) Draw a dot and cross diagram to show the bonding in a molecule of ethene. Include only the outer shell electrons of carbon and hydrogen.

For Examiner's Use

- (b) Ethene can be made from long chain alkanes obtained from crude oil.
 - (i) State the name given to the process used to produce ethene from long chain alkanes.
 [1]
 (ii) State the two conditions needed for the process.
 1
 2

- 17
- (c) Ethene is reacted with steam to produce ethanol.

 $C_2H_4 + H_2O \rightarrow C_2H_5OH$

(i) Calculate the mass of ethanol that can be made from each kg of ethene. [relative atomic masses, *A*_r: H, 1; C, 12; O, 16]

Show your working in the box.

mass of ethanol = _____ kg [2]

(ii) Name and describe another process that can be used to make ethanol.

[3]

(a) (i) Explain what is meant by nuclear fusion.

10 Nuclear fusion takes place in the sun.

18

[1]

[2]

(iii) The output from the sun is approximately 4×10^{26} W.

Estimate the number of fusion reactions which occur each second. You may assume that this is the only type of fusion reaction that occurs in the Sun.

Do your working in this box.

number of reactions per second = [2]

	0	4 Helium 2	20 Neon 10 Agor 18 Agor	84 Krypton 36	131 Xenon 54	86 Radon	175 Lutetium 71 Lawrencium Lawrencium
	١١		19 9 Fluorine 35.5 35.5 17 Chlorine	80 Br Bromine 35	127 53	At Astatine 85	173 Yb 70 Nobelium 102
	\geq		16 8 Oxygen 32 32 16 Sultur	79 Selenium 34	128 Te Tellurium 52	Polonium 84	169 Thulium 69 Md Mendelevium 101
	>		14 Nitrogen 31 Phosphorus 15	75 AS Arsenic 33	122 Sb 51 209	Bismuth 83	167 Ectolium 68 Fermium 100
	\geq		6 Carbon 6 28 28 14 Silicon	73 Ge Germanium 32	119 Sn 50 Tin 207	Pb Lead 82	165 Hohmium 67 ES Einsteinium 99
	=		11 B Boron 5 Auminium 13	70 Ga Gallium 31	115 1 7 1ndium 49 204	T1 Thalium 81	162 Dy Dysprosium 66 Cf Californium 98
cille				65 Zn 30 ^{Zinc}	112 Cadmium 48 201	Hg Mercury 80	159 159 Terbium 65 BK Berkelium 97
Group				64 Cu Copper 29	108 Ag Silver 197	Au Gold	157 Gdd Gadolinium 64 Curium 96
Group				59 Nickel 28	106 Pd Palladium 46	Pt Platinum 78	152 Eu E ^{Europlum} 63 Americium
Gro				59 CO Cobait	103 Rh Rhodium 45	Iridium 77	150 Samarium 62 Pu Plutonium 94
		¹ Hydrogen		56 Fe Iron	101 Ruthenium 190	Osmium 76	Promethium 61 Neptunium 93
			-	55 Manganese 25	Technetium 43 186	Rtenium 75	144 Neodymium 60 238 238 02 Uranium 92
				52 Cr Chromium 24	96 Molybdenum 42 184	Tungsten 74	141 Praseodymium 59 Protactinium 91
				51 V Vanadium 23	93 Niobium 41 181	Ta Tantalum 73	140 Cerium 58 232 232 Thorium
				48 Tritanium 22	91 Zr Zirconium 40 178	Hathium 72	uic mass ool iic) number
				45 Scandium 21	89 Xttrium 39 139	Lanthanum 57 * * 227 Actinium	oid series series a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		9 Be Beryllium 4 24 Ng Magnesium 12	40 Calcium 20	88 Strontium 38 137		noid
				39 K Potassium 19	85 Rub idium 7 133		° 37

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

20