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Kinematics (Chapter 1):
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e Velocity: The rate of change of the displacement of an object.

change in displacement

velocity = -
Y time taken

An aircraftis flying due north with a velocity of 200ms™.
A side wind of velocity 50 ms™ is blowing due east. What
is the aircraft’s resultant velocity (give the magnitude
and direction)?

Here, the two velocities are at 90°. A sketch diagram and
Pythagoras’s theorem are enough to solve the problem.

Step 1 Draw a sketch of the situation - this is shown in
Figure 1.16a.

a b 50ms

200ms! 200ms!

Not to
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50mst g

Figure 1.16 Finding the resultant of two velocities -
for Worked example 5.

Accelerated Motion (Chapter 2):

e Acceleration: rate of change of velocity

change in velocity
time taken

average acceleration =

Step 2 Now sketch a vector triangle. Remember that
the second vector starts where the first one ends. This is
shown in Figure 1.16b.

Step 3 Join the start and end points to complete the
triangle.

Step 4 Calculate the magnitude of the resultant vector v
(the hypotenuse of the right-angled triangle).
v2=200?+50%=40000 + 2500 = 42500

v=Y42500=206ms™

Step 5 Calculatetheangle 6:

50
tanf = 500

=0.25
0 =tan™1(0.25) ~ 14°

So the aircraft’s resultant velocity is 206 ms™ at 14° east
of north.

e When an object is moving with constant acceleration in a straight line:

equation 1: v=u+at
: (u+v)
equation 2: s= > xt
. 1
equation 3: s=ut+ Eat2
equation 4: vZ=u?+2as

e The velocity—time graph in Figure 2.18 shows non-uniform acceleration (decreasing

gradient). The acceleration at any instant in time is given by the gradient of the velocity-

time graph; calculated by:
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B Atthe time of interest, mark a point on the graph.
Draw a tangent to the curve at that point.

m Make alarge right-angled triangle, and use it to find the
gradient.

Figure 2.18 This curved velocity-time graph cannot be
analysed using the equations of motion.

e Inthe absence of air resistance, the horizontal component of velocity is constant while the

vertical component of velocity increases at a rate of -9.81 ms™.

Horizontal distance / m
0.1 0.2 03 04 05 06 0.7

9 Astoneisthrown horizontally with a velocity of 12ms™
from the top of a vertical cliff.

Calculate how long the stone takes to reach the ground
40m below and how far the stone lands from the base
of the cliff.

Step 1 Consider the ball’s vertical motion. It has
zero initial speed vertically and travels 40 m with
acceleration 9.81ms™ in the same direction.

1
s=ut+5at?

40=0+3x9.81 x t?

Thust =2.86s.

Figure 2.31 This sketch shows the path of the ball projected
horizontally. The arrows represent the horizontal and vertical
components of its velocity.
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Step 2 Consider the ball’s horizontal motion. The ball
travels with a constant horizontal velocity, 12ms™, as
long as there is no air resistance.

distance travelled=uxt=12%x2.86=34.3m

Hint: You may find it easier to summarise the

information like this:
vertically s=40 wu=0 0=981 t=? vy=?

horizontally u=12 v=12 a=0 t=?2 s=7
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Step 1 Splitthe ball’s initial velocity into horizontal

10 Aballisthrown with an initial velocity of 20ms™ at an
and vertical components:

angle of 30° to the horizontal (Figure 2.32). Calculate
the horizontal distance travelled by the ball (its range). initial velocity = u=20ms™
horizontal component of initial velocity

=ucosf =20x% cos30°=17.3ms™*

vertical component of initial velocity
. =usinf =20xsin30°=10ms*

u=20mst

-

Figure 2.32 Where will the ball land?

Step 2 Consider the ball’s vertical motion. How long Step 3 Consider the ball’s horizontal motion. How

when willits displacement return to zero? lands? This is simple to calculate, since it moves with a
u=10ms! g=-98lms2 s=0 t=2 constant horizontal velocity of 17.3ms™.

horizontal displacement s =17.3 x 2.04
=35.3m

Using s = ut + 3 at2, we have:
0=10t - 4.905t2

This gives t= 0 s or t=2.04s. So the ball is in the air Hence the horizontal distance travelled by the ball
for 2.04s. (itsrange) is about 35m.

Dynamics (Chapter 3):

Base unit Symbol Base unit
length X | setc. m (metre)
mass m kg (kilogram)
time t s (second)
electric current I A (ampere)
thermodynamic temperature | T K (kelvin)
amount of substance n mol (mole)
luminous intensity I cd (candela)

e Newton’s second law of motion: for a body of constant mass, its acceleration is directly
proportional to the resultant force applied to it.

F=ma

e Difference between mass and weight:

Quantity | Symbol | Unit | Comment

mass m kg this does not vary from place to
place
weight mg N this a force - it depends on the

strength of gravity
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e Newton’s first law of motion: an object will remain at rest or in a state of uniform motion
unless it is acted on by a resultant force.

e Terminal velocity: the maximum velocity of an object travelling through a fluid, where its
resultant force is zero, and depends on the weight and surface area of the object.

I 3
2
)
o
g
Figure 3.10 The velocity of a parachutist varies during a
descent. The force arrows show weight (downwards) and air
resistance (upwards).
0 >
0 Time

e Newton’s third law of motion: when two bodies interact, the forces they exert on each
other are equal in magnitude and opposite in direction (action and reaction forces — of the
same types).

Forces — vectors and moments (Chapter 4)

component of W down the slope = Wcos (90° - 6)
= Wsin@

F=mgsin0

azﬂ{i—nezgsinﬂ

Figure 4.10 Aforce diagram for a trolley on a ramp.

e The centre of gravity of an object is defined as the point where all the weight of the object
may be considered to act.

e The moment of a force = force X perpendicular distance of the pivot from the line of action
of the force.

e Principle of moments: For any object that is in equilibrium, the sum of the clockwise
moments about any point provided by the forces acting on the object equals to the sum of
the anticlockwise moments about the same point.

e Toform a couple, two forces must be equal in magnitude, parallel (but opposite in
direction) and separated by a distance d

e The turning effect or moment of a couple is known as torque.

e Torque of a couple = one of the forces X perpendicular distance between the forces.
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15N torque of couple = (15x0.20) + (15 x0.20)
=6.0Nm

torque of a couple = 15x0.4 = 6.0Nm

15N

e When calculating the moment, a pivot point must be chosen, where a force acts on.
e For an object to be in equilibrium, two conditions must be met at the same time:

» The resultant force acting on the object is zero

» The resultant moment is zero
e So acouple does not cause an object to accelerate.

Work, energy and power (Chapter 5)

e The work done by a force is defined as the product of the force and the distance moved in
the direction of the force (W =F X s).
e Work done = energy transferred

F i
| _ Figure 5.6 The work done by a force
0 | distance travelled = depends on the angle between the
—— Fcos# direction of motion force and the distance it moves.

e Work done by an expanding gas: W = pAV
e Gravitational potential energy (E,) = mgh

» his the distance moved

» mgqis the force (weight) on the object
e Kinetic energy (E) = % mv®

> V=u’+2as(u=0)

> V’=2as

> % mv’=mas

> Work done by force F = % mv?

useful output energy

> x 100%
total input energy

efficiency =

e Principle of conservation of energy: energy cannot be created or destroyed. It can only be
converted from one form to another.
e Power is defined as the rate of work done, units: watt

ower work done w
P time taken t
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e Suppose that an aircraft is moving with velocity v. Its engines provide the force F needed to

overcome the drag of the air. In time ¢, the aircraft moves a distance s equal to vt. So the
work done by the engines is:

work done = force x distance

W=Fxvxt
work done, . .
and the power P (= —————) is given by:
pow ( timetaken) gtV Y
PZKIvaxt
I t
and we have:
P=Fxvy

power = force x velocity

Momentum (Chapter 6)

e Momentum = mass X velocity (p = mv)

e The principle of conservation of momentum:

» Within a closed system, the total momentum in any direction is constant.
» Total momentum of objects before collision = total momentum of objects after
collision.

e Perfectly elastic collision (does not stick):

» Momentum conserved

mlul + m2u2 = mlvl + m2v2
> E conserved
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@:: @ ‘.;) Ul‘+\l\ = V. +Uu,

Ni~U, = Vo -V,

Wi= Uy s (0i=Yy,) pediaa.com
e Perfectly inelastic collision (does stick):
» Momentum conserved

mlul + m2u2 = (m1+ m2)(vl +v2)
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> Ex not conserved

3 Awhite ball of mass m = 1.0kg and moving with initial

speed u=0.5ms™ collides with a stationary red ball of
the same mass. They move off so that each has the same
speed and the angle between their paths is 90°. What is
their speed?

Step 1 Draw adiagram to show the velocity vectors of
the two balls, before and after the collision (Figure 6.16).
We will show the white ballinitially travelling along the
y-direction.

y
A
1
1
\15<."§7I
1

N

Vred (after) Viwhite (after)

Viwhite (before)

Figure 6.16 Velocity vectors for the white and red balls.

Because we know that the two balls have the same final
speed v, their paths must be symmetrical about the
y-direction. Since their paths are at 90° to one other,
each must be at 45° to the y-direction.

Step 2 We know that momentum is conserved in the
y-direction. Hence we can say:

initial momentum of white ball in y-direction
=final component of momentum of white ball
in y-direction
+final component of momentum of red ball
in y-direction

This is easier to understand using symbols:

= +
mu mvy mvy

where v, is the component of vin the y-direction. The
right-hand side of this equation has two identical
terms, one for the white ball and one for the red. We can
simplify the equation to give:

mu=2mv,

Step 3 The component of vin the y-direction is vcos45°.
Substituting this, and including values of m and u, gives

0.5=2vcos45°

and hence
0.5
e e —1
v 7 cos 45 0.354ms

So each ball moves off at 0.354m s™ at an angle of 45° to
the initial direction of the white ball.

particle 1
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Figure 6.17 shows the momentum vectors for particles
1 and 2, before and after a collision. Show that
momentum is conserved in this collision.

particle 1
3.0kgms™

5.0kg ms!

A4

40kgmst

particle 2

Figure 6.17 Momentum vectors: particle 1 has come
from the left and collided with particle 2.

Step 1 Consider momentum changes in the y-direction.

Before collision:

momentum =0

(because particle 1 is moving in the x-direction and
particle 2 is stationary).

After collision:

component of momentum of particle 1
=3.0c0s36.9° = 2.40kgm s upwards

component of momentum of particle 2
=4.0cos53.1° = 2.40kgm s~ downwards

These components are equal and opposite and hence
their sumis zero. Hence momentum is conserved in the
y-direction.

Step 2 Consider momentum changes in the x-direction.
Before collision: momentum =5.0kgms™ to the right
After collision:

component of momentum of particle 1
=3.0cos53.1° * 1.80kgms™ to the right

component of momentum of particle 2
=4.0c0s36.9° = 3.20kgm s to the right

total momentum to the right =5.0kgms™
Hence momentum is conserved in the x-direction.

Step 3 An alternative approach would be to draw a
vector triangle similar to Figure 6.15b. In this case,
the numbers have been chosen to make this easy; the
vectors form a 3-4-5 right-angled triangle.

Because the vectors form a closed triangle, we can
conclude that:

momentum before collision = momentum after collision
i.e. momentum is conserved.
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e Newton’s second law of motion: the resultant force acting on an object is equal to the rate

of change of its linear momentum (force = rate of change of momentum). The resultant
force and the change in momentum are in the same direction.

Ap
F=2P
At

F = ma used when the mass of the object stays constant.

Matter and materials (Chapter 7)

e Density is defined as the mass per unit volume of a substance

P:

m
Vv

e Pressure is defined as the normal force acting per unit cross-sectional area

e Pressure in a fluid is given by:

weight of water = massxg=pxAxhxg

force g
pressure = ———= prxth
=pxgxh

pressure = density x acceleration due to gravity x depth
p=pgh

e Hooke’s law: a material obeys Hooke’s law if the extension produced in it is proportional

to the applied force (load).

F=kx
» Where k is the force constant of the spring / stiffness / spring constant
e The force beyond which the spring becomes permanently deformed is known as the elastic
limit.
50,0 === mmmmmm e e
€
O
P elastic limit
2
2 Area under the
E ‘/\\,- graph is the energy
le_l stored in the spring

load (N) 4.0
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e The strain is defined as the fractional increase in the original length of the wire; has no
units; hence the usage of a long wire — increase extension
extension

: . X
strain = — ==
original length strain L

e The stress is defined as the force applied per unit cross-sectional area of the wire; units:
Pa; hence the usage of a thin wire — increase extension
force

stress = . _F
cross-sectional area  Stres$ = 7

e Young modulus: ratio of stress to strain of a material

=
I

= tensile siv stress
tensile siress le Siress Young modulus = :
fensile strain strain

I
I [

I
R
-~
f

e/L

I
2R

e [f the linear section stress is proportional to strain, the wire obeys Hooke's law:

} Hooke’s law obeyed |
in this linear region 1

gradient = Young modulus

Stress

Figure 7.11 Stress-strain graph, and how to deduce the
Young modulus. Note that we can only use the first, straight-
line section of the graph.

0 Strain

e Elastic potential energy: energy stored in a stretched or compressed material.
» Aslong as the elastic limit has not been exceeded, the energy can be recovered.
e The work done in stretching or compressing a material is equal to the area under force-
extension graph.
There is an alternative equation for elastic potential
area = 5 x base x height energy. We know that, according to Hooke’s law (page
104), applied force F and extension x are related by F = kx,

This again gives: i - '
where k is the force constant. Substituting for F gives:

elastic potential energy = $Fx ' . 1 |
elastic potential energy = 3 Fx = 3 xkxxx

or E= %Fx .
elastic potential energy = 5kx*
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area = work done

> Figure 7.15 Elastic potential energy is equal to the area under
the force-extension graph.

X
Extension



