

1 hour 15 minutes

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
COMBINED SO			0653/03
Paper 3 (Extend	ded)		May/June 2008

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
1				
2				
3				
4				
5				
6				
7				
8				
9				
Total				

This document consists of 20 printed pages.

1	(a)	Giv	e the term that matches each of these definitions.				
		a gı	reen pigment, found in some plant cells, which absorbs light energy				
		an (organelle, found in some plant cells, where photosynthesis occurs				
		a fu	lly permeable layer surrounding a plant cell				
		a pa	artially permeable layer surrounding all cells				
			[2]				
	(b)) During photosynthesis, glucose is produced in the leaves of a plant. Some of the glucose is changed to a different sugar and transported to the roots, where it is converted into starch and stored.					
		(i)	The diagram represents a glucose molecule. Complete the diagram to show part of a starch molecule.				
			[1]				
		(ii)	If the outer parts of a plant stem are damaged, this can prevent sugars being transported to the roots.				
			Explain why this happens, and why it can kill the plant.				
			[2]				

(c) Fig. 1.1 shows one of the ways in which a plant called *Bryophyllum* reproduces. It grows new plantlets from its leaves.

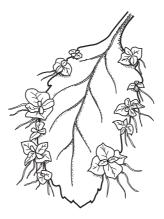


Fig. 1.1

	(i)	Name	the ty	pe of r	eproducti	on th	nat is ta	aking pla	ce.			
												[1]
	(ii)	Explai advan	-	-	_	this	way, r	ather tha	n by pr	oducin	g seeds, might b	e an
		•••••										
												[3]
(d)		scribe roductio		other	function	of	plant	leaves,	apart	from	photosynthesis	and
												[2]

2

A student wrote down some properties of alpha, beta and gamma radiation	ns.	
Draw a line from each property to the correct radiation.		
	alpha	
passes through several centimetres of lead		
has no mass	heta	
is deflected towards a negatively charged plate	bota	
is not affected by an electric field		
	amma	
to the most fernoling in the		[3]
Cobalt-60 is a radioactive isotope of cobalt.		
Explain what is meant by the word isotope.		
		[2]
Gamma radiation can be used to sterilise surgical instruments. Wha gamma radiation makes it suitable for this purpose?	t property	y of
		[1]
A scientist investigated the activity of a radioactive isotope. She measured of 8000 per second.	d a count	rate
20 minutes later the count rate was 2000 per second.		
(i) Calculate the half-life of the isotope.		
		[1]
	Contains negatively charged particles passes through several centimetres of lead has no mass is deflected towards a negatively charged plate is not affected by an electric field is the most ionising in air Cobalt-60 is a radioactive isotope of cobalt. Explain what is meant by the word isotope. Gamma radiation can be used to sterilise surgical instruments. What gamma radiation makes it suitable for this purpose? A scientist investigated the activity of a radioactive isotope. She measured of 8000 per second.	contains negatively charged particles passes through several centimetres of lead has no mass is deflected towards a negatively charged plate is not affected by an electric field is the most ionising in air Cobalt-60 is a radioactive isotope of cobalt. Explain what is meant by the word isotope. Gamma radiation can be used to sterilise surgical instruments. What property gamma radiation makes it suitable for this purpose? A scientist investigated the activity of a radioactive isotope. She measured a count of 8000 per second.

	(ii)	Predict how long after the start of the experiment the scientist could expect to measure a count rate of 250 per second.	For Examiner's Use
		Show your working.	
		[2]	
(e)	rad	an experiment, a radiation detector was set up and used to measure background iation. The background radiation in the laboratory was found to be 40 counts per oute.	
	(i)	What is background radiation?	
		[1]	
	(ii)	A radioactive source was placed near the detector and a reading of 1200 counts per minute was recorded. What was the count rate of the radioactive source?	
		counts per minute [1]	

3 Kerosene is a mixture of hydrocarbons used as a fuel for aircraft and for lighting and cooking.

Kerosene is obtained from petroleum (crude oil) and is a liquid which boils in the range.

For Examiner's Use

Kerosene is obtained from petroleum (crude oil) and is a liquid which boils in the range $150\,^{\circ}\text{C} - 200\,^{\circ}\text{C}$.

- (a) (i) Name one other type of liquid fuel which is obtained from petroleum.
 - (ii) State the important difference between the various compounds in petroleum which enables them to be separated by fractional distillation.

[1]

(b) A typical molecule in kerosene has the formula C₁₃H₂₈.

Complete the balanced equation below for the complete combustion of C₁₃H₂₈.

$$C_{13}H_{28} + \dots \rightarrow 13CO_2 + 14H_2O$$
 [2]

(c) Fig. 3.1 shows a dot-and-cross diagram of a molecule of carbon dioxide.

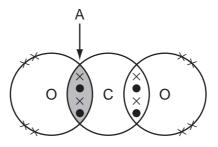


Fig. 3.1

Describe in detail what is shown by the shaded area, A .							

4 Fig. 4.1 shows the quantity of nitrogen oxides and sulphur dioxide that was emitted to the atmosphere by a large industrial company between 2001 and 2005.

For Examiner's Use

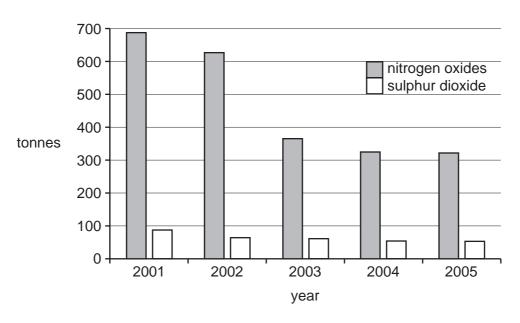


Fig. 4.1

(a)	Describe the change in emissions of nitrogen oxides between 2001 and 2005.
	rol
	[2]
(b)	Suggest two ways in which the changes in sulphur dioxide emissions may have been brought about.
	[2]
(c)	Explain why reducing the quantities of nitrogen oxides and sulphur dioxide that are emitted to the air would be beneficial to the environment.
	[3]

5 A man is playing golf.

For Examiner's Use

(a) As the golfer moves around the course in a golf cart, his movement is measured. The measurements are plotted on the graph in Fig. 5.1.

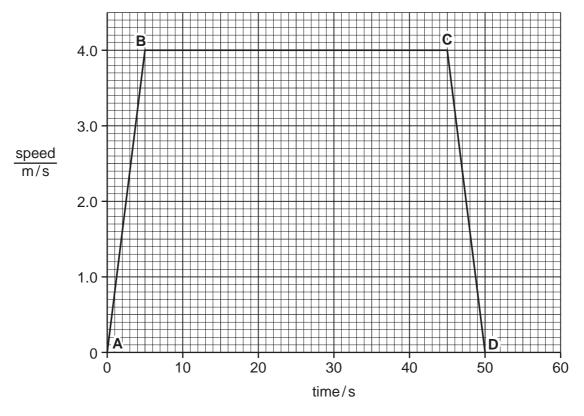


Fig. 5.1

Describe what is happening between

A – B	
D 0	
B – C	[2]

(b) Calculate the total distance covered.

Show your working.

[3]

6 Fig. 6.1 shows apparatus which can be used to reduce copper oxide to copper.

For Examiner's Use

[2]

Copper oxide is a black powder and during the reaction metallic copper forms inside the reaction tube.

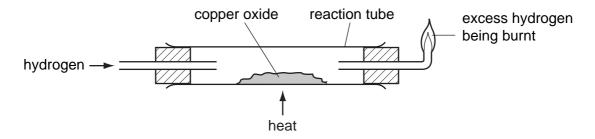


Fig. 6.1

(a) (i) Select from the list of substances below to complete the word equation for the reaction in Fig. 6.1.

		air	copper	copper oxi	ae
		hydrogen	oxygen	water	
		+	→	+	
					[1]
	(ii)	Describe one piece of evidence this reaction.	which wou	uld show that copper ha	d been formed in
					[1]
(b)	Cop	oper oxide is an ionic compound.			
	(i)	Explain why an oxide ion has a electrically neutral.	n electric	al charge of –2 but an	oxygen atom is

((ii)	The formula	of	copper	oxide	is	CuO.
- 1	,	THE ICHINAIA	\circ	OOPPOI	ONIGO		ouo.

State the number of electrons which each copper ion gains to become a copper atom during the reaction in Fig. 6.1.

Explain your answer.	
	 [2]

(c) Fig. 6.2 shows another method of producing copper from copper oxide.

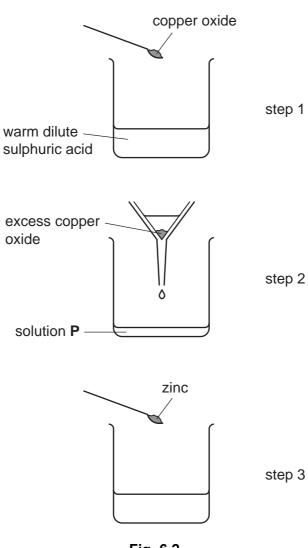


Fig. 6.2

(i)	Write the name of the salt dissolved in solution P in Fig. 6.2.	Exa
	[1]	
(ii)	Explain why zinc is able to react with the salt in solution P .	
	[1]	
(iii)	Explain, in terms of the transfer of electrons, which substance is oxidised when zinc reacts in solution ${\bf P}$.	
	[2]	

7 Fig. 7.1 shows the structure of the human thorax.

For Examiner's Use

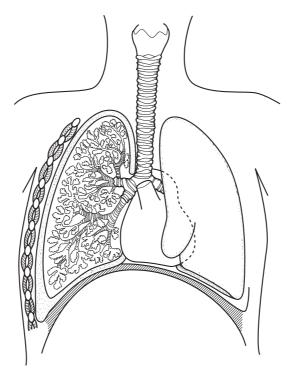


Fig. 7.1

- (a) Using label lines, label each of the following structures.
 - bronchus
 - pleural membrane
 - trachea

	-: -	Γ/	$\overline{}$	
•	าเก		,	1
_	10	14	_	

(b) Gas exchange takes place in the alveoli. When a person smokes for a number of years, the walls of the alveoli start to break down. This is called emphysema.

	[2]					
Explain why emphysema makes it more difficult for oxygen to get into the blood.						

(c) Oxygen is transported around the body in red blood cells. Fig. 7.2 is a diagram of a group of red blood cells.

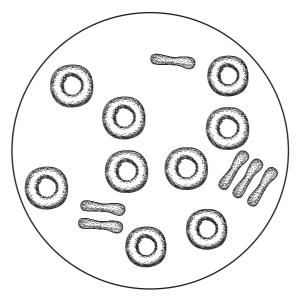
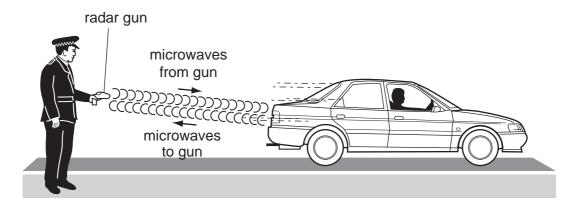


Fig. 7.2

	Choose three features of red blood cells and for each of them explain how this adapthem for their function.	pts
		[3]
(d)	Explain why body cells need a constant supply of oxygen.	
		[2]

			14
8	(a)		ar travels 2 kilometres, at a steady speed, in 100 seconds. The total force driving car forward is 1000N .
		(i)	Calculate the work done by the total driving force over this distance.
			State the formula that you use and show your working.
			formula
			working
			[2]
		(ii)	Calculate the useful power output of the engine during this time.
			State the formula that you use and show your working.
			formula
			working


[2]

For Examiner's Use

(b) A policeman is using a radar gun to measure the speed of a car.

The radar gun emits microwaves which hit the moving car and bounce back to a receiver in the radar gun.

A computer in the radar gun calculates the speed of the car.

	(i) What type of waves are microwaves?	
		[1]
	(ii) The waves bounce off the car back towards the radar gun. Name this process.	
		[1]
(c)	The headlamps on the car are connected in parallel as shown in Fig. 8.1.	
	$\begin{array}{c c} 12V \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	
	Fig. 8.1	
	Each headlamp has a resistance of 4 ohms.	
	Calculate the combined resistance of the two headlamps.	
	State the formula that you use and show your working.	
	formula	
	working	
		[2]

(d) Fig. 8.2 shows a spring. The spring is 10 cm long. A 50 g mass is hung on the spring and the length of the spring increases to 13 cm.

For Examiner's Use

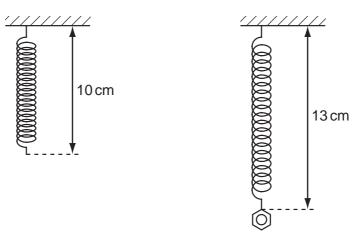


Fig. 8.2

The 50 g mass is replaced by an object of unknown mass. The new length of the spring is 22 cm.

Calculate the value of the unknown mass.

Show your working.

[2]

9 The Periodic Table shows all of the chemical elements arranged into groups and periods.

For Examiner's Use

Fig. 9.1 shows part of the Periodic Table. The letters in this table are **not** the normal chemical symbols of the elements.

	I	Ш						Ш	IV	V	VI	VII	0
1													Α
2	F												Е
3	С							Н					
4	G				В							D	

Fig. 9.1

- (a) Complete the statements below using letters, chosen from A to H, which refer to elements in Fig. 9.1. Letters may be used once, more than once or not at all.
 - The three elements shown as letters _____, and ____ and ____ have the same number of electrons in the outer shells of their atoms.
 - The element shown as letter _____ is a very reactive non-metal. [2]
- (b) A student used the apparatus shown in Fig. 9.2 to investigate the decomposition of the compound hydrogen peroxide, H₂O₂.

The balanced equation for the decomposition of hydrogen peroxide is shown below.

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

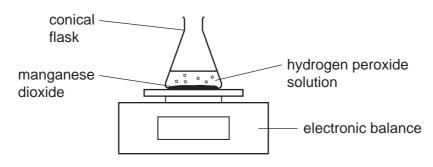


Fig. 9.2

The student measured the decrease in mass of the conical flask and its contents which occurred during the reaction.

For Examiner's Use

Table 9.1 shows the measurements the student made in a series of trials using different masses of manganese dioxide.

The initial concentration and volume of the hydrogen peroxide solution in each trial were the same.

Table 9.1

trial	mass of m dioxid	•	time for reaction to	decrease in mass during trial / g		
uiai	start	end	finish / seconds			
1	0 0		too long to measure	0		
2	0.5	0.5	540	1.6		
3	1.0	1.0	270	1.6		
4	2.0	2.0	135	1.6		

(i)	Explain why the mass of the flask and contents decreased in trials 2 to 4.
	[1]
(ii)	
	[1]
iii)	Use the information in Table 9.1 to explain the role of manganese dioxide in this reaction.
	[3]

((iv) The rate of chemical reactions increases if the temperature increases.									
	Explain in terms of collisions between particles why this happens.									
			[2]							
(c)	Cal	culate the relative molecular mass (M_r) of hydrogen peroxide.								
	Sho	ow your working.								
			[1]							

DATA SHEET
The Periodic Table of the Elements

	0	Helium	20 Neon 10 Seon 20 Seo	Ar Argon	84 Kr ypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
	IIΛ		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102
	I		0 Oxygen	32 S Sulphur 16	79 Se Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm Thullum 69	Md Mendelevium 101
	>		<u>_</u>	Phosphorus	75 AS Arsenic 33		209 Bi Bismuth		167 Er Erbium 68	Fm Fermium 100
	//		ဖ	Si Silicon	73 Ge Germanium	119 Sn Tin	207 Pb Lead		165 Ho Holmium 67	ES Einsteinium 99
	≡		Boron 5	A1 Aluminium 13	70 Ga Gallium	115 In Indium 49	204 T 1 Thallium 81		162 Dy Dysprosium 66	
		'			65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercuny 80		159 Tb Terbium 65	
					64 Copper	108 Ag Silver	197 Au Gold		Gd Gadolinium 64	
Group					59 R Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	
Ş					59 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium		Sm Samarium 62	Pu Plutonium
		T Hydrogen			56 Fe Iron	Ruthenium	190 OS Osmium 76		Pm Promethium 61	Neptunium
					Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92
					Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91
					51 Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce Cerium	232 Th Thorium
					48 T	91 Zr Zirconium 40	178 Hf Hafnium 72			nic mass bol nic) number
					Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57 *	227 Ac Actinium 89	l series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Beryllium 4	Mg Magnesium	40 Ca Calcium	Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	« × ∞
	_		7 Lithium 3	Na Sodium	39 K	Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58-71 L: 190-103	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.